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Transformations of Differentiable Functions

Let T denote the set of real valued functions
defined on [0,1] of the form U o F where F(x) is
a differentiable function and U is a homeomorphism.
Equivalently, T consists of the continuous functions
which can be homecmorphically transformed into differ-
entiable functions.

Differentiable functions are ACG* aﬁd thus
satisfy Banach's condition (Tl) and Lusin's condition
(N) . A reader unfamiliar with these conditions is
referred to [2, Ch.9].

The main result of [1] is that the condition (S’)
along with continuity characterize the class T .

A function is said to satisfy condition (S”) Cif
for each open interval J contained in the range of
F , there exists €. > 0 such that J ¢ F(E) implies

J
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A function is said to satisfy condition (8”) if

for each open interval J contained in the range of
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F , Jc FI(E) implies |E| > 0 .

Differentiable functions rust satisfy (S”) since
they satisfy condition (N) . Moreover, (S”) is pre-
sexrved by outer homeomorphisms, as is (S’) . Thus
Lebesgue's singular function provides an example of a
continuous function which does not belong to T since
it maps the cantor set onto [0,1] . Continuity is
clearly necessary for a furiction to belong to T . To
show the necessity of (S8’) , We assume that F does
not satisfy this ccndition and note that if G is any
homeomorphism, then G o F does not satisfy it either.
It is then shown that if G o F does not satisfy (S”)
then it cannot satisfy both (Tl) and (N) and thus
cannot be differentiable. To show sufficiéncy, we
define

e(J) = inf{|E|: J c F(E)}

and set G(y) = ¢([0,vy]) . Then G is a homeomorphism
and it is the condition (S’) which guarantees that G
is strictly increasing. Then G o F satisfies a
Lipschitz condition of order one and thus is di%feren—
tiable almost everywhere and the image Q of the set

of points of nondifferentiability of G o F 1is of
measure zero. Using a result of Zahorski [3], we define
H to be a differentiable homecmorphism whose derivative

is zero on the set Q . Then, H o G o F 1is shown to
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be everywhere differentiable.

We  construct an exampie of an ACG function which
does not belong to T . This function satisfies (N)
and thus (S8”) and this shows that (S”) and (S*)
are not equivalent.

We further note that ACG* functions belong to T
since ACG* = (Tl) and (N) = (S8’) o T .

A function is then constructed which belongs to T
but does not satisfy Banach's condition (Tz) . Func-
tions in T are shown to be differentiable on a set of.
positive measure in every interval. A final example is
given of a function in T whicﬁ fails to be differen-

tiable on a set of positive measure.
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