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 THE METHOD OF FRACTIONAL OPERATORS APPLIED TO SUMMATION

 The purpose of this paper is to show how some interesting

 results concerning series summation and the psi function are

 established by means of fractional operators. Our main interest

 here is the method used to obtain the formula

 00

 (X) tm . „a . „i - jf£}- sftrHif ' ReU) " Re(v) 2 °-
 n=l

 The technique used here to construct relation (1) has

 been called by the misnomer fractional calculus [1], [2], [3], but

 we shall refer to it as the method of fractional operators . The

 great elegance that can be achieved by the proper use of fractional

 operators should more than justify a more general recognition and

 use. These operators have the power to simplify the solutions

 of a complicated functional equations. This paper augments an

 idea initiated by Ross [4], We will show that Ross's result is

 a special case (1) if the parameters v and X are appropriately

 specified.
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 The integral

 i* v-l
 (2) - i- (x-t) f ( t) dt , Re ( v) > 0. - r(V) I , >

 > 0

 is called the Riemann-Liouvil le integral and is of fundamental

 importance in the fractional calculus. This integral defines

 differentiation and integration to an arbitrary order. The

 operator notation which best describes this integral, invented

 by Harold T. Davis [1], is

 (3) qD¡V f(x> ,

 where the subscripts on D are the terminals of integration and

 v is arbitrary. For a wide class of functions the integral (2)

 is a beta integral and is readily evaluated.

 We start with the beta integral

 /*
 tA' i / dt _ r (X) x+v-i r (v) / (x-t) t dt _ r(x + v) '

 A)

 Re(') > 0, Re(v) 2 0 .

 The integral on the left above is differentiated with

 respect to the parameter X according to Leibniz's rule. The

 right side above is also differentiated with respect to X getting

 /X

 i ( «.iv-i,. (ln t)t dt " - -à /f(x)xx+v"1 ) ( «.iv-i,. (ln t)t dt " - dX ' r<X + V)/
 /0
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 The differentiation of the quotient, on the right side

 above is tedious but straightforward. If we recall the

 psi function relations [5], [6], r'(X)/r(X) = ty(X)

 and r'(X + v ) / r ( X + v) = 4»(X + v ) , we will have

 i r V_1 r -if ( X W*+v-l
 (5) n"vT i ' (x-t) (In t)t dt = [in r X + i[> (X) -'p (X+v) -if ( X '+ v)

 -"<?■

 For convenience, designate the right side of (5) by F(x,X,v).

 The left side of (5) , by the definition (3) , can be written as

 0D"V (x^ *ln x) . Then, for integration of x^ *ln x to an
 arbitrary order we have

 (6) 0D"V(xX 1ln x) = F (x, X , v) •

 Because of the property of analyticity and continuity at v ^=0, we

 can interchange the roles of -v and v. So, for differentiation
 v- 1

 of x In x to an arbitrary „order we will have

 (7) qD^ (x*_1ln x) = (in x + ^(X) - 1>(X - v)^ v)

 = F (x, X , -v)

 For a consistency check in the above, let. v = 1 and X = 2.

 The ordinary derivative of the left side

 (8) D (xln x) = 1 + In x.

 For these same values v = 1 and X = 2 in the right side of (7) ,

 we get

 (9) F (x, X , -v) = (in x + ( 2 ) - '|>(1)) p X

 But (2) = 1 + 'ļj ( 1 ) getting 1 + In x in agreement with (8) .

 A more interesting consistency check with v arbitrary is given later.
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 Now we proceed to solve an integral equation of the Volterra

 type

 1 / X v V_1
 (10) Tfvj" J (x-t) v f (t) dt = x In x,

 Re (v) â 0, Re(M > 0 .

 The above integral is a Riemann-Liouville integral and

 because it is of the convolution type the equation can also be

 solved by Laplace transforms. However, solving it by the use of

 fractional operators will exemplify the power, elegance and

 simplicity of the notation of the fractional calculus. By the

 definition (3) , Eq. (10) is written as

 D"vf(x) = xX"1ln x.
 0 x

 Operating on both sides with gives

 f(x) = 0dV (x^_1ln x) .

 The application of the result (7) gives us at once the solution

 to (10) :

 ( ' r (X) xx"v_1
 (11) f(x) = (in x + 'p(X) - ^ (X - v)J y (X-v)

 Following Ross [4], we verify this result by substituting

 (11) into (10) in terms of the argument t. We write a series

 expansion for In t as follows:

 t=x+t-x=x(l+ ^~x) j
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 where x and t are real and x > 0 . Then

 In t = In X + ln(l + •

 When '^r' < 1, we can expand ln(l + into a
 Taylor's series expansion. Thus,

 CO

 ' * n
 (12) In t = In x - ) n

 / nx
 'n=l

 where the interval of convergence is 0 < t Š 2x .

 When (12) and (11) are substituted into (10) we will

 have

 r z*
 f ' ( v-1 X-v-1

 . .. r (X) (in f x + ^(X) - xp ( X - vy ' <x-t) t dt
 r(v)T(X-v) v "Ü

 00

 /* ' n
 I , . x V~1 . X-v-i 1 (x-t) . X-l
 I ' (x-t) , . x t . /

 -I ' (x-t) , . x t . U / :x

 The above integrals are beta integrals of the form of (4)

 (X (x rv_4-ïd4-a,^ t) t dt - Hd+l) T(a+i) d + a + 1 0 > , ļ (x t) t dt - T(d + a + 2) ' 0 Re(d) > -1 , ,
 /0

 Re (a) > -1 .

 The first integral in (13) has the value

 x^ 1ln x + ^(X) - ip ( X - v)J x^ 1 .
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 The second integral in (13)

 - . nx) 1 f ! iMiV-yj1 x ,«-t)"ł;t x"wdt+... r(v)r(x . - v) ! x , 2x
 lJo o

 has the value

 r (x) r (v+i) + r (v+i) +... Xx_1 .
 r (v) r(X+2) r(X+2)

 Then for (13) we get

 X-l / ' X-i
 x In x + f 'p ( X ) - ip(X - v)J x

 oo

 . r (x) V r (v + n) x , X „x_l in ļ „ X .
 TVST/ 5r (A + n) x , X in ļ „ X

 n=l

 After simplification, we obtain the result

 00 ^

 (14) ^(X) - H»(X - v) = nrix+n) ' Re (X) > Re (v) " 0
 n=l

 (15)
 _ v 1_ v (v + 1) 1 v (v + 1) ( v + 2) + _

 X 2 X (X + 1) 3 X (X + 1) (X + 2)

 As was stated earlier in (6) , the fractional operator

 (3) has the property of analyticity and continuity at v = 0.

 Thus, in the above, we can replace v with -v. Then, after

 multiplying both sides of the above by -1, we obtain the

 result
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 U6) ł(x + v, .»m xix; li

 The relation (16) was obtained by N.E. Norlund (1925) [8]

 by the use of the calculus of finite differences. Further,

 it is not unreasonable to suppose that (15) can be obtained

 through the use of hypergeometric identities and the appropriate

 choice of the parameters. At the risk of being guilty of

 repetition, we restate that our purpose is not the result

 obtained but, is instead, to expose the power of the proper

 use of fractional operators.

 Formula (14) leads to some interesting results. If we

 specialize the parameters letting X = 1 and v = 1/2, we will

 get °°

 iMD - ^ ( 1/2) = -±- /jj. / Jj" nr ( 1 *• + n) h) . /jj. / nr ( 1 + n)

 w

 Using well-known properties of the gamma function and the

 psi function, the above becomes

 in 4 + l'3-5-..(2n-l) _ [4)
 i n2 ni

 If we let X = i and v = 1/3, then (14) gives
 00

 i ' f (-4 + n)
 ♦ U, - łd/31 = i ' nf|t + t n) n)

 = 1+

 3 2 - 2 ! 3 2 3-3«. 33
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 Noting that <MD - 4>(2/3) = - - ^ In 3, [6] , we get the
 result ^

 (17) - ¿ķ. 62 + I in 3 = ' 1 « 4 « 7 « » ^ (3n-2) . 62 J__j n3 n!
 n=l

 Many series can be summed in this manner. If we let X - v = l

 in the generalization (14), we will get a well-known formula for

 the psi function. We will have for (14)
 00

 'ļj { u j. + ■") ' - W(l) '(■ (i) - ^ ( 1 + ' ^ f(v + n) ... #
 { u j. + ■") ' - '(■ W(l) (i) - r (V) / nr (v + n + 1) ...

 W

 which, after simplification, yields the classical result
 00

 (18) t(l ♦ v) + Y = p nlvV4 n) '

 where y is Euler' s constant.

 The relation (18) which we obtained by specializing

 parameters in the generalization (14) is obtained in various

 texts by methods which are conceptually different than given

 here, for example, [7] .

 We step back to Eq. (7) to exemplify an elegant and

 useful feature of the fractional calculus. A simple consistency

 check was given in (8) and (9) where v was an integer. Let us

 consider a consistency check of (7) with v = 1/2 and X = 2.

 Eq. (7) then yields the derivative of the product xln x to

 the order 1/2:

 (19) (xln x) = (in V x + 'p(2) - (if) / x1/2 . Ox V x 2 / /lt
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 The recurrence formula for the psi function is

 é (x + 1) = ^ (x) + ^

 Thus

 i|>(2) = ^(1) + 1.

 Some known values of the psi function are

 ^(1) = -Y, where Y is Euler' s constant

 (20) ip(%) = - Y - In 4.

 (21) 4>(f) = - Y - in 4 + 2.
 'ļ> (2) = - Y + 1 •

 When the above values are substituted into (19),

 we get the result

 (22) (xln x) = -j=- (In x + In 4 - l)x^ .
 Ox /tt

 Now we will apply Leibniz's rule for the derivative

 of a product to an arbitrary order to the left side of (19)

 to see if we get the same result as in (22). Leibniz's rule is

 oo

 V ' V v (k) (v-k)
 0D^ V f(x)gtx) = ' (k) v 0D¿ (k) f (x) qDx g (x) , [10]

 k=0

 where the generalized binomial coefficient

 v r(v + l)
 - k! I' (v - k + 1)
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 and where D^f(x) is ordinary differentiation and -o' J ^g(x) is

 a dif ferintegration to an arbitrary order.

 For v = 1/2, we have
 00

 (23) qD^ (xln x) = ^ V (^) QD^k^x D^~k^ln x.
 k=0

 We note that the series terminates with k = 2. The

 generalized binomial coefficients are

 (q) =1 and (^) = .

 Eq. (23) is then

 L L i

 (24) D (xln x) = (l)xD In x + -=-(l)D In x.
 Ox 2

 From [4] we observe that

 /Ox , In x = 7=^ /ir (ln x - y - tyihì) /Ox , /ir

 (25) j and

 ( '0 D~*; In x = (in x - y - 4'(§)). '0 x /ļf

 2
 Replacing the values of *M*ž) and ^ (-j) in the above

 with (20) and (21) and then putting (25) into (24) , we will

 have

 k h h
 D k (xln x) = - - h (In x + In 4) + ji- (in x + In 4 - 2.)
 0 x /tF /tt

 = (in x + In 4 - i)x*
 /TT

 which is in agreement with (22).
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 It might be of interest to show that the series (17) can

 be summed by other means. This method is outlined below and

 the reader can compare it with the method used to obtain (17) .

 We observe that the binomial expansion for I x I < 1 of
 00

 (l-x)"1/3 - 1 + P
 L
 n=l

 Divide both sides of the above by x and integrate from 0 to

 1 getting

 CO

 ( (1 - x)~l/3 - 1 dx =) 1.4-7- • • (3n-2)
 x , n3"nl

 So, if we can evaluate the formidable integral above,

 we can determine the sum of the series. Because this type

 of integral is rarely seen in applications, it may be worthwhile

 to sketch the steps. The integral is rationalized by letting
 -1/3

 u = (1 _ x) • We have, after simplifications and partial

 fraction decomposition,

 3 3 J f 3 3 J
 u ( u + u + 1) J l L

 _ - ( 2 - i 2 • ■■■Ia 2 ł x- * - ' 2 . -J.
 _ - 3j^ 2 - 2 u 2 + u * 1 - ' 2 . ü +u+k+=|

 -i Ck3

 u i 1 tan u+ 1/2
 _ o i n

 L -Ja

 3- ln n 3 -, ~ ł/3 - TT = 2 ln n 3 -, * ~ 6 '

 which is in agreement with (17).
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