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 Some Examples Relating Surface Area and the Area Integral.

 À well developed theory of area for discontinuous non-

 parametric surfaces has been discussed by C. Goffman in the main

 lectures of the Symposium on Real Analysis. The theory of dis-

 continuous parametric surfaces is not as well developed. As

 pointed out by Goffman, the very definition of area is not at all

 obvious because convergence in measure is not enough to make area

 a lower semi continuous functional in the class of piecewise smooth

 maps. In [l] , Goffman and Liu show that linear continuity is not

 the right concept for parametric surface area even thought it does

 have a natural place in the nonpar ametric case. They further

 show that, for mappings from B11 into rf* (m ä n) , the notion

 of (n-1) -continuity does work. We discuss briefly this notion

 next.

 For convenience we will assume that our mappings are defined

 on an n-cube in R11 . A map f :X -» R™ is said to be (n-1)-

 continuous if its restriction to almost every (n-1) -hyperplane

 orthogonal to a coordinate direction is continuous. Clearly,

 continuous maps are (n-1) -continuous. There is a natural metric

 on this class of maps called the (n-1) -continuity metric. (It is

 really a pseudo metric). It corresponds to uniform convergence

 on almost every (n-1) -hyperplane involved in the definition of

 this class of maps. The class & of piecewise smooth maps is a
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 dense subspace and its closure is precisely the class of (n-1) -

 continuous maps. Às mentioned above, area is a lower semi con-

 tinuous functional on 9 with respect to this metric and hence

 has a Frechet extension to the class of (n-1) -continuous maps.

 Denote by A(f) this area functional. It is proved in [l] that

 A(f) is equal to Lebesgue area whenever f is continuous.

 The paper [2] by Go f finan and Ziemer has influenced the

 direction of research for (n-1) -continuous maps. It established

 that a certain type of Sobolev map is (n-1) -continuous and that

 the area of such a map is given by the classical area integral.

 Further research was done along this line by Goffman and Liu [3].

 In both works, mollification leads to smooth maps which converge

 in the (n-1) -continuity metric to the Sobolev map and whose

 Jacobians converge in the L^-norm to the formal Jacobian of the

 Sobolev map. Not all Sobolev maps are of the type investigated

 in [2] and [3] as shown by the example of D. Pepe [4]. Motivated

 by the above papers, Breckenrldge and the author [5] investigated

 the relationship of area and the integral formula for the area by

 studying another metric on the class 9 of piecewise smooth maps.

 We describe this metric below.

 Denote by d(f ,g) the (n-1) -continuity metric. Let

 and ¿2 be piecewise smooth maps from X into F™ and Jf^ and

 Jf 2 be the Jacobians of these maps. We define the metric

 o(fltf2) on 9 by

 p (frf2) - d(frf2) +1 |jfx - Jf2l .
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 The completion of P with respect to this metric will be denoted

 by D*[n,m] . Our Interest Is In the class of continuous maps

 c[n,m] . Since mollification In this case leads to uniform con-

 vergence, we will also use the uniform norm as follows.

 ». «VV " Hfl - £2L + J lJf! - Jf2ld •
 X

 The completion of # with respect to pB will be denoted by

 cD*[n,m] . This space can be Identified as a subset of

 c[n,m] X L^(X, Fř") . (f,J#f) will denote members of cD*[n,m].

 If f has a formal Jacobian Jf almost everywhere and

 (f , Jf ) € cD*Cn,m] , we say f € cD[n,m] . So continuous maps of

 the type of Goffman, Ziemer and Liu are In cDļ|n,m] • Also, any

 continuous map of zero area Is In cD*[n,m] , where J^f ■ 0 .

 Our paper [5] left unresolved the problem of the uniqueness

 of J^f . That Is, are there two functions and 7^

 corresponding to f so that (f,F^) and are both In
 cD*[n,m] ? Sufficient conditions for uniqueness can be found In

 [5]. We give three examples, all very different from each other.

 Example 1. Let X be the unit square in R^ and f :X -* R^ be

 the constant map f(x) ■ 0 . Clearly, f € cD[2,2] and Jf ■ 0 .

 It can be shown that for any summable function F:X -» R^ we have

 (f,F) € cD*[2,2] . We illustrate the construction for F ■ 1 .
 2

 Consider the four subsets of R in Figure 1 below. We have

 diam W < j, ZC YC X and a piecewise linear retraction <p of X
 onto 7 . There is a piecewise linear map ý of 7 onto Z

 which maps the squares of each row of Y affinely onto the squares
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 of Z . Finally there is a piecewise linear map ? of Z onto W

 which maps each square of Z affine ly onto W . Let

 f^ » Ç o top . Then !!f - ^ and Jf^(x) » 1 for almost
 every x in Y and Jf(x) ■ 0 for almost every x in X - Y.

 Hence

 ļ |jfx - l|dn2 -n2(X - Y) ,

 which can be made arbitrarily small. One can see that there is a

 sequence f ^ ^ such that Hf - 0 and

 ļ|jik-i|d»2-.o
 as k •* • . That is, (f»l) € cD*[2,2]. Note that for any scalar

 2 2

 t , we have (f,t ) € cD*[2,2] because Jitf^) ■ t It is not
 difficult to show (f,-t2) 6 cD*[2,2].

 Let g be the orthogonal projection of X onto (0) X [0,1]

 and 6 be any sunmable function on X . Then one can easily see

 that (g,G) 6 cD*[2,2] .

 Each of the two continuous maps f and g above are in 9

 and have area zero. Also , Jf and Jg exist almost everywhere

 and are equal to zero. One observes that for any J^f for which

 A(f) I d we bavé J^f * Jf almost everywhere. This is

 because A(f) ■ 0 . The same is true for g above.

 Example 2. This example deals with maps with positive area. Let

 2 2
 X and XQ be concentric squares in F and f :X -» F be the

 piecewise linear map which collapses the inner square Xq to the

 center and maps X onto X . This map f is in cD[2,2],
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 Jf(x) - 0 for X Ç Xq and A(f) | Jf ļ d n2 *» 1 . Using the

 example 1 above, one can easily construct a J^f such that

 J^f(x) » Jf(x) for X € X - Xq and J^f(x) / 0 for almost

 every x € X . Hence (f,Jf) ¿ (f,J.f). * We know [5;Theorem 3.1] O *

 that A(f) < £ 1*2 311(1 [5;Theorem 5.1] that
 I Jf I < ļ ļ almost everywhere for any choice of J^f with

 P

 <f,J*f) € cD [2,2], Hence, if A(f) - P |j^f|d then
 * C

 J^f * Jf almost everywhere.' Another interesting fact about this
 r *
 f is that i J^fd y>2 " 0 whenever (f,J^f) € cD [2,2]. (See

 A
 o

 [5; Theorem 3.3].)

 2
 Example 3. There is an example f:X -+ R , where X is a

 2

 rectangle in R and tuo summable functions F^, with

 £ |PŁ - F2|d n2 > 0, (f.F^ € cD*[2,2], <f,F2) € cD*[2,2] and

 A(f) '[ '*lid»2m['*2'd»2 •

 Thus, the condition A(f) ļj^fļdļi^ does not determine
 if

 J^f uniquely in cD [n,n].
 2

 Consider a map f :X -» R described as follows. Let C be

 2 2
 an arc in I with positive measure which separates I into

 components A and B as in Figure 2 below. Let X be a rectangle

 which is divided into three components by arcs and C^, the

 three components being labeled A^, and D. The restrictions

 f I (A^ U C^) and f I (B^ U C2) are isometries onto A U C and

 BUC respectively. f ^(y) is an arc in C^ U D U C2 for each
 y € C . Such maps f are used in [6] by L. Cesari for another

 purpose. One can construct such a map so that if F^ is the
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 characteristic function of (J U and F2 is the charac-

 teristic function of 'J U then (f,F^) € cD*[2,2] and
 if

 (f,F^) € cD [2,2], Since and are isometric with C we

 have r !P1 - F2|d ii 2 - 2 ^2(C) > 0. Also, ļl^U * 1 '
 p

 I p J F0 2 J d n, 2 » 1 and A(f) ■ 1 . (The above example was suggested * 2 2
 to the author by J.C« Breckenridge.) We remark that the Jacobian

 Jf for f does not exist almost everywhere.

 i

 Addendum. The following example is given to illustrate that

 "pathological" (n-1) -continuous surfaces can exist.

 Let X " [0,1] X [0,1] and g:ôX -♦ F01 be any continuous

 map from the boundary of X. Let r:X-{ p) -» SX be the natural

 retraction of X-|p) onto dX where p is the center of the

 square X . Then f :X ■+ H™ given by f(x) »go r(x) for

 X € X-{p) and f(p) ■ g(0) is (n-1) -continuous for n«2. Notice

 that f(X) » g(ôX) is not a two-dimensional object. If g is

 one-to-one, then A(f) >0. Moreover, let F:X -» F?1 be any

 continuous map for which f|òX • g . Then we assert A(f) ¿ A(F).

 To see this, let X^ be a square concentric with X with diameter

 less than 1/k and let Tļ^ :X -* X be the continuous map which

 retracts X-X^ onto 3X and maps X^ affinely onto X. Consider

 Ffe « F 0 T|k . One gets A(Ffe) » A(F) and d(Ffc,f) -»0 as k
 Hence by the lower semicontinuity of the area A with respect to

 the metric d, we have

 A(f) * lim inf A(Fk) - A(F) .
 k -» »
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 Thus, we find that

 A(f) s inf{A(F) ļ F :X -* is continuous } f|òX "g).

 That is, there is a connection with the minimum area problem.

 Coni ec ture; The above inequality is actually an equality.

 Figure 1.

 pnnn p
 ~innn □
 ~innn □

 oi

 X Y Z W

 Figure 2.

 'S Sì . "31
 ..T.
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