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 I. VERY GENERALIZED RIEMANN DERIVATIVES
 I

 0. Generalized Riemann derivatives.

 Let f be a real valued function of a real variable. The nth

 Riemann derivative of f is

 z (jM-n^fu+c-jj. + i)h).
 R f(x) •= * lim !ī2

 n * ' * h-*0 £n
 The first two special cases

 Tim "f(x " + f^x + 7^
 »l'W " ÜI Tim

 and

 D _ lim f(x-h) - 2f(x) + f (x + h)
 2 " h-+0

 are the well known symmetric and Schwarz derivatives.

 The generalized Riemann derivative which was the subject of my

 1966 thesis[l] is

 , . A (h;b,a)f(x)
 (d »„(h,.)««) .. -ñ -

 n

 where

 n+e

 (2) A (h;b,a)f(x) := Z a.f(x + b.h)
 n i=0
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 where e is a non-negative integer which I will call the excess and

 the a. 's and b.'s are real numbers. Here we insist upon the n+1
 x i

 consistency conditions

 (3) v ' I a.bJ i x = (°, •! = = 0,1 n v ' i x 'n! j = n J
 For notational convenience I will always assume b < b. < ...<b , . o 1 n+e ,

 1. Relations between different general ized derivatives .

 To see why these conditions are imposed let f^n^(xQ) exist so
 that

 nf^^(x) . +,
 f(x + k) = X

 ° j=0
 g(h)=o(ha) means -» 0 as h-»0.) This expansion is a slightly

 ha

 souped up version of Taylor's theorem which is due to de la

 Vallee-Poussin. Professor A. Zygmund showed it to me. Substitute

 this into (1) with k equal successively bQh, b ^h, . . . , bn+ßh to get
 X a. f (Je s +b.h) = X a.[x f^ (x )(b.h)^] + o(hn) v ' i s o X . X. vo/vx/J v '

 i . J

 f(J)(x ) .
 (4) = X -p

 f(D)(x )
 = -

 Divide by hn and let h-»0. We get D f(x ) so that our derivatives
 n o

 are extensions of the usual ones. Very simple examples show these

 extensions to be strict. For example, a(x) = |x| has R^a(O) = 0

 while a'(0) does not exist, and s(x) = signum(x) has RgsCO) = 0
 while s'(0) and s"(0) do not exist.
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 The reason for calling e the excess is that if e=0 then the

 b^'s determine the a^'s via condition (2). Explicitly,
 / R ' n !
 / (5) R ' a. =

 ïï (b -b )
 j*i J
 tt (x - b . )

 j 9^ i
 To see this, let L.(x) :=

 1 H (b - b )
 j*i 1 J

 interpolating polynomial so that L^(b^) = 1 and L^(bj) = 0 when
 j * i. Then from (2) it is immediate that ¿ ( 1 ;b ,a) (0) = a^. On
 the other hand, L.(x) = [ff(b.-b.)] + lower powers of x, whence

 1 1 J

 the nth ordinary derivative of is the constant n![ff(b^-b. )]
 The Taylor expansion out to hn is exact, i.e., without higher order

 terms, for polynomials of degree n, so that equations (4) show that

 iln(h;b,a)Li(x)
 for all x and h,

 h

 x = 0 and h = 1 proves (5). In particular, you can't make a

 first derivative without at least 2 terms, nor a second without at

 least 3, nor an n-th without at least n+1 points.

 On the other hand even if all b^ ' s are fixed, if e > 0 you can

 choose e of the a^ ' s freely; then conditions (2) determine the rest.
 Denjoy looked at the case of excess = 0.[11] I seem to have

 been the first to look at e > 0 systematically although particular

 cases have shown up in numerical analysis before.

 The n-th Peano derivative f is a generalization of the

 ordinary derivative lying midway between the ordinary n-th
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 derivative and D f(x). By definition f (x ) exists if n other
 n no

 numbers f N (x ),f, ' (x ),..., ' ' f . v (x ' ) also exist so that o N o ' 1 o ' ' n-1 . v o '
 ,n

 f(x s +h) ' = f ov (x o' ) + f, lv (x )h ' +...+ f nx (x o' ) s o ' ov o' lv o ' nx o' n! p v '

 Note that f is continuous at x if fQ(x) = f(x) and f is

 differentiable at x if and only if f^(x) exists. Then f • (x) = f^Cx).

 The classic example showing fg to be a strict extension of f" is
 3 1
 x sinļj at the point x=0. Note that what we proved above shows each
 D to be an extension of f . Also note that the examples a(x) and
 n n

 s(x) show a strict extension of f ^ ( =f ' ) and Rg a strict

 extension of f ^ • Again every Dn (except with aQ=0, a^=l) is a
 strict extension of the corresponding f .

 However the implication 3f -+ 3D - is reversible provided we
 n n -

 are willing to throw away a set of Lebesgue measure 0. This was the

 main result of my 1966 PhD thesis. [1]

 If n>2, one cannot return from f to f^n^ even on an almost
 n

 everywhere basis. This question was discussed by Oliver in 1953.

 [15] He does prove that 3fn -» 3f^n^ provided fn(x) is a bounded
 function on an interval as well as several other interesting

 results .

 There is also a derivative, designated dg in [2], which lies

 between f2 and every D2 in an almost everywhere sense.
 Most of these notions and results go through in an metric

 sense . [ 1 ] , [ 2 ]
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 Another way to return from D to f does work at a single
 n n

 point. This time assume that f is measurable and that every Dnf(xQ)

 exists. Then it does follow that ^n(x0) exists. To improve on this
 result one should cut down on the number of Riemann derivatives

 assumed existent at xq. Coupling the results of a 1969 paper - A
 Characterization of the Peano derivative - and a 1974 paper with

 Erdos and Rubel we have the following result. [2] , [5]

 Let 4ļ(h) := f(x+h)-f(x),

 ilgia^.h) := J^(a^h) - a^á^íh) = f(x+a^h) - a^f(x+h) + (a^-l)f(x),
 n~" 1

 ¿n(al« • • . »an-i'h) : = ^n-l^al' ' * ' 'an-2; an-lh^ ~ an-l'dn-l ^al ' * * * ' an-2 '

 ¿n(a; h)
 and let D (a)(x) := lim

 n h-»0 h 1

 is measurable, and if whenever a & Mn , DQ(a) exists at x = xq, and
 if M is "thick" enough; then f (x ) exists. The thickness of the

 n o

 set M determines how good this theorem is. Easy examples show that

 it is not enough for M to be countably infinite, nor for M to

 consist solely of positive numbers. If M has positive measure and

 contains a negative number then M is thick enough.

 At x=0 the second derivative Rg differentiates s(x) but not
 a(x), while the second derivative

 _ - z s f (x) - 2f(x+h) + f(x+2h) i j . j . . . . / s
 _ P9f á - (x) z s := lim - = - á h-»0 h¿
 but does differentiate a(x) since looking only forward a(x) is a

 straight line and looking only backwards a(x) is also a straight

 line. However Patrick J. O'Connor, in an unpublished 1969 PhD
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 thesis at Connecticut Wesleyan shows that whenever two generalized

 Riemann n-th derivatives both exist at a point, they must agree. [14]

 The idea of his proof is quite nice. If D = lim Z a.f(x+b.h)
 n h-,0 1 1

 and D' = lim Za'.f (x+b ł.h) , form D ®D' := lim Z a. a'. f(x+b.b'.h).
 n lwO J J , n D h-»0 n! i,j 1 J 1 J

 It is then easy to prove that *s a^so a generalized Riemann

 derivative and that it agrees with both D and D'.
 n n

 2 . Numerical Analysis ♦

 Generalized Riemann derivatives have had application in

 numerical analysis. The symmetric derivative R^ is "better" for
 approximation purposes than the ordinary derivative in the sense

 that for fixed h and very smooth f,

 f(x+h) - f(x) = fl(x) + 1 f"(e)h while

 f(-x+t) - f(x-í-) i / q ' o

 term f^^({)h^ is "sort of smaller" than ^ f"({)h. Notice that
 to make the comparison fair I normalize and keep bg-bj^l in both
 cases. So to compare approximations to the first derivative based

 on 2+e function evaluations I fix h and look at differences

 _1 e+l
 h Z a.f(x+b.h) = ¿(b,a)f(x) subject to this normalization

 i=0 1 1

 b^+j - bj > 1 for all i > 0. If 2 such differences give for good f

 ¿(b,a)f (x) = f ' ( x ) + crf(r) (x)hr_1 + 0(hr)
 and 4(b',a')f(x) = f' (x) + c f^s^(x)hs ^ + 0(hs)

 S

 define ¿(b,a) to be better than ¿(b' ,a' ) if either r > s, or r=s and

 c < c
 r s
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 Then indeed b = gives the best 2 point difference.

 3 113
 Again the best 4 point difference has b = ("-ji ~-%t -j» -gO which is
 still no surprise. Again the answer you would guess for 6, 8, or

 any even number of points is correct. However, for 3 points the

 best b is

 b = (_ - -1, -1-, _L_ +1) « (-.423, .577, 1.577),
 J~T~ J 3 J 3

 = (cCg-l , a3, <*3 + l) t

 for 5 points

 b = (ag-2, <*g-l> «g, a5 + l» a5+2)

 where ag = * .544, and for 2k+l points

 b = (a2k+l" k'

 satisfy ^ < <*n < + -Ķjļ, n=3,5,.... and aQ is determined as the
 d k

 smallest positive zero of » ( w (x-i)) = 0. The choice of b and
 uX i

 i=-k i

 the approximating conditions

 Z aA = 0
 X = 1

 Z a. b'? = 0 j " = 2,3,..., » » » n-2 ii " » » »

 determine a by linear algebra. This choice is unique up to the

 trivial inversion (b,a) -» (-b,-a).

 A similar situation occurs for the second derivative. Here the

 starting point is that Rg gives the best 3 point difference. The
 results are similar to those above. Now the best 3,5,7,... point
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 differences are based on the obvious symmetric choices of b while

 the even b's are more interesting with the best 4 point b being

 b = (P4"2, P4"1» Pą> /î4+l) , P4 = (1 + V 5/3 ) /2 « 1.145 and so
 on. In a 1981 Math. Comp, paper Roger Jones and I work out the 3

 point first derivative case which remains optimal even when roundoff

 error is taken into account [7]. The general results I just

 mentioned are detailed in a 1984 paper in Estratto de Calcolo with

 Svante Janson and Roger Jones. [9]

 Question 1.. Extend these results to n > 2. (Even n=3 was too hard

 for us.)

 3. Classification Questions

 A very interesting example is provided by the first derivative

 7f(x+3h) - 13f (x+4h) + 6f(x+ Hh)
 ~ j? / ' 1 im o
 °lf(x) ~ j? / ' := E

 and the function

 f ( X ) := sgn(x) |x|log4/3(7/6) - x.
 This example is given by Patrick O'Connor in his thesis. [14] Since

 p := log4^3(7/6) = * '54' sgn(x)|x|p looks like sgn(x)J |x| ,
 I

 I

 I
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 and f looks about the same. But then O^f(x) = f* (x) whenever x * 0

 and direct calculation shows that O^f(O) = -1. This example has a

 lot of shock value for me. Here is the graph of 0^
 We have a non-Darboux derivative. We also have an everywhere

 increasing, everywhere different iable (with respect to 0^) function
 whose derivative is negative at a point.

 On the other hand consider the symmetric derivative R^. This
 derivative's existence does force a function to be Darboux. If a

 strictly increasing function has an everywhere existing symmetric

 derivative, then that derivative is positive. These two properties

 also hold for f 1 . We thus have at least 2 classification problems.

 Question 2. Which generalized Riemann derivatives are Darboux?

 That is, for which does the existence of D^F(x) =: f(x) at
 every point x force f to have the intermediate value property?

 Question 3,. For which does f increasing on (a-e, a+€. ) and

 D^f(a) existing force D^f(a) > 0?

 Notice that for both questions 0^ is in the bad class, while R^
 and are both in the good class.

 4 . Further generalization.

 Let us now justify the "very" in the title of the talk. By the

 very generalized Riemann derivative D*(b,a) I mean the same thing as

 before except that the limit is now one sided, so

 „ ,v w, í ii»
 „ D ,v (b,a)f(x) w, í =

 n h_0+ hn
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 There is no need for a Dq to be defined since for example one has

 raif(x+bih) ļijn x(-aļ)f (x+(-bļ) (-h) )
 E ~ h-»0 (-h)

 ,. Z(-a.)f(x+(-b.)h) ,
 1 im . i i , z , *

 ° h,0+ im .

 One could go on to define objects similar to Dini numbers such as

 i A (h;b,a)f(x)
 i lim sup n

 h-*0 + h n
 but I have not done anything in this direction.

 It is obvious that D + is an extension of D , i.e. that if n n' ,

 Dn(b,a)f(xQ) exists so does D*(b,a)f(xQ) and the two are then equal.
 The extension is usually proper. Note that R+ = R and more

 n n

 generally enough symmetry in a and b will make D* = Dn . Probably

 one could prove that {(b^,a^)} = {(-b^,-a^)} for n odd and {(b^,a^)}

 = {(-b^,a^)} for n even is a necessary and sufficient condition for
 the extension to be improper, i. e. , for D+ = D to hold.

 n n

 The function a(x) = |xļ has (^-)+a(0) =1 although (^)a(°)
 doesn't exist. A more interesting example is the second derivative

 Ap ¿ f ( X ) : = n (2/3) f (x+2h) - f(x+h) » (l/3)f(x-h) Motethat ¿ h-»0

 I - 1 + y = 0, |(2) - 1(1) + ^(-1) = 0 and |(2)2 - 1(1)2 + *(-l) 2= 2.
 Then consider the function u(x) = log2(3/2) * ^ For h > 0 ,
 ( 2/3)u(0+2h)-u('0+h) + ( l/3)u(0-h) _ ~[(2/3)(2h)q - (h)q]

 h2 h2
 log (3/2)

 -[ (2/3) «2
 q ¿
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 Clearly for x*0, A*u(x) = u"(x) =/° „ X < 0 ļ , A similar
 1 q(l-q)xq"Z „ X > 0 /

 calculation for h < 0 shows that AgU(O) does not exist.
 3 Ini3/2Ì ' l-0lSņ(.3/2) ¿

 Again q:= log^-j) 3 = ļn Ini3/2Ì ¿ ' » .58 so x ¿ looks like JIT

 for positive x. Here is u.

 I
 I
 I
 I
 I

 I

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

 If one allows h-»0 as well, then the situation of continuous

 non-convex f with Agf>0 everywhere does not arise. One reason to

 study Ag is the following. The 0 excess very generalized second
 Riemann derivatives may be classified as

 type I if bQ < bļ = 0 < bg ;

 type II if bg < 0 < < bg or if b^ < b^ < 0 < bg ; and

 type III if bQ < bļ < b2 < 0 or if 0 < bQ < bļ < b2 .

 I think that all the questions I will raise in studying Ag will have

 easy answers for type I and type III derivative and that Ag will
 prove to be a prototype for all those of type II. We will see more

 of u and Ag shortly.
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 II. GENERALIZED RIEMANN DERIVATIVES AND ASSOCIATED SUMMABILITY

 METHODS

 5. Generalized differentiation and uniqueness for trigonometric

 series .

 i DX
 Let T = 2 c e be a trigonometric series. Suppose that at

 n

 every J x €, [0,2-n) T(x):= lim 2 ^ c e*nx = 0. Then all c =0. This J .. -N n n
 .. N-»oo

 is the fundamental theorem in the subject. It was announced by

 Riemann in 1854 and the last detail of his proof was supplied in a

 letter from H.A. Schwarz to Cantor who published it in

 1870. [10] , [16] , [17]

 Theorem R. If F is continuous and RgF^ everywhere, then F is a
 line .

 This theorem is immediate from a lemma.

 Lemma R. If F is continuous and R2F > 0 everywhere then F is
 convex .

 Consider the following statement.

 "Lemma" A. If F is continuous and A*F > 0 everywhere, then F is
 convex.

 As the continuous non-convex u enjoys Ag u > 0 for all x, this
 statement is false.

 However, we are left with the following open question.

 "Theorem" A. If F is continuous and AgF = 0 everywhere, then F
 is linear.

 Question Is "Theorem" A true?
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 This question is very hard. Why does it matter? On the one

 hand, theorem H is the cornerstone of the entire theory of

 uniqueness. There are many open questions concerning multiple

 trigonometric series whose resolution would be easy if higher

 dimensional analogues of Theorem R were available. For example

 suppose T(x,y,z) converges unrestrictedly rectangularly to 0, that

 is, suppose

 L M N • ^ ^ s
 lim Z Z 2c, e X ^ ^ n =0, at every (x,y,z).

 1=-L m-~M n=-K lmn
 No one knows if it then follows that all c, are 0. On the other

 lmn

 hand, Theorem R has only one known proof, namely via Lemma R. To

 extend Theorem R to higher dimensional settings it could be useful

 to have another proof. A proof of "Theorem" A couldn't use the

 false "Lemma" A and so would probably also yield a genuinely new

 proof of Theorem R.

 Another question related to uniqueness is

 Question 5,. Let F(x,y) be continuous and suppose

 , F(x-h, y+k) - 2F(x, y+k) + F(x+h,y+kK ,
 0 = lim J -2F(x-h, y ) + 4F(x,y ) -2F(x+h, y )l •

 h, k-»0 I +F(x-h, y-k) - 2F(x,y-k) + F(x+h,y-k)J h k
 at each (x,y). Is F then necessarily of the form F(x,y) = (ax + b)

 + (cy + d) where a and b are functions of only y, and c and d are

 functions of only x? See my paper with Weiland or my survey article

 in my book for some details and partial results about this. [3], [6]

 A related question is

 Question 6_. It follows easily from Theorem R that if

 jļ /k|f (x+t)-f (x-t) |dt = o(h) at all points x, then f is constant,
 o

 Prove this without invoking Lemma R.
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 This would follow if a function with everywhere 0 symmetric

 approximate derivative could be shown to be constant. A positive

 resolution of question 6 will necessarily also provide a new proof

 of Riemann's uniqueness theorem. [4]

 6. Generalized Differentiation and Summability .

 In an attempt to prove "Theorem" A I was led to a related

 Ì. nx
 summability result. Let F(x) = z c e be a continuous function.
 . n

 Form the distributional second derivatives F" := 2 (in)^c e*nx . An
 n

 elementary computation shows

 F(x+h) - 2F(x) + F(x-h) _ „ _inx,sin oh,

 By definition R„F(x) := lim (Ł.H.S.) and by definition the series F"
 ¿ h-»0

 is summable (R,2) to s if s = lim (R.H.S.). Thus theorem R can be
 h-»0

 restated by saying that a continuous function whose distributional

 second derivative is summable (R,2) everywhere to 0 is linear.

 Similarly the derivative Ag corresponds to a method of summability,

 call it summability Ag. There is a theorem of Kuttner [13] that
 summability (R,2) implies Abel summability and a theorem of

 Ì D X

 Verblunsky [17] stating that if Zc^e is Abel summable to 0

 everywhere and cn=o(n) then all cq=0. I hoped to show "Theorem" A

 by first showing summability A^ implies Abel summability, then
 controlling the coefficients, and finally applying Verblunsky's

 theorem.
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 So define a series £ a to be summable A* to s if
 n 2

 00

 lim X a y(inh) ' = s where n '
 IwO n" 00

 r(t) = ( 2/3) e2t - e* + (l/Sje"*
 t^ '

 As with the Riemann situation we have A^F(x) exists if and only if

 the twice formally differentiated Fourier series of F is summable Ag
 The function u(x) above, restricted to [-tr,w) and then extended

 periodically, thus has u" , its distributional second derivative,

 summable to 0 at 0. However u" is not Abel summable at 0 as a

 direct calculation shows so summability Ag does not imply Abel
 summability .

 7. Mean Value Theorems for Generalized Riemann Derivatives .

 The prettiest type of mean value theorem would say something

 like this. Let I = [x+b h, x+b . h] where x and h are fixed. If o n+e .

 Dnf(t) exists for every tel, then there is a t interior to I with
 A (h;b,a)f (x)
 -

 h n

 But this is not even true for R^ as the choices x = -1, h = 3

 and f(t) = jt| show.
 -

 I

 -2.5 ! - .5
 I

 I
 I
 I
 I

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

 I
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 I would suspect that the only generalized Riemann derivative

 for which this mean value theorem holds is itself.

 Question 7,. Classify the for which the mean value theorem in the

 above form is true.

 A more fruitful set of mean value theorems are those of

 following type.

 Statement M(b,a). v ' Fix x and h and set I = [x + b h, x + b , hi . If v ' o n+e ,

 f(n is continuous on I and diff erentiable for all t interior

 ^ î b ® f ( X ) ( rt)
 to I, then there is a t interior to I with

 hn

 A classification of the set of (b,a) for which this statement

 is true is the goal of my present research with Roger Jones who is

 also at DePaul. [8]

 We have a sufficient condition which is totally operational and

 which we can show to be necessary for all first and second

 generalized Riemann derivatives.

 Let p ,...,p be real numbers with Z p.=l. Let b < b, o e i o 1

 <...<b , be n+l+e real numbers. Let D be the unique generalized
 n+e , o

 n-th derivative based on {b ,...,b }, D, the unique one based on
 o n i

 {bj b j , Dethe unique one based on » • • • » ^n+e) » an<* se*
 e

 D = Z p.D.. Then a quick check of the consistency condition shows
 i = o

 that D is also an n-th derivative. Conversely, given any n-th

 generalized Riemann derivative D based on fb ,...,b } we can write
 o n+e

 D as z where the p^ are uniquely determined by b and a. The p^

 are very easily found and satisfy Z p^ = 1 .
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 For example, O'Connor's derivative is associated to

 7f (x+3h)-13f (x+4h)+6f (x+( 16/3) h)

 7 ļf(x+3h)-f(x+4h)j _ g ļf (x+4h)-f (x+( 16/3) h) j _
 _n f-f (x+3h)+f (x+4h)l + ^ Q f-f ( x+4h) +f(x+(16/3)h)ļ
 "7[ _n

 So letting Dq and be the limits of the last 2 bracketed

 expressions, as h-»0 we have 0V = PqDq + Pļ®ļ >
 where p + p. =-7+8=1.

 o

 Theorem. Let Dn(b,a) be an n-th generalized Riemann derivative.

 i) If the p^ associated to D are all positive (so that D is a
 convex combination of n-th derivatives without excess) , then Theorem

 M(b,a) holds.

 ii) Conversely if n=l or n=2 or e=l, and if any p^ is negative;
 then Statement M(b,a) is false.

 Question 8. What happens if n>3, e>2, and some p^ is negative?
 In particular, what happens for the excess 2 third derivative

 D := (5/8)DQ - (l/4)Dļ + (ö/SjDg, where for i = 0, 1, 2,
 :=-f(x+ih)+3f(x+[i+l]h)-3f(x+[i+2] h) +f (x+ [i+3]h)?

 The proof of i) is short and sweet. First if e=0 then PQ=1 and
 indeed Theorem M is a well established numerical analysis fact. [12]

 If e>0, using this fact e+1 times we have numbers so that

 A n (h;b,a)f(x) e , * n e S «(Dj/x v
 s =

 , n i i
 , h 1=0
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 The right side is a convex combination of the numbers

 (b) ( £ ) t ^ t f(n) } and hence s lies between the smallest and

 the largest. But = (f^n is an ordinary first derivative,
 hence is Darboux and therefore assumes the value s.

 The proof of ii) is longer so we will restrict ourselves to one

 simple case. Let bQ < b^ < bg» let Aq be the difference quotient

 associated to the unique first derivative based on {bQ,b^}, A ^ the

 one based on {b^.bg}» and A - + 84^. Let f be this piecewise
 linear function.

 I

 bo bi
 I
 I
 I
 I
 I

 I

 I
 I
 I
 I
 I
 I
 I
 I

 Then A^ = 1, AQ = 0 so ¿1=8, but f • =0 or 1. Finally round the corner

 at bj very slightly. This will make Range(f • )= [0, 1] but keep A
 close to 8 so that the mean values theorem fails for A .

 We do the second derivative case by piecing together quadratics

 and then rounding the corners. The example for the general n,

 excess 2 derivative case uses an nth degree polynomial.
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