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Intersections of Qualitative Cluster Sets

§1.
Let H denote the open upper half plane above the
real line R and let z and x denote points in H and R
respectively. Let A denote the closure of the set A.

For two directions gl and PP 0 <« 8y < By < T, WE write

°g192 = {z: 2z ¢ H; 8] < argz <8,}

Then a5 is a sector in H with vertex at the origin.
192

By (x) we denote the translate of ¢ g, Which

o
A182 182

is obtained by taking the origin at x. If there is no
confusion then we simply write ¢ and g(x) instead of

and ¢

%105 816,(x). For a fixed x € R, fixed g e(0,m),

and r > O we write

L (x) = {z: z € H; arg (z-x) =g},
K(x,r) = fz: z¢H; |z -x| <1},
a(x,r) = g(x) nK(x,r), and

Lg(x,r) =L (x) nK(x,r)

8
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Let f:H -»> W where W is a topological space.
Then the qualitative cluster set Cq(f,x) of f at x
is the set of all w ¢ W such that for every open set
U in W containing w, the set f'l(U) n K(x,r) is of
the second category for each r > 0. The sectorial
qualitative cluster set Cq(f,x,q) of f at x in the
sector o is the set of all w € W such that for every
open set U in W containing w, the set f-l(U) n o(x,r)
is of the second category for each r > 0. The direction-
al qualitative cluster set Cq(f,x,e) of £ at x in the
direction § € (O,m) is the set of all w € W such that
for every open set U in W containing w, f_l(U) n Ib(x,r)
is of the second category'in Le(x) for every r -~ O
The directional cluster set C(f,x,9) of £ at x in the
direction 8 € (0,7n) is the set of all w € W such that
for every open set U in W contailning w, x is a limit
point of the set f_l(U) n Ib(x)

A set E - H is said to have Baire property if
there is an open set G and a first category set Q in H

such that
E=0GaAQ= (G\Q) u (Q\G)
A function f:H » W , where W is a topological

space, is said to have Baire property 1f for every

open set U in W the set f_l(U) has Baire property.
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Jarnik [3] proved that if fH - Q. _is arbitrary,
where ) is the extended real line, then the set of all
points x in R at which there exit two directilons ei and
such that i |

C(f,x,e‘l) N C(f,x,ez) = ¢

is countable.

85

In this paper we shall prove an analogue of Jarnik's
result for directional qua}itative cluster sets. We
also prove a result on iﬁtersection of sectorial qualita-
tive cluster sets. This result 1is an analogue of the
result proved in [1] by Allen and Belna on intersections
of sectorial essential cluster sets. We would also like
to mention that other interesting results on qualitative
cluster sets can be found in [2] and [5].

The results which we proved here are the following:

(L) If f:H > W has the Baire property, where W is a

compact,second countable,Hausdorff topollogical space

then the set of all points x in R at which there

exist a second category set @(x) of directions

8 O « g <, with the property that for each pair

of directions (g, pjc ©(x)

Cq(fs x5, 8) n Co(fs x, @) = &

q

is countable.
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(2) If f:H > W is arbitrary, where W is a compact,

second countable, Hausdorff topological space,

then the set of all points x in R at which there

exist two sectors 01<X) and 02(X) in H such that

Cq(f>x:01) nC (f:x:o‘g) =g

q

1s countable.

§3.
Before proving some auxiliary lemmas we shall define
the following sets and relations among them which will
be used in the sequel.
Let E € H have Baire property. Then there is an
open set G and a first category set Q in H such that
E=GAQ . For fixed x ¢ R we write,

o . .

I(E,x)

{8e (0,m): Ib(x,r)nE is residual

in Ib(x,r) for at least one r>0}

9 (E,x) = {08¢(0,m): Le(x,r)nE is first

category in Lb(x,r) for at least

one rs0}.

For positive integers m and n we also define
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I,(G,x) = {ge(0,m): Le(x,l/n)nG is residual in
La‘(. x-’_el/n} 2
and
0, (G,x) = {ge(0,m): Lb(x,l/m)nG is first category

in Le(x,l/m)]

Then, since Q is of the first category, it follows from

the Kurotowski-Ulam Theorem [4,p.56] that

{ae(o,m): Ib(x,r)nQ is of second category in

LG (x,r)}

is of the first category in (O,») for each r 50.
Since E = G A Q, it follows that I(E,x)\ I(G\Q,x) and

consequently, I(E,x)\I(G,x) is of first category. But,

--] -]
I(G,x) ¢ U I, (G,x) and hence I(E,x)\{J I (G,x) is also
n=1 n=1

a first category set. Similarily, 1t can be shown that

@
®(E,x) U @m(G,x) is a first category set. Now, let
n=1

P(E) = {x €R: both I(E,x) and 8(E,x) are of

second category }

LEMMA 1. If E c H has the Baire property, then

P(E) is countable.

Proof. Let E =G A Q where G is open and Q is
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of first category in H. For positive integers m, and n, and

rationals C < o < B < 1, let

Pmnas-(E) = {X €R: In(G,x) # @ and 0,(G,x) is
~dense in (a,B)}.

Using (1) and (2) it is easily seen that P(E) c UPy (E)

nqﬁ
where the union is taken over all positive integers

m and n, and all rational mumbers O < g < B < 1w - We
show that each set Pmnqs(E) contains no two sided limit

points and consequently is countable. Let m,n,q, and

g be fixed, and let P = PmnaB(E) . As G 1is open and

®,(G,x) is dense on (a,B), it follows that G N oaB(x,l/m)¢¢

for each x ¢ P. Now suppose that P contains a two sided
limit point, Xq> of P. Then there is a sequence

[xi}cP such that Xo5 > Xgs Xp5.71 < ?CO’ and lirﬁ.t X4 =Xq

As x€P, tbere is a8 OE In(G,xo) and either8 j<aor
B<8 o But if 6 0
; . .

large i such that gas(xgi,l/m)ano(xo,l/n) # @ which

<Q, there is a sufficiently

contradicts the fact that G misses 9 g (X555 1/m) and

is residual on LSO(XO’ 1/n). If g, > g, there is a
sufficiently large i such that Uas(x2i+1’ 1/m) n

Le (xo, 1/n) # @ and again, this is a contradiction.
0
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Thus, each of the sets PmnaB(E) is countable and conse-
.quently, P(E) is countable.
R

Let E ¢ H and define

M(E) = {x €R: there are two sectors cl(x) and
oz(x) such that for some r > 0, cl(x,r)nE
is residual in ol(x,r), and cz(x,r)nE is

of the first category}.

LEMMA 2. If E c H is arbitrary, then M(E) is
countable.

Proof. Let x € M(E), then there is a natural
number n = n(x) and four rational directions ai=ai(x) s

Siﬁi(x), i=1,2 such that

o (x, 1/n) n E is residual in ¢ (x,1/n),
@181 _ _ a1B1
and .
g (x,1/n) n E is first category.
PP .
Let
M = M(E): = = .
NajasB1Bo (x ¢ M(E) ? n(x)na—al(x),
B;=B4 (x) for 1=1,2}.
We show that each set M contains no two sided

NajaoBiBo

limit points, from which it follows that M(E) is count-
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able. Let n 50 Gos Bys Bo be fixed and let

M=M . Now, as ¢ (x) n (x) = ¢

NajasBiBo 187 °a232

for each x ¢ M, it follows that either ..

@] < By <ap <Bp Orap< By <oy < B

and for definiteness we suppose the former. Suppose

Xq is a two sided limit point of M. Then there is a

sequence (x;} < M such that Koy > Xgs Xpy,q <Xg» and

limit X; = Xq- However, for sufficiently large values
ise

of 1 it foll that . 1 l1/n
i it follows tha calsl(x21+l, /n) n ca252(xo, /n) A%

and this contradicts the fact that E is residual in

cazsz(xo,l/n) but of first category in g (x21+l,l/n)

a1f1
If oy < Bo < aj < B; @& similar contradiction is reached

using {XQi}'

LEMMA 3. If f:H > W 1s arbitrary, where W is a

compact topological space and if G is an open subset of

W such that~Cq(f,x,e)c G, then there exists a positive

integer n such that Le(x,l/n) n f—l(G) is residual in

Le(x,l/n).

Proof. Since W\G is compact and disjoint from
Cq(f,x,e) there is a finite collection of open sets
[Vi:i=1,2,...,K} and a corresponding iet of radii
{ri > 0:1i=1,2,...,k} such that W\G C:il Vi and
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f_l(Vi) n Ib(x,ri) is first category in Léx,ri) for
each i. If n = min{ri:i =1,2,... k} , then
f—l( 6 V.) n L (x,1/n) is of first category in

i=1 * o
Ib(x,l/q) and consequently, f-l(G) n Ib(x,l/n) is
residual in Ib(x,l/n) .

LEMMA 4. 1If f:H-W is arbitrary where W is a compact

topological space, and if G is an open subset of W such

that Cq(f,x,g) c G, then there is a positive integer n
such that f—l(G)ng(x,l/n) is residual in g(x,1/n).
Proof. The proof of LEMMA 4 is similar to that

of LEMMA 3.

Suppose f:H»W. In what follows, let K=K(f) denote
the set of all points xeR at which there is a second
category set of directions @(x) with the property that

if {gsp}s®(x), then C(f,x,§)nC(f,x,qp)=F.

THEOREM 1. Let W be a compact, second countable,

Hausdorﬂ?space.' If f:H>W has the Baire property, then K

is countable.

Proof. Let@ be a countable basis for the topology
of W, let‘l be the countable collection of all sets G
which can be expressed as a finite union of members of
@&, and let X, € K. Then there is a second category
set, @(Xo)’ of directions such that if {g,p}s@(x);
then C(f,x,6)nC(f,x ,9) = F. As g(x,) is a second

category subset of (o,m), there are two disjoint second
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category subsets, ®;(x,) and @2(xo), of @(xo).

Let g € ®l(xo) be fixed. Then for every o ¢ @2(xo)

there is a G eﬂ such that Cq(f: Xz,e)cG and Cq(f,xo,cp) n
G =4d. Since A is countable and @2(xo) is second
category, there is a Ge eaﬁ. and a second category set

, ,
®5(x5)c0,(x,) such that Cq(f,xo,g)cGe and Cq(f,xo,¢) n

— , . -1
Gy = g for every ¢ € 0 5(x,); that is, @,(x,)<e(f (GGLXO)-

By LEMMA 3 there is an n such hat Le(xo,l/n)nf—l(Gé) is

residual in L (x,,1/n), and hence, eeI(f‘l(Ge),xo).

But then, @l(xo)=uI(f-l(Ge), x,) where the union is taken
over all G-e.ﬁ , and as @l(xo) is second category, there
is a second category set @i(xo) c @l(xo) and a G E,A

such that G6= G for every g € @i(xo). Consequently,
both I(f-l(G),xo) and @(f—l(G),xo) are second category
and so xoeP(f—l(G)). By LEMMA 1, each set P(f—l(G))
is countable and as K is contained in a countable union
of such sets, K itself is countable. This completes

the proof of THEOREM 1.

COROLLARY. Let W be compact, second countable,

and Hausdorff. If f:HoW has the Baire property, then

except for a countable set of points x € R, in every

second category set of directions there is at least one

pair of directions, {g,p} such that Cq(f,x,e)ncq(f,x,m)#ﬂ.
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Suppose f:H-W. Let M=M(f) denote the set of all
points x ¢ R at which there exist two sectors

gl(x) and og(x) in H such that Cq(f,x,gl)ncq(f,x,02)=¢.

THEOREM 2. Let W be a compact, second countable,

Hausdorff space and let f:H-W be arbitrary. Then M 1is

countable.
proaf. Let® andd be the same as in THEOREM 1

and let x, € M. Then there exist sectors cl(xo) and

2 1 . 2 .

o (xo) such that Cq(f,xo,g )an(f;:O,c )=F. Since

Cq(f,xo,ol) and Cq(f;co,cz) are disjoint closed sets

and W is normal and compact, there is a Go elﬂsuch that

1l 2
Cq(fﬁ<o,c )CGO and Cq(fﬂco:c )
LEMMA 4 we find an n such that both cl(xo,l/n)nf_

n§5= #. Hence, using
H(e,)
is residual in gl(xo,l/h) and gg(xo,l/n)nf'l(Go) is
first category; that is, x ¢ M(f_l(Go)). By LEMMA 2
each set M(f_l(G)) is countable, and as M is contained
in a countable union of such sets, M itself is countable.

This completes the proof of THEOREM 2.

The author is grateful to Dr. S.N. Mukhopadhyay for
his kind help and suggestions in the preparation of
this paper.
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