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 Solution of a_ Problem Concerning Functions of Harmonic Bounded Variation

 It is known [3] that the space of all regulated functions for which

 the Fourier series converges for every change of variable (GW) contains

 the space of functions of harmonic bounded variation (HBV) and the space

 of all functions for which the Fourier series converges uniformly for every

 change of variable (UGW) contains the space of continuous functions of

 harmonic bounded variation (HBV^) . In [3, p. 17] and [4] the question is

 raised whether GW = HBV and UGW = In [5] it is pointed out that

 [1] contains the result HBV^ ~ UGW yF GW^, implying HBV ^ GW. The purpose

 of thfc present note is to prove that ^ UGW. I would like to express

 my thanks to RN Dr. L. Zajíček for acquainting me with the problem.

 The function f : R -> R is said to be regulated if it has right

 and left limits at each point. The space of all regulated functions of

 period 2tt will be denoted by P(2tt). If X is a class of functions, then

 X will denote the continuous functions in class X.
 c

 The finite system of nonoverlapping intervals i = l*...,n is

 said to be an ordered system if I. is to the left of I.tl for all
 i i+l

 i = l,...,n-l, or if 1^ is to the right of f°r every i = l,...,n-l.
 If I = [a,b] c [ -TT , TT ] and f Ç P(2tt), then we write

 f(I) = f(b) - f(a). For f € P(2tt) we will say that f G HBV if

 n

 sup I I f (I . ) |/i = v (E) < °°,
 i=l x

 where the supremum is taken over all finite systems of nonoverlapping, closed

 intervals in [ -TT , tt ] . For f Ç P ( 2tt ) we will say that f Ç OHBV if
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 sup I |f(I.)| / i = V0H(f) < œ,
 i=l

 where the supremum is taken over all finite ordered systems of nonover-

 lapping, closed intervals in [ - tt , tt ] . For f t P(2tt) we will say that

 f Ç GW if the Fourier series ^f f ° g converges everywhere for every

 homeomorphism g of [ - tt , tt ] with itself, and f £ UGW if the Fourier

 series of f ° g converges uniformly for every homeomorphism g of

 [ - TT , TT ] with itself.

 Theorem: UGW 3 HBV .

 Proof: There exists [2] a function f £ OHBV - HBV. Let n be a non-

 negative integer. Since f ^HBV, there exists a system of nonoverlapping,

 closed intervals {i?} , i = l,...,m in [ - tt , tt ] such that
 i n

 m

 I I f (I?) I / i > 2n 10n.
 i=l 1

 Let V (f) = c and let I? = [a?,b?], i = . Define h (x) = 0 OH 111 n . n
 m

 n

 for x <z [-tt,tt] - U (a?,b^), ^((a^+b^) = for i =
 i=l

 and extend h^ linearly to the remainder of [ - tt , tt ] . Clearly |h^(x)| < c

 for all x €[-tt,tt], V (h ) > 2n 10n and V (h ) < 2c. Let p be the
 H n - UH n - n

 increasing, linear mapping of [2 n,2 onto [-if, it]. Define the

 function w 6 P(2tt) by setting w (y) = 2 ° h (p (y)) for y c [2 n,2
 ne n n n

 and w (y) = 0 for y f [-tt,2 n) U (2 ^,tt]. It is easy to see that
 n

 w is continuous, V^fw ) < 2c / 2n and |w 1 (x) I 1 < c2 n for all x 6 R. n OH n - 1 n 1 -
 00

 Put H = £ w.. Evidently H € P(2tt) . Let J? = p ^ ( [a?, (a? + b?) /2] ) . » « X C X X 1 X
 1=1 » «
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 Then {j^} is a system of nonover lapping, closed intervals in [-tt,tt] and
 mm m

 J|H(J°)|/i- I |v(J?)|/i= I 2"n h ([a" (a? + b?)/2])/i =
 , r ' -I- . « U 1 , m Ulli 1=1 , r ' 1=1 . « 1=1 , m

 m
 n

 = 2 n ][ |f(l") 1 |/i _> 10n. Consequently H & HBV . A necessary and i=l 1 C

 sufficient condition for a function H to be in UGW is the following

 condition. (See [3], p. 15 or [1].)

 (P) For every e > 0 there is 6 > 0 such that for every ordered

 system of nonoverlapping, closed intervals {i.}, i =
 k 1

 in [-tt,tt] for which diam( U I.) < 6 the inequality
 k 1
 j[ |h(I ) I /i < £ holds.
 i=l 1

 Let e > 0 be given. Then choose a positive integer n for with

 n °°

 c/2n < e. Put f.. = £ w. and £ - £ w.. Clearly f is
 i=l 1 L i=n+l 1

 a Lipschitz function. Let L be its Lipschitz constant. Put

 6 = e/2L. Let {i.}, i = l,...,k be an ordered system of closed, non-
 1 k

 overlapping intervals in [ - tt , it ] with diam( U I.) < 6. Then
 i=l 1

 k k k k

 I |H(I.)|/i 1 < I |f, (I.) |/i + X |f CI ) J /i j< I L diamU )/i + i=l 1 i=l i=l ¿ 1 i=l 1

 k oo k 00

 + I U I w )(I )|/i < L5 + I I |w (I ) |/i <
 i=l j=n+l i=l j=n+l

 0° k oo

 < e/2 + I I |w J (I)|/i < e/2 + I V0H(w J ) < j=n+l i=l J j=n+l J

 OO

 < e/2 + I 2c/2j < e/2 + c/2n_1 < e.
 j=n+l
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 Hence the condition (P) is satisfied and consequently H Ç LJGW. The Function

 H is in UGW but not in HBV .
 c
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