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MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES

We introduce the following notation.

Let ¢ : I >R (where I = [0,1]).

If a function ¢ has a property P, we denote this fact by P($).

Let f: I x I > R. Then for each x € I we consider fx(y) = f(x,y) as
a function of y and for each y € I we consider fY(x) = f(x,y) as a
function of =x.

We put
Ax(f,P) = {x;P(fx)} and Ay(f,P) = {y;P(fY)}

Let A; €I and A, ¢ I. We investigate conditions on the sets A, and
A, under which there exists a function f such that A; = Ax(f,P) and
Ap = Ay(f,P), where P is a certain fixed property such as "nondecreasing",
"increasing", "nondecreasing and continuous", "increasing and continuous",
"of bounded variation". )

Then we construct a function fulfilling these conditions. At first we

suppose that P means "nondecreasing".

Theorem 1. Let A,,A;, ¢ I. Then there exists a function f(x,y) defined
on I xI such that A, = Ax(f,P) and A, = Ay(f,P) if and only if

1° I #A; and I = A, or

2° A, = A; =1 or

3 A, =1, A, *#1I and card(zz - A;) § xo oOr
Az = I, A; #1 and card(;.., - A;) 6 xq.

Proof. Sufficiency. If condition 1°* or 2° is fulfilled, we define the

function f(x,y) in the following way:
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(x+1)(y+1) for (x,y) € A, x [0,1] v [0,1] x A, (I)

f(x,y)
—(x+1)(y+1l) for the remaining (x,y) € I x I. (I1)

If A; = A; = I, then, obviously, only (I) is valid, and if A; = A; = @, then
all points are remaining, so we use only (II). It is clear that the function
f(x,y) fulfills all the the required conditions. Let us suppose that the first
part of condiﬁon.3° is fulfilled. Then 1° = (I° - Kg) u ((Kz - Ay) nI% v
(A2 n I°) where 1I° = (0,1). Let Z = (K, - A;) n I°. We can write down all
elements of the set Z as {yp} because Z is finite or countable. Let
G=1I° - X, = U («p,An) where (ap,fn) are components of G. The notation
U (an,fn) meags that the union is finite or countable.

We put

A

21 for y e I°.

&(y) =y + I
yi<y

Next we define a function f,(x,y) on the set I° x I° by the formula

x-g(y) for x ¢ I° - {%}, y e I°.
fi(x,y) =
-i-lim g(n) for x=-:-, y € I°.
Pyt

Let vp = 1lim f,(-;-,'n), ép = lim f,(%,n). Let hp(y) be any increasing
oy T6n

and continuous function defined on [an,fn] such that hp(en) = 7n°

bn(fn) = 6n and bp(y) < £(5,y) for y € (an,An).
Now we define a function f(x,y) on the set I° x I° by

bp(y) for x = f s Y € (an,fn)

f(x,y) = (111)

f,(x,y) for the ramaining (x,y) € I° x I°.

It is not difficult to extend the function f(x,y) to I x I in order to
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obtain a function fulfilling all of the required conditions.

Necessity. We suppose that A; = I, A, ¢ I and card(xz - A2) > xo.
The case A; €¢I, A; =1 and card(Kl - A;) > %o is analogous. We assume
that we can construct a function f(x,y) such that A, = Ax(f,P) and
A; = Ay(f,P). The set of all limit points of the set A, from both the left
and the right side which do not belong to the set A, is denoted by B. Of
course, card B > xo. If ¥y, € B, then there exist points x,, x; € I such
that

(1) Xo < X; and f7%(xe) > £7°(x,).

We shall show that the function fxo(y) is not continuous at Yoo
Suppose that the function fxo(y) is continuous at y,. We consider a

sequence {yplpen such that y, € A, and yp 2 yo Of course,

f(X0syn) € f(x1,¥n)-
Hence f(x¢,¥0) ¢ £f(X,,¥0). We have contradicted (1).

Let x, € (Xo,x;). If f(xa2,¥0) > f(X:,¥0)y then, as above, the function
fx 2(y) is not continuous at y,.

Let f(x,,yo) £ £(X,,¥0)- We suppose that the function fx,(Y) is

continuous at y,. From (1) we obtain f(x2,¥0) < f(X0,¥0). There exists
6§ > 0 such that for each y € (yo0y¥Y0 + 6), f(x2,¥) < £(X0,¥0).

There exists y; € A; 0 (yos¥o + 6) 8uch that £(x0,y,) > f(x2,¥,). We
have a contradiction because y, € A;. We obtain that all functions fx(y)
for x € [xo,x;) are not continuous at y,. So for Yy, € B we have found
an interval of discontinuity. With each y € B we associate exactly one such
interval. There eixsts a point x ¢ I which belongs to an uncountable family
of intervals. Hence the set of points of discontinuity of the function fx(y)
i8 uncountable. We obtain a contradiction because this function is

nondecreasing.

Remark 1. If A, = I and if there exists a function f(x,y) such that
A, = Ax(f,P), A; = Ay(f,P), then A; belongs to the class Gs.

Proof. I° = (I° n A;) u (I° n (A, - A;)) u (I° - A,). Hence A, is a set
of type Ggs because I° n (K, - A,;) is a set of type Fq.
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Definition 1. We say that a set B fulfills condition (*) with respect to a
set A, if and only if there exists a sequence of sets ({Bp} such that
B=UBp and for every n card(A; n B§) € xo (B§f denotes the set of all

n

points of condensation of the set Bp).

Remark 2. If a set B does not fulfill condition (*) with respect to A,
and Z is a finite or countable set, then the set B-Z does not fulfill

condition (¥) with respect to A,.

Lemma 1. If a set K, - A, fulfills condition (*) with respect to A,
where A, €1, then A, belongs to the intersection of the classes Fgs5 and

66 ae

Proof. Let B = K, - Az, B= U Bp and for every n card(A; n Bf)
€ xo. For every n let Zp = A; n B% and Aa(n) = (A = Zp) n I°. Let Gp
denote the union of all maximal neighborhoods p(n) of points of the set
A.(n)  such that card(P(n) n B,) & x,. Then card(Gp n Bp) € % and
A,(n) < N Gp, but 1 A,(m) =10 n 0 (Az - Zp) = I° 0 (A; - Z) where
Zzlézn, card Z € x

8O

From the following inclusion

NGy n UBp<U (Gyp n Gp)
n n n

we obtain that
card( n Gn n G) & xq.
n
We have
ﬂGnﬂA3=(A3-Z)ﬂI°

and

(A =Z) nI°=(N(GynI° - NGpn (I°=-A4;)) - N Gy n B.
n n n
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The set (A - Z) n I° is the intersection of a set of type Gs and a set of

type Fq. Hence A, belongs to the intersection of classes Fgss and Ggeg,

Lemma 2. If for each y ¢ B € I € OY the interval (czy,ﬂy) cIcOX is
nondegenerate, then there exists a sequence of sets {Bplpen and a sequence

a nondegenerate intervals {Pplpen, Pp © I € OX such that B = U Bp and
n
for every n n (ay,by) 3 Pyp.
Y€Bn

Proof. Let ({PplheNn be the sequence of all intervals with rational

end-points such that P, © I. Then the sequence of sets Bp is defined by
Bn = {y € B; (ay,fy) 2 Ppl.
Now we suppose that P means "increasing".

Theorem 2. There exists a function f(x,y) on I x I such that A; =
Ax(f,P) and A; = Ay({,P) if and only if

1* I #A;, €1 and I #A, I or

2° A; = Az =1 or .

3* A, =1, A; €1 and K, - A, (fulfills condition (*) with respect to A,
or

Az =1, A, €1 and X, - A, fulfills condition (*) with reapect to A,.

Proof. Sufficiency. If condition 1° or 2° is fulfilled, we define the
function f(x,y) by (I) or II). (See the proof of Theorem 1.) Now we
suppose that A, = I, I # A, €I and Xz - A, fulfills condition (%) with
respect to A,. Then by Lemma 1 there exists a set H of type Gg such
that I° n (A, - 2Z) €H, Zc A, card Z é xo. Therefore A = {yplnen

~ o
and card (Hn B) € xo. Let B=HnB, H N Gj where {Gj} is a non-
. i=o

increasing sequence of open sets. Put Gj = where

v @B, g1y,
n

(a(i) ﬁ(i)) are the components of the set G-, and {y(n)}

n ' 'n i’ i “ieN
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(), 8{°)) n B.

For every n define a function hn(y)

Now we define functions f,;(x,y),

I° x I°

fi(x,y) =

D oag =

h (y) =

in the following way:

For every n let {z

(n)} be a sequence such that
a(0) _ (o)
P, “n
2
for y e (“( °) s p( )) by

zgn) if (ag°), p§°)) nB =g
(o)
n

o2
i
.

if (a§°), p£°)) n

fa(x,y) and f5(x,y) on the set

’¢§°)+ X(yha£°) +2h (y)) for x e (0,%] - {%}, ye (a( ),ﬁ(o))
§°) 4(y—a(°) +2 limh (n)) for x = %, y € (a( ),ﬁ(°))
myt
y for x € (0,%], y € I° - Gy
. 1,1 . .
L aw, @ W |
Eo 2k * 21 “n 1;1 1 x(y n ) for x e (k£1 ok kEI 2k 1s
k=1 2k
Y € (a(l)’p(l))
i—l_l 1 i _l i+ 1
kzo ok + P y for x € (k§1 ok ° kzx ok 1,
y e I° - Gj
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y+ I = for x € I°, yeI° -2
cev 21
yvily
fa(x,y) =
ynt+t I —; + x - 1 for x € I°, Yn € 2
. 21 2n
¥Yi<¥n
fi(x,y) = fi(x,y) + fa2(x,y) for (x,y) e I° x I°.

We shall show that for each x € I° the function (fg)x(y) is
increasing. Let y < y" and y' € I° —Go, ¥ € Go, X € (O,l]. Then
(f,)x(y) : (aéo), ﬂéo)) - (a(;), ﬂﬁo)). There exists aso) such that

y' & aéo) <y". Hemce (fy) (y") < (f) (v7). If

i+

i
1 1
% e kEI 2k ’ kzx 2k I

3 _1' + —l “(i)At IEI _1 + _1 ﬂ(i))v

L) () 1
then (f,)x(y) : (“n ’ Bn ) > ( Keo 9k  2i n k=o 2k 2i'n

i—l i-‘.l .
ooy L, L. 1,1 (o) .
(fl)x(y ) - kE_o 2k + Zi y & kEo 2k + Zi “n < (fl)x(y )'

In the other cases our considerations are analogous. The function

(f,)x(y) is increasing. If y' < y", then

(£, (r) 6y + I <y + I =2 & (fa), (0.

yiéy' yi<y®
We obtain that the function (f,)x(y) is increasing. Hence (f,)x(y) is
increasing.
We shall show that for each y ¢ A,;, the function fZ(x) is increasing.

If y € A, — Z, then the function (fl)y(x) is increasing because

Az-ZcH‘B and
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i
U S0¢ um .
=1

ol |
> — +
¢ kzx 2k

Since the function (f,)y(x) is constant, (f,)y(x) is increasing. If
y € Z, then (f,)y(x) is nondecreasing, (f,)y(x) is increasing and
(f,)y(x) is increasing.

Now we show that if H n (I° — A,) = ¢, then for each y € I° — A,,
(fg)y(x) is not increasing.” In this case we have 1° - A; =
(I° - (Hv Z)) v 5. Let y e I° - (Hv Z). Then (f,)y(x) is not non-
decreasing and (f,)y(x) is constant. Hence (f,)y(x) is not increasing.
Let y € E. Then (f,)y(x) is not nondecreasing and (f,)y(x) is constant.
Hence (f,)y(x) is not increasing. In this case the function f;(x,y)
fulfills the required conditionms.

If Hn (I°-A,) #¢, weput G=G, n (I° - A,) and G = U (ap,Bn),

: n
where (ap,fn) are components of G,

Tn = lim f5(x,7), énp = lim f,(x,m).
Tk ™6

For x = % s Yy € (an,Pn), we change the values of the function f;(x,y)
as in (III). (See the proof of Theorem 1.) In this way we obtain the
function f(x,y). We can extend this function to I x I to obtain a

function fulfilling all the conditionms.

Necessity. We suppose that A, = I, A, €< I, A; — A, does not fulfill
condition (%) with respect to A,, and that there exists a function f(x,y)
defined on I x I such that A, = Ax(f,P) and A, = Ay(f,P). Let

Yy € I, — A;. We have two cases.

Case 1. There exist points x,,x%X; € I such that
%o < X3 and f(xo,y) > f(x,,y).
By Theorem 1 this case may occur only on a finite or countable subset Z

of the set K, - A;. Hence, for each vy e (X, - A;) - Z, we have
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Case 2. There exists an interval (ay,ﬁy) € I such that the function
fy(x) is constant on this interval. lLet B = (K, - A;) - Z. By Lemma 2
there exist a sequence of sets {BplpeN and a sequence of intervals

{Pn}nen such that B = U B, and for every n N (ay,ﬂy) 3 Pp.
n ye Bn

By Remark 2 the set B does not fulfill condition (%) with respect to
the set A,. Therefore, there exists no, ¢ N such that A, n Bﬁo > 8. OFf
course (ay,ﬁy) > Pno. Let Xo,X; € Pno and Xo < X;. If yo € A; n Bgo,

yeBn
then there exists a sequence {yplnen such that yp e Bno and yp 2 Yo ,

but

f(%0,¥0) < f(x4,¥0) and f(xo0,¥n) = f(%y,¥n).

Both fgo(y) and fx,(Y) cannot be simultaneously continuous at the point
Yo. So at least one of these functions has an uncountable set of discon-

tinuity points, which is impossible.

Remark 3. If A, is a set of the first category on some interval J ¢ I
and it is c—dense on this interval, then K, - A, does not fulfill condition

(*) with respect to A,.

Proof. We assume that X, — A, fulfills condition (%) with respect to
A,. Then by the proof of Lemma 1 there exist a set H < J of type Gs and
a countable set Z € J such that H= (J n A, v (H o (A, — A;))) — Z. Hence
HnJ is a Gg-set of the first category, dense on the interval J. This

contradicts the Baire category Theorem.

Example 1. Let {rj}jeN be the rational numbers from the interval I°.

For each neN let Gy = U (rj - — 1 » ri t .1 )
ieN 21i+n+1 21+n+1

G= N Gp, and F=1I-G. Then for A; =1 and A; = G we can
neN

construct a function f(x,y) on I x I such that A, = Au(f,P),

Az = Ay(f,P). Although card(G n (G - G)) > %o, we have G - G =
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U (I -Gyg) and card(G n (I - Gn)c) =0 for every n, and so, G - G
neN

fulfills condition.(*) with respect to G. Now let A, I, A, = F.
The set F is of the first category and c-dense on the interval 1I. By

Remark 3 and Theorem 2 it is not possible to comstruct a function f(x,y)
such that A, = Ay(f,P), A, = Ay(f,P).

Now let P mean "nondecreasing and continuous".

Theorem 3. There exists a function f(x,y) defined on I x I such
that A, = Ay(f,P), A; = Ay(f,P) if and only if:

1° I#A, €1 and I#*A, €I or

2° A, =A,=1 or

3* A, =I, A €I and 1I° - A, =GuD where G is an open set and
D is a subset of the set of one-sided limit points of A,, or a

symmetric condition holds with respect to A,.

Proof. Sufficiency. If condition 1° or 2° is fulfilled, we define the
function f(x,y) by (I) or (II). So suppose that condition 3° holds. Hence

I -A; =UPp or I - A; is the union of U P, and at least one end-point
n n
of the interval [0,1] where P, is an open interval or a closed interval

or a half-open interval. Let the sequences {cplneNn s {dntneN s {en}neN
fulfill the following conditions.

0<cp<cptr 5 dp <dp+1 , ¢n < ep < cptr s

liNCn=1, IMdn=d<+..
e e

We denote by ap and bp the end-points of the interval Pn. Let gp(y)
be a linear function for y e (ap,bp), Joining the points (ap,dp) and
(bpsdp+1). Let gn(y) and gp(y) be any continuous functions increasing

on (ap,bp) such that

dn for y e [0,ap]

gn(y) = gn(y) = &n(y) =
dp+: for y e [bp,1]
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En(y) < gn(y) < &n(y) whenever y € (ap,bp).

Now we construct the function f(x,y). In all cases we let f(x,y) =d for
(%,y) € [0,c;) x [0,1] and for each n put f(ep,y) = gn(y) for y e [0,1].
First we consider the case Pp = [ap,bp]. Then at the remaining points of
the closed trapezoid with vertices (cp,0), (en,0), (ep,bn), (cp,l) we
put f(x,y) = d,. At the remaining points of the closed trapezoid with
vertices (ep,apn), (cp+1,0), (cp+1,1), (ep,1) we put f(x,y) = dp+;. On
the triangle with vertices (cp,1), (ep,bpn), (en,1) we define the function

f(x,y) in such a way that all sections fy(x) for y e (bp,1) are linear

(en"cn) (Y‘bn)

 functions joining the points (ep — » dp) and (ep,dp+;)
1-b,
(en—cn) (y-bn)
for x € (en — Y s en). In a similar way we define f(x,y) on
““n

the triangle completing the rectangle bounded by x = c, and x = cp4,°

We now consider the case Pp = (ap,bp). We define the function f(x,y)
so that all sections fy(x) for y € [0,1] are linear functions joining
the points (cp,dn) and (ep,8n(y)) for x € [cp,en) and the points
(en,8n(y)) and (cp+1:dp+1) for x € (ep,cp+r]. If Pn = (ap,bp], then
on [cp,en) x [0,1] we construct f(x,y) as in the first case and on
(epscpn+1] x [0,1] we construct f(x,y) as in the second case. If Pp =
[apn,bn), we proceed symmetrically. For y e [0,1] we put f(1l,y) = d.

If 0 ¢ A, or 1 ¢ A,, it is not difficult to make a modification of this
definition so that the function f(x,y) will satisfy all the required

conditions.

Necessity. We suppose that conditions 1°, 2°, 3° are not fulfilled.
Then A; = I and there exists a point y, in I° - A, which is a bilateral
limit point of A,. We assume that there exists a function f(x,y) such
that A, = Ax(f,P) and A; = Ay(f,P). Then the function fy°(x) is not
nondecreasing or is not continuous. In the first case from the proof of
Theorem 1 it follows that there exists an interval P, such that for each
X € P, the function fy(y) 1is not continuous. We obtain a contradiction.
In the second case we assume that the function fy°(x) is not continuous at

a point x,. Then we have

(2) 7°(x0) < lim £7°(¢) = a or
¢}
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(3) b= lim £Y9(¢) < £7°(xo).
3.0
From (2) it follows that for each x ¢ I if x > %o, then fy(yo,) 2 a.

There exists y, € A;, ¥: > Yo, such that f(x,,y;) < a. But

lim f (¢) = f(%0,y¥:1). So there exists x, > x, such that f(x,,y;) < a
¢x$
which is a contradiction.

From (3) in an analogous way we obtain a contradiction.

Remark 4. If A,
f(x,y) such that A,
type Gg.

I, I # A; ¢ I and if there exists a function
Ay(f,P), Az = Ay(f,P), then A; is a set of

Definition 2. We say that a set D fulfills condition (%%) with respect
to A, if and only if there exists a sequence set {Dplpen such that
D= U Dp and for every n A; n nﬁ = 8.
n
Remark 5. If D does not fulfill condition (*%) with respect to A,,
then the set D - Z where Z is any countable set does not fulfill this

condition.

Remark 6. Let a function g(x,y) be defined on [«,8] x [0,1] where
f - « <1 such that gy(y) are increasing functions for each x e [«,f]
and gy(x) are nondecreasing functions for each y ¢ [0,1]. Then there
exists a function g,(x,y) defined on [«,8] x [0,1] such that g, (x,y) is
increasing on every vertical and horizontal section of the triangle with
vertices («,0), (8,0), (8, — «) and g,(x,y) = g(x,y) on the complement
of this triangle in [«,8] x [0,1].

A similar result can be obtained with respect to the triangle with
vertices («,1 + « - B), (B8,1), (=«,1).

Proof. We project orthogonally all points of this triangle on its
hypotenuse. Let the value of g; at (x,y) be equal to the value of g
at the projection of (x,y). At the remaining points of the rectangle we do

not change the function g. It is easy to verify that the function g, has

215



the required properties.

Let P now mean "increasing and continuous".

Theorem 4. There exists a function f(x,y) on the set I x I such that
Ay = Ag(f,P), A, = Ay(f,P) if and only if:

l1* I*A; €1 and I #A, I or

2° A, = A, =1 or
3 Ay = I, A, €¢I and K, - A, fulfills condition (*¥%) with respect to

the set A, or
Ay = I, A, 1, K, - A fulfills condition (*%*) with respect to the
set A,.

Proof. Sufficiency. Use Theorem 1 if 1° or 2° occur. Let B = X, - A,
and suppose that B fulfills condition (*X) with respect to A,. Then

B= UBp and for every n A, n Bﬁ = ¢. Accordingly there exist open sets
n
Gn such that 1I° n Ag c Gn and Card(Bn n Gn) £ Ro. Let H

n Gn- Then

n
I°n A, cH and card(B n H) € xo,. We can assume that Gp4+; € G for
ne N. Let {cplnen and {dplpen be sequences such that 0 < cp < cp4;
(]
for ne N, limcy =c <1, I 7p { +» where 7, = c - cp and
e n=1

c<dy, dy <dp+y for me N, limdy, =1, I épn < +o where
moe n=1

én =1 -dyp. If Hn (I° - A;) = s, then we put f,(x,y) = % + y
c -
for (x,y) e [0,—5] x [0,1]. If Hn (I° - 1,) = s, then
G, n (I° - A;) = U (aj,bj) and we change the function f,(x,y) for

c 1
X = —% » Yy € (aj,bj) similarly as in (III). (See the proof of Theorem 1.)

We denote the elements of the set Hn B by {ap}. This set is finite or

countable. We define a sequence {fplpen such that
By —x 7y =1,

Bn+1 = Bn + 7an—1(1 — ap)can + ap+y * Yan+r

and
moe
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This is possible because [ 7y < = and cp < 1 for every 1. Now we
n=i

define the function f,(x,y) on the rectangles [czp-3,c2n, x {0,1] by
Bn + (y-ap)(c—x) for x € [cap-1,Canl, ¥ € [0,ap]
fi(x,y) = fn for x € [Czn-x’czn]: Y = &g
Bn + Yan-1 * X *(y-an) for x € [cap-1,Can), ¥ € (ap,1].

Let f,(c,y) =8 for y e (0,1]. We have Gn = U (agn),bgn)) for n € N.
’ i

Next we define a sequence ({wnplpen such that 7, > B, 7p4y = Mg+ 6 p—y

(n) w % e
n n i i
and for every n a sequence {zi }ieN such that 0 < £ < 5

We construct the function f,(x,y) on [dip-;,da2p] x [0,1] by

(T + G:n-xagn) + 8ap-1 . x(y - ﬂgn)) for x e [dap-1,d2n],

v e (al™ §§n)+=§n)]

i ]
m * baneib{™ + (108201 (v-0{)  for x ¢ [dap-1,dal,

v e p®-e® ()

f,(%x,y) = {a linear function joining the points (agn)+e§n),f,(x,agn)+z§n)))
and (bgn)-an) s fl (x,b]{.n)“t gn) )) for x ¢ [dzn—; s dzn]

y e (aMee{™ p{m)_ (1),

T + 8ap-1 ° ¥ for x € [dzn-xadzn]

and for the remaining y € [0,1].

Let fy(l,y) = lim ny < +e. The function f,(x,y) on the intervals
e ’

(o]
[’%nclln [Canaczn+1]s (c,dy], [d:nad:n+x] is for each y e [0,1] a
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linear function joining the value of the function ff at the left end-
point of the above-mentioned intervals and the value of the function ff
at the right end-point of these intervals. If {0} v {1} ¢ I - A,, then
one may verify as in the proof of Theorem 2 that the function f,(x,y) + y
satisfies all the required conditions. If O € A,, we use Remark 6 to
construct a function f,(x,y) such that f,(x,y) +y satisfies all the

required conditions.
We proceed similarly in the case when 1 € A,.

Necessity. We assume that A, = I, A, €I and the set B = K, - A,
does not fulfill condition (*%*) with respect to the set A,. Let Z be the
set of one-sided limit points of the set A,. Let yo, ¢ B - Z. If the
function fy°(x) is not continuous, then by the proof of Theorem 3 there
exists xo such that the function fxo(y) is not continuous. This
contradicts the equality Ay(f,P) = I. If fy°(x) is not increasing, then
there exist points xXo, X; € I such that xo < x;, and f(Xo,Yo) > f(X;:,¥0)
or fy°(x) is constant on some interval (ayo,ﬁyo). The first case by the
proof of Theorem 1 is not possible. So the function fY(x) is constant on
the interval (a,ﬂy) where y ¢ B - Z. By Lemma.Z there exist a sequence of

sets {Bplnen and a sequence of intervals {Pp}pen such that

B-Z=UBp, and n (ay,ﬂy) > Pp for every n.
n ye Bn

By Remark 5 it follows that the set B - Z does not satisfy condition (*x)
with respect to the set A,. Therefore, there exists n, ¢ N such that

Ap n Bgo 2 ¢ and by Lemma 2

n (ay,ﬁy) 2 Pnoo
YGBno

We obtain a contradiction just as in the proof of Theorem 2.

We obtain the following as we did Remark 3.

Remark 7. If a set A, is a set of the first category in some interval
JcI and if it is dense in this interval, then the set A, — A, does not

fulfill condition (%%) with respect to A,.
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Corollary 1. Let A, = I and let A, be the set of all rational
numbers from the interval I. Then there does not exist a function such
that A, = Ax(f,P), A, = Ay(f,P).

Remark 8. The set G defined in Example 1 fulfills condition (%%) while

I - G does not.

Remark 9. If A, = I, I # A, €I and there exists a function f(x,y)
such that A, = Ax(f,P), Az = Ay(f,P), then the set A, must be both a

Gso—set and an Fgg-set.

Lastly, let P mean "of bounded variation".

Theorem 5. For any sets A; € I, A; € I, there exists a function
f(x,y) such that A, = Ay(f,P), A; = Ay(f,P).

Proof. We assume that I — A; # s and I - A, # s and for each

(n)
y € I — A, we choose a sequence By {xy }neN such that the sets By

are mutually disjoint and U By < I (a subset of the x-axis). For
’ yeI‘Az ’ ’ (n)
each x € I - A, we choose a sequence Ay = {yx }neN such that the sets

Ay are mutually disjoint and U Ay € I (a subset of the y-axis).

Xe I‘A;
We define

1

n for x = xin), yel-A;
fi(x,y) =

0 for the remaining (x,y) € I x I

and

1

a for xe I -4, y-= yin)
f(x,y) =

f,(x,y) for the remaining (x,y) € I x I.
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It is easy to verify that f(x,y) satisfies all the required conditions.
If I - A, = ¢, then f,(x,y) is the required function. The case

I - A, = ¢ 1is symmetric and the case I - A, = ¢, I - A; = ¢ 1is obvious.

Recedived June 26, 1985
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