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 Intersections of Qualitative Cluster Sets

 §1.

 Let H denote the open upper half plane above the

 real line R and let z and x denote points in H and R

 respectively. Let Ā denote the closure of the set A.

 For two directions 9^ and 0g, 0 < 9^ < < n > we write

 CT9i02 = fz: z e 01 < arg z < 02}

 Then a is a sector in H with vertex at the origin.
 «102

 By a (x) we denote the translate of q which
 A ]_P 2 ^1®2

 is obtained by taking the origin at x. If there is no

 confusion then we simply write q and cr(x) instead of

 CT0 ifi2 and CT0]_02(x)* For a fixed x € Ri fixed e e(0, w),

 and r > 0 we write

 L (x) = {z: z 6 H; arg (z-x) = 9},

 K(x, r ) = (z : z ç H; ļ z - x| < r } ,

 rr (x, r ) = CT(x) nK(x,r), and

 Lfl(x,r) = L0(x) nK(x, r ) .
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 Let f :H -» W where W is a topological space.

 Then the qualitative cluster set Cq(f,x) of f at x
 is the set of all w f W such that for every open set

 U in W containing w, the set f'^U) n K(x¿r) is of
 the second category for each r > 0. The sectorial

 qualitative cluster set C (f^x^a) of f at x in the

 sector a is the set of all uu 6 W such that for every

 open set U in W containing iw, the set f~'L(U) n cr(x,r)

 is of the second category fòr each r > 0. The direction-

 al qualitative cluster set Cq(fix,8) of f at x in the
 direction 0 € (0>tt) is the set of all uu € W such that

 for every open set U in W containing f~^(U) n L (x3r)
 8

 is of the second category in L (x) for every r > 0
 0

 The directional cluster set C(fJxJ0) of f at x in the

 direction 9 6 (Ojir) is the set of all m g W such that

 for every open set U in W containing cu., x is a limit

 point of the set f~^(U) n L (x)
 0

 A set E c H is said to have Baire property if

 there is an open set G and a first category set Q in H

 such that

 E = G A Q = (G'Q) u (Q'G)

 A function f :H -» W , where W is a topological

 space ¡ is said to have Baire property if for every

 open set U in W the set f~"'"(U) has Baire property.
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 Jarnik [3] proved that if f ¿H -» C. „is arbitrary,

 where £3 is the extended real line, then the set of all

 points X in R at which there exit two directions 0 ^ and

 0 g such that

 C(f,xJ0'1) fi C(fiXi02) = 0
 is countable.

 In this paper we shall prove an analogue of Jarnik's

 result for directional qualitative cluster sets. We

 also prove a result on intersection of sectorial qualita-

 tive cluster sets. This result is an analogue of the

 result proved in [1] by Allen and Belna on intersections

 of sectorial essential cluster sets. We would also like

 to mention that other interesting results on qualitative

 cluster sets can be found in [2] and [5]«

 The results which we proved here are the following;

 (l ) If f :H -» W has ■ the Baire property, where W is a
 ■ V

 compact j second countable, Hausdorff topological space

 then the set of all points x in R ajb which there

 exist a second category set 8(x) of directions

 9 , 0 <• g < rr , with the property that for each pair

 of directions {0, ,p}c 0(x)

 cq(f, X , 9) n Cq(f, X, cp ) = 0

 is countable .
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 ( 2 ) If f :H -» W is_ arbitrary, where W jLs a compact,

 second countable , Hausdorff topological space,

 then the set of all points x in R at which there

 1 2
 exist two sectors a (x) and a (x) in H such that

 CqífjXjCT1) n Cq(f ,x,CT2) = 0

 is countable.

 §3-

 Before proving some auxiliary lemmas we shall define

 the following sets and relations among them which will

 be used in the sequel.

 Let E c H have Baire property. Then there is an

 open set G and a first category set Q in H such that

 E = G A Q . For fixed x £ R we write,

 l(E,x) = {0ç(O,tt): L (x,r)nE is residual 9

 in L (x,r) for at least one r>0} 8

 g(E,x) = {06(O,tt): L (x,r)nE is first 8

 category in L (x,r) for at least
 8

 one r>0} .

 For positive integers m and n we also define
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 In(G,x) = [0ç(O,tt): L0(x,l/n)nG is residual in
 LQ.(x¿l/n} ,

 and

 0m(G,x) = [0ç(O,t t): L (x,l/m)nG is first category
 in L (x,l/m)] .

 0

 Then, since Q is of the first category, it follows from

 the Kurotowski-Ulam Theorem [4, p. 56] that

 {fl€(°iTî): L (x,r)nQ is of second category in 9

 L0(xJr)}

 is of the first category in (0JTT) for each r >0.

 Since E = G i Q, it follows that l(E,x) ' I(G'Q,x) and

 consequently, l(E,x)'l(G,x) is of first category. But,
 00 GO

 l(G,x) c U In(Gjx) and hence I(E,x)'(J I n (G,x) is also n=l n=l n

 a first category set. Similarily, it can be shown that
 00

 0(E,x) (J @ (G,x) is a first category set. Now, let
 n=l m

 P(E) = [X gR: both I(E,x) and ®(E,x) are of

 second category }

 LEMMA 1. If E c H has the Baire property, then

 P(E) Ls_ countable .

 Proof. Let E = G A Q where G is open and Q is

 3 0 7



 of first category in H. For positive integers m, and tij and

 rationals 0 < a < g < let

 Pmnag(E) = fxeR: ^(G^x) ¿0 and ©m(G,x) is
 dense in (a,ß)} .

 Using (1) and (2) it is easily seen that P(E) c Upmtlap(E)
 where the union is taken over all positive integers

 m and n, and all rational numbers 0 < a < ß < rr • We

 show that each set P (E) contains no two sided limit
 mna¡3

 points and consequently is countable. Let m,n,a3 and

 8 w be fixed, and let P = P „ (E) . As G is open and w mn<xß „

 ®m(GjX) is dense on (a,ß), it follows that G fi oag(x,l/m)¿0

 for each x ç P. Now suppose that P contains a two sided

 limit point , Xqj of P. Then there is a sequence

 {Xļ}cP such that x2i > xQJ x2i+]_ < xoJ and límít xi=xo
 Í-*oo

 As xnpP, there is a0 I (G.x^) x ' and either 9 n< a or o o n x o ' u

 ß<8 Q . But if 8 Q <a , there is a sufficiently
 large i such that o (x0.jl/m)nL (xn,l/n) u ^ 0 which aß 0 Q u
 contradicts the fact that G misses (x2i3 ^/m) anc*

 is residual on ( xq} l/n). If ¿o > ßJ there is a

 sufficiently large i such that aag(x2i+ií l/m) H

 Lg (xqj l/n) ¿ 0 and again, this is a contradiction.

 308



 Thus, each of the sets P (E) is countable and conse-
 mriaß

 .quently^ P(E) is countable.

 Let E c H and define

 M(E) = [x €R: there are two sectors a1(x) and
 2 1

 a (x) such that for some r> Oj o (x,r)nE
 1 2

 is residual in or (x,r)j and a (x^r)nE is

 of the first category}.

 LEMMA 2. If E CH is arbitrary, then M(E) is

 countable .

 Proof. Let x ç M(E), then there is a natural

 number n = n(x) and four rational directions a,j_=a^(x) ,

 P^=fJj_(x), i=l,2 such that

 a _ (x, 1/n) n E is residual in a a (xjl/n),
 al°l a

 and

 cr (xj 1/n) n E is first category.
 a-2° 2

 Let

 Mnaia2p1Ē2 = £X 6 M(E): n=n(x),ai=!aiix)J

 ^l=ßi(X) f0r ì=1^2} '

 We show that each set M „ contains no two sided
 I^xla2^1^2 „

 limit points, from which it follows that M(E) is count-
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 able. Let n a2J 01 j 02 be fixed and let

 M=Mnaia2elP2 • Now> as Vi(K) n 'W0 = 0
 for each x ç M, it follows that either

 al < ^1 < a2 ^2 or a2 < &2 < al < Pi

 and for definiteness we suppose the former. Suppose

 Xq is a two sided limit point of M. Then there is a

 sequence {x^} c M such that x2i > xQi x2i+l <x03 and
 limit x. = xn. However^ for sufficiently large values

 of i it follows that CTa^ß^ (x2i+1í 1//n) n aÜ2ß (xQjl/a)^0

 and this contradicts the fact that E is residual in

 CTa 2 0 2 (xojl/n) but of first category in a ®l"l s (x2i+1Jl/n) . 2 0 2 ®l"l s

 If a2 < 02 < < 0ļ a similar contradiction is reached

 using {x2iJ .

 LEMMA 3 • If f : H -» W is_ arbitrary, where W _is_ a

 compact topological space and if G is an open subset of

 W such that C (f , x^fl) c Gj then there exists a pos itive
 ÇL

 integer n such that L„(x,l/n) n f_1(G) is residual in
 _____ y _ _____

 L0(x,l/n).

 Proof. Since W'G is compact and disjoint from

 Cļ^(fixJ0) there is a finite collection of open sets
 [V^ : i=l,2, . . . , K} and a corresponding set of radii

 tc

 [r. > 0 : i=l ,2 } . . . j k} s.uch that W'G c U V. and
 1 i=l 1
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 f"1(Y.) v n L (xj r . ) is first category in Lfx,r L ) for v L 0 1 o L

 each Ł. If n = min{r^:i =1,2,... fc} , then

 f_1( fi V. 1 ) n L (x,l/n) is of first category in i=l 1 9

 L (x,l/n) and consequently, f 1(G) n L0(x,l/n) is
 6 8

 residual in L (x,l/n) .
 9

 LEMMA 4. If f :H-»w ijs_ arbitrary where W is_ a compact

 topological space , and if G an open subset of W such

 that C (f ,x,a) c G, then there is a pos itive integer n

 such that f "'"(Gjnaix, 1/n) _is_ residual in a(x,l/n) .

 Proof. The proof of LEMMA 4 is similar to that

 of LEMMA 3.

 Suppose f:H-»W. In what follows, let K=K(f) denote

 the set of all points x£ H at which there is a second

 category set of directions @(x) with the property that

 lf {elìcei*), then C(f ,x^ )nC(f ,x,ņ)=0.

 THEOREM 1. Let W be_ a compact , second countable ,

 HausdorfF space. If f :H-»W has the Baire property, then K

 is countable .

 Proof. Let (2- be a countable basis for the topology

 of W, let A be the countable collection of all sets G

 which can be expressed as a finite union of members of

 Ql, and let xq ç K. Then there is a second category
 set, @(x ), of directions such that if { 9 ,<p} (x ) ,

 then C (f , x, 0 )nC (f ,xQ j çp) = 0. As ©(xq) is a second

 category subset of (o,tt).s there are two disjoint second
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 category subsets , 01(xQ) and ©2(x0) j of ®(x0)«

 Let 0 ç ®i(x0) be fixed. Then for every cp ç 02(xo)

 there is a G çil such that C Cļ_ (f> Xp,0)cG d. and C (ļ (f,x o ,<p) n Cļ_ d. (ļ o

 G = 0. Since A is countable and ©2(xq) is second
 category, there is a G ç Â and a second category set

 9

 ®2(x0)c®2(xO) such that Cq(f'xoJ0)cG0 and Cq(f'xo'cp) H

 G0 = 0 for every q, ç ©' 2(x0) > that is' ®2 (x0)c® (f ^Xo^ *

 By LEMMA 3 there is an n such that, l 0 (xQ,l/n)nf ^(G ) is  0 0

 residual in L (x ,1/n), and hence, 0£l(f ^"(G ),x ).
 0 ^ 0 ^

 But then, @^(xo)=|jI(f "^(G^ ) , xQ) where the union is taken
 over all G £ 1 , and as @^(xq) is second category, there

 is a second category set ©ļ(x0) c @^(xQ) and a G G Â

 such that G = G for every g ç (x ). Consequently,
 0 X O

 both l(f~"^(G),x0) and © (f ~^(G) ,xq) are second category

 and so xQÇP(f _1(G) ) . By LEMMA 1, each set P(f_1(G))
 is countable and as K is contained in a countable union

 of such sets, K itself is countable. This completes

 the proof of THEOREM 1.

 COROLLARY. Let W be compact, second countable ,

 and Hausdorff. If f :H-»W has the Baire property, then

 except for a countable set of points x Ç R , in every

 second category set of directions there is at least one

 pair of """"""" directions, - - - - - £ 0 j cp} such that C (f ,x,9 )nC (f ,x,cp)¿¿j2f. """"""" - - - - - ^
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 Suppose f:H-»W. Let M=M(f) denote the set of all

 points X ç R at which there exist two sectors

 a^x) and <j2(x) in H such that C 0(fax3a^)nC M. (f 3Xja2)=0. M. T,

 THEOREM 2. Let W be a compact, second countable ,

 Hausdorg* space and let f : H-»W be arbitrary. Then M is

 countable .

 Proof. Let& andÂ be the same as in THEOREM 1

 and let x^ ç M. Then there exist sectors a^(x v ) and 0 v o

 a2(xo) such that C (f (f £.Q>a2)=0. Since
 1 2

 C (f,x ,a ) and C (fpc ,a ) a^e disjoint closed sets
 T. T.

 and W is normal and compact, there is a GQ €>9, such that

 Cq^f íXoíct1^cGo and Cq^f iXoja2^n^o= Hence' using
 LEMMA 4 we find an n such that both a"^"(x0, l/n)nf ~'go)

 1 2 -1
 is residual in a (x0>l/n) and (x 3l/n)nf" (GQ) is
 first category; that is., xQ £ M(f"*^(G )). By LEMMA 2
 each set M(f ^"(G)) is countable, and as M is contained

 in a countable union of such sets, M itself is countable.

 This completes the proof of THEOREM 2.

 The author is grateful to Dr. S.N. Mutìiopadhyay for
 his kind help and suggestions in the preparation of
 this paper.
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