Real Analysis Exchange Vol. 8 (1982-83)

Michał Morayne, Instytut Matematyki, Uniwersytet Wrocławski, Pl. Grundwaldzki 2/4, 50-384 Wrocław

On Differentiability of Peano Type Functions

In this paper we investigate the properties of Peano functions on the real line **R** to the plane \mathbb{R}^2 , that is, vector functions $F = (f_1, f_2): \mathbb{R} \to \mathbb{R}^2$.

Let $f:A \rightarrow \mathbb{R}$ and $E \subset A \subset \mathbb{R}$. We say that f satisfies Banach's condition T_2 on E ($f \in T_2(E)$) if

$$\lambda(\{ yef(E) : | f^{-1}(\{y\}) \cap E | > \mathcal{K}_0 \}) = 0$$

where λ denotes Lebesgue measure. We also shall write feVB(E) if f is of bounded variation on E, and feVBG(E) if E is the union of a countable sequence of sets E_n on each of which f is of bounded variation. Let M_1 and M_2 be any sets and let $S = M_1 \times M_2$. If usM₁ and vsM₂, we let $S_u = \{y \in M_2: (u, y) \in S\}$ and $S^v = \{x \in M_1: (x, v) \in S\}$. Finally, throughout this note, derivative will mean finite derivative. Our first theorem is:

THEOREM 1. The existence of Peano functions $F=(f_1, f_2)$ such that for each xsR at least one of the derivatives f'_1 or f'_2 exists is equivalent to the Continuum Hypothesis.

The proof uses the following theorem of Sierpinski.

THEOREM S. Let M_1 and M_2 be sets of power C. The Continuum Hypothesis is equivalent to the existence of a decomposition, $M_1 \times M_2 = S_1 \cup S_2$ where $(S_1)_u$ and $(S_2)^v$ are countable for each $u \in M_1$ and $v \in M_2$. The following theorems show that even if the mildest conditions are put on the coordinate functions of F, then F cannot be Peano. In particular, it follows from THEOREM 3 that if either f_1 or f_2 is assumed to be measurable, then F cannot be Peano.

THEOREM 2. Let $F=(f_1, f_2)$, where $f_1 \in T_2(\mathbb{R})$ and f_2 is arbitrary. Then, $\lambda^i(F(\mathbb{R})) = 0$, where λ^i denotes inner Lebesgue measure on \mathbb{R}^2 .

THEOREM 3. Let f_1 be Lebesgue measurable, and let f_2 be arbitrary. Suppose that for each xeR at least one of the derivatives $f'_1(x)$ or f'_2 exists. Then, $\lambda^i(F(\mathbf{R})) = 0$.

To conclude, let us pose the following problem:

QUESTION. Does there exist function $F=(f_1, f_2): I \rightarrow I \times I$ where I=[0,1], such that $F(I)=I \times I$ and for each xel at least one of the derivatives f'_1 or f'_2 exists?

Let us mention that if the I in the above question is taken to be either open or half open, then the existence of such an F is, like in THEOREM 1, equivalent to the Continuum Hypothesis.

REFERENCES

[1] K. Kuratowski, Topology I, Warszawa 1966.

[2] S. Saks, Theory of the Integral, Warszawa-Lwów 1937.

[3] W. Sierpiński, <u>L'hypothese du Continu</u>, <u>Warszawa 1934</u>.

61