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INTEGRATION I FU.CTIOlN SPACEZ

R. Henstock’s gen:ral thcory of intizratic. iz basad on

iivision spaces rather than measurs th.ory (1,2). Livisz on

spaces'arise a3 foliows. Given a cpace T and = f:mily of

subsets or "intervals" I of T, a partizicn 58 T is 3 fin.%=

-~

collecticn of disjcint intervals I whose uniz: Lo T.

~

Henstock defines collections S of interval-poin% pairs (I,x),

xe T. A division £of T from S is a finite subcollsctian
(I,x) from S such tha® “ne in%ervals I form 2 partiiicn o0
The conditions satisfied by the collecticns 3 include =

following.

=

-

.

(1) There sxists S containing 2 division of T. (For such S

we say that S divides T.)

)

(ii) If sl and sl both divide T then there :xists

dividing T, in the interscction of S, and Sz:

If £ is a real or complex valued function of points x in

T and m is, similarly, a .function of %the intsrvals I of T,
then the integral over T of f with respect o m, which we
denote by, Lf(x)m(I) or Lfdm. is z wherz z satisfis. :he

followingz condition.

Given £ > O therc oxists S dividing T =o thaz, for any

division éof T from S,
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|2 - @ Zcconm]| < &
wher: Gf?:i?f(x)m(I) repres.ntz cumiation cver th: (I,x) in 1?
and corresponds to the Riemann suz of Riemanm i..tesratio-. In

the latter case, cach S is the collection of

({u,v),x), u, v real, x = u or v, v=u <SD.

More gencrally, if h(I,x) is a function =¥
interval-point pairs then the intezral z <7 v vir T, dinct.?
by Jrh(I,x) or J(dh, exists if z sati-fiec tho abov:

T T .
condition with f(x)m(I) replaced by n(I,x).

Given the real interval (0,£) 1et T b2 the 3.: of ~:al
valued functions x defined on (0,t). Thus T i: the produck
of R by itself uncountably many tizes. Given 2 finite sub:zst
N = {t‘, tz,...,tn}of (0,t) and x € T, let :y=19, <, =1,
and wrif:e x4 = x(td), 1< jgn, xg=0, iy =7 whers y is
a fixed real number, and let x(N) = (xl, Hqpeers %) 30 =)
is a point of R . An interval I of T is the 3¢t of x in T
satisfying ug < X < Vi 1< j € n, where ud and Vj are real

numbers.

The division space structure for the functio: space T is
produced as follows. Let A be é countable subset of (O,f).
For each x in T.let L(x) be a finite subset of A. For each
finite subset N of (0,t) containing L(x), let% =<6(N) be
positive. Then (I,x) is in S provided Vj - uj <(o , 1<j¢n,
with x(tj) = uj or vy - Thus tbe elzments (I,x) of S are

detsrmined by the choice of A, L(x) and - (N) for Il containi j

L(x).
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Condition (i) above iz zati:fled az ev.ry zuch 3
contains divisions of T. The cothsor conditicas inm *he
definition of a division space are also satizfied. Thu:z %=
intezral of any functiornal h(I,x) in the unrestric.zd
function space is defined. To integrate a functio. 2zl n ovsr
a proper subspace of such as the cpace C of ccntisuz s
functions cr paths, we multiply n o the char ctsrist . <

function ¢f © and integrate ‘he rssulting funccic.oal ovir T.

Let h(x,,..., x“) be a real or complex valued functic:

of xj = K(tj) and let h(I) denote thz follicwin: functis. £

intervals I of T:

)
h(I) =foo.jh(xl ,...,X'!)d1~2l oood}in

w u,

Theorem 1 : If h is integrable in T then ‘&m is the limit of

a sequence of terms

b

1 b'\
fcoo[ h(X‘ 'ocq,xn )d-'.' oood:\n

fa 2,

in which n, a b',...,a b tend to infinity, takin

n’ n

successively larger positive values.

If ¢ is a complex number, ¢ = a+ib, a < 0, b >0, ¢ # 0,

let
w(I) = y
v, Va AL 2. n+ _
J;."'Ln el (—1:‘:((—3-9—1)) exp( Z_(x Xg):)' )clx coeedxy,



We call w the generalised Wiensr integrator.

Theoram 2 : w(I) is integrable in T with

L 2
Lo = (%) e

If ¢ = -1/2 then the integral of Theorem 2 is ths Wizsn'r

integral and the function on the right hand side iz :he

diffusion function for a Brownian particle. If ¢ = i/2 then

(6]

we have the Feynman integral of quantum zechanics and tn
function is the propagator function for a single fre~

particle in one dimension.
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