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o -variation and transformation into C functions

by M. Laczkovich and D. Preiss

The & -variation of a function f: H—> R (H C\R)
is defined by

Vu. (f,H) = sup; lf(bi) _ f(ai)‘vx’

n . .
where i{éi’bi}§i=l 1s an arbitrary system of non-over-
lapping intervals with ai,bié H i=1,2,...50 .

It is well-known that a continuous function f defined
on [g,b] can be transformed into a Lipschitz function by an
inner homeomorphism if and only if Vl<?,[a,5l3<°0. More
generally, for every & > 1, f can be transformed into a
Lipschitz -;—Z function if and only if V_ (f, [a,b])(oo .

More precise results concerning transformation of continuous
functions of bounded l-variation are due to A.M. Bruckner

and C. Goffman [i]. They prove that f can be tranformed into
a function with bounded derivative if and only if f is of
bounded 1l-variation, and it can be transformed into a Cl
function if and only if, in addition, the image of the set

Kf of points of varying monotonicity is of measure zero.

A point x 1is called a point of varying monotonicity of £
if there is no neighbourhood of x on which f is strictly
monotonic or constant.

In this paper we give an analogous characterization of
those functions which can be transformed into a C" function

or into a function with bounded nth

derivative. We prove that
if n>»1 then f can be transformed into a c" function if
and only if f 1is continuous and Vl/n(f’Kf)'< o0 , We get
the same characterization for functions which can be trans-
formed into a function with bounded nth derivative, or into
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a function g with ‘g(n-l\e Lip 1. Hence, the case n>1 is
different from that of n=1.

In order to formulate the precise results concerning

the classes Lip § and C° for every s > 0, we need
the following definitions.
For «>0, CBV, = CBV_ [a,b] denotes the class of

those functions f & Cla,b) for which VOL (f,Kf) < oo,

(It can be shown that

v, (f,Kf) = V"( (f,\a,b]\ for every o(?__l,
hence for o(?___ 1 CBVO( is the class of continuous functions
with finite ¢ -variation over [a,b]. If 0L x£L 1 then
V«x(f’ [a,b]\= oo for every non-constant f & C[a,b} )

The strong & -variation of f: H—> R 1is defined by

..
sv_ (£,H) =d2£:1<1>1+vu(f,H) , . N

where Vi(f,H) is the supremum of those sums Z lf(bi)- f(ai)

—
—

in which [ai,bi] are non-overlapping intervals with ai,bieH
and b.-a. < d.
i7i=

The class SBV, is defined as the family of those
f €cla,b] for which sv_ (f,K. )< e0O .

It is easy to show that SBV , < CBV°< for every
ot 2 0.

For 0 < S4<1 we denote by Lip § the class of
those functions f defined on I_a,b] for which there is K 2> 0

such that lf(y) - f(x)l < Kly-x\S for every x,y 6[_a,b].
If k is a positive integer and k £ S é k+1 then we denote
by Lip § the class of all k times differentiable functions
f defined on [a,b] with f(k)éLip (s -k) .

For O és(l, C® will denote the class of functions
f defined on [g,pj and satisfying the following condition.
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For ‘every &> 0 there is (S’? 0 such that
\f(y) - £(x) |§_ &\y—x\s

whenever X,y ela,b] and |y-x lAS
Clearly, c® = Cié,ﬁl. If k 1is a positive integer and
k £ s £ kt1 then we denote by c® the class of all k times
differentiable functions f defined on Ié,Bl with
£(K) € 57k
Theorem. If s >1 and X =1/s then for every function
f defined on [a,ﬁ] the following are equivalent.
/il £ € CBV, .
/ii/ f € SBY_ .
/iii/  There is a homeomorphism ke of i?,ﬁ] onto itself
such that f o\p & Lip s.
/iv/ There is a homeomorphism \{> of [a,ﬁ} onto itself
such that f o € c®,
If s >1 1is an integer, then these are also equivalent
to the following.
/v/  There is a homeomorphism of [g,ﬁl onto itself
such that fo\€ has bounded s'® derivative.

The results of Bruckner and Goffman show that the total
equivalence of these statements for s = 1 does not hold.

However, we have the following conditions for every s > 0.

Theorem. Let s and ©L be positive numbers with s=1/ct .
A function f defined on [a,B] belongs to CBV.,, if and
only if there is a homeomorphism ‘f of ig,ﬁ] onto itself
such that fe \e € Lip s.

f e SBV if and only if there is a homeomorphism of
la,b] onto itself such that fa\( € c*.

pove)
As for the class C of infinitely differentiable functions,
we have the following

23



" Theorem. For every f defined on [g,ﬁl the following
are equivalent.
/il £ & CBV for every ® > 0.
/ii/ f & SBV_ for every «>0.
/iii/ There is a homeomorphism (e of [a,B] onto
itself such that fo\( ec’ .

In particular, if f can be transformed into a c
function for every s >0 then f can be transformed into

oD .
a C function.
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