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 By Jerry Gibson

 In the classic paper [16], J. Stallings asked the following question:
 2

 "If I = [0,1] is embedded in I as I*f0}, can a connectivity function
 2

 f:I- -*1 be extended to a connectivity function g:I - » I?" Negative answers

 were given to this question by Cornette [4] and Roberts [14], Each

 constructed a connectivity function I I that is not an almost continuous

 function.

 Definition 1. f:X- »Y is a connectivity function if and only if the graph of

 f restricted to C is connected in X x Y whenever C is connected in X.

 Definition 2. f:X- >Y is an almost continuous function if and only if each

 open subset of X x Y containing the graph of f contains the graph of a continuous

 function with the same domain.

 2
 In this paper all propositions will be restricted to I, I , or I x f p} where

 pel even though they may have been proved (or maybe proved) more generally.

 Proposition 1. If f:I- >1 is an almost continuous function, then f is a connec-

 tivity function, [16] .

 2
 Proposition 2. If f:I -»I is a connectivity function, then f is an almost

 continuous function, [16] .

 Proposition 3. f:I- »I is a connectivity function if and only if the entire

 graph of f is connected.
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 2
 Proposition 4. If f : I - > I is a connectivity (or almost continuous) function,

 then f J (I*{0] ) is a connectivity (or almost continuous) function, [16].

 Because of these propositions, Cornette and Roberts were able to give a

 negative answer to the question posed by Stallings. In [13], K. R. Kellum

 proved that an almost continuous function f:I- »I can be extended to an almost
 2

 continuous function g:I - * I. Thus a natural question arises.

 Question 0. Can an almost continuous function f:I- »I be extended to a

 2
 connectivity function g:I - > I?

 In what follows we give a negative answer to this question and prove

 related results.

 2
 Stallings [16] stated that if "3^:1 - * I * (0) is the projection and

 2
 f:I - >1 is a connectivity function, then f°7T"x:I - >1 may not be a connectivity

 function. In fact we have the following proposition.

 2
 Proposition 5. If g:I -»I is continuous and onto and f:I- >1 is any function

 2
 such that fog:I - >• I is a connectivity function, then f is continuous except

 perhaps at 0 or 1, [7].

 A related function is defined as follows:

 Definition 3. f:X- is said to be peripherally continuous at x if and only

 if for each open subset U of X containing x and for each open subset V or Y

 containing f(x) there exists and open subset W of U containing x such that

 f(bd(W)) is a subset of V.
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 2
 Proposition 6. f:I - is a connectivity function if and only if f is

 peripherally continuous, [10].

 Definition 4. f:I- »I has the Cantor Intermediate Value Property (CIVP) if

 and only if for each a, b € I such that f(a) f(b) and for any Cantor

 set K between f(a) and f(b) there exists a Cantor set C between a and b such

 that f(C)CK, [5] .

 The following diagram was completed in [5]:

 Almost Continuous : - * Connectivity

 // w Y ' W Darboux ' Continuous Y ' Darboux

 SSVSXs^ ci vp

 The first example of that paper is an almost continuous function

 f:I-»I that does not have the CIVP.

 Proposition 7. If f:I-»I is closed and has the CIVP, then f is continuous, [5].

 Definition 5. f:I-» I has the weak CIVP (WCIVP) if and only if for any a, bei

 such that f(a) ļfc f(b) there exists a Cantor set C between a and b such that

 f(C) is between f(a) and f(b).

 The first example of [5] is an example of an almost continuous function

 f:I- >1 that does not have the WCIVP.
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 2
 Proposition 8. If g:I -»I is an extension of f:I- >1 and g is a connectivity

 function, then f has the WCIVP. Moreover, the Cantor set can be selected so

 that f restricted to it is continuous, [6].

 Thus it follows that the first example of [5] is an almost continuous
 2

 function f:I- »I that can not be extended to a connectivity function g:I - > I.

 This gives a negative answer to Question 0.

 Definition 6. A function f: [a,b]-> Reals is said to have a perfect road

 at xç [a,b] provided that

 (1) there exists a perfect set P such that x is a bilateral point of accumulation

 of P and

 (2) f restricted to P is continuous at x.

 In each case, when we deal with the endpoints of [a,b], the bilateral condition

 is replaced with a unilateral condition.

 2
 Proposition 9. Let g:I - * I be an extension of f:I-*I. If g is a connectivity

 function, then f has a perfect road at each point. Moreover, f restricted to

 this perfect set is continuous at each of its points, [8].

 The proof of the following proposition follows in a similar way as the

 proof of proposition 8.

 Proposition 10. If g:I-*I is a connectivity function, then f = g ļ (I x {x} ),

 for any x€I, has the following property(gr) : If [a,b]c.I, then there exists
 2

 a Cantor set Cc(a,b) such that f ' C is continuous where I is embedded in I

 as I*fxļ .
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 In a similar manner we have the following proposition:

 2
 Proposition 11. If g: I ->>1 is a connectivity function, then f = g ļ (I x [x) )

 has a perfect road P at each point for any xÇ I. Moreover, the perfect set P

 can be selected so that f j P is continuous at each point of P.

 However, there exists connectivity functions I- >1 that have neither of

 these properties.

 Definition 7. A function f:X- >Y is said to have property(s) provided that if

 Pc X is a perfect set, then there exists a perfect subset QCP such that f j Q

 is continuous

 This property was studied by Sierpiński [15] and Szpilranjn-Marczewski [17],

 Property (gr) is a special case of property(s).

 2
 It follows that there exists a connectivity function g:I - > I and there

 exists p € I such that f = g ļ (I > (p] ) does not have property (s). However,

 it does have the property (gr) . This example has not yet been submitted for

 publication.

 We now state the following questions:

 Question 1. Does there exist an almost continuous function f:I- *1 that has a

 perfect road at each point but can not be extended to a connectivity function

 g: I2- > I?
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 Question 2. Does there exist a Baire class 1 connectivity function f:I- >1
 2

 that can not be extended to a connectivity function g:I - > I?

 2
 Question 3. If g:I - > I is a connectivity function and f:I - >1 is a function such

 2
 that fog:I - » I is a connectivity function, is f continuous except perhaps at

 0 or 1?

 2
 Question 4. If g:I - > I is an extension of f:I- »I and g is a connectivity

 function, does f have the CIVP?

 Question 5. Is it true that if f:I- »I can be extended to a connectivity function

 2 2
 g:I - >1, then f can be extended to a connectivity function g:I - > I such that

 g is continuous on the complement of I x {b} ?
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