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 A MOMENT INEQUALITY

 1 . Introduction,

 In his doctoral thesis, H. Thunsdorff proved the following

 inequality.

 Theorem [ T ] - If f:[0,l] -» |R is a nonnegative, convex function

 such that f(Q) = 0 and 0<m^n<+oo> then

 (1) ļcm+nj1 fra dxjl/m š ļin+oj1 fn dxj1/n.
 (See [NS] for an elementary proof of this inequality.)

 It was pointed out in [N] that the classical inequality

 (2) ļjl fm dxj1/m š ļj* fn dxj1/n,
 for nonnegative, measurable functions f : [0,11 -* |R and 0 < m ^ n

 <+oo, implies the inequality

 (3) ļ(m+l ) J1 fm dxj1/m ^ eļ^n+oj1 fn dxj1/n,
 where the constant e is sharp even for the subclass of

 nondecreasing function f : [0,1] |R. In the same paper [N], a

 class of nondecreasing functions for which the inequality (1)

 holds was investigated. We give the theorem below for

 completeness sake.

 Theorem [N]. Let f:[0,l] -» |R be a nondecreasing function with

 f(0) » 0. If the closure of the planar set <(x,y)| f(x) ^ y and

 x € [0,1]> is star-like with respect to the origin (0,0) and 0 <

 m ^ n < + oo, then we have that the inequality (1) holds true.
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 F. Schnitzer and P. Schöpf [SS] extended the above theorem

 to the multidimensional case as follows.

 Theorem [SS]. Let B be the closed unit ball in |R and

 Lebesgue measure on |R . Suppose f:B -> |R is a nonnegative,

 measurable function such that the subset A(f) = <(x,z) ļ z £

 k+1
 f(x) and X 6 B> of |R has the property that the segment

 k+1
 joining (0,0) to (x,z) in R is contained in A(f) for each

 (x,z) € A(f). Then, for 0<m^n<+oo> we have

 ✓ f m+k f fm j H/m v n+k f fn ll/n

 * ✓ ' I f "T" m+k ļ f j H/m v n+k 1 f ll/n '
 In the present note we will prove a moment inequality for

 nondecreasing functions in a measure theoretic setting. This

 inequality will include the classical inequality (2), the

 Thunsdorff inequality (1) and the Schnitzer - Schöpf inequality

 (4). The main theorem of our note will be free of dimensional

 considerations •

 2 . Preliminaries .

 We discuss next some known facts and present the necessary

 definitions for the remainder of the note*

 Suppose (Qi,Mi) is a probability space and f^ is a

 nonnegative, real-valued, -measurable function (i*l,2). Then

 fj and ±2 are said to be equidistributed if | fļ(u)ļ) >

 y>) » ¡¿2 ( (w2 ' f2^w2^ > for a11 y ^ It: is W€ 11 "known

 that for any nonnegative, real-valued, ¿¿-measurable function f

 on a probability space (Q,jl) there is a nondecreasing function

 f* on [0,1] (f*(l) » + oo when f is unbounded) such that f*, with

 Lebesgue measure on [0,1], is equidistributed with f. See the
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 discussion on monotone adjustment in [Z], page 29. The proof

 uses the set {(t,w) | t = <w | f(w) > y})}. Analogously, one

 can prove the following.

 Proposition. Let (Q1>jmļ) and (Q2,^2) be probability spaces and

 f:Qļ X Q2 -* |R be a nonnegative, ^ x^ "measurable function. Let

 V be a nonatomic, Borei, probability measure on [0,1]. Then

 there is a nonnegative function f* on x [0,1] such that f* is

 jljxy-measurable , f and f* are equidistributed , and f*(c^,r) is

 nondecreasing on [0,1] for each € Qļ •

 The function f* is constructed from the set

 Uwj.t.y) € Qļ x [0,1] x IR I y([t,l]) ■ M2<<"2 ^ °2 ' f*wl»

 > y>)>.

 Definition. 2.1. Let v be a totally finite, positive measure on

 [0,1]. An extended real-valued function w on [0,1] is said to

 be nondecreasing with respect to v if there is a immeasurable

 set D such that y(D) » V([0,1]) and w is a nondecreasing,

 real-valued function on D. When v is also a Borei measure, this

 is equivalent to w being a nondecreasing, extended real-valued

 function on [0,1] which is ^-almost everywhere real-valued.

 Definition. 2.2. Let (0,ti) be a probability space and let f:Q

 |R be nonnegative and ^-measurable. Let w be a nonnegative,

 extended real-valued function which is nondecreasing with

 respect to a Borei, probability measure y on [0,1]. We say f

 has a nondecreasing quotent by w with respect to v if there is a

 probability space and there is a nonnegative ji*x>>-

 measurable function f* on O* x [0,1] which is equidistributed

 with f such that the following condition holds:

 There is a ji*-measurable set E and a ¿/-measurable
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 set D with J1*(E) = 1 and y(D) = 1 such that

 (*) (i) f*(w*,r) is ^-measurable for each r £ D,

 (ii) f , r )/w(r ) is nondecreasing and

 real-valued on D for each u>* € E.

 In Definition 2.2, let 0* = f */w. Then f* = 0* w, where

 0* is jA*xy-measurable and

 (i) 0*(o)*»r) is ji*-measurable for each r £ D,

 and

 (ii) 0*(w*>r) is nondecreasing on [0,1] for each od* G E.

 We conclude the section with a statement of our Main

 Theorem. Its proof will be given in Section 4 below.

 Main Theorem. Let (Q»JjO a probability space and v be a

 nonatomic, Borei, probability measure on [0,1]. Further, let w

 be a nonnegative, nondecreasing function on [0,1] with

 respective to y. Then, for 0<m^n< + ©o and for a

 nonnegative, ¿¿-measurable function f :Q |R which has a

 nondecreasing quotient by w with respect to y, we have

 (5) ||f"dW)1/m (lf"dü)1/n

 provided 0 < f* wn dp < + ©o.
 Jo

 We observe that inequality (5) reduces to the classical

 inequality

 (6) ļj fra dU 1/10 * ļj fn du 1/n
 for any nonnegative, ¿¿-measurable function f:Q -* |R when w is 1

 and v is Lebesgue measure. This observation is a consequence of
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 the fact that f is equidistributed with a nondecreasing function

 on (0,1).

 3 . Two Lemmas «

 For the first lemma, we assume that (Q*,j¿*) and v satisfy

 the conditions of Definition 2.2. Let f* satisfy the condition

 (*). Then, for 0 < m and r £ [0,1], let Fm(r) be

 ļj f*m(w*,r) dļi*(w*)j when the integral exists (possibly +

 op), and be 0 in the contrary case.

 Lemma. 3.1. Under the above assumptions, let W_(r) = F__(r)/w(r)
 - m m

 when w(r) > 0 and W (r) » 0 when w(r) ^ 0. Then W is
 m m

 nondecreasing with respect to y. Consequently, m w is

 nondecreasing with respect to y.

 Proof . Let E and D be as in Definition 2.2, and let rļ»r2 D

 with rj < r2. Then 0 < f *(o>* , r j )/w(r x < f *(w* , r2)/w(r2) for o>*

 € E. Hence, 0 ^ Wn/rl^ ^ ^n/r2^* an<* ^ e ^irst statement

 follows .

 Lemma. 3.2. Let v be a nonatomic, Borei, probability measure on

 [0,1]. Suppose g and h are nonnegative, extended real-valued,

 Borei measurable function on [0,1] which are nondecreasing with

 respect to y. Suppose further that p Ç (0,1] is such that

 y(<r € [0,p) I g(r ) < h(r)>) + y(<r € [p.l] I g(r) > h(r)>) -

 0.

 If k > 1 and P g dp » P h dv < + oo, then
 Jo Jo

 f1 gk dv Š f1 hk dv.
 Jo Jo

 Proof . If y(<r € [ P > 1 ] I g(r) < h(r)>) » 0 or y(<r € [0,p) |
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 g(r ) > h(r ) > ) * 0, then P g dv » P h dv < + «• implies g(r) »
 Jo Jo

 h(r) for y-almost every r £ [0,1]. Hence the conclusion is

 true .

 Next suppose v({r £ [ p » 1 ] | g(r) < h(r)>) > 0 and v({r Ç

 [0>pJ I g(0 > h(r)>) > 0. There is a Borei set D contained in

 the support of the Borei, probability measure v such that y(D) -

 1 and both g and h are nondecreasing on D. Since P h dv < + oo>
 Jo

 we may assume further that h(r) < + oo for all r € D. Let S =

 sup<g(r ) I r € D A [0,p) and g(r) £ h(r)>. Then, 0 ^ h(r) $

 g(r) ^ S for y-almost all r £ D A [0,p), and S ^ g(r) ^ h(r) < +

 oo for y-almost all r G D A [p»l]* Because y(<r £ [ p , 1 ] | g(r) <

 h(r)>) > 0, we have S < + oo. For convenience, we may assume

 g(r) = h(r) « 0 on each of the two exceptional sets and on

 Pi k
 [0,1]- D . We assume J h dv < + oo because in the contrary case

 J0

 the conclusion of the Lemma is true. Then we infer from S < + oo

 that J gk dv is also finite. The Fubini Theorem gives P h dv
 Jo Jo

 ■ ß ß<r> •nd k_1 ^ h" d" * ß ^(r) ykl dy dv<r>'
 The corresponding formulas hold for g, also. From the equality

 fp (g-h) dv « f1 (h-g) dv ^ 0, we get
 Jo Jp

 fP fgíO k-1 dy(t) s ft> f8(r) sk-l dv(r) . Sk-Ifp _h) d),
 JO Jh(r) JO Jh(r) Jo

 - S*"1!*1 (h-g) dv Š f1 fh<r) yk_1 dy dv(r).
 Jp Jp Jg(r)

 Or,

 0 Ś - fP f8<r) yk_1 dy dvfr) + f1 fh(r) y*"1 dy dv(r) J0 Jh(r) Jp Jg(r)
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 Pi fh(r) yk-l dy dy(r) _ TI fg(r) yk-l dy dy(r)
 Jo *0 «0 ^0

 " k"' (Jo h" dv " Jíl sk "") •

 and the Lemma is completely proved.

 For an application of Lemma 3.2, we derive the next

 classical inequality without the aid of the Holder Inequality.

 Corollary. 3.3. Let (Q,u) be a probability space and let f be a

 nonnegative, ¿¿-measurable , real-valued function. Then, for 0 <

 m ^ n < + oot we have that

 (6) Š 1JfndMj1/n.
 Proof . The inequality follows from the bounded function case.

 Hence we assume f is bounded. Let f*:[0,l] -» R be the

 nondecreasing function which is equidistributed with f given by

 the monotone adjustment of f. Let v be Lebesgue measure, g(r) =

 ^X| * 3n<* 3 f^Cr), r £ [0,1]. Using k =* n/m, we
 have by Lemma 3.2 that

 f(ß f," dx)1/nln s J' f," dx.

 That is ļj fm d/mj ^ ļj fn d^j ^n, and the Corollary is

 proved.

 4. Proof of the Main Theorem.

 We use the notations of Lemma 3.1. Fix m < n. If

 fn d^|^n ■ + oo the inequality (5) is true. Hence, we assume

 that ļjļ fn djjij*^n < + oo. From inequality (6), we have that
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 ļj fm dyj < + «o and 0 < ļj1 wm dyj1/m < + «.. Let Cffl be the

 left-hand side of the inequality (5). Then for g » (C w)m and

 h =(F )m = (W w)ra on [0,1], we have f1 g dv = f1 h dv < +
 mm j Q j Q

 Hence, we can apply Lemma 3.2 if the appropriate p exists.

 First suppose v(<r | g(r) < h(r)>) = 0. Then, | g dv »
 Jo

 f* h dv < + 00 implies g » h y-almost everywhere. In this case,
 Jo

 let p a 1 .

 Next suppose y(<r | g(r) < h(r)>) > 0. Let D be the

 V-measurable set in Definition 2.2. Then v(<r £ D | g(r) <

 h(r)}) > 0. Moreover, we infer from Lemma 3.1 that g(r^) <

 h(r^) implies gi*^) ^ w^en rļ> r2 ^ D anc* ri ^ r2# Let p

 a inf <r Ç, D I g(r) < h(r)>. Since f* g dp = f* h dv < + 00 and'
 Jo Jo

 V is a nona tomie, probability measure, we have that p > 0.

 Consequently ,

 r € (0,p) ÌÌD ^ g(r) £ h(r )

 and

 r € [ P • 1 ] n D => g(r ) Š h(r ) .

 Hence the appropriate p exists. Since k * n/m > 1, we have

 Cn f1 Wn dv - f1 gn/m dv Ś f1 hn/ra dv
 ra Jo Jo Jo

 * Jo f1 <Fm)n ra áV * Jo f1 <Fn>n n áV Jo ra Jo n

 -f1 f f*n(w'r) dW*(w) dv(r).
 Jo JQ*

 Or,
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 [j fm dwl1/m ÍJ fn dM]1/n J Iq J < *-n J

 1J1 wm dv 1/m " 1J^ wn dv 1/n>
 and the Theorem is proved.

 5 . Remarks .

 In Section 1 we stated the Schni tzer-Schöpf Theorem. Let B

 be the closed unit ball in R , SB » 0* be the boundary of B with

 the normalized (k-1 )-dimensional measure ji*, and v be the Borei

 k- 1
 .measure on [0,1] given by dji. » k r dr, and w(r) » r. If f:B

 R is a nonnegative , Lebesgue measurable function satisfying

 the condition of the Theorem [SS] (i.e., has a star-like

 epigraph with respect to the origin), then f is equidistributed

 with a function f*:0B x [0,1] -* R for which f*(y,r)/w(r) is

 nondecr easing on [0,1] for each y € 9B. Theorem [SS] now

 follows because | wm dji a k/(m+k). (See the proof in [SS].)
 Jo

 For other references on Thunsdorf f1 s Inequality, see [M] .
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