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 NONABSOLUTE INTEGRATION IN THE PLANE

 In this paper certain results from the dissertation [19] will be presented.

 In his topical surveys [29] and [30], Brian Thomson introduced a unified ap-

 proach to nonabsolute integration on the real line, based on the theory of integral

 due (in the general setting) to Ralph Henstock ([6], [7], [8]), and (in certain specific

 settings) to Jaroslav Kurzweil ([13], [14]), and E. J. McShane ([18]).

 Following this direction, we consider Henstock integrals in the plane. This

 requires the notion of a derivation base.

 1.1. Definition. Let X be a nonempty set and 'ř a nonvoid class of its

 subsets. A nonempty class

 Ac!P(Xx$) (1)

 will be termed a derivation base on X.

 We will usually take X to be R2 and 'ř - nondegenerate closed intervals,

 regular intervals, triangles, etc. In [29] and [30] X is taken to the the real line, and

 $ is the class of all closed nondegenerate intervals.

 A more general setting is possible. In [l] an integration theory of Henstock
 type in a locally compact Hausdorff space is presented. A space A equipped with

 a class {/}, as in [4] and [31], is also a possibility. Also, [32] presents nonabsolute
 integration in topological spaces.

 A base A is called trivial if 0 e A. Unless stated otherwise, all bases considered
 are nontrivial.

 Elements of a base A will be denoted by small Greek letters (a, ß, 7, . . .).

 1.2. We will assume that has the following property: given Jo, € 'P,

 and Zļ, . . . , In C /0,

 h ' {h U /2 U . . . U In) = Ji U J2 U . . . U Jm (2)
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 where Ji, J%, . . . , Jm are nonoverlapping elements of $ (since we work in R2 the

 meaning of "nonoverlapping" will be clear).

 1.3. Definition. We say that a finite class D of elements of <!> is a division if

 its elements are nonoverlapping.

 A partition is a class ir € ty (X x $) such that

 D = {/€*: {x, I) e ir} (3)

 has exactly as many elements as ir and is a division.

 D is a division of an element Jo of 'ř if U/gp I - h ■ Similarly, it is a partition
 of /0 if * = 'o.

 If F : X x ^ - ► R and ir is a partition then we will write

 F(*)= £ Ff»,/). (4)

 1.4. Definition. A base A is filtering down if for every on, <*2 € A there

 exists an a e A such that a c ai n o¡2-

 A has the partitioning property if for every J e and every a € A there exists

 a partition ir C a of J.

 1.5. Definition. A base A is finer than a base A' if for every a' € A' there
 exists an a e A such that a C a'.

 If A is finer than A' then we write A < A'.

 If A ^ A' and A >; A' then we will say that A and A' are equivalent and write
 A - A'.

 1.6. Definition. A has a local character if for every {ßx) € ELex A [{a;}]
 there exists an a G A such that for every x € X

 a[{a:}] C ßx- (5)

 1.7. Definition. Let Jo € F : Iq x ^ -+ JR.. We define the Eenstock integral

 of F with respect to A over /0 as a number (A) JIo F such that for every s > 0
 there exists an a E A such that for every partition ir C a of Jo

 F{*) - (A) f F' < e. (6)
 Jl0 I
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 1.8. Definition. Let A1 be a derivation base on X and A2 - a base on Y .

 Assume that A1 and A2 have local character. Let Ç1 c $P(X) and <P2 C ^P(y) be
 the corresponding classes of "intervals".

 Set

 ¥ = {Ix J:l€ J6$2} and Z = X X Y. (7)

 A C 9ß(Z X 'ř) will be termed the product base of A1 and A2 (written as

 A = A1 X A2) if for every a € A there exist functions

 X 3 X i- i ► a2 € A2,
 (8)

 F 3 y H+ a* € A1

 such that (z, P) € a if and only if

 2 = (*i y) an(i P = i X J (9)

 where

 (s,I)€or¿ and (y, J) € a2. (10)

 2.1. Definition. Let $ stand for the class of all nondegenerate closed intervals
 in R2. Take X = R2 and ¥ = $.

 Let P be the class of all real- valued, positive functions on IR.2.

 The Kurzweil base Ai consists of all ap, where p € P and

 ap = {(2,7) € R2 I, /cBķp(i))ļ. (11)

 If we drop the condition az € P in (11), we get A^, which will be called the
 weak Kurzweil base.

 /V

 If we replace "z E P in (11) by "z is a vertex of then we get Ai which will
 be called the modified Kurzweil base.

 2.2. Definition. Let I G $. We define its norm n(/) as the length of its
 longer side.

 If {/i, . . . , In} is a finite subclass of $ then the norm n({Jļ, . . . , In }) is defined

 to be the greatests of all n(I) for I € {/i, . . . , In }.
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 2.3. Definition. Let I e $. We define its regularity as the number

 rm = A(f) (i2)
 (n(/))2

 (see [28], p. 106), where A (J) is the area of I.

 It is easy to see that 0 < r(J) < 1.

 2.4. Definition. Let q 6 (0,1). We will say that I is q- regular if r(I) > q.
 And we will write for the class of all elements of $ which are g- re guiar.

 2.5. Definition. Now let and X = R2.

 For p e P let

 of = {(*,/) D(i,p(»))}, (13)
 and

 A « = {«{:?€/>}. (14)
 We will call A® the Kempisty Q-base. If we drop the assumption ux € F in (13),

 we get the weak Kempisty Q-base A|*.

 We will usually fix a q 6 (0, 1) and write A2 and A£ instead of Af and Af*.

 2.6. Definition. If we replace intervals in the definition 2.1 by triangles

 (compare this with the work in [20], [21], [23], and [26]), the base so obtained will

 be called the Pfeffer base ( weak Pfeffer base ) and denoted by Aj (A,).

 2.7. Definition. We will say that an interval I is generated by Xi and x¡,

 elements of R2, if xi and x2 are opposite vertices of I.

 2.8. Definition. Let a system

 M = {W(*) :xeX} (15)

 of nontrivial filters iV(x) of subsets of X, converging to x 6 X, be given. A ßtered

 base A generated by it is defined as

 A={a, :łe JI (16)
 xÇX

 where

 av = {(*,/) : I is generated by x and some x' € rç(x)}. (17)
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 An element q of the Cartesian product in (16) will be called a choice.

 2.9. Observation. Let T be a Hausdorff topology on the plane. Then

 N{x) - {GeT :x eG} (18)

 is a filter satisfying the assumptions of 2.8. Therefore any Hausdorff topology

 naturally generates a filtered base.

 2.10. Deânition. Consider the three density topologies in R2 defined in [5],
 Le., the ordinary, strong, and "tilde" topologies. The filtered bases generated by

 them with be denoted by A7, Aß, and A5, respectively.

 2.11. Definition. If D is the density topology on the line (see [5]), then we
 can define, just as it was done in 2.9, the filtered base on R generated by it. This

 base (see [29], p. 85) will be denoted by A and called the approximate base on the
 real line.

 A is filtering down, has local character and the partitioning property.

 2.12. Définition.

 A4 = A X A; (19).

 3.1. In [191 we investigate Henstock integrals generated by the bases listed

 here. We compare them with integrals of Lebesgue, Perron (see [15]), Kempisty

 (see [9], [lOj, [llj, and [121), Mawhin (see [16| and [17]), Pfeffer (see [23], [25], and

 [27]), and Chelidze-Dzhvarsheishvili (see [2] and [3]).

 The relationships among them found are presented graphically in a diagram

 on the next page.

 In the diagram, integration theories are represented by the bases generating

 them, or by the names of their inventors. Arrows point to the more general theories.

 +(condition) means that the condition stated is necessary for the relationship. CSS

 denotes continuity in the sense of Saks, defined in [19] (definition 2.8.4), SMC -

 special assumption on majorants and minorants of theorem 4.5.4 of [19], and SDC

 - special decomposition condition of theorem 5.5.5 of [19].
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 A, ' ) Lebesgue ' , A£

 Perron ' , Ai

 Ai Pfeffer A5

 Mawhin

 + CSS
 + SMC

 Kempisty A7

 +SDC

 Chelidze-
 D zhvarsheïshvili
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