Real Analysis Exchange Vol. 5 (1979-80)

A.K. Layek, Multipurpose School-Mathematics Section, Akbar Road, Durgapur-713204, Burdwan, West Bengal, India

Intersections of Qualitative Cluster Sets

§1.

Let H denote the open upper half plane above the real line R and let z and x denote points in H and R respectively. Let \overline{A} denote the closure of the set A. For two directions θ_1 and θ_2 , $0 < \theta_1 < \theta_2 < \pi$, we write

$$\sigma_{\theta_1\theta_2} = \{z: z \in H; \theta_1 < \arg z < \theta_2\}$$

Then $\sigma_{\theta_1\theta_2}$ is a sector in H with vertex at the origin.

By $\sigma_{\text{Al}\theta_2}(x)$ we denote the translate of $\sigma_{\text{Al}\theta_2}$ which

is obtained by taking the origin at x. If there is no confusion then we simply write σ and $\sigma(x)$ instead of

$$\sigma_{\theta_1\theta_2}$$
 and $\sigma_{\theta_1\theta_2}(x)$. For a fixed $x \in R$, fixed $\theta \in (0,\pi)$,

and r > 0 we write

$$L_{A}(x) = \{z: z \in H; arg (z-x) = A\},$$

$$K(x,r) = \{z: z \in H; |z - x| < r \},$$

$$\sigma(x,r) = \sigma(x) \cap K(x,r)$$
, and

$$L_{A}(x,r) = L_{A}(x) \cap K(x,r)$$
.

Let $f: H \to W$ where W is a topological space. Then the qualitative cluster set $C_q(f,x)$ of f at x is the set of all $\mathbf{w} \in \mathbf{W}$ such that for every open set U in W containing ψ , the set $f^{-1}(U) \cap K(x,r)$ is of the second category for each r > 0. The sectorial qualitative cluster set $C_q(f,x,\sigma)$ of f at x in the sector σ is the set of all $\omega \in W$ such that for every open set U in W containing ω , the set $f^{-1}(U) \cap \sigma(x,r)$ is of the second category for each r > 0. The directional qualitative cluster set $C_q(f,x,\theta)$ of f at x in the direction $\theta \in (0,\pi)$ is the set of all $w \in W$ such that for every open set U in W containing ω , $f^{-1}(U) \cap L_{\alpha}(x,r)$ is of the second category in $L_{A}(x)$ for every r>0 . The directional cluster set $C(f,x,\theta)$ of f at x in the direction $\theta \in (0, \pi)$ is the set of all $w \in W$ such that for every open set U in W containing ω , x is a limit point of the set $f^{-1}(U) \cap L_{\alpha}(x)$

A set $E \subset H$ is said to have Baire property if there is an open set G and a first category set Q in H such that

$$E = G \Delta Q \equiv (G \backslash Q) \cup (Q \backslash G)$$

A function $f:H\to W$, where W is a topological space, is said to have Baire property if for every open set U in W the set $f^{-1}(U)$ has Baire property.

Jarnik [3] proved that if $f : H \to \Omega$, is arbitrary, where Ω is the extended real line, then the set of all points x in R at which there exit two directions θ_1 and θ_2 such that

$$C(f,x,\theta_1) \cap C(f,x,\theta_2) = \emptyset$$

is countable.

In this paper we shall prove an analogue of Jarnik's result for directional qualitative cluster sets. We also prove a result on intersection of sectorial qualitative cluster sets. This result is an analogue of the result proved in [1] by Allen and Belna on intersections of sectorial essential cluster sets. We would also like to mention that other interesting results on qualitative cluster sets can be found in [2] and [5].

The results which we proved here are the following:

(1) If $f: H \to W$ has the Baire property, where W is a compact, second countable, Hausdorff topological space then the set of all points x in R at which there exist a second category set $\Theta(x)$ of directions θ , $0 < \theta < \pi$, with the property that for each pair of directions $\{\theta, \phi\}\subset \Theta(x)$

$$C_q(f, x, \theta) \cap C_q(f, x, \phi) = \emptyset$$

is countable.

(2) If $f: H \to W$ is arbitrary, where W is a compact, second countable, Hausdorff topological space, then the set of all points x in R at which there exist two sectors $\sigma^1(x)$ and $\sigma^2(x)$ in H such that

$$C_q(f,x,\sigma^1) \cap C_q(f,x,\sigma^2) = \emptyset$$

is countable.

§3.

Before proving some auxiliary lemmas we shall define the following sets and relations among them which will be used in the sequel.

Let $E \subseteq H$ have Baire property. Then there is an open set G and a first category set Q in H such that $E = G \triangle Q$. For fixed $x \in R$ we write,

$$I(E,x) = \{\theta \in (0,\pi): L_{\theta}(x,r) \cap E \text{ is residual}$$
$$in L_{\theta}(x,r) \text{ for at least one } r > 0\}$$

$$_{\theta}(E,x) = \{\theta \in (0,\pi): \ \ \, \underset{\theta}{L}(x,r) \cap E \ \, \text{is first}$$
 category in $L_{\theta}(x,r)$ for at least one $r>0\}$.

For positive integers m and n we also define

$$I_{n}(G,x) = \{ \theta \in (0,\pi) : L_{\theta}(x,1/n) \cap G \text{ is residual in } L_{\theta}(x,1/n) \},$$

and

$$\Theta_{m}(G,x) = \{ \theta \in (0,\pi) \colon L_{\theta}(x,1/m) \cap G \text{ is first category}$$

$$\text{in } L_{\theta}(x,1/m) \} .$$

Then, since Q is of the first category, it follows from the Kurotowski-Ulam Theorem [4,p.56] that

$$\{A \in (0,\pi): L_{\theta}(x,r) \cap Q \text{ is of second category in } L_{\theta}(x,r)\}$$

is of the first category in $(0,\pi)$ for each r>0. Since E=G Δ Q, it follows that $I(E,x)\setminus I(G\backslash Q,x)$ and consequently, $I(E,x)\setminus I(G,x)$ is of first category. But, $I(G,x)\subset \bigcup_{n=1}^\infty I_n(G,x) \text{ and hence } I(E,x)\setminus \bigcup_{n=1}^\infty I_n(G,x) \text{ is also a first category set.}$ Similarly, it can be shown that $\Theta(E,x)\bigcup_{n=1}^\infty \Theta_m(G,x)$ is a first category set. Now, let

 $P(E) = \{x \in R: both I(E,x) and \Theta(E,x) are of second category \}$

LEMMA 1. If $E \subset H$ has the Baire property, then P(E) is countable.

Proof. Let $E = G \Delta Q$ where G is open and Q is

of first category in H. For positive integers m, and n, and rationals C $< \alpha < \beta < \pi$, let

 $P_{mn\alpha\beta}(E) = \{x \in R: I_n(G,x) \neq \emptyset \text{ and } \Theta_m(G,x) \text{ is dense in } (\alpha,\beta)\}.$

Using (1) and (2) it is easily seen that $P(E) \subset \bigcup_{mn \in B} (E)$ where the union is taken over all positive integers m and n, and all rational numbers 0 < α < β < π . We show that each set $P_{mn_{\alpha\beta}}(E)$ contains no two sided limit points and consequently is countable. Let m, n, α , and β be fixed, and let $P=P_{mn_{\alpha,\beta}}(E)$. As G is open and $\Theta_m(G,x)$ is dense on (α,β) , it follows that $G\cap\sigma_{\alpha\beta}(x,l/m)\neq\emptyset$ for each $x \in P$. Now suppose that P contains a two sided limit point, x_0 , of P. Then there is a sequence $\{x_i\}\subset P$ such that $x_{2i}>x_0$, $x_{2i+1}< x_0$, and limit $x_i=x_0$. As $x_0 \in P$, there is a $\theta_0 \in I_n(G, x_0)$ and either $\theta_0 < \alpha$ or $\beta < \theta$. But if θ $0 < \alpha$, there is a sufficiently large i such that $\sigma_{\alpha\beta}(x_{2i}, 1/m) \cap L_{\theta}(x_{0}, 1/n) \neq \emptyset$ which contradicts the fact that G misses $\sigma_{\alpha\beta}$ $(x_{2i}, 1/m)$ and is residual on $L_{\theta_0}(x_0, 1/n)$. If $\dot{\theta}_0 > \dot{\beta}$, there is a sufficiently large i such that $\sigma_{\alpha\beta}(x_{2i+1}, 1/m) \cap$ $L_{\beta}(x_0, 1/n) \neq \emptyset$ and again, this is a contradiction.

Thus, each of the sets $P_{mn\alpha\beta}(E)$ is countable and consequently, P(E) is countable.

Let E ⊂ H and define

 $M(E) = \{x \in \mathbb{R}: \text{ there are two sectors } \sigma^1(x) \text{ and } \sigma^2(x) \text{ such that for some } r > 0, \sigma^1(x,r) \cap E$ is residual in $\sigma^1(x,r)$, and $\sigma^2(x,r) \cap E$ is of the first category.

LEMMA 2. If $E \subset H$ is arbitrary, then M(E) is countable.

Proof. Let $x \in M(E)$, then there is a natural number n=n(x) and four rational directions $\alpha_i=\alpha_i(x)$, $\beta_i=\beta_i(x)$, i=1,2 such that

$$\sigma_{\alpha_1\beta_1}(x, 1/n) \cap E$$
 is residual in $\sigma_{\alpha_1\beta_1}(x, 1/n)$,

and

$$\sigma_{\alpha_2\beta_2}(x,1/n) \cap E$$
 is first category.

Let

$$M_{n\alpha_{1}\alpha_{2}\beta_{1}\beta_{2}} = \{x \in M(E): n=n(x), \alpha_{i}=\alpha_{i}(x), \alpha_{i}=\alpha_{i}(x$$

We show that each set $M_{n_{\alpha_1\alpha_2\beta_1\beta_2}}$ contains no two sided limit points, from which it follows that M(E) is count-

able. Let n , α_1 , α_2 , β_1 , β_2 be fixed and let $M=M_{n\alpha_1\alpha_2\beta_1\beta_2}$. Now, as $\sigma_{\alpha_1\beta_1}(x)\cap\sigma_{\alpha_2\beta_2}(x)=\emptyset$ for each $x\in M$, it follows that either $\alpha_1<\beta_1<\alpha_2<\beta_2$ or $\alpha_2<\beta_2<\alpha_1<\beta_1$ and for definiteness we suppose the former. Suppose x_0 is a two sided limit point of M. Then there is a sequence $\{x_i\}\subset M$ such that $x_{2i}>x_0$, $x_{2i+1}< x_0$, and limit $x_i=x_0$. However, for sufficiently large values in $\alpha_1\beta_1(x_{2i+1},1/n)\cap\sigma_{\alpha_2\beta_2}(x_0,1/n)\ne\emptyset$ and this contradicts the fact that E is residual in $\sigma_{\alpha_2\beta_2}(x_0,1/n)$ but of first category in $\sigma_{\alpha_1\beta_1}(x_{2i+1},1/n)$. If $\alpha_2<\beta_2<\alpha_1<\beta_1$ a similar contradiction is reached using $\{x_{2i}\}$.

LEMMA 3. If $f: H \to W$ is arbitrary, where W is a compact topological space and if G is an open subset of W such that $C_q(f,x,\theta) \subset G$, then there exists a positive integer n such that $L_{\theta}(x,1/n) \cap f^{-1}(G)$ is residual in $L_{\alpha}(x,1/n)$.

Proof. Since W\G is compact and disjoint from $C_q(f,x,\theta)$ there is a finite collection of open sets $\{V_i:i=1,2,\ldots,k\}$ and a corresponding set of radii $\{r_i>0:i=1,2,\ldots,k\}$ such that W\G $\subset \bigcup_{i=1}^k V_i$ and i=1

 $\begin{array}{l} f^{-1}(V_{\bf i}) \, \cap \, L_{\theta}(x,r_{\bf i}) \mbox{ is first category in } L(x,r_{\bf i}) \mbox{ for each i.} \\ \mbox{ each i.} \mbox{ If } n = \min\{r_{\bf i} : i = 1,2,\ldots,k\} \mbox{ , then} \\ f^{-1}(\bigcup_{i=1}^k V_{\bf i}) \, \cap \, L_{\theta}(x,l/n) \mbox{ is of first category in } \\ \mbox{ } L_{\theta}(x,l/n) \mbox{ and consequently, } f^{-1}(G) \, \cap \, L_{\theta}(x,l/n) \mbox{ is residual in } L_{\alpha}(x,l/n) \mbox{ .} \end{array}$

LEMMA 4. If $f:H\to W$ is arbitrary where W is a compact topological space, and if G is an open subset of W such that $C_q(f,x,\sigma)\subset G$, then there is a positive integer n such that $f^{-1}(G)\cap \sigma(x,1/n)$ is residual in $\sigma(x,1/n)$.

Proof. The proof of LEMMA 4 is similar to that of LEMMA 3.

Suppose $f:H\to W$. In what follows, let K=K(f) denote the set of all points $x\in R$ at which there is a second category set of directions $\Theta(x)$ with the property that if $\{\theta,\phi\}\subseteq\Theta(x)$, then $C(f,x,\theta)\cap C(f,x,\phi)=\emptyset$.

THEOREM 1. Let W be a compact, second countable,

Hausdorff space. If f:H-W has the Baire property, then K
is countable.

Proof. Let (A) be a countable basis for the topology of W, let (A) be the countable collection of all sets G which can be expressed as a finite union of members of (A), and let (A) (

category subsets, $\Theta_1(x_0)$ and $\Theta_2(x_0)$, of $\Theta(x_0)$. Let $\theta \in \Theta_{\underline{I}}(x_0)$ be fixed. Then for every $\phi \in \Theta_2(x_0)$ there is a $G \in A$ such that $C_{q}(f, x_{2}, \theta) \subset G$ and $C_{q}(f, x_{0}, \phi) \cap G$ $\overline{G} = \emptyset$. Since A is countable and $\Theta_2(x_0)$ is second category, there is a $G_{\alpha} \in \mathcal{A}$ and a second category set $\Theta_2'(x_0) \subseteq \Theta_2(x_0)$ such that $C_q(f,x_0,\theta) \subset G_p$ and $C_q(f,x_0,\phi) \cap G_p$ $\overline{G}_{\theta} = \emptyset$ for every $\varphi \in \Theta'_{2}(x_{0})$; that is, $\Theta'_{2}(x_{0}) \subseteq \Theta(f^{-1}(G_{\theta}), x_{0})$. By LEMMA 3 there is an n such that $L_{\rho}(x_{0}, 1/n) \cap f^{-1}(G_{\rho})$ is residual in $L_{\rho}(x_{0}, 1/n)$, and hence, $\theta \in I(f^{-1}(G_{\rho}), x_{0})$. But then, $\Theta_1(x_0) = U(f^{-1}(G_{\alpha}), x_0)$ where the union is taken over all $G \in A$, and as $\Theta_1(x_0)$ is second category, there is a second category set $\Theta_1'(x_0) \subseteq \Theta_1(x_0)$ and a $G \in A$ such that $G_{\alpha} = G$ for every $\theta \in \Theta'_{1}(x_{0})$. Consequently, both $I(f^{-1}(G),x_{O})$ and $\Theta(f^{-1}(G),x_{O})$ are second category and so $x_0 \in P(f^{-1}(G))$. By LEMMA 1, each set $P(f^{-1}(G))$ is countable and as K is contained in a countable union of such sets, K itself is countable. This completes the proof of THEOREM 1.

COROLLARY. Let W be compact, second countable, and Hausdorff. If $f:H\to W$ has the Baire property, then except for a countable set of points $x\in R$, in every second category set of directions there is at least one pair of directions, $\{\theta,\phi\}$ such that $C_q(f,x,\theta)\cap C_q(f,x,\phi)\neq\emptyset$.

Suppose $f:H\to W$. Let M=M(f) denote the set of all points $x\in R$ at which there exist two sectors $\sigma^1(x)$ and $\sigma^2(x)$ in H such that $C_q(f,x,\sigma^1)\cap C_q(f,x,\sigma^2)=\emptyset$.

THEOREM 2. Let W be a compact, second countable, Hausdorff space and let f:H-W be arbitrary. Then M is countable.

Proof. Let $\mbox{\ensuremath{\ensuremath{\Delta}}}$ be the same as in THEOREM 1 and let $x_o \in M$. Then there exist sectors $\sigma^1(x_o)$ and $\sigma^2(x_o)$ such that $C_q(f,x_o,\sigma^1)\cap C_q(f,x_o,\sigma^2)=\emptyset$. Since $C_q(f,x_o,\sigma^1)$ and $C_q(f,x_o,\sigma^2)$ are disjoint closed sets and W is normal and compact, there is a $G_o \in \mbox{\ensuremath{\Delta}}$ such that $C_q(f,x_o,\sigma^1)\subset G_o$ and $C_q(f,x_o,\sigma^2)\cap \overline{G}_o=\emptyset$. Hence, using LEMMA 4 we find an n such that both $\sigma^1(x_o,1/n)\cap f^{-1}(G_o)$ is residual in $\sigma^1(x_o,1/n)$ and $\sigma^2(x_o,1/n)\cap f^{-1}(G_o)$ is first category; that is, $x_o \in M(f^{-1}(G_o))$. By LEMMA 2 each set $M(f^{-1}(G))$ is countable, and as M is contained in a countable union of such sets, M itself is countable. This completes the proof of THEOREM 2.

The author is grateful to Dr. S.N. Mukhopadhyay for his kind help and suggestions in the preparation of this paper.

REFERENCES

- 1. H. Allen and C.L. Belna, <u>Disjoint essential angular</u> cluster sets, J. Korean Math. Soc., II (1974), 49-51.
- 2. M.J. Evans and P.D. Humke, On qualitative cluster sets, Colloq. Math., 37(1977), 255-261.
- 3. V. Jarnik, <u>Sur les fonctions de deux variables reelles</u>, Fund. Math., 27(1936), 147-150.
- 4. J.C. Oxtoby, <u>Measure and Category</u>, Springer-Verlag,
 New York Heidelberg Berlin, 1971.
- 5. W. Wilczynski, <u>Qualitative Cluster Sets</u>, Colloq. Math., 32(1974), 113-118.

Received February 29, 1980