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 A Local Characterization of Darboux(B)
 Functions. The Semicontinuity of Monotone

 Functions.

 In 1987 Prof. B. Ricceri from Catania (Italy), in a private letter, raised the
 following problem:

 Let X be a connected, locally connected and complete metric
 space, and let / be a real-valued function on X such that, for every
 r E M, the set /_1(r) is non-empty and arcwise connected. Find
 some sufficient (and possibly necessary) conditions under which the
 function / is lower semicontinuous.

 Our paper includes a full answer to the question raised by B. Ricceri. At
 the same time, we discuss important problems of Darboux points, investigated
 lately very intensely by many mathematicians. Our results are connected with
 the considerations included in [BB].

 The notion of a Darboux point (for real functions of a real variable) was
 introduced for the first time in paper [BC]. In paper [BB] the authors introduced
 the notion of real Darboux(B) functions and gave a local characterization of these
 transformations. Some generalizations of these results are included in [RG].
 The consideration of problems of a local characterization of transformations
 connected with the notion of connectedness can be found, among others, in [JL],
 [JJ], [GNK], [LS], [RP].

 In papers [RG] and [BB] this notion referred to Darboux(B) functions. In
 our paper the term Darboux(B) will be understood in a bit more general sense
 than in [RG] and [BB]: Let / : X - ► M where X is some metric space, and let B
 be a family of connected sets, covering X> (i.e., X = A). We say that /
 is a Darboux(B) function if f(Ū) is a connected set for U G B 1

 Similarly as in [BB] and [RG], as concerns the family B , we shall consider
 two conditions:

 Received by the editors November 8, 1991.
 1The difference between our definition and that contained in [RG] and [BB] lies in the fact

 that, in these papers, B has assumed to be a base of X. In our considerations this assumption
 is dispensable.
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 • A family B (in a euclidean space X) is said to satisfy condition (*) provided
 any translation of an element of B is in B.

 • A family B (in a metric space X) satisfies condition (**) provided that,
 for any x £ X and U G B, x G Ū, there exists V G B such that x G V
 and V'{x}iU.

 If B contains singletons, then conditions (**) can say nothing in the sense that
 ^'{x} = So, if we assume that a family B satisfies condition (**), then we
 understand that {x} £ B , for any x G X.

 Let X be any metric space, and let B be a family of connected sets; moreover,
 let / : X M. We shall say that a?0 G X is a lower - Darboux(B) point (an
 ¿-Darboux(B) point) of / if, for any U G B such that xo G Ū, any sequence
 {xn}iU such that xq = limn_>oo xn and any real numbers ct, /?, if f(xn ) < ß <
 a < f(x o) for n = 1,2,..., then a G f(Ū) (a G f(U)). In a similar way we
 define an upper-Darboux(B) point (a u-Darboux(B) point) of /.

 We say that xo G X is a Darboux(B) point (an s-Darboux(B) point) of / if it
 is simultaneously a lower- and upper-Darboux(B) point (an t- and u-Darboux(B)
 point) of /.

 We say that / is an upper-Darboux(B) function (a lower-Darboux(B) func-
 tion, a ti-Darboux(B) function, an ¿-Darboux(B) function) if each point x G X is
 an upper-Darboux(B) point (a lower-Darboux(B) point, a u-Darboux(B) point,
 an ¿-Darboux(B) point) for /.

 The above definitions are similar to the considerations contained in [BB].
 The form of these definitions is analogous to the definitions of a Darboux point
 in [JL] and Darboux points of the first, second and third kinds from [RP].

 Proposition 1 Lei f : M - ► M. Then the following conditions are equivalent :

 (i) Xo is a Darboux point (in the sense of the definition adopted in [BC]);

 (ii) xq is an s-Darboux(B) point where B = {(p, q) : p, q G M};

 (iii) Xo is a Darboux(B) point where B = {(p, q) : p, q G M}.

 The next Proposition is analogous to Theorem 1 of [BB].

 Proposition 2 Let X be a euclidean space and B a base of connected sets for
 X which satisfies conditions (*) and (**). Then a function f : X -+ M is
 Darboux(B) if and only if each point xo G X is a Darboux(B) point for f.

 An illustration of the essentiality of the assumptions of Proposition 2 is the
 following example.
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 Example. Let X = M and B = {(p, q) : p, q G M A q ^ 0}. Define / : M - ► M by-
 letting

 {sin(l/x) X 2 + x + 1 for for for X x x = < > 0. 0, 0, {sin(l/x) 2 for x = 0, X for X < 0.

 Then / is lower- and upper-Darboux(B) at each x € X, but / is not Darboux(B).
 In many questions, it is essential to consider the Darboux properties for

 functions of the first class of Baire (cf. e.g. [ZZ], [BC], [BB]). Hence it is
 interesting to attempt a "local characterization" of Darboux functions of Baire
 class I (cf. e.g. [JY], [RP]). The theorem below, because of its character and the
 possibility of choosing the family B in different ways, has in its scope a rather
 considerable group of different generalizations of Darboux functions.

 Lemma 1 Let f : X - ► M be a lower-Darboux(B) function, where B satisfies
 condition (**). Then , for each U G B:

 if f{U)'{-oo,ß), then f(Ū)'(-oo, ß'.

 Of course, an analogous implication holds for the case of upper- Darboux(B) func-
 tions, too.

 Proof is obvious.

 Theorem 1 Let X be a complete space and let B be a family of arcwise con-
 nected sets, covering X, satisfying condition (**) and such that each arc CiX
 belongs to B. Moreover, let f : X - ► M be a function of the first class of Baire.
 Then f is a Darboux(B) function if and only if each point x E X is a Darboux(B)
 point of f.

 Proof. Necessity. Let xq £ X and let U be an element of the family B ,
 such that xo G Ū. Moreover, let {xn} be a sequence of elements from £/, such
 that limn_>oo xn = xo, and let a, ß be real numbers for which f{xn) < ß <
 a < f(x0) (n = 1,2,.. .). This means that, for some n0, /(zno), f(x 0) G f(Ū).
 In view of the connectedness of f(Ū ), it may be inferred that a G f (Ū). It is
 proved similarly that xo is an upper-Darboux(B) point of /.

 Sufficiency. Suppose that / is not a Darboux(B) function. Then there exists
 a set C E B such that f(Č) is not a connected set. Thus

 /(C) is not a connected set. (1)

 Indeed, as f{Č) is not a connected set, there is 7 G M'/(Č) such that

 f(C) n (-00, 7 ) £ <t>¿ f(č) n (7, -foo).
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 By Lemma 1 it is clear that /(C) fl (-00, 7) ^ <ļ> ^ /(C) fl (7, -f 00), which ends
 the proof of (1).

 It is not hard to show that, under our assumptions,

 f(y ) £ f(£'{y}) f°r any y È X and any arc CiX with end at y . (2)

 In view of (1), we may deduce that there exists an arc C with ends at points
 p and q , such that /(£) = E fi F where E and F are non-empty separated sets.
 Denote E' = f~ 1 (E) fi C and F' = /" 1 (F) fi C and let D be the boundary of E'
 in £ as a subspace. Then D is a non-empty closed set, thus f'D possesses some
 point of continuity z. Assume, with no loss of generality, that z G E' . Then
 there exists f > 0 such that ( f(z ) - £ , f(z) + £) fl F = <f>. Consequently, let U be
 a neighborhood of z such that f(U fl D)i(f(z) - f , f(z) -I- £). This means that

 U Ci D D F' = <ļ). (3)

 Let us introduce the notation: for an arbitrary arc /C, the symbol L/c(a,6)
 denotes an arc with ends a and 6, contained in /C.

 Coming back to our proof, let m and n be elements of the arc £, such that
 z 6 Lc(m>n)iU (here we demand that m ^ z ^ n whenever p ^ z ^ q). Let
 further z' E L¿(m, n)iF' and adopt C* = Lc(z , z'). Let h be a homeomorphism,
 mapping [0, 1] onto £*, such that /i(0) = z and A(l) = nę Let E" = h~1{E''Cķ)
 and F" = h~~l(F' fl £*). In view of (3), z' belongs to the interior of F' and £,
 therefore 1 G IntF". Let rj = inf{/? < 1 : (/?, l]iF/;} and let r/; = h(rj). It can be
 demonstrated that t)' € U fl D. In virtue of (2), we may infer that 77 ' 0 E' , thus
 r¡' £ U Ci D H F' , which contradicts (3). The contradiction obtained completes
 the proof of the theorem.

 In many papers (cf. e.g. [KM], [CM], [GW]), the authors investigated dif-
 ferent variants of generalizations of the notion of monotonicity to the case of
 transformations in topological spaces. The definition presented below is one of
 the acceptable versions of this notion.

 Definition. Let / : X - ► V , where X is a metric space, and let B be a family
 of connected sets, covering X. We say that / is 5-monotone if f~1(ß) G B for
 any ß G Y.

 Of course, if Bo is the family of all connected subsets of X , then i?o-mono-
 tonicity means weak monotonicity in the sense adopted in paper [KG], and
 if B° is the family of all continua, B° -monotonicity is identical with Morrey
 monotonicity.

 We shall now proceed to giving the basic answers to the problem posed by
 Prof. B. Ricceri:

 Theorem 2 Let X be a metric space, B' a family of connected sets, satisfying
 condition (**); and B a family of connected sets containing B' and some base B2
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 of the space X. Moreover , lei f : X - ► M be a B' monotone function. Then f is
 lower - (upper-) semicontinuous if and only if f is a lower - (upper-) Darboux(B)
 function .

 Proof. The proof will be carried out in the case of the "lower-" property only
 since, in the other case, it runs analogously.

 Necessity. Let xo G X. Then if xn - ► xo, then, in view of the lower-
 semicontinuous of /, there exists no number ß < f(x o) such that f(xn) < ß for
 n = 1,2,

 Sufficiency. Let ß be an arbitrary real number. We shall demonstrate that
 /"1((- oo, ß]) is closed. Suppose that it is not the case; hence there exists a
 point xo such that

 Xo € f-l((-oo,0' )'/_1((-oo,/?]).

 Thus, there is a sequence {xn}^_1i/"1((- oo, /?]) such that x (with index 0) =
 limn_oo xn. Then f(xn) < ß (n = 1,2,...) and /(x0) > ß. Let a be a
 real number such that ß < a < f(x o). By Lemma 1, xo is not in the union
 /_1(a) U f"1(ß)] therefore there exists a neighborhood U of xo such that xo €
 í/iČ/iX'(/""1(a)U/~1(^)) and U is in B. Then a is not in f(Ū) and, moreover,
 there exists no such that xn G U ì for n > no; which is a contradiction with /
 being lower-Darboux(B) at xo.

 Making use of the well-known Mazuerkiewicz-Moore theorem and applying
 arguments analogous to those in the above theorem, one can show that:

 Theorem 3 Let X be a locally connected and complete metric space and let f
 be a real-valued function on X such that, for every r £ M, the set /_1(r) is
 non-empty and arcwise connected. Then f is lower - (upper-) semicontinuous if
 and only if f is an l-Darboux(B) (a u-Darboux(B)) function, where B stands
 for the family of all arcwise connected sets in X.

 The authors express their gratitude to the referees for valuable remarks con-
 cerning the composition of this paper.
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