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Positive Linear Functionals on Spaces of
Continuous Functions

1. Introduction

In [9] Hausdorff defines a complete ordinary function system 2 on a space X as a
linear lattice of continuous functions containing the constants which is uniformly
closed, which is a ring, and which is closed under inversion, i.e., if f € Q and
f > 0, then 1/f € Q (here f > 0 means that f(z) > 0 for all z € X and
f > 0 means that f(z) > 0 for all z € X). In particular, each space C(X) of
all continuous functions on a topological space is a complete ordinary function
system (abbreviated cofs). These systems of functions have been studied by
many other authors and we shall refer to some of them in this paper.

If Q is a cofs, then the bounded functions in © form a real Banach algebra
under the uniform norm that we shall denote by Q2*. A representation by mea-
sures of the dual space of this Banach space has been obtained by Alexandroff
in [1].

The aim of this paper is to represent all positive functionals defined on a cofs
2 by means of integrals. This representation was given by Hewitt in [12], Theo-
rems 13 and 18, when Q is C(X) for X a realcompact space. Cater in [3] gives
a representation of all positive linear functionals defined on B(X), the set of all
Baire functions on a realcompact space X, as finite sums of Riesz Homomor-
phisms. Finally, Tucker in [18] considers a cofs Q and obtains a representation
of all positive linear functionals defined on B;(f2), the set of all pointwise limits
of sequences in €2, as sums of a finite number of Riesz homomorphisms.

2. Preliminaries

N (resp. R,Q) will denote the set of all natural numbers (resp. real numbers,
rational numbers).
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By space we mean a completely regular Hausdorff space. The closure of a
subset A of X will be denoted by cl A or, when there is possibility of confusion,
by clx A. Analogously, the interior of A will be denoted by int A or intx A.
The complement of a subset B of X will be denoted by X\B.

As usual, C(X) will denote the collection of all real-valued continuous func-
tions on X. A zero-set in X is a set of the form Z(f) = {z € X : f(z) = 0}
for some f € C(X). Complements of these are called cozero-sets. If @ C C(X),
then Z(Q) = {Z(f) : f € Q}. By Z(X) we mean the family of all zero-sets
defined by C(X), by Bai(X) we mean the Baire sets in X and by Bo(X) we
mean the Borel sets in X.

Whenever Q is a cofs on a space (set) X, we always assume that X is given
the weak topology generated by Q. Thus the sentence “2 is a cofs on the space
X” means that Q is a cofs on X which generates the topology of X.

Every cofs € on a space X has associated a compactification 5(2) and a
realcompactification v(§2) of the space X which, when Q is the ring of all con-
tinuous functions on X, coincide with the Stone-Cech compactification and the
Hewitt realcompactification of X respectively. See [8], [16], [7] and [15], for dif-
ferent constructions of these spaces. In [14] Lorch considers a Banach algebra of
bounded continuous functions on a space X to obtain a compactification and a
realcompactification of X which coincide with the ones above when the Banach
algebra of continuous functions is 2*, the bounded functions of a cofs.

Given a cofs 2 on X we shall denote by £(Q) the o-algebra of sets generated
by Z(2) and by ba(X,X(2)) the set of all real-valued bounded additive set
functions defined on £(€2). A function g € ba(X, X(2)) is said to be regular if
for every A € £(2) and € > 0 there is F € Z(2) and G € coz(f?) such that
F C A C G and the variation of u over G\F, var(u, G\F), is less than €. Let
rba(X, £(2)) be the subset of ba(X, £()) consisting of all regular set functions.

By B (§?) we mean the set of all pointwise limits of sequences of Q, B2(Q2) =
By (B1(€)) and in general, if o is an ordinal number, & > 0, B, (Q) is the family
of all pointwise limits of sequences from U{B,(Q) : ¥ < a}. Finally B, (Q) is
denoted by B(Q2) (see [15] for discussion of Baire systems).

3. A Representation Theorem

In the sequel we shall give a representation theorem for positive linear functionals
on a cofs  which separates points in X. Ilere, I is a positive linear functional
on © means that [ is lincar and I(f) > 0 whenever f > 0 belongs to Q.

We recall that X is provided with the weak topology induced by Q. Thus X
is a completely regular ITausdor(f space. We also have that when f € Q, there
is a continuous extension of f, denoted f, defined on v(Q) (see [8], [16], [7] and

(15]).
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Theorem 1. Let I be a positive linear functional on cofs Q. Then

(a) There is a compact subset K C v(QQ) and a positive linear functional J on
C(K) such that
I(f) = J(fjx) for every f € Q.

(b) There is p € rba(X,X(R)) such that p is countably additive and

I(f) = /Xf du for every f € Q.

Proof. First we shall prove that for all f € Q% (Q+ denotes the set of positive
elements of ) there is n € N such that I(f vV n) = I(n).

Let us suppose there is f € Q% such that I(fVn) > I(n) for all n € N. Then
we define g, = (f V n) — n and we have that I(gn,) = I(f Vn) — I(n) > 0. Let
9= 9n/I(gn) and let us sce that g € Q (notice that g is well defined, as
gn(2) = 0 for n > f(z)).

Let D, = f~}([n+ 1,00)) and Cy, = f~!((n,00)) for all n € N. We have
that coz go = C, and C, 2 D,, D Cpy for all n € N; on the other hand
N{Cn : n € N} = ¢. If we denote gn/s(y,) by fn then, for every open set V in
R, it is true that g~ (V) = U{(fi+ fo+ -+ fa)"Y (V)N (X\D,) : n € N}.
Hence g=!(V) € coz () and by ([9], Th. VIII) this means that g € Q. Since
923 P faforallpeN, I(g) > I(3F_, fn) = p for every p € N; that is a
contradiction.

In the sequel we can suppose that I is a positive linear functional on Q such
that I(1) = 1.

Let us consider the compactification 3(?) defined by Q. We know (see [15],
Th. 5.6) that for every f € Q* there is a continuous extension of f, denoted f,
defined on B(€2). The correspondence f — f between Q* and C(B(f2)) defines an
isomorphism which permits us to identify Q* with C(8(2)). In this way, we can
assume that [ is a positive linear functional on C(8(?)), by setting I(f) = I(f)
for all f € Q*. Let us see that there is a smallest compact set K C B(Q) such
that I(f) = 0 when f is zero on K.

Let F be the collection of all compact subsets H of B(£2) such that whenever
f€Q*and f =0 on H is follows that I(f) = 0. We claim that F has the finite
intersection property.

In fact, if H, and H2 belong to F and H; N Hy = ¢, then there is a finite
partition of unity in C(B(2)) subordinated to the cover {B(Q)\H; :1 < i < 2}.
Clearly I is zero on the functions which belong to the partition of unity and so I
is zero on C(B(R)). This contradiction shows that F has the finite intersection
property. Thercfore N{H : H € F} # ¢.
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Let K =N{H : H € F}, and let us see that K € F. Suppose f € Q* such
that f =0 on K. We define A, = {p € B(R) : |f(p)| > 1/n}. Since A, NK = ¢,
there is H € F with A,N H = ¢. Take g, € Q suchthat 0< g, <1, g, =0o0n
H and g, = 1 on A, and let f,, = f-g,. The sequence {f,} converges uniformly
to f and I(f,) = 0 for all n € N. Since I is a positive functional, it is continuous
with respect to the topology of the uniform convergence. Thus I(f) = 0, and
KeF.

Finally, let us prove that K is included in v(Q2).

If p € K\v(Q), then there is f € Q* such that limsep f(z5) = 400 for every
net in X, {zs}sep, which converges to p (see [8], Prop. 2.5). Let n be a natural
number such that I(f V n) = I(n); the function g = (f V n) — n is such that
I(g) = 0 and may be extended to a continuous function g : () — [0, +00] (see
[15], Th. 5.6). Let H = {g € B(Q) : 9(¢) £ 1} NK then H C K and H # K.
Take h € Q* with h = 0 on H and let us see that I(h) = 0; there is no loss of
generality by supposing that 0 < A < 1. We know that there is a function in
Q*, r,with0<r <1, 7#=0o0nZ([g—-1]A0)and # =1 on Z([g— ; VO).
Then h < h-r+3gand h-7=0on K, ie., I(h) < I(h-r)+3I(g) = 0. This
contradicts the property that the compact set K is the smallest compact subset
of A(?) with the property above. Thus K C v(Q).

Since K is compact, it is a C-embedded subset of 3(2). On the other hand,
Z(B() Nv(Q) = {cly)D : D € Z(Q)} (see [2], Cor. 3.4). Thus for every
Z € Z(K), there is D € Z(Q) with Z = (cl,(yD) N K.

Let us denote by ) the collection of all continuous functions on »(£2) which
are continuous extensions of functions in Q. Then { is a cofs on ¥(Q) and
Z(Q) = Z(B(Q)) Nv(R). Hence Z(Q)N K = Z(K) and T(Q) N K = Bai(K).

Now we can prove part (a) of the Theorem. Let us define a positive linear
functional on C(K) as follows. For each h € C(K), let h denote any continuous
extension of h to the space A(2) and state J(h) = I(h;). J is a positive linear
functional on C(K) and it is well defined by the election of K. This proves part
(a).

In order to prove part (b), note that I is a positive linear functional on Q*
such that, in Lorch’s terminology, the I-measure of each Baire set in A(2)\v(Q2)
is zero; this is because K C v(Q2). Ilence we can apply ([14], Th. 13) and we
deduce that I is a Daniell integral on Q*, i.e., there is a bounded, countably
additive set function g on X(€2) such that every function in Q* is p-integrable
and besides I(f) = [ f du for every f € Q*.

Let us see that every function in Q is p-integrable. Take f € QF, then
the sequence {f A n}S%, is monotone-increasing and converges pointwise to f.
Since [y (f An)du = I(f An) < I(f) for every n € N. Lebesgue’s Monotone
Convergence Theorem shows that f is p-integrable and |, x fdp < I(f). On
the other hand, we know that there is m € N such that I(f Vv m) = I(m); as
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f=(fvm)+ (f Am)—m, we have that I(f) = I(fVvm)+ I(f Am) — I(m) =
I(fAm)= [y (fAm)du< [y fdp, ie, I(f) = [y fduforevery f e QF.
Since every f in Q may be written as the difference of two positive functions, we
have proved that every function in Q is p-integrable and also I(f) = [ x fdu
for every f € . Now it is proved analogously to the proof of Theorem 14.2 of
[5] that u is a regular measure on (). This proves part (b) of the Theorem.

4. Some Applications

In the sequel we shall make use of the term P-space, that is, a space in which
every G (countable intersections of open sets) is open.

Proposition 2. Let Q be a cofs on a space X and suppose that v(Q) is a P-
space. Then every positive linear functional on Q is the sum of a finite number
of Riesz homomorphisms.

Proof. Let I be a positive linear functional on Q. Then there is a compact
subset K of ¥(Q2) and a positive linear functional J on C(K) such that I(f) =
J( f| «) forall f € Q. Since v(Q) is a P-space we know that K is a finite subset
of v(Q2). Hence there are {x1,22,...,z,} Cv(Q) and {A1,A2,..., A} C R such
that I(f) = J(f|K) = Z;:: Aj - f(z;) for all f € Q, i.e., I is the sum of a finite
number of Riesz homomorphisms.

Remark. Suppose that ® is a vector lattice of functions which contains the
constants, and let us denote by Q2 the smallest cofs continuing ®. We know that
Ba(®) = Ba(Q2) for every a such that 1 < a < w; (see [15], Th. 3.5). On the
other hand v(Bqa(2)) = (), for all @ with 1 < a < w; (here v(Q2), denotes the
same set ¥(Q2) endowed with the P-topology associated, i.e., the topology for
which the collection of Gs-subsets of () form an open base). Thus v(B,(f))
is a P-space for all a with 1 < a < w; (see [11], Th. 2.4.). Hence the Proposition
above is a variation of Theorem 1 of [18] and Theorem 2 of [3].

Let Q be a cofs on a space X, we can identify Q with a subalgebra of C(v(Q))
by the embedding f — f. In many cases the range of the embedding is different
from C(v(2)) and it is an unsolved problem to give a general method in order
to generate the algebra C(v(f2)) internally from the cofs 2 (see [10], Problem 1
which is closely related). In the sequel we develop a formal method for obtaining
C(v(R)) from Q by applying the ideas above. First we shall introduce some
definitions.

Given a cofs Q, consider the order dual space Q" (see [4] for definitions
and notation) and let (2”)* denote the positive elements of Q”. It is known
that every element of Q" is the difference of two elements of (Q”)* (see [4],
16B). We can suppose that Q is included in the Dedekind complete Riesz space
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(Q2")" via the canonical evaluation map (see [4], Prop. 31C). We denote by
QT N Q! the space of all G € (2”)" such that G = sup{f: f € Q,f < G} and
G = inf{g: g € Q,g > G} (this in the order of (Q")").

Theorem 3. Let 2 be a cofs on a space X. Then C(v(Q)) is lattice and vector
isomorphic to QTN QL.

Proof. Let G be an element of QT N Q!, by ([4], Th. 16D(b)) we know
that for every I € (Q”)* we have G(I) = sup{I(f) : f € Q,f < G} =
inf{I(g) : g € Q,9 > G}. Every point p € v(2) defines an element of (Q")*,
that we shall denote by 6,, by defining 6,(f) = f(p). Hence we can define
G : v(2) - R by G(p) = G(6,). From the equalities above we deduce that
G(p) = sup{f(p): f€Q f <G} = inf{§(p): g € Q9> G}. Therefore G is a
continuous map on v(2).

Conversely, let F' be a continuous map on v(2). We can suppose that F
belongs to (C(v(€2))")” via the canonical evaluation map.

On the other hand, by Theorem 1, part (a), every positive linear functional
defined on Q (resp. C(v(R)) is localized on a compact subset of v() (resp.
v(C(v(R)))). Since v(Q) is a realcompact space we have that v(C(v(Q))) =
v(Q), i.e,, Q and C(¥(2)) have the same realcompact spaces associated. Thus
every positive linear functional on Q is also defined on C(¥(f2)) and vice versa.
Therefore it follows that Q" = C(v(R2))”, i.e., we can assume that F' belongs to
(QII)//.

By Theorem 1, part (a), every I € (2”)* has associated a compact subset
of V(Q) Ky, and a positive linear functional on C(Ky),J, such that I(f) =
J(f|,\1) Applying ([13], Th. 9), we get a regular Baire measure on Ky, p, such

that J(h) = [ h du for every h € C(Ky). Thus I(f) = Jx, flx, du for
every f € Q. Since Q" = C(v(Q))” we also have that I € C(v(2))” and that
I(F) = fK, Fig, dp.

Let us see that FF = sup{f: f € Q,f < F} in the natural order of (")",
i.e., we must prove that I(F) = sup{(I(f): f € Q, f < F} for every I € (Q")*.

Suppose that I is in (")t and let Ky be the compact set associated with
I as before. For every z € K there is U, € coz ) such that osc (F,Uz) < e.
Since Z({) is a normal base on v(Q) (see [16], Th. 4.3), there is D, € Z(Q)
such that z € int D, C U;. The collection {int D, : 2 € K;} is an open
cover of K. Let {int Dy,...,int D,} be a finite subcover of K and consider
also the finite open cover {Uy,...,U,}. For every U; there is a; € Q such that
0 < @; <1 and Z(a;) = v(Q)\U;. Consider also 8 €  with 0 < 8 < 1 and
Z(B) = D1U---UDy. Set ¢ =Y i, (i VP) and ¢; = %. Then {¢;: 1< i< n}
is a partition of unity in K'r subordinated to {U,...,U,}, ¢; € Q for 1 <i<n
and Y 1, ¢: < 1inv(Q).
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Take a fixed point z; of U; for each i € {1,...,n} and define the following
functionon X, f =Y I (F(zi)—¢€)-¢i. Then f € Q, f < F and |F(z)- f(z)| <
¢ for every z € K. Hence we can approximate F on K by functions in  which
are bounded above by F. By Lebesgue’s Monotone Convergence Theorem, we
get I(F) = [y, Fix, dp = sup{fy, fix,dn: f €Q, f < F}=sup{I(f) : f €
Q,f < F}. Analogously it is proved that I(F) = inf{(/(g) : g € Q,9 > F}.
This proves that F € QT NQ!.

Theorem 4. Let X and Y be two spaces and let Q be a cofs on X. IfT:Q —
C(Y) is a positive linear operator then it may be extended to a positive linear

operator T : C(v(Q)) — C(Y).

Proof. Let y € Y and let §, denote the evaluation map ony. The composition
8y o T is a positive linear functional on Q which, by the Theorem above, may be
extended to a positive linear functional, (6, o TY, on C(v(2)) as follows:

(*) (8y0T) (f) = sup{(6,°T)(9) : g € 2, 9 < f} = inf{(6,0T)(h) : h € Q,h > f}.

This enables us to define a map 7(f) on Y, for every f € C(v()), by T(f)(y) =
(8y o T) (f) for all y € Y and, from the equalities in (x), we deduce that

T(f) € C(Y).

Remark. If @ is a linear lattice of functions on a space X, we have that
v(B1(®)) = v(Ba(®)) for all a such that 1 < & < w; (see [11], Th. 2.4). Thus
B(®) € C(v(B,(®))). Let us suppose that T : B;(®) — C(Y) is a positive linear
operator. By applying the Theorem above T may be extended to C(v(B;(®)))
and, since B(®) C C(v(B1(®))), T may be extended to a positive linear operator
T : B(®) — C(Y). Taking this into account we see that the Theorem above
contains Corollary 3 of [18], Theorem 9 of [19] and Theorem 3 of [3].

Corollary. Let ® be a linear lattice of functions containing the constants and
let T : B1(®) — C(Y) be a positive linear operator. If {f,}3%, is a sequence in
B1(®) which converges pointwise to a function f, then the sequence {T(fr)}3%,
converges pointwise to a function in C(Y).

Proof. By the remark above we can extend T to a positive linear operator
T : B(®) — C(Y). Since f € B(®), we have that T(f) € C(Y). Let us see that
{T(fn)} converges pointwise to T(f ).

Take y € Y and consider 6§, 0T which is a positive linear functional on B(®).
By Proposition 2, there is {.’Ll, .oy zn} C v(B(®)) and {A,..., A} C R such
that 6, 0 T = "7 | A; - 6;,. Thus, in order to prove that {T( f,.)} converges
pointwise to T'(f), we only necd to prove that {f,} converges pointwise to f in

v(B(2)).
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Let us suppose that there is z € ¥(B(®)) and o > 0 such that |f, (z) —
f(x)| > €o for every n; belonging to a sequence of natural numbers {nj}32,. Let
Un ={y:y € v(B(®)), |fa(y) = f(¥)| 2 €0}. Then z € N{U,, : j € N} which is
a zero-set in v(B(®)). Ilence N{U,;N X) : j € N} # ¢, which is a contradiction.

Remark. This result contains Theorem 4 of [17]. Also, it is easily checked
that if T is a positive linear map defined on a cofs and with values on a space
of functions, then T satisfies Lebesgue’s Monotone Convergence Theorem and
Lebesgue’s Dominated Convergence Theorem. This means that if {f,} is a
sequence pointwise convergent to f and the sequence satisfies the further condi-
tions of any of the two theorems mentioned previously, the sequence {T(f,)} con-
verges pointwise to T'(f). For example, let us suppose T : Q@ — RY, {f,, : n € N}
a sequence in § which converges pointwise to f, and g € Q with |f,]| < g for
alln € N. For every y € Y, 6, oT is a positive functional on Q which, by
Theorem 1, satisfies Lebesgue’s Dominated Convergence Theorem. Thus f is
6y o T-integrable and {(6, o T')(fa) : n € N} converges to &, o T)(f). Since
(8y o T)(fn) = T(fn)(y), if we define T(f)(y) = (8y o T)(f), we obtain that
{T(fn)} converges pointwise to T'(f).
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