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Differentiation and Lusin's Condition (N)

This paper deals with a problem mentioned by Professor
D.W. Solomoﬁ; namely, whether two continuous functions can
each satisfy Lusin's condition (N), be differentiable a.e.
with identical derivatives a.e. and not differ from each
other by a constant.. That this can occur is shown in the
example below. The functions in the example differ by a
monotone function and Theorem 1 showsvthat,a function
which has a pair of this type also has a pair which differs
from it by a monotone function. Theorem 2 shows that no

function with a pair can be ACG .

Example: There exist two continuous functions f1 and

f, which satisfy Lusin's condition (N), are differgntiable

a.e.‘with'equal derivatives a.e., such that f1 - f2 is

not identically constant.

Proof: Note that each real number x ¢ [0,1] can be

written as 'in . 16-1 where 0 < X < 16 or, alternatively,
as Z(%xi) . 871 here 0 < x; < 16 and each x; 1is

even. Let P be the set of all x = 2 16~i where

0 < X; < 16 and each X5 is even. Then P is perfept,

of measufe 0, and contained in [0,15/16]. If x ¢ P

_ . -i . _ . o-1
and x = in 16 , define fl(x) by fl(x) Za; 8
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where a; = 6 if 4 divides X; . 8, = 0 otherwise;
define h(x) = 2 2(%xi) . 871 pefine £, and h on
(0, 15/16] by extending them 1inear1y from P to the
intervals contiguous to P . Since both fl and h are
continuous on P they are continuous on [0, 15/16].

Note that h(xj takes P onto [0,2], is monotone non-
decreasing and is constant on intervals contiguous to P .
Define fz(x) = fl(x) + h(x) . Then both f1 and f2
are differentiable almost everywhere with fi = fé a.e.
Now, fl(P) is clearly of measure 0 and since f1 is

linear on intervals contiguous to P , fl satisfies

condition (N) . If y ¢ fz(P) , then

_ -i
y = Z(ai + Xi)8 where a;

and a., =0 if x, = 2,6,10, or 14
i i

6 if X; = 0,4,8 or 12

Thus, the possible values of a; + x; are 2, 6, 10, 14,

or 18. Hence, fz(P) can be covered with Sk intervals

[}

each of length at most 2 .8k 163 871 = gk . 62/7 .
k .
It follows that ifz(P)I =0 . Since f2 is also linear

on intervals contiguous to P , f2 also satisfies condi-

tion (N)

Theorem 1. If f1 and f2 are continuous functions,

which satisfy conditions (N) and are differentiable almost

everywhere with f1 = fé a.e., then there exists a con-

tinuous function f3 which also satisfies condition (N)

such that fé = f a.e. and f3 - fl is monotone.

1
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Proof. Let f1 and f2 satisfy the hypotheses of the
theorem and let h = £, - f1 . Assuming h 1is not already
monotone, let Yy = sup h , Yo = inf h and find X and
'xl such that f(xo) =Yg > f(xl) =¥y - Without 1loss

of generality, Xg < Xy . For each vy ¢ [yo,yl] , let

x(y) = inf {x |x ¢ [xo,xl] and h(x) = y} . Define

g(x) =y if x = x(y) and extend g continuously to
the closure E of the set of x(y) and then linearly
to [0,1] with f&) = Yo if x < X and f(x) = Y1

if x > x; . Since h'(x) = 0 a.e. and g agrees with
h on E and is constant on each interval contiguous to
E , it follows that g'(x) = 0 a.e. It is clear that
g(x) is monotone. Let f3(x) = fl(x) + g(x) . Then
fé(x) = fi(x) a.e. . Since f3(x) = fz(x) at -each point
x. ¢ E and on each interval I, contiguous to E , |
f3(x)'= fl(x) + Cn , Wwhere Cn are  appropriate  constants;

it follows that f3(x) satisfies condition (N)

Theorem 2. If f1 igl ACG, f, 1is continuous and satis-

fies condition (N) and both fl and f2 are differentiable

a.e. with £, = f, a.e., then f, - f; ~is identically

constant.

Proof. Suppose not and let h =»f2 - f1~. Construct g

and f3 as in Thecrem 1. Then 'fl + g = f3. and f3 is

both VBG and satisfies condition (N). By [1,Thm. 6.7,

p.227], f3 is ACG . Hence, g is ACG and since g
is monotone, g 1is absolutely continuous. Since g' =0
a.e., g 1is identically constant. But this is impossible
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unless h were constant and in that case f2 - f1 is

constant.

Note: Theorems 1 and 2 can be proven in the same fashion
using the approximate derivative rather than the ordinary

derivative.
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