CONCERNING EXTENDABLE CONNECTIVITY FUNCTIONS

By Jerry Gibson

In the classic paper [16], J. Stallings asked the following question: "If I = [0,1] is embedded in I^2 as $I \times \{0\}$, can a connectivity function $f: I \to I$ be extended to a connectivity function $g: I^2 \to I$?" Negative answers were given to this question by Cornette [4] and Roberts [14]. Each constructed a connectivity function $I \to I$ that is not an almost continuous function.

Definition 1. $f:X \longrightarrow Y$ is a connectivity function if and only if the graph of f restricted to C is connected in $X \times Y$ whenever C is connected in X.

Definition 2. $f:X \to Y$ is an almost continuous function if and only if each open subset of $X \times Y$ containing the graph of f contains the graph of a continuous function with the same domain.

In this paper all propositions will be restricted to I, I^2 , or I \times {p} where $p \in I$ even though they may have been proved (or maybe proved) more generally.

Proposition 1. If $f:I \rightarrow I$ is an almost continuous function, then f is a connectivity function, [16].

Proposition 2. If $f:I^2 \to I$ is a connectivity function, then f is an almost continuous function, [16].

Proposition 3. $f:I \rightarrow I$ is a connectivity function if and only if the entire graph of f is connected.

Proposition 4. If $f:I^2 \to I$ is a connectivity (or almost continuous) function, then $f \mid (I \times \{0\})$ is a connectivity (or almost continuous) function, [16].

Because of these propositions, Cornette and Roberts were able to give a negative answer to the question posed by Stallings. In [13], K. R. Kellum proved that an almost continuous function $f:I \to I$ can be extended to an almost continuous function $g:I^2 \to I$. Thus a natural question arises.

Question 0. Can an almost continuous function $f:I \rightarrow I$ be extended to a connectivity function $g:I^2 \rightarrow I$?

In what follows we give a negative answer to this question and prove related results.

Stallings [16] stated that if $\pi_x: I^2 \to I \times \{0\}$ is the projection and $f: I \to I$ is a connectivity function, then $f \circ \pi_x: I^2 \to I$ may not be a connectivity function. In fact we have the following proposition.

Proposition 5. If $g:I^2 \to I$ is continuous and onto and $f:I \to I$ is any function such that $f \circ g:I^2 \to I$ is a connectivity function, then f is continuous except perhaps at 0 or 1, [7].

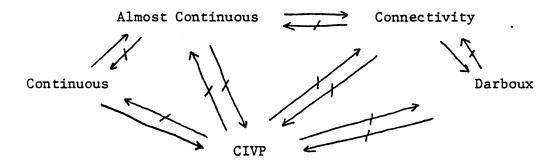
A related function is defined as follows:

Definition 3. $f:X \longrightarrow Y$ is said to be peripherally continuous at x if and only if for each open subset U of X containing x and for each open subset V or Y containing f(x) there exists and open subset W of U containing x such that f(bd(W)) is a subset of V.

Proposition 6. $f:I^2 \rightarrow I$ is a connectivity function if and only if f is peripherally continuous, [10].

Definition 4. $f:I \to I$ has the Cantor Intermediate Value Property (CIVP) if and only if for each a, b \in I such that $f(a) \neq f(b)$ and for any Cantor set K between f(a) and f(b) there exists a Cantor set C between a and b such that $f(C) \subset K$, [5].

The following diagram was completed in [5]:



The first example of that paper is an almost continuous function $f\!:\!I \to I \text{ that does not have the CIVP.}$

Proposition 7. If $f:I \to I$ is closed and has the CIVP, then f is continuous, [5].

Definition 5. $f:I \to I$ has the weak CIVP (WCIVP) if and only if for any $a, b \in I$ such that $f(a) \neq f(b)$ there exists a Cantor set C between a and b such that f(C) is between f(a) and f(b).

The first example of [5] is an example of an almost continuous function $f:I \rightarrow I$ that does not have the WCIVP.

Proposition 8. If $g:I^2 \to I$ is an extension of $f:I \to I$ and g is a connectivity function, then f has the WCIVP. Moreover, the Cantor set can be selected so that f restricted to it is continuous, [6].

Thus it follows that the first example of [5] is an almost continuous function $f:I \rightarrow I$ that can not be extended to a connectivity function $g:I^2 \rightarrow I$. This gives a negative answer to Question 0.

Definition 6. A function f: $[a,b] \rightarrow \text{Reals}$ is said to have a perfect road at $x \in [a,b]$ provided that

- (1) there exists a perfect set P such that x is a bilateral point of accumulation of P and
- (2) f restricted to P is continuous at x.

In each case, when we deal with the endpoints of [a,b], the bilateral condition is replaced with a unilateral condition.

Proposition 9. Let $g:I^2 \to I$ be an extension of $f:I \to I$. If g is a connectivity function, then f has a perfect road at each point. Moreover, f restricted to this perfect set is continuous at each of its points, [8].

The proof of the following proposition follows in a similar way as the proof of proposition 8.

Proposition 10. If $g:I \xrightarrow{2} I$ is a connectivity function, then $f = g \mid (I \times \{x\})$, for any $x \in I$, has the following property(gr): If $[a,b] \subset I$, then there exists a Cantor set $C \subset (a,b)$ such that $f \mid C$ is continuous where I is embedded in I^2 as $I \times \{x\}$.

In a similar manner we have the following proposition:

Proposition 11. If $g:I \xrightarrow{2} I$ is a connectivity function, then $f = g \mid (I \times \{x\})$ has a perfect road P at each point for any $x \in I$. Moreover, the perfect set P can be selected so that $f \mid P$ is continuous at each point of P.

However, there exists connectivity functions $I \to I$ that have neither of these properties.

Definition 7. A function $f:X \to Y$ is said to have property(s) provided that if $P \subset X$ is a perfect set, then there exists a perfect subset $Q \subset P$ such that $f \mid Q$ is continuous

This property was studied by Sierpinski [15] and Szpilranjn-Marczewski [17]. Property (gr) is a special case of property(s).

It follows that there exists a connectivity function $g:I^2 \to I$ and there exists $p \in I$ such that $f = g \mid (I \times \{p\})$ does not have property(s). However, it does have the property(gr). This example has not yet been submitted for publication.

We now state the following questions:

Question 1. Does there exist an almost continuous function $f:I \to I$ that has a perfect road at each point but can not be extended to a connectivity function $g:I^2 \to I$?

Question 2. Does there exist a Baire class 1 connectivity function $f:I \to I$ that can not be extended to a connectivity function $g:I \to I$?

Question 3. If $g:I^2 \to I$ is a connectivity function and $f:I \to I$ is a function such that $f \circ g:I^2 \to I$ is a connectivity function, is f continuous except perhaps at 0 or 1?

Question 4. If $g:I \xrightarrow{2} I$ is an extension of $f:I \longrightarrow I$ and g is a connectivity function, does f have the CIVP?

Question 5. Is it true that if $f:I \to I$ can be extended to a connectivity function $g:I^2 \to I$, then f can be extended to a connectivity function $g:I^2 \to I$ such that g is continuous on the complement of $I \times \{0\}$?

References

- 1. J. B. Brown, "Connectivity, semi-continuity, and the Darboux property,"

 Duke Math. J. 36(1969), 559-562.
- 2. _____, "Totally discontinuous connectivity functions," Coll. Math. 23(1971), 53-60.
- 3. A. M. Bruckner and J. G. Ceder, "Darboux continuity," Jber. Deutsch. Math. -Verein. 67(1965), 93-117.
- 4. J. L. Cornette, "Connectivity functions and images on Peano continua," Fund. Math. 58(1966), 183-192.
- 5. R. G. Gibson and F. Roush, "The Cantor intermediate value property,"

 Topology Proc. 7(1982), pp 55-62.
- 6. _____, "Concerning the extension of connectivity functions," Topol-ogy Proc. (to appear).
- 7. ______, "Connectivity functions defined on I^n ," Colloquium Math., (to appear).
- 8. _____, "Connectivity functions with a perfect road," Real Analysis Exchange, (submitted).
- 9. R. G. Gibson, H. Rosen, and F. Roush, "Connectivity functions $I^n \rightarrow I$ dense in $I^n \times I$," Colloquium Math., (submitted).
- 10. M. R. Hagan, "Equivalence of connectivity maps and peripherally continuous transformations," Proc. A. M. S. 17(1966), 1975-177.
- 11. O. H. Hamilton, "Fixed points for certain noncontinuous transformations," Proc. of AMS 8(1957), 750-756.
- 12. F. B. Jones, "Measure and other properties of a Hamel basis," Bull. A.M.S. 48(1942), 472-481.

- 13. K. R. Kellum, "The equivalence of absolute almost continuous retracts and E-absolute retracts," Fund. Math. 96(1977), 229-235.
- 14. J. H. Roberts, "Zero-dimensional sets blocking connectivity functions," Fund. Math. 57(1965), 173-179.
- 15. W. Sierpiński, "Sur un problème de M. Ruziewicz concernant les superpositions de fonctions jouissant de la propriété de Baire," Fund. Math. 24(1935), pp 12-16.
- 16. J. Stallings, "Fixed point theorem for connectivity maps," Fund. Math. 47(1959), 249-263.
- 17. E. Szpilrajn-Marczewski, "Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles," Fund. Math. 24(1935), pp 17-34.

Richard G. Gibson

Columbus College

Columbus, Georgia 31993