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On the Equivalence of two Convergence
Theorems for the Henstock Integral

There are two well-known convergence theorems for the Ilenstock integral.
Let {fn} be a sequence of Henstock integrable functions that converge pointwise
to a function f on [a,b] and let F(z) = [7 f, for each n. One of the theorems
has an easy proof and requires that the sequence {f,} be uniformly Henstock
integrable on [a,b]. The other, usually written in the language of the Denjoy-
Perron integral, has a more difficult proof and requires that the sequence {F,,} be
equicontinuous and equi ACGx on [a, b]. It is not easy to compare the hypotheses
of these two theorems. Two recent attempts ([1] and [2]) have been made. In
[2], the term equi ACGYV is introduced. It is shown that { F,,} is equi ACGY on
[a, 8] if and only if {f,} is uniformly Henstock integrable on [a, b]. Furthermore,
it is possible to prove that {F,,} equi ACGx on [a,b] implies {F,,} equi ACGY
on [a,b]. In [1], a new convergence theorem is proved and it is shown to include
both of the standard convergence theorems as special cases. Here the necessary
hypothesis is that {F,} is generalized P-Cauchy on [a,b]. The purpose of this
paper is to prove that {f,} is uniformly Henstock integrable on [a, b] if and only
if {Fy,} is generalized P-Cauchy on [a, b].

We will assume that the reader is familiar with the terminology of the Hen-
stock integral. The relevant notation needed for the paper appears below. Let
fiF :[a,b] = R, let E C [a,b], let 6 be a positive function defined on [a, b], and
let P = {(zi,[ci,di]) : 1 <i < ¢} be a finite collection of non-overlapping tagged
intervals in [a, b]. Then

q
F(P) = 3" f(xi)(di — c;) denotes the Riemann sum of f associated with P;
i=1

F(P) = i: (F(di) — F(c;)), where F will always be an indefinite integral;

=1
CE denotes the complement of F;
p(z, E) denotes the distance from z to E; and
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P is E-subordinate to § means that P is subordinate to § and each of the
tags z; is in E.

Definition 1 Let {f,} be a sequence of Henstock integrable functions defined
on [a,b] and let Fno(z) = [ fa for each n. The sequence {fn} is uniformly
Henstock integrable on [a,b] if for each ¢ > 0 there exists a positive function §
on [a,b] such that |fo(P) — Fu(P)| < € for all n whenever P is subordinate to 6.

Simple Convergence Theorem 1 Let {f,} be a sequence of Henstock inte-
grable functions defined on [a,b] and suppose that {f,} converges pointwise to f
on [a,b]. If the sequence {fn} is uniformly Henstock integrable on [a,b], then f

is Henstock integrable on [a,b] and f:f = nlinolo f: fn-

Definition 2 Let {F,} be a sequence of functions defined on [a,b] and let E C
[a,b] be measurable.

(a) The sequence {Fy} is P-Cauchy on E if {F,} converges pointwise on E and
if for each € > 0 there ezist a positive function § on E and a positive integer N
such that |Fy,(P) — Fu(P)| < € for allm,n > N whenever P is E-subordinate
to 6.

(b) The sequence {Fy} is generalized P-Cauchy on E if E can be written as a
countable union of measurable sets on each of which {F,} is P-Cauchy.

Another Convergence Theorem 1 Let {f,} be a sequence of Henstock in-
tegrable functions defined on [a,b], let Fo(z) = [ fao for each n, and suppose
that {fn} converges pointwise to f on [a,d]. If the sequence {F,} is generalized

P-Cauchy on [a, b], then f is Henstock integrable on [a, b] and fabf = lim f: fn.

Lemma 1 Suppose that f : [a,b] — R and let Z C [a,b]. If u(Z) = 0, then for
each € > 0 there ezists a positive function § on Z such that |f(P)| < € whenever
P is Z-subordinate to 6.

Proof. For each positive integer n, let Z, = {r € Z : n — 1 < |f(z)| < n}
and let ¢ > 0. For each n, choose an open set O, such that Z, C O, and
#(On) < €/n2™. Let §(z) = p(z,CO,) for z € Z,. Suppose that P is Z-
subordinate to 6. Let P, be the subset of P that has tags in Z, and compute

IFPI S D 1Pl < 3 nu(0n) <Y /2" =
n=1 n=1 n=1

Lemma 2 Let {f,} be a pointwise bounded sequence of functions defined on
la,b] and let Z C [a,b). If u(Z) = 0, then for each € > 0 there exists a positive
function 6§ on Z such that |fo(P)| < € for all n whenever P is Z-subordinate 1o
5.
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Proof. Let M(z) = sup{|fa(z)|} for each z € [a,b] and apply the previous
lemma.

Lemma 3 Let {fn} be a sequence of Henstock integrable functions defined on
[a,b], let Frp(z) = f: fn for each n, and suppose that {f,} is pointwise bounded
on [a,b]. Let Z C [a,b] such that u(Z) = 0. If the sequence {F,} is generalized
P-Cauchy on Z, then for each € > 0 there exists a positive function § on Z such
that |F(P)| < € for all n whenever P is Z-subordinate to 6.

Proof. We will consider the case in which the sequence {Fy} is P-Cauchy
on Z; the general case follows easily. Let ¢ > 0. By hypothesis, there exist a
positive integer N and a positive function §; on Z such that |Fy,(P)—F,(P)| < €
for all m,n > N whenever P is Z-subordinate to §;. By Lemma 2, there exists
a positive function §; < é; on Z such that |f,(P)| < € for all n whenever P
is Z-subordinate to 6. By the definition of the Henstock integral, there exists
a positive function § on [a,b] such that § < é2 on Z and |fr(P) — Fn(P)| < ¢€
for 1 < n < N whenever P is subordinate to §. Now suppose that P is Z-
subordinate to §. Then for1 <n < N,

|Fa(P)| < |Fa(P) = fa(P)| + |fa(P)| < € + € = 2¢,
and forn > N,
|Fa(P)| < |Fa(P) — FN(P)| + |FN(P)| < € + 2¢ = 3e.
This completes the proof.

Lemma 4 Let {fn} be a sequence of Henslock integrable functions defined on
[a,d], let Fr(z) = [7 fn for each n, and suppose that {f,} converges pointwise
to f on [a,b]. If {F,.} is generalized P-Cauchy on [a,b], then there exists an
increasing sequence {Ey} of closed sets in [a,b] such that p(Z) = 0 where Z =

[a,b]— U E} and for each k, the sequence {fn} converges uniformly to f on Ej
and the sequence {Fn} is P-Cauchy on Ey.

oo
Proof. First write [a,b] = |J Ag where each Ay is measurable and {F,} is P-
k=1

[e o]
Cauchy on each Ay, then use Egorov’s Theorem to write [a,b] = |J B;jUZo where
ji=1

each Bj is measurable, {f,} converges uniformly to f on each B], and p(Zp) = 0.

By reducing a doubly indexed sequence to a sequence, [a,b] = U C;UZp where

i=
{fn} converges uniformly to f on each C; and {F,} is P- Cauchy on each Cj.
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For each j, let C; = U D U Z; where {D}} is an increasing sequence of closed

i=1
sets and p(Z;) = 0. Finally, define Ey = U D# for each k and Z = U Z;.
j=0
On each Ey, the sequence {F,} is P- Cauchy and {fn} converges uniformly to

f. This completes the proof since [a,b] = U FEx U Z, {Ei} is an increasing
k=1
sequence of closed sets, and p(Z) =

Theorem 5 Let {f,} be a sequence of Henstock integrable functions defined on
[a,d], let Fp(z) = f: fn for each n, and suppose that {f,} converges pointwise
to f on [a,b]. Then the sequence {f,} is uniformly Henstock integrable on [a, b)]
if and only if the sequence {F,} is generalized P-Cauchy on [a,b].

Proof. Suppose first that the sequence {f,} is uniformly Henstock integrable
on [a,b]. By the Simple Convergence Theorem, the sequence {F,} converges
pointwise on [a,b]. For each z € [a,}], let My = sup,{|fa(z)|} and for each
positive integer k, let Ex = {z € [a,b] : k — 1 < M, < k}. Note that each E} is
e o)

a measurable set. Since [a,b] = |J Ek, it is sufficient to prove that the sequence
k=1

{F.} is P-Cauchy on E}, for each k.

Fix k and let € > 0. Choose a positive function é; on [a, b] such that | f,(P)—
Fa(P)| < € for all n whenever P is subordinate to §;. By Egorov’s Theorem,
there exists an open set Oy such that {f,} converges uniformly on Ej — O} and
#(Ok) < €/k. Choose a positive integer N such that |f,(z) — fm(z)| < € for all
m,n > N and all z € E};, — Oy and define

5(z) = 61(z), if x € Ey — Og;
min{é;(z), p(z,COx)}, ifz € Ex NOy.

Suppose that P is Ex—subordinate to § and that m,n > N. Let P; be the subset
of P that has tags in E}y — O and let P, = P —P;. Now use Henstock’s Lemma
to compute

IFa(P) = Fn(P)| < |Fa(P) = fa(P)| + 1 fa(P) = fm(P)|
+fm(P) — Fn(P)
S €+lfn(Pl)—fm(Pl)|+|fn(P2)‘fm(P2)|+€
< e+e(b—a)+2ku(Or)+e
< e€b—a+4).

Therefore the sequence {F,} is P~Cauchy on E}.
Now suppose that the sequence {F,} is generalized P-Cauchy on [a,b).
Choose an increasing sequence {FE};} of closed sets as in Lemma 4 and let
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= [a,b] - U Ey. Let ¢ > 0 and let € = €27¥~1/(b — a + 2) for each positive

integer k. For each k, choose a positive integer m; and a positive function 6},
on Ei such that |fn(z) — fa(2)| < € for all m,n > my whenever ¢ € E} and
|Fa(P) — Fu(P)| < €k for all m,n > my whenever P is Ex-subordinate to é;.
Without loss of generality, we may assume that the sequence {m;} is increasing.
For each k, there exists a positive function é; on [a,b] such that 6, < & on
Fi and |fn(P) — Fo(P)| < € for n = 1,2,---,mp whenever P is subordinate
to éx. By Lemmas 2 and 3, there exists a positive function éz on Z such that
|/u(P)| < €/4 and |F,(P)| < €/4 for all n whenever P is Z-subordinate to éz.
Let Eg = 0 and define a positive function § on [a, b] by

5(3:) _ 6k(:c), ifz € Fr — Elc-1§
" \éz2(z), ifze€Z.

Suppose that P is subordinate to é and fix n. Define
Pz={(z,])eP:2€2} and Pr={(z,])€P:z€ Ex — Ex_1}

for each k. We then have

1/a(P) — Fa(P)I izt [[n(Pr) = Fu(Pe)| + 1fn(Pz)| + | Fa(P2)]

<
< ka1 fn(Pr) = Fa(Pe)l +€/2.

Now fix k. If n < my, then |fn(Pr) — Fa(Pr)| < €& by the choice of §; and if
n > my, then

[fa(Pr) = Fa(Pr)l < |fa(Pr) = fuu (Pr)| + | fmn (Pr) = Frny (Pr)|
H Fmy (Pr) — Fu(P)|
< a(d-—a)ter+e =e27F1

It follows that

1£a(P) = Fa(P)| < 3" 1fa(Pe) = Fa(Pe)l + ¢/2 < ie?’k_l te/2=c

k=1 k=1
Ience {fn} is uniformly Henstock integrable on [a, b].

It should be pointed out that the status of the hypothesis {F,,} is equi ACG
on [a,b] is not known. That is, it has not been shown that this hypothesis is
equivalent to { f,} is uniformly Henstock integrable on [a, b] nor has a counterex-
ample been produced.
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