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 Section <d . Introduction.

 The author would like to express grat it urie to the various editors of

 the Real Analysis Exchange vira suggested this survey article. He hopes

 that it will be useful in olaurifying some of the underlying prinoiple-s; in

 particular, the relationships between selective, biselective and path

 system derivatives.

 A selection can be thought of as either an interval function or a

 point function. As an interval function, a selection consists of picking

 one point from the interior of each nondegenerate sub interval Ca,b] of R.

 (Throughout this paper, Ca,b] denotes the interval with endpoints a and b

 even if a > b. ) Hove ver, it is sometimes useful to consider a selection

 as a point function. Then a selection s is a function whose domain is the

 upper half plane U = < (h, y): x<y > and which satisfies the relation x <

 s(x,y) < y.

 Section 1. History.

 Motivation for the basic concepts of selective differentiation came

 primarily from papers CG1.,G.-N. , N. , S.l, S.2, Bü due to Gleyzal,

 Goff man, Neugebauer, Snyder, and Bruckner.

 Gleyzal CGI] said that an interval function defined on the

 collection of all nondegenerate compact sub interval s of R, is convergent

 to a point function f if and only if for each x lim «ļ>(I) = f(x), where I -»
 I-w
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 X denotes that «s I and that the measure of I tends to 0. Gleyzal proved

 that a function f: RhR is of Baire class 1 if and only if it is the limit

 of a convergent interval function.

 Clearly the comment made above about the two ways of considering a

 selection applies equally to any interval function. Thus the concept of $

 being convergent to f is translatable to a statement about the behavior of

 the point function <j>: U -* R at points close to the boundary of U. That

 is, for every x ve have f(x) = lim <{Xy,z), where (y, a) -* (x,x), y < x <
 (y,x)-»(x,x) ~ ~

 z, y jí z (the Stolz angle limit). This idea was adopted and researched

 extensively by Snyder in CS.l, S.23 where he established that various

 functions such as approximate derivatives are of Baire class 1. (This

 result was proved earlier by Goff man and Heugebauer in CG.-H. ] where they

 used Gleyzal's idea).

 Suppose now that for a given function f: R -» R of Baire class 1 there

 is an interval function <j> convergent to f and a selection s stich that

 f(sCx,yl) = <1>(Cx,y3). Then this says even more than that f is of Baire

 class 1; such an f is also a Darboux function. Indeed this is a

 characterization of Baire class 1, Darboux functions and was established

 by Neugebauer in CN. 3 .

 There he said that a function f fulfills condition if and only if

 there is a selection s such that lim f(s(I)) = f(s) for all x. (In
 I- tx

 CO'M. 13 a similar condition was introduced, called C^, and it was shown

 that it provides a characterization of functions according to the

 classification of Zahorski [Z.].) Neugebauer, in CN.3, pushed this idea

 of "selective continuity" even further and used it to provide a
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 characterization of derivatives- Precisely: a function f: R -ł R is a

 derivative if and only if there is a selection s, with respect to which f

 has the property, such that f(s(I)) = ļlļ is an additix^e interval

 function; here ļlļ is the measure of I. It is not hard to imagine how the

 idea of selective differentiability would arise from this background .

 Precisely, a function f: R -4 R is said to dif ferentiable with respect to a

 selection s if for each x fixed

 . . f (Cx,xtW)-f (x)
 lim . .

 h-40 sC».«+h3-k

 exists and is finite. The value of this limit is called the selective

 derivative of f and denoted as sf'(K).

 The final motivation arose out of the work of Bruckner CB3 despite

 the fact that none of his methods involved the notion of selection.

 Bruckner shoved that a question of Zahorski about monotonie i ty lias an

 affirmative answer. He proved a very interesting theorem which provides a

 technique for establishing general monotonicity theorems. In 1974,

 O'Malley (vàio hates to travel) vas ordered by his thesis advisor, Casper

 Goffman, to visit Bruckner in California. In an effort to obtain an

 application of Bruckner's technique the selective derivative vas

 introduced and Theorem 17 of CO'M. 2] proven. Further thought made it

 natural to define selective derivates as well. For example, the right

 upper selective derivate of a function f: R -» R at x is

 f <sCx,x+k])-f <x>
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 Section 2. Exanples.

 Now we will consider soné special selections and we will show viiat

 types of differentiation concepts they generate. Our exanpJes are very

 sinple but useful.

 Exanple 1. The lazy selection. For each interval Ca,b] set sCa,b3 =

 Then the associated derivative is the ordinary der i prative and the

 der i vates also correspond to their ordinary counterparts. Ulis sinple

 exanple brings out an aspect of selective differentiation which will be

 elaborated on thro teg ho ut the paper and which is connected with the problem

 of making a selection so that both endpoints be "satisfied" with the

 choice. (If a function has a derivative at a point x, then any point

 selected in the interior of intervals having x as an endpoint will, in a

 sense, "satisfy" x. )

 Exanple 2. Carrying the idea of "satisfying" one endpoint to its

 logical extreme, suppose that the function f has at every x at least one

 finite right derived number. Construct a function g by choosing for each

 x one of these finite derived nunfoers as g(x). In addition, pick a

 f(x )-f(x)

 sequence ^ x . , x„, ... such that x -» x from above and 1 im ^ l' . , x„, 2' ... n x -x
 im» n

 g(x). Then for each interval Ca, bü with a ( b select as desired point any

 term of the sequence associated with a which lies in (a,b>. Then f will

 have g as a right selective derivative. This exanple shows that one-sided

 selective differentiation will not give inportant information either about

 f or g. It also brings out the idea of path system differentiation and

 its relation to selective differentiation. Namely, for each x we could

 consider the path to x to be {xn>UCx>. This will be taken up later in the
 paper.
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 Examples 1 and 2 indicate that we need some compatibility of the

 "desires" of the two endpoints, if the idea of selective differentiation

 is to be useful. Personifying, we ray imagine a meeting attended by all

 points, where each point has to meet each distinct point and reach aun

 agreement as to the point to te selected. (Obviously, the points at which

 the function is different iab le need not attend.) The next exanple will

 illustrate such a meeting.

 Exanple 3. Suppose that f : R -* R has an approximate derivative g.

 For each x let be a closed set having density 1 at x such that

 lim .. f (y)-f (x) . ,
 lim .. -

 y-x 3
 y-»x

 ysE 7 7 x

 At a meeting attended by all points clearly each point x wants the

 selected' point to come from E , its path. Then the following rule should

 be adopted by the convention:

 Let a,b€R, a < b. Let a = |Ean(a,b)|, ß = |Ejn<a,b)|.

 i> If min(a,£) > then, obviously, Ea fl E^O(a,b) ¡< 0 and the point
 should be selected from this intersection.

 ii) If min(a,;9) < and a ¿ ß, pick the point to "satisfy" the endpoint

 having the larger of the values a,ß.

 iii) If a = ß < -s- -i pick the point from E H(a,b).

 The reason this anticipatory rule should be accepted by all involved

 is sinple. For each value x there is a 6 ) 0 such that |E fi(x,x+h) | )

 ļhļ/2, whenever 0 < ļhļ <6. Thus, for any x we will have ultimately

 either case i) or case ii) so that, ultimately, the selected point will
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 come from E . (Ulis also is the essence of the internal intersection
 X

 property applied to path system differentiation. )

 The next exanple is based on Neugebauer ' s characterization of

 derivatives, CN. 3.

 Exanple 4. Suppose that F: R -» R is dif ferentiable to

 f : R -i R and that sta,b] is any point in (a,b) such that

 ^b-a^3* = Then f has the property relative to this
 selection. Suppose, in addition, that for each x

 s£x,x+h3-x 1
 lim

 hH0 h 2

 Now, if f has a selective derivative g re lat iw to the selection s, it is

 easy to verify that g is actually the second Peano derivative of F.

 However, it is still an open question whether every second Peano

 derivative is a selective derivative of the first derivative.

 Section 3. Bilateral selective derivatives and derivates and

 bi select i ve derivatives.

 One previously undiscussed aspect of selection in bilateral situations is

 its catalytic nature. This is typified in Lemma 1 of [0*11.2].

 Let f : R •» R. Let s be a selection, rç a positive number and P = -Cx:

 f (sCx,x+h]-f ' (x) . _ ... ... „ , i. i , , y . _
 sLXj x >nj x

 and 0 < y-x < y. Then f(x) < f(y).
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 Then the analysis of f is restricted to P and from that point the

 selection is not mentioned or needed. This means that the selected points

 are used only as a bridge, or reagent, between x and y without the

 behavior of f near or at them being inportant.

 It is this ability of the selection to act as a bridge which yields

 results such as the following:

 i) If f : R -» R has bilateral lower selective derivate positive for

 all x then f is increasing. (Theorem 1, page 79 CO'M^l)

 ii) If f : R R has bilateral lower selective derivate not equal to

 -o3 for any x, then

 a) f is measurable and of generalized bounded variation

 b) there is a dense open set on which f is dif ferentiable for

 almost all x. (Theorem 4, page 87 [0*11.2]

 iii) If f : R -» R has a selective derivative for all x then

 a) there is a sequence of closed sets Q_, whose union is R, such
 K

 that f is Lipschitzan relative to for each k,

 b) f is Dar baux,

 c) the selective derivative is Darboux. (Theorem 11, p.

 87 CO'M. 21 . )

 According to iii), every selective derivative is a Darboux function. It

 is natural to ask whether every selective derivative is of Baire class 1.

 (Most generalized derivatives are.) However it ras shown in CO'M. 21 that

 this is not the case with selective derivatives. Also in CO'M. 2] several

 conditions were provided whereby a selective derivative is of Baire class

 2. Such conditions were rendered unnecessary by the work of Miklos

 Laczkovich in CL. 1 . He realized an inportant fact which is reminiscent of
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 Gleyzal's work. Namely, a selective derivative is not the limit of an

 interrai function but rather the left and right limits of two associated

 but different interval functions; ' e.g., * ' rCa,b] ' = (a<b). He ' e.g., * ' ' sCa,b3-a
 noted also that the right and left interrai functions fulfill the natural

 re lat ion:

 (*) min(^Ca,b3,rCa,b3) < f(^~f(a> < nax(€Ca,b3 ,rCa,bl ) .

 řfareover, working in the direction of Gleyzal instead of Neugebauer he

 realized that it was this right and left convergence and the relation (*)

 Vilich provided important elements in theorems such as i> - iii) mentioned

 above. He introduced an -£-r derivative using this idea. Among other

 things, he showed that all l-r derivatives are of Baire class 2 and that

 every selective derivative is an -C-r derivative. He also queried if all

 ■6-r derivatives are of honorary Baire class 2. ft function h is of

 honorary Baire class 2, according to Bagemthl and Piranian CB.P. ] , if

 there is a function g of Baire class 1 with tx: g(x) h(x)> countable.

 In CO'M. 3], an affirmative ansver to the query vas found. The basis for

 the solution comes from an investigation of the relation (*). It is

 deceptively mild and has a sinple geometric interpretation. It will be

 satisfied by a pair of left and right interval functions -£,r if and only

 if the line L through (b,f(b)> with slope lCa,b] intersects the line

 through (a,f(a)) with slope rCa,b] in soms point (x,y) with xeCa,b3. This

 fact led the author CO'11.3] to take a step back to Gleyzal's basic concept

 combining interval functions and selections.

 ft biselection is an ordered pair (s,<j>) where s is a selection and $

 is any interval function, ft function f: R -4 R is said to have a

 bise lec ti ve derivative bf'(x) relative to the biselection
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 b = (s,<ļ>) at X if and only if

 <btx,y]-f(x) ■ ...
 lim ■ y - =

 s[x.y]-x
 y-»M

 Clear iy viiat has happened here is that f(sCx,y]) has been replaced by

 <ļtx,y] (the original idea of Gleyzal). It takes little work to establish

 that there is an equivalence between the concepts of £-r and bise lee ti ve

 derivatives. (O'Malley continues to use the latter out of convenience. )

 As mentioned above, the biselective derivative has the same catalytic

 nature as the selective in that there is an exact analogue of Lemma 1 of

 CO'M. 23 and iii) a) above also holds. This ves established by Laczkovich

 in [L. ] . However neither f nor bf ' need be Darboux. This is caused

 basically by the fact that the biselective derivative need not be a

 derived number (of f at a given point). Yet the same apparent defect

 yields that the symmetric derivative of |x| is a biselective derivative.

 It is an open question precisely viiich symmetric derivatives are also

 biselective.

 Section 4. Balanced selections and alternate selections.

 The fact that a selective derivative is not alvays of Baire class 1

 but is of honorary Baire class 2 suggests three research projects.

 The first project.

 It is elementary that for a given function f : R -» R there can be

 several different selective derivatives. (This is not the case with such
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 generalized derivatives as the approximate derivative.) Therefore it is

 possible to conjecture that the fact that a given selective derivatives is

 strictly of Baire class 2 is sinply due so an ill-advised selection and so

 ask: If a function f: R -+ R is selectively dif ferentiable with respect to

 a selection s and sf ' is of Baire class 2, is there an alternate seleotion

 t such that f has a selective derivative with respect to t and tf ' is of

 Baire class 1? (A fact that is related but seems neither to help nor to

 hurt in this investigation is the following Theorem 9, p. 84 CO'M.23. If

 f: R -» R is selectively different iable with respect to both selections s

 and t, then -Cx: sf'(x) ¿ tf'(x), is countable.) In [O'M.- W. 1], the above

 question vas answered. In that paper the relationships between selective

 differentiation and a strong form of path differentiation called composite

 differentiation, lead to a counterexanple. A function f : R -» R vas

 exhibited which is both selectively differentiable and conpositely

 different iable and yet every selective derivative of f is strictly of

 Baire class 2. Thus the first project fails.

 The second project

 Since a selective derivative may be strictly of Baire class 2, it is

 natural to seek conditions on a selection s which will automatically force

 any function selectively differentiable with respect to s to have a

 selective derivative of Baire class 1. One such condition is based on the

 idea contained in exanple 4 of section 2. This condition involves the

 concept of balance. If, as h lends to 0, the position of sCx,x+h3 in

 (x,x+h) tends to stabilize amy from both x and x+h, then any selective

 derivative with respect to s will be of Baire class 1. To formulate our
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 condition precisely we need the following definitions from L0J M. 4] :

 Definition. Let I be a conpact interval and let as(Q), 1). By the a

 interval of I vie mean the interval of length oc|l| with the sane center as

 I.

 Definition. A selection s is said to be balanced if there are two

 positive functions a and 6 with the following property: If I is any

 conpact interval having x as one endpoint and if |l| <5 (x), then s(I) is

 in the a(x)-interval of I.

 (In exanple 4 of section 2 the selection is xjery heavily balanced in

 that a(x) can be taken to be as snail as predesired. > A perusal of the

 proof in CO'N.4] reveals that a few snail modifications would make the

 situation apply equally to biselective derivatives. If the first interval

 function in the ordered pair of a bise lection is a balanced selection,

 then any derivative with respect to this bise lection will be of Baire

 class 1. This also suggests a possibly interesting open question.

 Suppose that <ļ>, the second element of the ordered pair, is, in a weak

 sense, a selection; nore precisely, suppose that for each Ca,b] we have

 min(f <a),f (b>> < <ļ)Ca,bl < nax(f (a) ,f (b) ) .

 What can be said about biselective derivatives and their primitives with

 respect to such bi selections?

 Hie Third Project

 ft different attack on the problem goes back to the work of CS. 2] and

 considers a selection as a point function on U = í(x,y): x<y>. Following

 his ideas we can define a selective derivative as
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 f (s(x,y))-f <x0)
 hv - lim / * / X s(x,y)-K_ " , '

 / (K,y)-ł(x0>x0) * / X s(x,y)-K_ " 0

 where hw - lim indicates that (x,y) approaches (x0lx0) along the

 horizontal and vertical line segments in U ending at (x0,x0).
 To develop fully the framework the following definitions are needed:

 Definition. For a real number, a, a subset r(a) of U is called a

 right approach set for a if every (x,y) in r(a) satisfies a < x and (a, a)

 is the only limit point of r(a> in the boundary of U. fi left approach set

 is defined similarly.

 Definition. Suppose that for each a in R a right and left approach

 set, r(a) and £(a), have been chosen. The collection C of these sets is

 said to have the intersection property if for each a there is a 6 > 0 such

 that r<a^)fW5(a) £ and rtaXTÉťa^) î4 0» viienever a-6 <a^<a<a2<a +
 5.

 Now the idea of selective derivative can be generalized as follows:

 Let f : R -» R be fixed and let s be a fixed selection.

 Let C be any collection of right and left approach sets having the

 intersection property. Then f has a selective derivative g(x) relative to

 s and C if

 f (s(x,y))-f (x0)
 in " lim (x,y)->(x0,x0) S(K S(K'y> V)-(K (V )

 here lr-lim means (xfy) approaches through the right and left

 approach sets at x^. In one viay this seems a new derivát ive, however it
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 has been shovxi in CO'M. 53 that:

 I£ f , g, s, and C are as stated above there is a new selection t such that

 f <t<x,y))-f <h0)
 hv - lim - -T-,

 (x,y»-,(Vxa) -T-, t'»'"'-"® ®

 Still it is possible to use this idea to obtain Baire class 1 selective

 derivatives. For this another definition is needed.

 Definition. Let 0 < a < 1 < 0 be two fixed nunbers.

 Let C(a,£) be the collection of right and left approach sets with the

 property that for each u, -C(a) is the line segment with slope a ending at

 (a,a) and r(a) is the line segment with slope ß ending at (a,a). Then it

 follows that, CO'M. 5]:

 Let s be a selection and <b < a < 1 < ß fixed. Suppose

 f : R -» R and g: R -» R are such that

 f (s(x,y))-f (x0)
 ahvß-lim

 (x,yM(x0,x0) *<*'» *0

 then g is Baire class one. Here ahvß-lim has obvious meaning of approach

 to (x0l y^> through C(a,ß) approach sets and the standard hv approach sets.

 It is irritating that O'Malley missed an obvious relationship which

 has bearing on the above theorem. The above theorem requires that f be

 selectively differentiable with respect to s and also be dif ferentiable

 relative to these C(a,ß) approach sets. If only the second of these

 conditions was satisfied it would appear that the conclusion might fail.
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 Remember that it is known that there is another selection t such that

 differentiability with respect to C(a,£) becomes selective

 differentiability with respect to t. On the surface, for the above

 theorem, that interpretation seems redundant since it is already given .

 that differentiability with respect to s holds. However, a study of how

 the selection t is determined reveals relatively easily, that t will be

 balanced. Therefore:

 Let s be a selection and let a,ß be numbers with

 0 < a < 1 < ß. Suppose that f and g are functions such that

 f (sCx,y])-f (k0)
 ^ " lim

 (x,yM(Vx0) SCX StK'y3

 for each x^ € R. Then g is of Bai re class 1. (This theorem has the sane

 flavor as Corollary 6.3 of CB.O.T.], viiere differentiation with respect to

 path systems having the external intersection property is considered.

 Next, it seems appropriate to rate that it is possible for a function

 to be selectively differenti able to a function of Bai re class 1 vjhere the

 selection of necessity must be unbalanced. Thus, the following conjecture

 is false:

 ft function f: R -* R is selectively dif ferentiable to a function g: R

 ■+ R of Bai re class 1 if and only if there is a balanced selection t such

 that tf ' = g.

 Construction of exanples exhibiting this behavior can be accomplished

 using techniques similar to those of CO'M.-W. 13, page 35.
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 Section 5, Path system differentiation and conposite dif ferentiation.

 We have already encountered several tiras the idea of path system

 differentiation (seey e.g., exanples 2 and 3 of section 2). For a

 systematic investigation ve need the following definitions CB.0.T.1:

 Definition. Let x € R. A path leading to x is a set C R such

 that X 6 E and x is a point of accumulation of E . A system of paths is
 X X

 a collection -CE s x€R> such that each E is a path leading to x. Such a
 x x

 system is bilateral if each x is a bilateral point of accumulation of E^.

 Definition. Let f s R R and let E = x€R> be a system of paths.

 If lim f(y> = LGR. 1 vje say 7 that f is E-d if ferentiable at x and 'ģje y-x ' 1 say 7
 y-4x '
 ysE 7 7 x

 ■

 write f^tx) = L. If f is E-dif ferentiable at every x, then f is simply £
 i •

 said to be E-d i £ ferentiable; £ is the E-primitive o£ f„ and f „ is the
 Cj Jtii

 E-derivative of f.

 Definition. Let E = x€R> be a system of paths. E will be said

 to have the various intersection properties described below if there is a

 positive function 6 on R so that, vjhenever

 0 < y-x 7 < min(6(x) 177 ,5(y) ) , the sets E and E intersect in the stated 7 177 , x y
 fashion:

 Intersection conditions E fi E nCx,yl 17 ^
 x y 17

 Internal intersection condition: E fi E fKx.y) 17 ^ ^
 x y 17

 External intersection condition:

 E iì E n(y,2y-x) 7 ' 7 í $ and E HE fl(2x-y,x)
 x y 7 ' 7 x y

 There are cases, such as in the study of approximate derivatives,

 vjhere the path system differentiation is clearly natural. Moreover, the
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 idea of a path system is so broad that it enconpasses most other natural
 I

 forms of differentiation. The only basic requirement is that f-fx) is a
 iL

 derived number of f at each point x. Therefore it is not surprising that,

 as exanple 2 of section 2 shows, conditions must be placed on the system E

 to obtain global properties of the E-pr imi tive or E-derivative. The

 introduction of intersection conditions such as above leads immediately to

 selective derivatives.

 Theorem 3.4 CB.O.T. p. 1013

 Let E be a system of paths that is bilateral and has the internal

 intersection property. Then there is a selection s such that every

 E-differentiable function f : R -t R is selectively dif ferentiable relative

 to s and sf ' = f '
 XL

 The search for a converse of this theorem reveals an interesting

 unexpected complication in selective differentiation. Suppose that

 f : R -♦ R is selectively different iab le vã th respect to s. The obvious

 candidate for a path leading to s is the set E^ = iy: there is an h jt 0

 with y = sCx,x+h3> U íx>. It is clear that x is a point of bilateral

 accumulation of E and that E DE n<x.,x_) ^ 4> whenever x. ¿ x_.
 X Xj 1 ¿ 1 ¿

 Therefore this path system, E is bilateral and fulfills the internal

 intersection condition. However , f might not be E-dif ferent i ab le. To see

 this consider a point x and a sequence y¿>y2> ••• converging to x from

 above such that y € E for each n. Let h be numbers such that 'n x n

 f (y )-f(x>
 sCx.x+h ] = y . We would like to have lim

 n 'n . y -x n-ļoo 'n

 certainly hold if hß -» 0 as n -» «». But nothing in the definition of the

 selection s or the path can enforce that condition. If, however, the
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 selection s is balanced and if 6 is as in the definition of a balanced

 selection, we may choose

 E = ty: y=sCx,x+hl for sone h with 0 < |h| < 5<x)ł U -Cx>.

 Now, if and if Yn x » then the corresponding sequence
 I

 converges to 0, so that f^ťx) = s£'(x).
 XL

 Another possible choice o£ paths is to pick a sequence h^h^, ...

 bilaterally converging to 0 and set E =
 X

 ■Cy: y = sCxjX+h^D for some n> U íx>. Then the system E =
 ■CE*: x€R> is bilateral and f_* = sf 1 . Yet E* need not fulfill the
 x' E

 internal intersection condition.

 It is still an open question whether for every selection s there is a

 bilateral path system E with the interval intersection property such that
 I

 f„ = sf' for each function on f differentiable with respect to s.

 Also of interest is the study of path systems fulfilling the

 intersection condition but not the internal intersection condition. Here

 biselections come into play. The corresponding theorem is not as general

 as Theorem 3.4 of CB.O.T. ] in that it also depends on the function but it

 is illuminating, tore precisely:

 let f: R -> R and let E be a path system with the intersection

 property. Let f be E-differentiable. Then there is a biselection such

 that bf'(x) = fgtx) for each x.

 Proof. Let E = ÍE^jxeRJ and let 6 be a positive function such that

 for all x,y€R with 0 < |x-y| < min(6(x) ,5(y) ) ve have E^ n E^nCx,y] ^ <f>.

 We will construct a biselection b = (s,<1>) in a way inspired by exanple 3

 of section 2. Let x,y€R, x < y. There are three cases.

 a) If y - x < min(£(x> ,5(y) > and H E^fUx.y) / $ pick any point z
 from this intersection and set sCx,yl = z, <ļix,y] = f(z).
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 b) If y - X min(6(x) ,6(y) ) and E 0 E 0 Cx,y3 C íx,y>, ve proceed
 X y

 as follows:

 f (y)-f (x)
 Suppose first that x € E . Let - -

 y y-x

 interval (x,y) the region between the lines through (y,f(y)) of slopes

 a-(y-x), a + (y-x), respect ively. This region lias nonenpty intersection
 I

 with the line through (x,f(x)) of slope fc,(x). Now pick any point (u,v)
 Ei

 in this intersection and set sCx,y] = u,<ļix,y] = v.

 If x i Ey, then y € E^ and we proceed similarly.
 c) If y - x > min(5(x) ,5(y) ) and 6(x) > 5(y), set x = e and sCx,y] =

 u, <1ix,y3 = v, where (u,v) is the midpoint of the segment over the
 I

 interval (x,y> of the line through (e,f(e)> with slope fg(e). If y - x >
 min(£(x), 6(y)) and 5(x) < 5(y), we proceed in the sane way taking e = y.

 It is easy to prove that (with b = (s,<^>) we have bf ' = f^..
 I

 It should be noticed that if, at every x, fg(") is a bilateral
 derived number of f, then a little case in the preceding proof would yield
 • t

 that a f_ will become a selective derivative. In fact, f_ will be a path

 derivative as the following theorem indicated.

 Theorem. Let £: R -4 R and let E be a path system with intersection
 i

 property. Suppose that f is E-dif ferentiable and that, for each x, fg(*>

 is a bilateral derived number of f. Then there is a bilateral path system

 E* with the internal intersection property such that f^, = f^.*. (Note that
 I

 f_ is also a selective derivative of f.)
 E

 As corollaries we obtain inprove ment s of several theorems in CB.0.T1:

 New 6.4 Theorem. If a bilateral path system E satisfies the

 intersection condition, then every E-derivative has the Darboux property.

 New 6.8 Corollary: If a bilateral path system E satisfies the

 intersection condition, then every E-derivative lias the Denjoy property.
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 (It was shown in C0.M. 63 that every selective derivative has the Denjoy

 property. )

 New 8.1 Theorem. Let E be a nonporous path system satisfying the
 I

 intersection condition. Let f be an E-differentiable function and let f_
 E

 attain the values H and -M on an interval I_. Then there is a sub interrai
 0

 I of I_ on viiich f is differentiable and f ' attains both values II and -M.
 0

 (Ulis new theorem uses the fact that every selective derivative is

 honorary Baire class 2.) See also CO'M. -W. 23

 Further results such as 4.2 Theorem can be deduced from the

 corresponding results for biselective differentiation.

 The point to be made here is that the intersection condition enables

 us to exploit many ideas of selective or biselective differentiation for

 the investigation of path derivatives. However, there are several ideas

 which are more natural to path differentiation. Perhaps the most

 important of these is the concept of nonporous path system. It yields the

 MLj property of E-derivatives (according to classification of Zahorski

 CZ.3). In addition we get the theorem that if E is a nonporous path

 system, then every E-differentiable monotone function is differentiable.

 It is not easy to obtain similar results for biselective derivatives and

 primitives.

 A further topic to be discussed along these lines is the conposite

 derivative mentioned above. We need the following definitions (see

 [O'M. -W. 13):

 Definition. A decomposition (of R) is any sequence of closed sets,

 E . with union R.
 n' .
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 Definition. A function f is said to have the function g as conposite

 derivative relative to the decomposition E^, E^, ... if for each n and
 each X € E we haue

 n

 f (y)-f <x) . ,
 lim y_K '
 y-m '
 y€E 1 1 n

 If x is an isolated point of En, this relation is considered to hold

 vacuously.

 Conposite differentiability can be thought of as a type of "uniform

 path' system differentiability" if, for each x, there is an n(x) such that

 x is a limit point of E , . . Hien we can simply v 1 set E = E , . for each n(x) , . . v 1 x n(x) , .

 x€R. Even .without this condition it is possible to prove:

 3.1 Hieorem CO'W-W. 13. Let the sets E^, E^, ... forma

 decomposition of R, and let f and g be functions. Suppose that g is a

 conposite derivative of f relative to E^. Then there is a bise lection b
 such that bf ' = g.

 Farther: CO'H.-W. 1]

 3.2 Theorem. Let E^, f, and g be as in 3.1. Suppose, in addition,
 that for each x, g(x) is a bilateral derived ninriber of f at x. Then there

 is a selection s such that sf1 = g.

 It is possible to find conditions on either the biselection or the

 path system under which the corresponding derivative becomes a conposite

 derivative. For biselective derivative the reader is referred to

 CO'M. -W. 13 for the details. For the path system derivative the key
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 condition takes the form of a strong intersection condition. This is

 described in CO'M. 73.

 Section 6. Related ideas.

 *

 Recently U. Laczkovich and Y. Pokorny have investigated several

 problems related to selective and biselective derivatives. In the

 interesting paper EL. P.] they show:

 1) Hiere is a continuous function f and a selection s such that the

 finite selective derivative sf ' exists everyviiere and sf ' is not of Baire

 class 1 on any interval. (Such a selection must be non-balanced on every

 interval. >

 This theorem shows that no significant improvement of the result

 about the honorary Baire class 2 is possible.

 2) For every f: R -* R and every bise lection b the measure of the set

 ix: bf'(x) = oc¡> is zero. (Here, of course, the biselection is allowed to

 generate an infinite derivative. )

 3) If the definition of selective derivative is generalized in the

 obvious way to introduce the concept of an approximate selective

 derivative, ve get a situation similar to Exanple 2 of section 2. Mare

 precisely:

 Under the continuum hypothesis there is a function f such that for

 every g: R -» R there is a selection s fulfilling the relation

 .. f (stx,y3 )-f (x) . . „ . __
 ap-lim .. - = - ī-ļ

 sCx.y]-x J 3
 y-»x J
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 E. Lazarów, [La] in a similar vein, proved the following theorem.

 Let f : R -» R be Lebesgue measurable. Then there is a selection s and

 a set P of cardinality c such that f has a selective derivative (possibly

 infinite) with respect to s at each point of P. Also:

 There is a continuous function fs CO, 13 -» R such that for every

 selection s the set of points at which the selective derivative (possibly

 infinite, of f with respect to s exists is of measure zero and of first

 category. In fact the set of such functions is a residual subset of

 CC®, 13.

 In another direction the interested reader is referred to a recent

 paper of Bruckner, Laczkovich, Petruska and Thomson CB.L.P.T. ]. In that

 paper the sequential derivative, a certain type of path derivative, is

 considered. The authors investigate conditions under which the existence

 of a sequential derivative a.e. in a set A inplies the existence of the

 approximate derivative a.e. in A. They also investigate the additional

 question when the sequential derivative equals the approximate derivative.

 Their work, however, is very technical and too conplex to be reproduced

 here.
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