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 TWO MORE CHARACTERIZATIONS OF BESOV-BERGMAN-LIPSCHITZ SPACES

 Dedicated to Francisco Vieira de Sales on his 100th Birthday

 In the early 1960 's the following spaces were introduced, now known as

 Besov spaces. For 0<a<l, l<r, s<co, let

 it ( 1 f ( jcł*c)- f (x) I )s 1/s

 A(«,r,.) - <f. - R ¡ 'f'A(a)CiS) - "f'r + (L,

 where 1 1^ is the Lebesgue space Lr-norm. For these spaces the reader is
 referred to [1], [7], [8] and [9].

 Notice that Ata,»»,«) is the usual Lipschitz spaces.

 The following spaces of analytic functions on the disk have been studied

 in depth by several people, for example by E. Stein, M. Taibleson, A. L.

 Shieds, and others.

 i. - 1
 JP = {g: D + C , Analytic, Igl « |g(0)| + -1 /^/"^jg* (re10) ļ (l-r)P d0dr<®} J

 for 1 p < The dash means derivative.

 In [9], M. Taibelson has shown that A(1 - i,l,l) is equivalent as Banach
 P

 spaces to JP for 1 < p < 09 .

 In these notes we propose to give two very simple characterizations of the

 spaces A(1 - .L, 1, 1) and Jp for 1 < p < 00 , in terms of non-increasing
 P

 functions. For p = 1 we also get a result.
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 Consider the interval [a-h,a+h] C [ - tt , it ] - where h > 0. Let "

 g:(a,a+h] -»• R be a positive, non-increasing function, let f be the "even"

 extension of g on the interval [a-h,a+h], and 0 elsewhere. And let h

 be the "odd" extension of g on the interval [a-h,a+h] and 0 elsewhere.

 Define the spaces IP for 1 < p < 00 by IP = {f : [ - ir, ir] R ;
 00 oo

 f(t) = y f.(t) such that y Bf A. f , ' < °°} where f.'3 1 are of type f 1=1 1 1=1 1 ^P»1' f , ' 1

 above, restricted to the interval 1^ = [x^ - h^, x^ + h^]. (See figure 1).
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 Endow IP with the norm BfA » Inf I where the infimum is
 jP i=ll i MP, U

 taken over all possible representations of f.

 Also we define the space GP as IP when the fļs are replaced by

 hļs and the hļs are all of type h above on 1^ = [x^, - + .
 (see figure 2).
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 00

 Note f e L(p,l) if and only if "^®L(p 1) = ~ ~ ^ 00 »
 where f* is the decreasing rearrangement of f, defined by

 f*(t) m Inf {y>0, m(f,y) _< t}, t > 0, m(f,y) «■ ļ{x:ļf(x)ļ > y}|, the outside
 bars mean the Lebesgue measure of the indicated set. Recall L(p,l) is

 called Lorentz spaces.

 We have the following result.

 THEOREM A. The spaces IP, GP, and A(1 - .L, 1, 1) are the same in the

 sense of Banach spaces, with equivalent norms, for 1 < p < ».

 p
 Notice the sense meant in this theorem is that f e G if and only if

 f e A(1 -1,1, 1); moreover, MUfll < Hfl! , < N II f II for some
 P IP~ A(l- 1,1,1)" , IP

 P
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 absolute constants M and N.

 In case of we consider the non-tangencial limit that is f e

 if and only if F e J^, moreover the and are equivalent, where

 f(2> - *S- -4^ utut-
 e -z

 In case of p ■ 1, we have to redefine the space I1, in order to get the
 00

 equivalence with J1. In fact I1 = {f : [ - tt , it] + R ; f(t) » £ f»(t) such that
 1=1 1

 CO

 I "Vl-log+L ^ °°^» where f e L log4! if and only if j l°g+|f| < 00 •
 i»l 0 if 0<x<l

 log+x = J
 log X if X > 1

 We have the following.

 THEOREM B. f e I1 if and only if F e J1, moreover the norms are equivalent.

 In case of G1 we could exchange the definition of lfï„i above by G
 00

 ★ r
 lfl_l " Inf ¿ Ih. 8 l, where the infimum is taken over all possible
 Cy 1 Rôrl

 representations of f and f e ReH1 if f is the boundary value

 of an analytic function F in H1, that F e H1 if and only if

 HF»hi = lim flv ļF(re10)|dr < «.

 Then for G1 with this description we have,

 THEOREM C. f e G1 if and only if F e J1 with equivalent norms.

 Ue would like to point out that in Theorem A, if we start off with a

 function g defined by (C a constant),

 g(x) = - - x(t) then h(x) - - . [ -x(x> + x(x) ]
 (2h) 1/p (0,h] (2h) [-h,0) (0,h]

 is a special atom. They were introduced by the author in [2], [3], [4], [5]

 and [6]. Thus Theorem A generalizes the main theorem in [6].

 We would like to thank Professor Gary Sampson for reading this

 manuscript.
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 Professor Piotrowski 's report will appear as a Topical

 Survey in a later issne of the Real Analysis Exchange .
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