J. Marshall Ash ${ }^{l}$, Mathematical Sciences Department, DePaul University, Chicago, IL 60614, USA

Very Generalized Riemann Derivatives, Generalized
Riemann Derivatives and Associated Summability Methods
I. VERY GENERALIZED RIBMANN DERIVATIVES

0. Generalized Riemann derivatives.

Let f be a real valued function of a real variable. The nth Riemann derivative of f is

$$
R_{n} f(x):=\lim _{h \rightarrow 0} \frac{\sum_{i=0}\binom{n}{i}(-1)^{n-i} f\left(x+\left(-\frac{n}{2}+i\right) h\right)}{h^{n}}
$$

The first two special cases

$$
R_{l} f(x)=\lim _{h \rightarrow 0} \frac{-f\left(x-\frac{h}{2}\right)+f\left(x+\frac{h}{2}\right)}{h}
$$

and

$$
R_{2} f(x)=\lim _{h \rightarrow 0} \frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}
$$

are the well known symmetric and Schwarz derivatives.
The generalized Riemann derivative which was the subject of my 1966 thesis[1] is

$$
\begin{equation*}
D_{n}(b, a) f(x):=\lim _{h \rightarrow 0} \frac{\Delta_{n}(h ; b, a) f(x)}{h^{n}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{n}(h ; b, a) f(x) \quad:=\sum_{i=0}^{n+e} a_{i} f\left(x+b_{i} h\right) \tag{2}
\end{equation*}
$$

[^0]where e is a non-negative integer which I will call the excess and the a_{i} 's and b_{i} 's are real numbers. Here we insist upon the $n+1$ consistency conditions
\[

\underset{\sim}{a_{i}} b_{i}^{j}=\left\{$$
\begin{array}{ll}
0 & j=0,1, \ldots, n-1 \tag{3}\\
n! & j=n
\end{array}
$$\right\}
\]

For notational convenience I will always assume $b_{o}<b_{1}<\ldots<b_{n+e}$.

1. Relations between different generalized derivatives.

To see why these conditions are imposed let $f^{(n)}\left(x_{0}\right)$ exist so that
$f\left(x_{0}+k\right)=\sum_{j=0}^{n} \frac{f^{(j)}\left(x_{o}\right)}{j!} k^{j}+o\left(k^{n+1}\right)$. (Here and throughout $g(h)=0\left(h^{\alpha}\right)$ means $\frac{g(h)}{h^{\alpha}} \rightarrow 0$ as $\left.h \rightarrow 0.\right)$ This expansion is a slightly souped up version of Taylor's theorem which is due to de la Vallee-Poussin. Professor A. Zygmund showed it to me. Substitute this into (l) with k equal successively $b_{o} h^{\prime} b_{1} h, \ldots, b_{n+e} h$ to get

$$
\begin{align*}
\Sigma a_{i} f\left(x_{o}+b_{i} h\right) & =\underset{i}{ } a_{i}\left[\Sigma f^{j}(j)\left(x_{o}\right)\left(b_{i} h^{j}\right]+o\left(h^{n}\right)\right. \\
& =\Sigma \frac{f^{(j)}\left(x_{o}\right)}{j!} h^{j}\left[\Sigma a_{i} b_{i}^{j}\right]+o\left(h^{n}\right) \tag{4}\\
& =\frac{f^{(n)}\left(x_{o}\right)}{n!}[n!] h^{n}+o\left(h^{n}\right) .
\end{align*}
$$

Divide by h^{n} and let $h \rightarrow 0$. We get $D_{n} f\left(x_{0}\right)$ so that our derivatives are extensions of the usual ones. Very simple examples show these extensions to be strict. For example, $a(x)=|x|$ has $R_{1} a(0)=0$ while $a^{\prime}(0)$ does not exist, and $s(x)=s i g n u m(x)$ has $R_{2}(0)=0$ while $s^{\prime}(0)$ and $s^{\prime \prime}(0)$ do not exist.

The reason for calling e the excess is that if $e=0$ then the b_{i} 's determine the a_{i} 's via condition (2). Explicitly,

$$
\begin{equation*}
a_{i}=\frac{n!}{\prod_{j \neq i}\left(b_{i}-b_{j}\right)} \tag{5}
\end{equation*}
$$

$$
\underset{j \neq i}{\pi}\left(x-b_{j}\right)
$$

To see this, let $L_{i}(x):=\frac{\prod_{j \neq i}^{j \neq i}\left(b_{i}-b_{j}\right)}{j}$ be the Lagrange
interpolating polynomial so that $L_{i}\left(b_{i}\right)=1$ and $L_{i}\left(b_{j}\right)=0$ when $j \neq i$. Then from (2) it is immediate that $\Delta_{n}(1 ; b, a) L_{i}(0)=a_{i}$. On the other hand, $L_{i}(x)=\left[\pi\left(b_{i}-b_{j}\right)\right]^{-1} x^{n}+$ lower powers of x, whence the nth ordinary derivative of L_{i} is the constant $n!\left[\pi\left(b_{i}-b_{j}\right)\right]^{-1}$. The Taylor expansion out to h^{n} is exact, i.e., without higher order terms, for polynomials of degree n, so that equations (4) show that for all x and $h, \frac{\Delta_{n}(h ; b, a) L_{i}(x)}{h^{n}}$ is equal to this constant. Setting $x=0$ and $h=1$ proves (5). In particular, you can't make a first derivative without at least 2 terms, nor a second without at least 3 , nor an n-th without at least $n+1$ points.

On the other hand even if all b_{i} 's are fixed, if $e>0$ you can choose e of the a_{i} 's freely; then conditions (2) determine the rest.

Denjoy looked at the case of excess $=0 .[11]$ I seem to have been the first to look at $e>0$ systematically although particular cases have shown up in numerical analysis before.

The n-th Peano derivative f_{n} is a generalization of the ordinary derivative lying midway between the ordinary n-th
derivative and $D_{n} f(x)$. By definition $f_{n}\left(x_{0}\right)$ exists if n other numbers $f_{0}\left(x_{0}\right), f_{1}\left(x_{0}\right), \ldots, f_{n-1}\left(x_{0}\right)$ also exist so that

$$
f\left(x_{0}+h\right)=f_{0}\left(x_{0}\right)+f_{1}\left(x_{0}\right) h+\ldots+f_{n}\left(x_{0}\right) \frac{h^{n}}{n!}+o\left(h^{n}\right)
$$

Note that f is continuous at x if $f_{0}(x)=f(x)$ and f is differentiable at x if and only if $f_{1}(x)$ exists. Then $f^{\prime}(x)=f_{1}(x)$. The classic example showing f_{2} to be a strict extension of $f^{\prime \prime}$ is $x^{3} \sin \frac{1}{x}$ at the point $x=0$. Note that what we proved above shows each D_{n} to be an extension of f_{n}. Also note that the examples $a(x)$ and $s(x)$ show R_{1} a strict extension of $f_{1}\left(=f\right.$) and R_{2} a strict extension of f_{2}. Again every D_{n} (except D_{1} with $a_{0}=0, a_{1}=1$) is a strict extension of the corresponding f_{n}.

However the implication $\exists f_{n} \rightarrow \exists D_{n}$ is reversible provided we are willing to throw away a set of Lebesgue measure 0 . This was the main result of my 1966 PhD thesis.[1]

If $n \geq 2$, one cannot return from f_{n} to $f^{(n)}$ even on an almost everywhere basis. This question was discussed by Oliver in 1953. [15] He does prove that $\exists f_{n} \rightarrow \exists f^{(n)}$ provided $f_{n}(x)$ is a bounded function on an interval as well as several other interesting results.

There is also a derivative, designated d_{2} in [2], which lies between f_{2} and every D_{2} in an almost everywhere sense.

Most of these notions and results go through in an L^{p} metric sense. [1], [2]

Another way to return from D_{n} to f_{n} does work at a single point. This time assume that f is measurable and that every $D_{n} f\left(x_{0}\right)$ exists. Then it does follow that $f_{n}\left(x_{0}\right)$ exists. To improve on this result one should cut down on the number of Riemann derivatives assumed existent at x_{0}. Coupling the results of a 1969 paper - A Characterization of the Peano derivative - and a 1974 paper with Erdos and Rubel we have the following result.[2], [5]

Let $\Delta_{1}(h):=f(x+h)-f(x)$,
$\Delta_{2}\left(a_{1}, h\right):=\Delta_{1}\left(a_{1} h\right)-a_{1} \Delta_{1}(h)=f\left(x+a_{1} h\right)-a_{1} f(x+h)+\left(a_{1}-1\right) f(x), \ldots$, $\Delta_{n}\left(a_{1}, \ldots, a_{n-1} ; h\right):=\Delta_{n-1}\left(a_{1}, \ldots, a_{n-2} ; a_{n-1} h\right)-a_{n-1}^{n-1} \Delta_{n-1}\left(a_{1}, \ldots, a_{n-2} ; h\right)$
and let $D_{n}(a)(x):=\lim _{h \rightarrow 0} \frac{\Delta_{n}(a ; h)}{h^{n}}\left(\right.$ The a_{i}, s are not 0,1 or -1 .) If f is measurable, and if whenever a $\in M^{n-1}, D_{n}$ (a) exists at $x=x_{0}$, and if Mis "thick" enough; then $f_{n}\left(x_{0}\right)$ exists. The thickness of the set M determines how good this theorem is. Easy examples show that it is not enough for M to be countably infinite, nor for M to consist solely of positive numbers. If M has positive measure and contains a negative number then M is thick enough.

At $x=0$ the second derivative R_{2} differentiates $s(x)$ but not $a(x)$, while the second derivative
$P_{2} f(x):=\lim _{h \rightarrow 0} \frac{f(x)-2 f(x+h)+f(x+2 h)}{h^{2}}$ does not differentiate $s(x)$, but does differentiate $a(x)$ since looking only forward $a(x)$ is a straight line and looking only backwards a(x) is also a straight line. However Patrick J. O'Connor, in an unpublished 1969 PhD
thesis at Connecticut Wesleyan shows that whenever two generalized Riemann n-th derivatives both exist at a point, they must agree.[14]

The idea of his proof is quite nice. If $D_{n}=\lim _{h \rightarrow 0} \Sigma a_{i} f\left(x+b_{i} h\right)$ and $D_{n}^{\prime}=\lim _{h \rightarrow 0} \Sigma a_{j}^{\prime} f\left(x+b j_{j}^{\prime}\right)$, form $D_{n} \otimes D_{n}^{\prime}:=\lim _{h \rightarrow 0} \frac{1}{n!} \sum_{i, j} a_{i} a_{j}^{\prime} f\left(x+b_{i} b_{j}^{\prime} h\right)$. It is then easy to prove that $D_{n} \otimes D_{n}^{\prime}$ is also a generalized Riemann derivative and that it agrees with both D_{n} and D_{n}.

2. Numerical Analysis.

Generalized Riemann derivatives have had application in numerical analysis. The symmetric derivative R_{1} is "better" for approximation purposes than the ordinary derivative in the sense that for fixed h and very smooth f,

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)+\frac{1}{2} f^{\prime \prime}(\xi) h \text { while } \\
& \frac{f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)}{h}=f^{\prime}(x)+\frac{1}{48} f^{(3)}(\xi) h^{2} \text { and the error }
\end{aligned}
$$

term $\frac{1}{48} f^{(3)}(\xi) h^{2}$ is "sort of smaller" than $\frac{1}{2} f^{\prime \prime}(\xi) h$. Notice that to make the comparison fair I normalize and keep $b_{2}{ }^{-b}{ }_{1}=1$ in both cases. So to compare approximations to the first derivative based on $2+e$ function evaluations I fix h and look at differences
$h^{-1} \underset{i=0}{e+1} a_{i} f\left(x+b_{i} h\right)=\Delta(b, a) f(x)$ subject to this normalization
$b_{i+1}-b_{i} \geq 1$ for all $i \geq 0$. If 2 such differences give for good f $\Delta(b, a) f(x)=f^{\prime}(x)+c_{r^{\prime}} f^{(r)}(x) h^{r-1}+O\left(h^{r}\right)$
and

$$
\Delta\left(b^{\prime}, a^{\prime}\right) f(x)=f \cdot(x)+c_{s} f^{(s)}(x) h^{s-1}+O\left(h^{s}\right)
$$

define $\Delta(b, a)$ to be better than $\Delta\left(b^{\prime}, a^{\prime}\right)$ if either $r>s$, or $r=s$ and $c_{r}<c_{s}$.

Then indeed $b=\left(-\frac{1}{2}, \frac{1}{2}\right)$ gives the best 2 point difference. Again the best 4 point difference has $b=\left(-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right.$) which is still no surprise. Again the answer you would guess for 6, 8, or any even number of points is correct. However, for 3 points the best b is

$$
\begin{aligned}
\mathbf{b} & =\left(\frac{1}{\sqrt{3}}-1, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}+1\right) \approx(-.423, .577,1.577) \\
& =\left(\alpha_{3}-1, \alpha_{3}, \alpha_{3}+1\right)
\end{aligned}
$$

for 5 points

$$
b=\left(\alpha_{5}-2, \alpha_{5}^{-1,} \alpha_{5}, \alpha_{5}+1, \alpha_{5}+2\right)
$$

where $\alpha_{5}=\sqrt{15-\sqrt{145 / 10}} \approx .544$, and for $2 k+1$ points
$b=\left(\alpha_{2 k+1}-k, \ldots, \alpha_{2 k+1}, \ldots ., \alpha_{2 k+1}+k\right)$ where the α_{n} satisfy $\frac{1}{2}<\alpha_{n}<\frac{1}{2}+\frac{1}{4 n}, n=3,5, \ldots$ and α_{n} is determined as the smallest positive zero of $\frac{d}{d x}\left(\prod_{i=-k}^{k}(x-i)\right)=0$. The choice of b and the approximating conditions

$$
\begin{aligned}
& \Sigma a_{i}=0 \\
& \Sigma a_{i} b_{i}=1 \\
& \Sigma a_{i} b_{i}^{j}=0 \quad j=2,3, \ldots, n-2
\end{aligned}
$$

determine a by linear algebra. This choice is unique up to the trivial inversion $(b, a) \rightarrow(-b,-a)$.

A similar situation occurs for the second derivative. Here the starting point is that R_{2} gives the best 3 point difference. The results are similar to those above. Now the best $3,5,7, \ldots$ point
differences are based on the obvious symmetric choices of b while the even b 's are more interesting with the best 4 point b being
$b=\left(\beta_{4}^{-2,} \beta_{4}^{-1}, \beta_{4}, \beta_{4}+1\right), \beta_{4}=(1+\sqrt{5 / 3}) / 2 \approx 1.145$ and so on. In a 1981 Math. Comp. paper Roger Jones and I work out the 3 point first derivative case which remains optimal even when roundoff error is taken into account [7]. The general results 1 just mentioned are detailed in a 1984 paper in Estratto de Calcolo with Svante Janson and Roger Jones.[9]

Question 1. Extend these results to $n>2$. (Even $n=3$ was too hard for us.)

3. Classification Questions

A very interesting example is provided by the first derivative
$0_{1} f(x):=\lim _{h \rightarrow 0} \frac{7 f(x+3 h)-13 f(x+4 h)+6 f\left(x+\frac{16}{3} h\right)}{h}$ and the function

$$
f(x):=\operatorname{sgn}(x)|x|^{\log _{4 / 3}(7 / 6)}-x
$$

This example is given by Patrick 0^{\prime} Connor in his thesis.[14] Since $p:=\log _{4 / 3}(7 / 6)=\frac{\ln (7 / 6)}{\ln (4 / 3)} \approx .54, \operatorname{sgn}(x)|x|^{p}$ looks like $\operatorname{sgn}(x) \ddagger|x|$,

and f looks about the same. But then $O_{1} f(x)=f^{\prime}(x)$ whenever $x \neq 0$ and direct calculation shows that $0_{1} f(0)=-1$. This example has a lot of shock value for me. Here is the graph of O_{1} We have a non-Darboux derivative. We also have an everywhere increasing, everywhere differentiable (with respect to 0_{1}) function whose derivative is negative at a point.

On the other hand consider the symmetric derivative R_{1}. This derivative's existence does force a function to be Darboux. If a strictly increasing function has an everywhere existing symmetric derivative, then that derivative is positive. These two properties also hold for f^{\prime}. We thus have at least 2 classification problems. Question 2. Which generalized Riemann derivatives are Darboux? That is, for which D_{1} does the existence of $D_{1} F(x)=: f(x)$ at every point x force f to have the intermediate value property? Question 3. For which D_{1} does f increasing on ($a-\epsilon, a+\epsilon$) and $D_{1} f(a)$ existing force $D_{1} f(a)>0$?

Notice that for both questions 0_{1} is in the bad class, while R_{1} and $\frac{d}{d x}$ are both in the good class.
4. Further generalization.

Let us now justify the "very" in the title of the talk. By the very generalized Riemann derivative $D_{n}^{+}(b, a) I$ mean the same thing as before except that the limit is now one sided, so

$$
D_{n}(b, a) f(x)=\lim _{h \rightarrow 0^{+}} \frac{\Delta_{n}(h ; b, a) f(x)}{h^{n}}
$$

There is no need for a D_{n}^{-}to be defined since for example one has

$$
\begin{aligned}
\frac{\Sigma a_{i} f\left(x+b_{i} h\right)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{\Sigma\left(-a_{i}\right) f\left(x+\left(-b_{i}\right)(-h)\right)}{(-h)} \\
& =\lim _{h \rightarrow 0^{+}} \frac{\Sigma\left(-a_{i}\right) f\left(x+\left(-b_{i}\right) h\right)}{h}=D_{l}^{+}(-b,-a) .
\end{aligned}
$$

One could go on to define objects similar to Dini numbers such as

$$
\lim _{h \rightarrow 0^{+}} \sup _{n} \frac{\Delta_{n}(h ; b, a) f(x)}{h^{n}}
$$

but I have not done anything in this direction.
It is obvious that D_{n}^{+}is an extension of D_{n}, i.e. that if $D_{n}(b, a) f\left(x_{0}\right)$ exists so does $D_{n}^{+}(b, a) f\left(x_{0}\right)$ and the two are then equal. The extension is usually proper. Note that $R_{n}^{+}=R_{n}$ and more generally enough symmetry in a and b will make $D_{n}^{+}=D_{n}$. Probably one could prove that $\left\{\left(b_{i}, a_{i}\right)\right\}=\left\{\left(-b_{i},-a_{i}\right)\right\}$ for n odd and $\left\{\left(b_{i}, a_{i}\right)\right\}$ $=\left\{\left(-b_{i}, a_{i}\right)\right\}$ for n even is a necessary and sufficient condition for the extension to be improper, i. e., for $D_{n}^{+}=D_{n}$ to hold.

The function $a(x)=|x|$ has $\left(\frac{d}{d x}\right)+a(0)=1$ although ($\left.\frac{d}{d x}\right) a(0)$
doesn't exist. A more interesting example is the second derivative $A_{2}^{+} f(x):=\lim _{h \rightarrow 0^{+}} \frac{(2 / 3) f(x+2 h)-f(x+h)+(1 / 3) f(x-h)}{h^{2}}$. Note that $\frac{2}{3}-1+\frac{1}{3}=0, \frac{2}{3}(2)-1(1)+\frac{1}{3}(-1)=0$ and $\frac{2}{3}(2)^{2}-1(1)^{2}+\frac{1}{3}(-1)^{2}=2$. Then consider the function $u(x)=\left\{\begin{array}{cll}0 & \log _{2}(3 / 2) & x<0 \\ -x & x & 0\end{array}\right\}$. For $h>0$, $\frac{(2 / 3) u(0+2 h)-u(0+h)+(1 / 3) u(0-h)}{h^{2}}=\frac{-\left[(2 / 3)(2 h)^{q}-(h)^{q}\right]}{h^{2}}=$

$$
\frac{-\left[(2 / 3) \cdot 2^{\log _{2}(3 / 2)}-1\right]}{h^{2-q}}=0 \text {, so that } A_{2}^{+} u(0)=0
$$

Clearly for $x \neq 0, A_{2}^{+} u(x)=u^{\prime \prime}(x)=\left\{\begin{array}{ll}0 & x<0 \\ q(1-q) x^{q-2} & x>0\end{array}\right\}$. A similar calculation for $h<0$ shows that $A_{2} u(0)$ does not exist.

Again $q:=\log _{2}\left(\frac{3}{2}\right)=\frac{\ln (3 / 2)}{\ln 2} \approx .58$ so $x^{\log _{2}(3 / 2)}$ looks like \sqrt{x} for positive x. Here is u.

If one allows $h \rightarrow 0^{-}$as well, then the situation of continuous non-convex f with $A_{2} f \geq 0$ everywhere does not arise. One reason to study A_{2}^{+}is the following. The 0 excess very generalized second Riemann derivatives may be classified as
type I if $b_{0}<b_{1}=0<b_{2}$;
type II if $b_{0}<0<b_{1}<b_{2}$ or if $b_{0}<b_{1}<0<b_{2}$; and
type III if $b_{0}<b_{1}<b_{2} \leq 0$ or if $0 \leq b_{0}<b_{1}<b_{2}$.
I think that all the questions I will raise in studying A_{2}^{+}will have easy answers for type I and type III derivative and that A_{2}^{+}will prove to be a prototype for all those of type II. We will see more of u and A_{2}^{+}shortly.
II. GENBRALIZED RIEMANN DERIVATIVES AND ASSOCIATED SUMMABILITY METHODS
5. Generalized differentiation and uniqueness for trigonometric

series.

Let $T=\Sigma c_{n} e^{i n x}$ be a trigonometric series. Suppose that at every $x \in[0,2 \pi) \quad T(x):=\lim _{N \rightarrow \infty} \Sigma_{-N}^{N} c_{n} e^{i n x}=0$. Then all $c_{n}=0$. This is the fundamental theorem in the subject. It was announced by Riemann in 1854 and the last detail of his proof was supplied in a letter from H.A. Schwarz to Cantor who published it in 1870.[10],[16],[17]

Theorem R. If F is continuous and $R_{2} F=0$ everywhere, then F is a line.

This theorem is immediate from a lemma.
Lemma R. If F is continuous and $R_{2} F \geq 0$ everywhere then F is convex.

Consider the following statement.
"Lemma" A. If F is continuous and $A_{2}^{+} F \geq 0$ everywhere, then F is convex.
As the continuous non-convex u enjoys $A_{2}^{+} u \geq 0$ for all x, this statement is false.

However, we are left with the following open question.
"Theorem" A. If F is continuous and $A_{2}^{+} F=0$ everywhere, then F is linear.

Question 4. Is "Theorem" A true?

This question is very hard. Why does it matter? On the one hand, theorem R is the cornerstone of the entire theory of uniqueness. There are many open questions concerning multiple trigonometric series whose resolution would be easy if higher dimensional analogues of Theorem R were available. For example suppose $T(x, y, z)$ converges unrestrictedly rectangularly to 0 , that is, suppose
$\underset{L, M, N \rightarrow \infty}{ } \quad \lim _{l=-L}^{L} \quad \sum_{m=-M}^{M} \quad \sum_{n=-N}^{N} \quad c_{\operatorname{lm} n} e^{i(l x+m y+n z)}=0$, at every (x, y, z). No one knows if it then follows that all $c_{\text {lmn }}$ are 0 . On the other hand, Theorem R has only one known proof, namely via Lemma R. To extend Theorem R to higher dimensional settings it could be useful to have another proof. A proof of "Theorem" A couldn't use the false "Lemma" A and so would probably also yield a genuinely new proof of Theorem R.

Another question related to uniqueness is
Question 5. Let $F(x, y)$ be continuous and suppose

$$
0=\lim _{h, k \rightarrow 0}\left\{\begin{array}{r}
F(x-h, y+k)-2 F(x, y+k)+F(x+h, y+k) \\
-2 F(x-h, y)+4 F(x, y)-2 F(x+h, y) \\
+F(x-h, y-k)-2 F(x, y-k)+F(x+h, y-k)
\end{array}\right\} \cdot \frac{1}{h^{2} k^{2}}
$$

at each (x, y). Is F then necessarily of the form $F(x, y)=(a x+b)$ $+(c y+d)$ where a and b are functions of only y, and c and d are functions of only x ? See my paper with Welland or my survey article in my book for some details and partial results about this. [3], [6]

A related question is
Question 6. It follows easily from Theorem R that if
$\frac{1}{h} \int_{0}^{h}|f(x+t)-f(x-t)| d t=o(h)$ at all points x, then f is constant. Prove this without invoking Lemma R.

This would follow if a function with everywhere 0 symmetric approximate derivative could be shown to be constant. A positive resolution of question 6 will necessarily also provide a new proof of Riemann's uniqueness theorem. [4]

6. Generalized Differentiation and Summability.

In an attempt to prove "Theorem" A I was led to a related summability result. Let $F(x)=\Sigma c_{n} e^{i n x}$ be a continuous function. Form the distributional second derivatives $F^{\prime \prime}:=\Sigma(i n)^{2} c_{n} e^{i n x}$. An elementary computation shows
$\frac{F(x+h)-2 F(x)+F(x-h)}{h^{2}}=\Sigma(i n)^{2} c_{n} e^{i n x\left(\frac{s i n n h}{n h}\right)^{2}}$.
By definition $R_{2} F(x):=\lim _{h \rightarrow 0}(L . H . S$.$) and by. definition the series F^{\prime \prime}$ is summable (R,2) to s if $s=\underset{h \rightarrow 0}{\lim }(R . H . S$.$) . Thus theorem R$ can be restated by saying that a continuous function whose distributional second derivative is summable (R,2) everywhere to 0 is linear. Similarly the derivative A_{2}^{+}corresponds to method of summability, call it summability A_{2}^{+}. There is a theorem of Kuttner [13] that summability ($\mathrm{R}, 2$) implies Abel summability and a theorem of Verblunsky [17] stating that if $\Sigma c_{n} e^{i n x}$ is Abel summable to 0 everywhere and $c_{n}=0(n)$ then all $c_{n}=0$. I hoped to show "Theorem" A by first showing summability A_{2}^{+}implies Abel summability, then controlling the coefficients, and finally applying Verblunsky's theorem.

So define a series Σa_{n} to be summable A_{2}^{+}to s if

$$
\varphi(t)=\frac{(2 / 3) e^{2 t}-e^{t}+(1 / 3) e^{-t}}{t^{2}}
$$

As with the Riemann situation we have $A_{2}^{+} F(x)$ exists if and only if the twice formally differentiated Fourier series of F is summable A_{2}^{+} - The function $u(x)$ above, restricted to $[-\pi, \pi)$ and then extended periodically, thus has $u^{\prime \prime}$, its distributional second derivative, summable A_{2}^{+}to 0 at 0 . However $u^{\prime \prime}$ is not Abel summable at 0 as a direct calculation shows so summability A_{2}^{+}does not imply abel summability.

7. Mean Value Theorems for Generalized Riemann Derivatives.

The prettiest type of mean value theorem would say something like this. Let $I=\left[x+b_{0} h, x+b_{n+e} h\right]$ where x and h are fixed. If $D_{n} f(t)$ exists for every $t \in I$, then there is a f interior to I with

$$
\frac{\Delta_{n}(h ; b, a) f(x)}{h^{n}}=D_{n} f(\xi) .
$$

But this is not even true for R_{1} as the choices $x=-1, h=3$ and $f(t)=|t|$ show.

I would suspect that the only generalized Riemann derivative for which this mean value theorem holds is $\frac{d}{d x}$ itself. Question 7. Classify the D_{n} for which the mean value theorem in the above form is true.

A more fruitful set of mean value theorems are those of following type.

Statement $M(b, a)$. Fix x and h and set $I=\left[x+b_{o} h, x+b_{n+e} h\right]$. If $f^{(n-l)}(t)$ is continuous on I and differentiable for all t interior to I, then there is a interior to I with $\frac{\Delta_{n}(h ; b, a) f(x)}{h^{n}}=f^{(n)}(\xi)$.

A classification of the set of (b,a) for which this statement is true is the goal of my present research with Roger Jones who is also at DePaul. [8]

We have a sufficient condition which is totally operational and which we can show to be necessary for all first and second generalized Riemann derivatives.

Let p_{0}, \ldots, p_{e} be real numbers with $\Sigma p_{i}=1$. Let $b_{0}{ }^{<} b_{1}$ $<\ldots<b_{n+e}$ be $n+l+e$ real numbers. Let D_{0} be the unique generalized n-th derivative based on $\left\{b_{0}, \ldots, b_{n}\right\}, D_{1}$ the unique one based on $\left\{b_{1}, \ldots, b_{n+1}\right\}, \ldots, D_{e}$ the unique one based on $\left\{b_{e}, \ldots, b_{n+e}\right\}$, and set $D=\sum_{i=0}^{e} p_{i} D_{i}$. Then a quick check of the consistency condition shows that D is also an n-th derivative. Conversely, given any $n-t h$ generalized Riemann derivative D based on $\left\{b_{0}, \ldots, b_{n+e}\right\}$ we can write D as $\Sigma p_{i} D_{i}$ where the p_{i} are uniquely determined by b and a. The p_{i} are very easily found and satisfy $\Sigma p_{i}=1$.

$$
\begin{aligned}
& \text { For example, O'Connor's derivative is associated to } \\
& \frac{7 f(x+3 h)-13 f(x+4 h)+6 f(x+(16 / 3) h)}{h}= \\
& 7\left[\frac{f(x+3 h)-f(x+4 h)}{h}\right]-6\left[\frac{f(x+4 h)-f(x+(16 / 3) h)}{h}\right]= \\
& -7\left[\frac{-f(x+3 h)+f(x+4 h)}{h}\right]+8\left[\frac{-f(x+4 h)+f(x+(16 / 3) h)}{(4 / 3) h}\right]
\end{aligned}
$$

So letting D_{0} and D_{1} be the limits of the last 2 bracketed expressions, as $h \rightarrow 0$ we have $0_{2}=p_{0} D_{0}+p_{1} D_{1}$,
where $p_{0}+p_{1}=-7+8=1$.
Theorem. Let $D_{n}(b, a)$ be an $n-t h$ generalized Riemann derivative.
i) If the p_{i} associated to D are all positive (so that D is a convex combination of n-th derivatives without excess), then Theorem M(b,a) holds.
ii) Conversely if $n=1$ or $n=2$ or $e=1$, and if any p_{i} is negative;
then Statement $M(b, a)$ is false.
Question 8. What happens if $n \geq 3, \quad e \geq 2$, and some p_{i} is negative? In particular, what happens for the excess 2 third derivative $D:=(5 / 8) D_{0}-(1 / 4) D_{1}+(5 / 8) D_{2}$, where for $i=0,1,2$, $D_{i}:=-f(x+i h)+3 f(x+[i+1] h)-3 f(x+[i+2] h)+f(x+[i+3] h) ?$

The proof of i) is short and sweet. First if $e=0$ then $p_{0}=1$ and indeed Theorem M is a well established numerical analysis fact. [12] If $e>0$, using this fact $e+1$ times we have numbers ξ_{i} so that

$$
s=\frac{\Delta_{n}(h ; b, a) f(x)}{h^{n}}=\sum_{i=0}^{e} p_{i} f^{(n)}\left(\xi_{i}\right)
$$

The right side is a convex combination of the numbers
$\left\{f^{(n)}\left(\xi_{0}\right), \ldots, f^{(n)}\left(\xi_{e}\right)\right\}$ and hence s lies between the smallest and the largest. But $f^{(n)}=\left(f^{(n-l)}\right)^{\prime}$ is an ordinary first derivative, hence is Darboux and therefore assumes the value s.

The proof of ii) is longer so we will restrict ourselves to one simple case. Let $b_{0}<b_{1}<b_{2}$, let Δ_{0} be the difference quotient associated to the unique first derivative based on $\left\{b_{o}, b_{1}\right\}, \Delta_{1}$ the one based on $\left\{b_{1}, b_{2}\right\}$, and $\Delta=-7 \Delta_{0}+8 \Delta_{1}$. Let f be this piecewise linear function.

Then $\Delta_{1}=1, \Delta_{0}=0$ so $\Delta=8$, but $f=0$ or 1 . Finally round the corner at b_{1} very slightly. This will make Range($\left.f^{\prime}\right)=[0,1]$ but keep Δ close to 8 so that the mean values theorem fails for Δ.

We do the second derivative case by piecing together quadratics and then rounding the corners. The example for the general n, excess 2 derivative case uses an nth degree polynomial.

1. Ash, J.M., Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 126(1967), 181-199.
2. Ash, J.M., A characterization of the Peano derivative, Trans. Amer. Math. Soc. 149(1970), 489-501.
3. Ash, J.M., Ed, Studies in Harmonic Analysis, MAA Studies in Math., vol. 13.
4. Ash, J.M., A "new" proof of uniqueness for trigonometric series, unpublished manuscript, 1977, 1-3.
5. Ash, J.M., Erdos, P., and Rubel, L.A., Very slowly varying functions, Acquationes Math. 10(1974), 1-9.
6. Ash, J.M. and Welland, G., Convergence, uniqueness, and summability of multiple trigonometric series, Trans. Amer. Math. Soc. 163(1972), 401-436.
7. Ash, J.M. and Jones, R.L., Optimal numerical differentiation using three function evaluations, Math. Comp. 37(1981), 159-167.
8. Ash, J.M. and Jones, R.L., Mean value theorems for generalized Riemann derivatives, preprint.
9. Ash, J.M., Janson, S., and Jones, R.L., Optimal numerical differentiation using n function evaluations, Estrato da Calcolo, 2l(1984), 15l-169.
10. Cantor, G., Gesammelte Abhandlungen, Georg Olms, Hildesheim, 1962, 80-83. Beweis, das eine fur jeden reellen Wert von x durch eine trigonometrische Reihe gegebene Funktion $f(x)$ sich nur auf eine einzige Weise in dieser Form darstellen läst, Crelles J.F. Math., 72(1870), 139142.
11. Denjoy, A., Sur l'integration des coefficients differentiels d'ordre supérieur, Fund. Math. 25(1935), 273-326.
12. Isaacson, E. and Keller, H.B., Analysis of Numerical Methods, John Wiley, New York, 1966.
13. Kuttner, B., The relation between Riemann and Cesaro Summability, Proc. London Math. Soc. 38(1935) 273-283.
14. O'Connor, P.J., Generalized differentiation of functions of a real variable, Ph.D. dissertation, Wesleyan Univ., Middletown, Conn., 1969.
15. Oliver, H.W., The exact Peano derivative, Trans. Amer. Math. Soc. 76(1954) 444-456.
16. Riemann, B., Uber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Ges. Werke, 2. Aufl., Leipzig, 1892, pps. 227-71. Also Dover, New York, 1953.
17. Zygmund, A., Trigonometric Series, Vol. I and II, Cambridge Univ. Press, Cambridge, 1959.

[^0]: ${ }^{l_{\text {The }}}$ research presented here was supported in part by a grant from the Faculty Research and Development Fund of the College of Liberal Arts and Sciences, DePaul University

