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 MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES

 We introduce the following notation.

 Let * : I -» R (where I = [0,1]).

 If a function ł has a property P, we denote this fact by P(*).

 Let f : I * I -» R. Then for each xci we consider fx(y) = f(x>y) as

 a function of y and for each y € I we consider f^fx) = f (x,y) as a

 function of x.

 We put

 Ax(f,P) = {x;P(fx)} and Ay(f,P) = iy;P(fy)}.

 Let At c I and A2 c I. We investigate conditions on the sets Ax and

 A a under which there exists a function f such that Ax = Ax(f,P) and

 A 2 = Ay(f,P), where P is a certain fixed property such as "nondecreasing",
 "increasing", "nondecreasing and continuous", "increasing and continuous",

 "of bounded variation".

 Then we construct a function fulfilling these conditions. At first we

 suppose that P means "nondecreasing".

 Theorem 1. Let AlfA2 c I* Then there exists a function f(x,y) defined

 on 1*1 such that Aj = Ax(f,P) and A2 = Ay(f,P) if and only if

 1* I * At and I * A2 or

 2* A! = A2 = I or

 3* Ai - I, Aa * I and card(A2 - A2) * x0 or

 A2 - I, Aj * I and card(Aî - Ai) * k0.

 Proof. Sufficiency. If condition 1* or 2* is fulfilled, we define the

 function f(x,y) in the following way:
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 (x+1) (y+1) for (x,y) € Ax x [0,1] u [0,1] x A2 (I)

 f(x,y) =

 .-(x+1) (y+1) for the remaining (x,y) € I x I. (II)

 If Aļ = A2 = I, then, obviously, only (I) is valid, and if Ai = A2 = 9, then

 all points are remaining, so we use only (II). It is clear that the function

 f(x,y) fulfills all the the required conditions. Let us suppose that the first

 part of condition 3° is fulfilled. Then Io = (Io - A2) u ((A2 - A2) n Io) u

 (A2 n Io) where Io = (0,1). Let Z = (A2 - A2) n Io. We can write down all

 elements of the set Z as {yn} because Z is finite or countable. Let

 G = Io - A2 = U (otn,fln) where («n»^n) are components of G. The notation

 U («n>^n) means that the union is finite or countable.

 n We put

 g(y) = y + £ for y € Io.
 Yi<y 2

 Next we define a function f i (x,y) on the set Io x Io by the formula

 X'g(y) for x € Io - {^}, y € Io.
 fi(x,y) =

 7 lim ¿(v) for x = 7 , y e Io.
 v*y+

 Let yn = lim fx (-,•>?), 5n = li™ fi (~ťn)- Let hn(y) be any increasing
 2 V+ßü 2

 and continuous function defined on [an,/?n] such that hn(an) = yn'

 hn(fn) = ¿n an«1 hn(y) < fi(f»y) for y « («n.^n)-

 Now we define a function f(x,y) on the set Io x Io by

 ' hn(y) for x = 7 , y € (<xD,ßn)
 «».»>•■ <m)

 fi(x,y) for the remaining (x,y) e Io x Io.

 It is not difficult to extend the function f(x,y) to lxi in order to
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 obtain a function fulfilling all of the required conditions.

 Necessity. We suppose that Ax = I, A2 c I and card(A2 - A2) > x0.

 The case At c I, A2 = I and card(Ai - Aj) > k0 is analogous. We assume

 that we can construct a function f(x,y) such that A! = Ax(f,P) and

 A 2 = Ay(f,P). The set of all limit points of the set A2 from both the left
 and the right side which do not belong to the set A2 is denoted by B. Of

 course, card B > x0. If y0 € B, then there exist points x0, Xj e I such
 that

 (1) x0 < Xi and fy°(x0) > fy°(x1).

 We shall show that the function fx0 (y) is not continuous at y0.
 Suppose that the function fXo(y) is continuous at y0. We consider a
 sequence (yn^neN such that yn c A2 and yn •* y0. Of course,

 f(xo»yn) 6 f(*i»yn)-

 Hence f(x0,y<>) * f(*i»yo)» We have contradicted (1).

 Let x2 € (x0,xl). If f(x2,y0) > f(xi,y0)» then, as above, the function

 fXa(y) is not continuous at y0.
 Let f(x2,y0) * f(xj,y0). We suppose that the function fx2(y) *s

 continuous at y0. From (1) we obtain f(x2,y0) < f(xo,y0)« There exists

 6 > 0 such that for each y e (y0»y o + ¿)> f(x2,y) < f(x0,yo)»

 There exists yi c Aa n (y<»yo + <*) such that f(x0,yi) > f(x2,y!). We

 have a contradiction because yt e A2. We obtain that all functions fx(y)

 for X € [x0,x,) are not continuous at y0. So for y0 e B we have found

 an interval of discontinuity. With each y e B we associate exactly one such

 interval. There eixsts a point x e I which belongs to an uncountable family

 of intervals. Hence the set of points of discontinuity of the function fx(y)
 is uncountable. We obtain a contradiction because this function is

 nondecreasing.

 Remark 1. If Ax = I and if there exists a function f(x,y) such that

 Ai = Ax(f,P), Aa = Ay(f,P), then A2 belongs to the class G¿.

 Proof. Io = (Io n A2) u (Io n (Aa - Aa)) u (Io - Aa). Hence Aa is a set

 of type G¿ because Io n (Aa - A2) is a set of type F«^.
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 Definition 1. We say that a set B fulfills condition (*) with respect to a

 set A2 if and only if there exists a sequence of sets {Bn} such that

 B = U Bn and for every n card(A2 n Bft) ¿ x0 (Bft denotes the set of all
 ii

 points of condensation of the set Bn).

 Remark 2. If a set B does not fulfill condition (*) with respect to A2

 and Z is a finite or countable set, then the set B-Z does not fulfill

 condition (*) with respect to A2.

 Lemma 1. If a set A2 - A2 fulfills condition (*) with respect to A2

 where A2 c I, then A2 belongs to the intersection of the classes and

 Proof. Let B = A2 - A2, B = U Bn and for every n card(A2 n Bß)

 * «o* For every n let Zn = A2 n Bfi and A2(n) =.(A2 - Zn) n Io. Let Gn
 denote the union of all maximal neighborhoods p(n) of points of the set
 Aa(n) such that card(p(n) n Bn) * x0. Then card(Gn n Bn) * x0 and
 n A2(n) e n Gn, but n A2(n) = Io n n (Aa - Zn) : Io n (a2 - Z) where
 n n n n

 Z = U Zn, card Z * fe
 n

 From the following inclusion

 il Gjj n (J Bn ^ U (Gjj n Gjj)
 n n n

 we obtain that

 card( Û 6¡] n 6) < k0.
 n

 We have

 f) Gjj 1 A2 = (A2 Z) O I®
 n

 and

 (Aj - Z) n I® = ( 0 (Gn n I<>) - n Gn n (I<> - Ā2)) - il Gn n B.
 n n n
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 The set (Aa - Z) n Io is the intersection of a set of type G¿ and a set of
 type F<r. Hence Aa belongs to the intersection of classes F and

 Lemma 2. If for each y e B c I c OY the interval ( <*y,ßy ) c I c OX is
 nondegenerate, then there exists a sequence of sets {Bn}n€N and a sequence

 a nondegenerate intervals {PiJncN» Pn c I c OX such that B = U Bn and
 n

 for every n fl (oy,by) 3 Pn.
 ycBn

 Proof. Let {Pn}neN be the sequence of all intervals with rational

 end-points such that Pn c I. Then the sequence of sets Bn is defined by

 Bn = {y € B; ( Ctytßy ) 3 Pjļ}.

 Now we suppose that P means "increasing".

 Theorem 2. There exists a function f(x,y) on I * I such that At =

 Ax(f,P) and A2 - Ay(f,P) if and only if

 1* I * A! c I and I * Aa c I or

 2* A, : Aj : I or

 3* Ai = I, Aa c I and Aa - Aa fulfills condition (*) with respect to Aa
 or

 Aa = I, Ai c I and At - At fulfills condition (*) with respect to At.

 Proof. Sufficiency. If condition 1* or 2* is fulfilled, we define the

 function f(x,y) by (I) or II). (See the proof of Theorem 1.) Now we

 suppose that Ax = I, I * Àa c I and A2 - Aa fulfills condition (#) with

 respect to Aa. Then by Lemma 1 there exists a set H of type G¿ such

 that I* n (Aa - Z) c H, Z c A2, card Z < k0. Therefore A = {yn)ncN

 and card (H n B) * x0. Let B = H n B, H il Gì where {Gļ} is a non-
 i=o

 / • ' / • '

 increasing sequence of open sets. Put Gļ = U (oc , ß ) , where
 n

 (a^, are the components of the set G?, and {y-D^}. .. = n n ix ien ..

 208



 (0) (0) / '
 (or (0) , (0) ') n B. For every n let {zļ }ļ€jj a sequence such that

 ß <°> -
 y (n) _ " _n
 r y zi _ "
 1

 For every n define a function hn(y) for y e («^ , ) by

 Z z^n) if («(0), n B * *
 (n) . 1 n n

 y A <y .

 hn(y) =
 ä<°> - «<°)
 - 2 ¿ - « <.<0), n /0>) n « ï = .. 2 ¿ n n

 Now we define functions ft(x,y), fa(x,y) and fs(x,y) on the set

 Io * Io in the following way:

 «ļļ°^+ x(y-a£0^ + 2hn(y)) for x € (0,|] - {|}, y € *ß^)

 «(0)+ n ł(y-«(0) 4W n + 2 lim h (v)) for x = J, 4' y J € («(o),/o)) ' n 4W n , n 4' J y n ' n
 n-»y+ ,

 fi(x,y) = y for x € (0,|], y € Io - G0
 li _

 Kl 1 A + - 1 av (i) ' + . - ¿ T A + - r av ' + . -

 k=. ¿ T 2k 21 D _1 k=. ¿ -^T 2k > k=. ¿ "T 2k

 i-' - - i , i+i .
 ï-è + -?y for ic(î -I, , J -i], k=. * 21 V, -I, 2k 2k

 y € Io - Gì
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 y + I - T for X € Io, y € Io - Z
 yi<y 21

 fa(x,y) =

 yn + Z - t + X • - for X e Io, yn e Z
 yi<yn 21 2n

 faCx.y) = fi(x,y) + f2(x,y) for (x,y) e Io x Io.

 We shall show that for each x € Io the function (f3)x(y) is

 increasing. Let y' < y" and y' € Io - G0, y" e G0, x e (0,^]. Then

 (fj)v(y) x : n n n ^1°^* n Th01"6 exists n such that x n n n n n

 y' * < y"- Hence (f^Cy') < (fi)x(y"). If

 i i i+i ,

 then (f,)x(y) : (««>, ,<«) ♦ ( Y ģ + ģ .<». Y ģ * ģ

 (ř,)"(y') = ¿ 5 + ¿ y' ' ¿ à + á ^ < (ř- v'-

 In the other cases our considerations are analogous. The function

 (fi)x(y) is increasing. If y' < y", then

 ' y' + Z 4 < y" + I -ł « (f.) (y").
 yi'y' 21 yi<y" 21

 We obtain that the function (f2) (y) is increasing. Hence (f3) (y) is
 x x

 increasing.

 We shall show that for each y e A2, the function f^(x) is increasing.

 If y e A2 - Z, then the function (fļ)y(x) is increasing because
 'S»

 A2 - Z c H - B and
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 (fi)y( Ī ¿ ) < lim (í) .
 k=i 2K i ,

 ** 1 Ú 2K , + k=i 2K

 Since the function (f2)y(x) is constant, (f3)y(x) is increasing. If
 V V

 y € Z, then (fi) (x) is nondecreasing, (f2) (x) is increasing and
 y

 (f3) (x) is increasing.

 Now we show that if H n (1° - A2) = *, then for each y c Io - A2,

 (f3)y(x) is not increasing." In this case we have Io - A2 =
 (Io - (H u Z)) u B. Let ye Io - (H u Z) . Then (f^^x) is not non-

 V V
 decreasing and (f2) (x) is constant. Hence (f3) (x) is not increasing.

 Let y € B. Then (fi)y(x) is not nondecreasing and (f2)y(x) is constant.
 y

 Hence (f3) (x) is not increasing. In this case the function f3(x,y)

 fulfills the required conditions.

 If H n (Io - A2) * 0, we put G = Gì n (Io - Aa) and G = U (<*n»0n)»
 n

 where (an>/*n) are components of G,

 7n = Un» faíx.íj), 5n = lim f3(x,rç).

 5
 For x = ģ , ye («n>^n) » we change the values of the function f3(x,y)
 as in (III). (See the proof of Theorem 1.) In this way we obtain the

 function f(x,y). We can extend this function to I x I to obtain a

 function fulfilling all the conditions.

 Necessity. We suppose that At = I, Aa c I, A2 - A2 does not fulfill

 condition (*) with respect to A2, and that there exists a function f(x,y)

 defined on 1*1 such that Ai = Ax(f»P) and A2 = Ay(f,P). Let
 y c A2 - A2. We have two cases.

 Case 1. There exist points x0,xi € I such that

 x0 < Xi and f(x0,y) > f(xi,y).

 By Theorem 1 this case may occur only on a finite or countable subset Z

 of the set A2 - A2. Hence, for each y c (A2 - A2) - Z, we have
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 Case 2. There exists an interval (<*y,ß y) c I such that the function
 f (x) is constant on this interval. Let B = (A2 - A2) - Z. By Lemma 2

 there exist a sequence of sets {Bn)n€N and a sequence of intervals

 {Pn)neN such that B = U Bn and for every n il (<*y,0y) 3 Pn-
 n y«Bn

 By Remark 2 the set B does not fulfill condition (*) with respect to

 the set A2. Therefore, there exists n0 e N such that A2 n Bj,o > kq . Of

 course fi (<*y,/?y) 3 Pn • Let x0,x! € Pn and x0 < x¡ . If y0 € A2 n Bn ,
 y€fln0

 then there exists a sequence {yrJneN such that yn e BDo and yn y0 ,
 but

 f(xo.yo) < f(xi ,y0) and f(x0,yn) = f(xi,yn).

 Both fXo(y) and fx^ (y) cannot be simultaneously continuous at the point
 y0. So at least one of these functions has an uncountable set of discon-

 tinuity points, which is impossible.

 Remark 3. If A2 is a set of the first category on some interval J c I

 and it is c-dense on this interval, then A2 - A2 does not fulfill condition

 (*) with respect to Aa.

 Proof. We assume that A2 - A2 fulfills condition (*) with respect to

 A2. Then by the proof of Lemma 1 there exist a set H c J of type Gg and

 a countable set Z c J such that H = (J n A2 " (H n (a2 - Aa))) - Z. Hence

 H n J is a G¿-set of the first category, dense on the interval J. This

 contradicts the Baire category Theorem.

 Example 1. Let be the rational numbers from the interval Io.

 For each n € N let Ģn = U (rļ

 Í€N 2i+n+1 2i+n+1

 G = fi Gn, and F = I - G. Then for Aï = I and A2 = G we can
 neN

 construct a function f(x,y) on 1*1 such that At = Ax(f,P),

 A2 = Ay(f,P). Although card ( G n (G - G)c) > x0, we have G - G =

 212



 U (I - Gn) and card(G n (I - Gn)C) = O for every n, and so, G - G
 ncN

 fulfills condition (#) with respect to G. Now let Ax = I, A2 = F.

 The set F is of the first category and c-dense on the interval I. By

 Remark 3 and Theorem 2 it is not possible to construct a function f(x,y)

 such that Aj = Ax(f,P), A2 = Ay(f,P).

 Now let P mean "nondecreasing and continuous".

 Theorem 3. There exists a function f(x,y) defined on 1*1 such

 that = Ax(f,P), A2 = Ay(f,P) if and only if:

 1* I * Aj c I and I * A2 c I or

 2* Aj = Aa = I or

 3* Ai = I, Aa c I and Io - A2 = G u D where G is an open set and

 D is a subset of the set of one-sided limit points of A2, or a

 symmetric condition holds with respect to A! .

 Proof. Sufficiency. If condition 1* or 2* is fulfilled, we define the

 function f(x,y) by (I) or (II). So suppose that condition 3* holds. Hence

 I - Aj = I) Pn or I - A2 is the union of U Pn and at least one end-point
 n n

 of the interval [0,1] where Pn is an open interval or a closed interval

 or a half-open interval. Let the sequences {cd}Q€n , {dn}n€fj , {en} neN
 fulfill the following conditions.

 0 ( Cjj ( C]j+i , dn ^ djj+i , cn ( ejj ( <-n+i »

 lim cn = 1, lim dn = d < +».
 ir*» a*»

 We denote by an and bn the end-points of the interval Pn. Let gn(y)

 be a linear function for y e (an,bn), joining the points (an,dn) and

 (bjijdn+x). Let žn(y) and ân(y) be any continuous functions increasing

 on (an,bn) such that

 dn for y € [0,an]

 gn(y) = žn(y) = žn(y) =

 dn+1 for y c [bn, 1]

 213



 Žn(y) < řn(y) < Žn(y) whenever y « (an,bn).

 Now we construct the function f(x,y). In all cases we let f(x,y) = d for

 (x,y) € [0,Cj) * [0,1] and for each n put f(en,y) = gn(y) f°r y € [0,1].

 First we consider the case Pn = [an,bn]. Then at the remaining points of

 the closed trapezoid with vertices (cn,0), (en,0), (en>bn), (cn,l) we

 put f(x,y) = dn. At the remaining points of the closed trapezoid with

 vertices (en,an), (cn+1,0), (cn+1,l), (en,l) we put f(x,y) = dn+1 . On

 the triangle with vertices (cn,l), (en»^n)> (en>l) we define the function
 y

 f(x,y) in such a way that all sections f (x) for y € (bn,l) are linear

 (en~cn) (y~bn)
 functions joining the points (en

 (en~cn) (y-^n) "
 for x e (en

 the triangle completing the rectangle bounded by x = cn and x = cn+! •

 We now consider the case Pn = (an,bn). We define the function f(x,y)
 so that all sections fy(x) for y € [0,1] are linear functions joining
 the points (cn,dn) and (eļļ,žn(y)) for x € [cn,en) and the points

 (en.Žn(y)) 311(1 (cn+i.dn+i) x « (en,cn+1]. If Pn = (an,bn], then

 on [cn»en) x [0,1] we construct f(x,y) as in the first case and on

 (en»cn+i] x [0»1] we construct f(x,y) as in the second case. If Pn =

 [an»bn), we proceed symmetrically. For y € [0,1] we put f(l,y) = d.

 If 0 i Aa or 1 i Aa, it is not difficult to make a modification of this

 definition so that the function f(x,y) will satisfy all the required

 conditions.

 Necessity. We suppose that conditions 1", 2*, 3* are not fulfilled.

 Then Ai = I and there exists a point y0 in Io - A2 which is a bilateral

 limit point of A2. We assume that there exists a function f(x,y) such

 that Ai = Ax(f,P) and Aa = Ay(f,P). Then the function fy°(x) is not
 nondecreasing or is not continuous. In the first case from the proof of

 Theorem 1 it follows that there exists an interval P0 such that for each

 x € P0 the function fx(y) is not continuous. We obtain a contradiction.
 Vrt

 In the second case we assume that the function f (x) is not continuous at

 a point x0. Then we have

 (2) f^Cxo) < lim fy°(f) = a or
 t-*Xo
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 (3) b = lim fy°(0 < fy°(xo).
 f-*xõ

 From (2) it follows that for each xci if x > x0, then fx(y<>) à a-

 There exists y, « At, yt > y0. such that f(x0,yx) < a. But

 lim f (O = f(x0,yi). So there exists Xļ > x0 such that f(xj,y!) < a
 f-»Xo

 which is a contradiction.

 From (3) in an analogous way we obtain a contradiction.

 Remark 4. If Aj = I, I * A2 c I and if there exists a function

 f(x,y) such that At = Ax(f,P), A2 = Ay(f,P), then A2 is a set of
 type Gg .

 Definition 2. We say that a set D fulfills condition (**) with respect

 to A2 if and only if there exists a sequence set {Dn}n€N such that

 D = U Dn and for every n A2 n Dn = *.
 n

 Remark 5. If D does not fulfill condition (**) with respect to A2,

 then the set D - Z where Z is any countable set does not fulfill this

 condition.

 Remark 6. Let a function g(x,y) be defined on [«,/?] * [0,1] where

 ß - a < 1 such that gx(y) are increasing functions for each x € [<*,/?]

 and g^(x) are nondecreasing functions for each y € [0,1]. Then there
 exists a function gi(x,y) defined on [«,/?] * [0,1] such that gi(x,y) is

 increasing on every vertical and horizontal section of the triangle with

 vertices (<*,0), (ß,0), ( ß,ß - a) and gi(x,y) = g(x,y) on the complement

 of this triangle in [<*,/?] x [0,1].

 A similar result can be obtained with respect to the triangle with

 vertices (a,l + a - ß), (ß,l), (a, 1) .

 Proof. We project orthogonally all points of this triangle on its

 hypotenuse. Let the value of gj at (x,y) be equal to the value of g

 at the projection of (x,y). At the remaining points of the rectangle we do

 not change the function g. It is easy to verify that the function g¡ has
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 the required properties.

 Let P now mean "increasing and continuous".

 Theorem 4. There exists a function f(x,y) on the set lxi such that

 Ai = Ax(f,P), A2 = Ay(f,P) if and only if:

 1* I * Al c I and I * Aa c I or

 2' At = Aa = I or

 3* Aj = I, A2 c I and A2 - A2 fulfills condition (**) with respect to

 the set A2 or

 A2 = I, Aj c I, Ai - Ai fulfills condition (**) with respect to the

 set Ai .

 Proof. Sufficiency. Use Theorem 1 if 1* or 2* occur. Let B = A2 - A2

 and suppose that B fulfills condition (*#) with respect to A2. Then

 B = U Bn and for every n Aa n Bn = *. Accordingly there exist open sets
 n

 Gn such that Io n A2 c Gn and card(BD n Gn) * x0. Let H = fi Gn. Then
 n

 Io n Aj c H and card(B n H) * k0. We can assume that Gn+j c Gn for

 n € N. Let {cn}neN and {dn}n€N be sequences such that 0 < cn < cn+!
 «9

 for n € N, lim Qj = c < 1, Z 7n<+" where rn = c - Cfc, and
 ir*» n=i

 O

 c < di, dn < dn+i for n c N, lim = 1, Z ¿n < +" where
 n-*® n=i

 5n = 1 - dn. If H « (Io - Aa) = then we put fi(x,y) = x • y

 for (x,y) € [0,-ļj] * [0,1]. If H n (Io - A2) * *, then
 Gì n (Io - A2 ) = U (aļ,bi) and we change the function fi(x,y) for
 Ci *

 x = -ķ , y € (ai,bi) similarly as in (III). (See the proof of Theorem 1.)
 We denote the elements of the set H n B by {an}. This set is finite or

 countable. We define a sequence {/7n)neN such that

 ßi - «i Ti = 1,

 ßn+i = Pn + y 2D- i(l ~ otn)can + an+i * 7an+i
 and

 lim ßn = ß.
 n -*»
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 o

 This is possible because I 7n ^ cn < 1 for every n. Now we
 n=i

 define the function fj(x,y) on the rectangles [c2n-ltc2n'; * [0.1] by

 ' ßn + (y-«n)(c_x) for x € [can-i»CanJ. y e [°»an]

 fi(x.y) = ßn for X € [can-x,c3n], y = «n

 • ^n + Tan-i * x * (y~«n) f°r x € [c2n-i,c2n], y c («n,l].

 Let fi(c,y) = ß for y € [0,1]. We have Gn = U (aín'bfn^) for n c N.
 i

 Next we define a sequence {^nlneN such that Vi > ß, ^n+i = ^n + 6 n-i

 h(n) D _ ft(n> St* / v / ' D • _ St*

 and for every n a sequence {eļ such that 0 < ^

 We construct the function f»(x,y) on [d2n_1,d2n] x [0,1] by

 nn + «an-i«-1^ + *an-t • *(y " 'or * « [dan-i >dan] »

 , (a; (n) (n) (n), y € , (a; y,aļ y+cļ ]

 Vn + ¿an-ibļD^ + (l~x)«an-i (y_bļD^ ) 'or x € tdan-i .d2] »

 y J « [bín)-«ín),bín)) Ł I J Ł i x I i

 f,(x,y) = a linear function joining the points (aļ^+eļ^jfj^aļ^+eļ11^))

 and (b<nUļn'f1(xibļn)-.<B>)) for x c [dan-j.djn]

 y € (a<n)+*ín),bín)-8ín))) " i i i i "

 '»n + ¿an-i * y 'or x € [d2n-j,d2n]

 and for the remaining y e [0,1].

 Let f|(l,y) = lin nn < +•♦ The function fi(x,y) on the intervals
 n-*»

 Cļ

 [~2»Ci] » [can»can+i]» fodj, [dan,dan+l] is for each y € [0,1] a
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 linear function joining the value of the function f^ at the left end-
 point of the above-mentioned intervals and the value of the function f^
 at the right end-point of these intervals. If {0} u {1} c I - a2, then

 one may verify as in the proof of Theorem 2 that the function fi(x,y) + y

 satisfies all the required conditions. If 0 « A2, we use Remark 6 to

 construct a function fi(x,y) such that fi(x,y) + y satisfies all the

 required conditions.

 We proceed similarly in the case when 1 e A2.

 Necessity. We assume that At = I, A2 c I and the set B = A2 - A2

 does not fulfill condition (*#) with respect to the set A2. Let Z be the

 set of one-sided limit points of the set A2. Let y0 € B - Z. If the

 function f^°(x) is not continuous, then by the proof of Theorem 3 there

 exists x0 such that the function fx0(y) is not continuous. This
 contradicts the equality Ax(f,P) = I. If f^°(x) is not increasing, then
 there exist points x0, xx € I such that x0 < Xi and f(x0,y0) > f(xlty0)

 or f^°(x) is constant on some interval (^y^/^y,,) • first case by the
 proof of Theorem 1 is not possible. So the function f^(x) is constant on

 the interval ( <*,ßy ) where y € B - Z. By Lemma 2 there exist a sequence of
 sets {Bn}n€N and a sequence of intervals {PnJneN such that

 B - Z = U Bn and fi («y»0y) 3 Pn f°r every n.
 n y€Bn

 By Remark 5 it follows that the set B - Z does not satisfy condition (#*)

 with respect to the set A2. Therefore, there exists n0 € N such that

 Aa n Bn0 * * by Lemma 2

 n (<*y»0y) 3 Pn0*
 y€fin0

 We obtain a contradiction just as in the proof of Theorem 2.

 We obtain the following as we did Remark 3.

 Remark 7. If a set Aa is a set of the first category in some interval

 J c i aud if it is dense in this interval, then the set A2 - A2 does not

 fulfill condition (*#) with respect to A2.
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 Corollary 1. Let Ax = I and let A2 be the set of all rational

 numbers from the interval I. Then there does not exist a function such

 that Ax = Ax(f,P), A2 = Ay(f,P).

 Remark 8. The set G defined in Example 1 fulfills condition (**) while

 I - G does not.

 Remark 9. If A! = I, I * A2 c I and there exists a function f(x,y)

 such that A! = Ax(f,P), A2 = Ay(f,P), then the set A2 must be both a
 G^tf-set and an Fa¿-set.

 Lastly, let P mean "of bounded variation".

 Theorea 5. For any sets Ax c I, A2 c I, there exists a function

 f(x,y) such that A, = Ax(f,P), A2 = Ay(f,P).

 Proof. We assume that I - Ai * # and I - A2 * * and for each

 y e I - A2 we choose a sequence By = {xyD^)n€N such that the sets By

 are mutually disjoint and U By c I (a subset of the x-axis). For
 y€Ï-A2 /n)

 each x c I - Ax we choose a sequence Ax = {y^ /n) )n€N such that the sets

 Ax are mutually disjoint and U Ax c I (a subset of the y-axis).
 xel-Ax

 We define

 i for x = x£n' y € I - Aa
 fi(x.y) =

 0 for the remaining (x,y) e I x I

 and

 - 1 for - TA I - = (°) - for - x € I TA - Al, y = yx
 f(x,y) =

 fi(x»y) for the remaining (x,y) e I * I.
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 It is easy to verify that f(x,y) satisfies all the required conditions.

 If I - Aļ = 0, then fi(x,y) is the required function. The case

 I - Aa = # is symmetric and the case I - A2 = *, I - Ai = 0 is obvious.

 RzcoÁvzd June. 26, 1985
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