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 Algebra generated by derivatives

 In this note we give an answer to the problem of characterizing

 the algebra generated by derivatives. In fact, we prove that each

 function of the first class can be expressed in the form f'g'+h',

 which is the expression discussed in [2] . (We refer the reader to

 [2] for a more complete discussion of this problem and to [1] for

 a characterization of functions expressible in the form fg' + h'

 (f, g, h Ç A) .) We prove slightly more, namely:

 Theorem. Whenever u : R -♦ R is a function of the first class,

 there are functions f , g and h possessing finite derivative

 everywhere such that u = f'g'+h'. Moreover, one can find this

 representation such that g' is bounded and h' is a Lebesgue

 function and, in case u is bounded, such that f' and h' are

 also bounded .

 Recall that x € R is said to be a Lebesgue point of a

 function cp : R -» R if lim (y - x) 1 |cp(t) -«p(x) ļdt = O and
 J "

 y-*x

 that ep is said to be a Lebesgue function if each x € R is a

 Lebesgue point of cp. Lebesgue functions are approximately con-

 tinuous and they are derivatives of their indefinite integrals.

 Every bounded, approximately continuous function is a Lebesgue

 function. Hence for bounded functions these two notions coincide.
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 We will use the in-between theorem for Lebesgue functions

 (see Theorem 3.10 from [5]) , but we will need only the following

 two special cases.

 If B is a measurable set, if are pairwise disjoint,

 closed sets contained in the set of those points of B that are

 density points of B and if € R (i = 1, ..., n) , then

 there is a Lebesgue function cp such that Cp(x) = c^ for

 X € F^, cp(x) = 0 for X £ B and |cp(x)ļ £ maxļc^ļ for x € R.
 (This is also an easy consequence of Theorem 7 from [6].)

 If t]; is a function of the first class defined on R and

 if ļ E I =0, then there is a Lebesgue function çp such that

 çp(x) = iļi (x) for X € E. (In the bounded case, this is one of

 the extension theorems of Petruska and Laczkovich [4].) To

 motivate our first lemma, we note that the statement of the Theorem

 can be read as follows: If u is a function of the first class,

 then there are dif ferentiable functions f and g such that

 (g' is bounded and) u - f 'g' is a Lebesgue function. This

 formulation leads naturally to an attempt to approximate u by

 a product of derivatives in the L^-norm and then to sum such
 approximations on a sequence of disjoint subsets.

 Lemma 1 . Assume that v is a measurable function, A is

 a nonempty, bounded, measurable set and ļvļ c < 00 on A.

 Then for every e > O there are functions f and g possessing

 bounded, approximately continuous derivatives such that
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 f x ;f ' (x) 4 O) U { x ;g ' (x) 4 0} <= A ,

 I f ' I 1 max(c,c1//2) , 1 g ' I £ min (1 ,c1//2) ,

 lfl £ e» !g| £ e< and

 •1*A [ v ( t ) - f ' (t)g' (t) |dt £ e.

 Proof . Write A as a union of nonempty, disjoint, measurable

 sets A^, ..., An such that diamA^ <£ e/(3 max(l,c) ) and

 sup{ļv(x) - v (y ) 1 ; x,y € A.^} ģ e/(3|Aļ + 1) for i = 1, . . . , n.
 Let and be disjoint, closed subsets of the set of those

 points of A^ that are points of density of A^ such that

 I p£ I = I Qļ I anc* ^Ai""^Pi ^ Ś e/(3n max (1 ,c) ) . Choose

 x^ € A^ and let a^ = max(ļv(x^) ], ļv(x^) l"^2) while
 1 /2 b. = min(l, ]v(x.)l 1 )sgn v(x.) , Let CD and ilr be Lebesgue

 1 1 X

 functions such that cp(x) = a^ and it (x) = b^ for x € P^,

 cp(x) = -a^ and iļi (x) = -b^ for x € Q^, |cp| ģ maxļa^|,
 ļiļfļ ^ max|b^ļ, and CP(x) - ili (x) = 0 for x # A.

 Let f and g be indefinite integrals of Cp and 'lr respec-

 tively such that f (0) = g (0) = 0. Obviously |JA cp(t)dtļ =
 I f cp(t)dt| £ max(c,c1//2) • e/(3n max (1 ,c) ) £ e/(3n) .
 A. - (P. U Q. )
 i i i

 1 ' /2 Hence |f(x)| e/3 + 2 max(c,c ' )max(diara A^) £ e and, similarly,
 ļg(x) I £ e for each x 6 R. Clearly

 JA ļ v ( t ) -f'(t)g'(t)|dt ģ 2 ne e/(3nmax(l,c) )+|aIe/(3 1a1+1) £ e
 and the remaining statements of the lemma are obvious .
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 To sura up the different approximations, we need to inter-

 change infinite sums and differentiation. For that we will use

 the following lemma which might also be of independent interest.

 Lemma 2 . Assume that (Hn) is a sequence of pairwise dis-

 joint, compact subsets of the real line and that (Kn) is a

 sequence of nonnegative numbers such that H K n ri (where ya n ri n
 n

 is the characteristic function of A) is a function of the first

 class. Then there is a sequence (en^ °f positive numbers such
 that the following two statements hold.

 (1) Whenever f^, f ... are differentiable functions,

 I f^l ¿V íx?f¿(x) i 0} c Hn and |fj < en (n = 1,2

 f = T. f is well-defined, differentiable and t' - Ut' .
 n n

 (2) Whenever w^,w2»... are approximately continuous functions,

 £ V fx?wn(x) 4 0) c Hn and ļ wr ļ £ en (n = 1 , 2 , . . . ) ,
 n

 then w = 2? w^ is a Lebesgue function.

 Proof . Since H K Yu is of the first class, there is a n il
 n

 sequence (Qn) of compact sets such that for each number r the

 set (x;S KnxH < r} is a union of a subsequence of (Qn) . Put

 3n n = U H m U U °m and e n = 2"n min (1 ,dist2 (H ,H )) . n m<n m m<n, Q flH = 0 n nn
 m n

 To prove (1) we note that f = T f is obviously well-defined,

 hence it suffices to show that f ' (x) = E f^(x) for each x € R.
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 If x € for some k, then for each m > k and each y € R

 |fm (y) -fm(x) ļ £ 2"m+ 1(y -x)2, since (x,y) D = ÇÍ implies
 that the left hand side equals zero and since (x,y) H Hm 0
 implies dist ¿ |y -x|, hence

 |fm(y) -fm(x) I ¿ 2 { 2~m+ *(y-x)2. This inequality shows that
 CD 00

 ( E f_) ' (x) = O = E f '(x) , and consequently f ' (x) = E f ' (x) .
 m=k+l ro=k+l m n

 If x € R - UHn and if r is any positive number, we may find p
 such that x € Q and E K < r on Q . Then for each m > p

 p n p

 and each y € R

 Hm 0 Q 4 0 implies K_ < r , and hence
 m P m

 'fm*y) ~fmix^ ^ r'Hm n <X'Y) I ' whi-le

 Hm ^ Qp = 0 and (x,y) n Hm 4 0 implies dist(Hm,Hm)

 ś. i y ~ x| / and hence Jfm(y) - fm(x) ' ¿ 2em £ 2~m+ 1(y -x) 2, and

 finally (x,y) 0 Hm = 0 implies = °*

 Since (x,y) n Hm = 0 for y sufficiently close to x and m ¿ p,

 lim sup ļ y - x 1 -1 122 (fn(y) - f (x) ) | ¿lim sup (r + |y -xj) = r .
 y -> x y -» x

 This shows that f ' (x) = O = I f ' (x) .
 n

 To prove (2) , let x € R and let w = u + v, where

 u = Ew and v = E w . Since u is bounded and approxi-
 n,x€Hn n n,x¿Hn n

 mately continuous, x is a Lebesgue point of u. Next we note

 that (1) implies that |v| is a derivative, which together with

 v (x) = O proves that x is a Lebesgue point of v . Hence x is

 a Lebesgue point of w.
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 Finally, we need a decomposition lemma which will allow us

 to combine the above statements .

 Lemma 3 . Whenever u is a function of the first class,

 there are a function v of the first class, a sequence (Hn) of
 pairwise disjoint, compact sets and a sequence (c ) of positive

 numbers such that

 (i) u - v is a Lebesgue function,

 (ii) v is approximately continuous at every point of UHn,

 (iii) v(x) = O whenever x € Hn is not a point of density of
 V

 (iv) ! v ļ £ Z cn xH ,
 n

 (v) E cn xH is a function of the first class, and
 n

 (vi) v is bounded provided that u is bounded.

 Proof . Let cp^ be a Lebesgue function which agrees with u
 on a dense set containing all points at which u is not approxi-

 mately continuous. (if u is bounded, we taXe cp^ to be bounded
 also.) Let v^ = u-cp^. Since the function logļv^ļ is of the
 first class on the space X = (xjv^x) 4 0], there is a function
 g ; X -» R of the first class such that g(x) is an isolated sub-

 set of R and i log ļv^ ļ -gļ £ 1 on x (see [3], §31, VIII,
 Theorem 3) . Using that X is an Fa subset of R which does
 not contain an interval (and hence is a zero dimensional space) ,

 we see that X can be written as a union of a sequence (H ) of
 n
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 pairwise disjoint, compact sets such that g is constant on each

 Hn (cf. [3] , §30, V) . Let w = exp (g + 1) on X, w = 0 on R-X
 and let c be positive numbers such that w = S c„ Xo • Then n n rt

 n

 (v) holds since w O and for each a > O

 [x € R;w(x) > a) = {x 6 Xygfx) > -1+ log a) while

 {x e R;w(x) < a] = {x ç R; |vļ(x) ļ < ae~2} U {x 6 X;g(x) < -1+ log a}.
 Let E be a set of measure zero containing all points of each Hn

 that are not density points of Hn and containing all points at
 which is not approximately continuous . Let cp be a Lebesgue

 function agreeing with on E and let

 CP2 = max{min[cp,max(Vļ,0) ] ; min(v^,0)}. Then ļcpjļ <1 |cpļ. Hence
 every x € R with cp(x) = O is a Lebesgue point of If

 cp(x) ý 0, then v^ is approximately continuous at x, and
 hence ep2 is approximately continuous at x, which together with

 I ^2 1 ^ 1^1 shows that x is a Lebesgue point of Since
 min 0^,0) £ cp2 <i maxfv^O) and since I vi I il w = ^ cn *h ' the

 n

 function v - v^ - cp2 fulfils (iv). The other statements of
 the lemma are obvious .

 Proof of the theorem. Let v, H and c be as in Lemma 3.

 For the sequences (H ) and K = 2 max ( c , c^^ ) we find n n n n

 positive numbers en according to Lemma 2. For each n we use
 Lemma 1 with A = H and e = to construct functions f

 n n n

 and gn with the properties described there. From Lemma 2
 we see that the functions f = S f and g 3 = Sg„ are well-defined, n 3 n

 that £' = T> f¿ and g' = D g^ and that v-f'g' = T> fv~fn9^)xH
 n

 is a Lebesgue function. (Here we use fiii) from Lemma 3 and

 214



 approximate continuity of and g^ to deduce approximate
 continuity of w = (v-f'g')^ .) Therefore, the desired repre- n n n HL

 n

 sentation is u = f 'g ' + h ' , where h ' = (u - v) + (v - f 'g ' ) .

 I would like to express my thanks to the referee for finding

 and correcting many errors in the first version of the proof, to

 prof. A. Bruckner for nicer formulation of the assumption of Lemma

 2 as well as for many other remarks and to the organizers and par-

 ticipants of the Esztergom meeting, since it was mainly my talk

 there and the discussions after it which led to a new (and, I believe,

 reasonably simple) version of the proof.
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