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Symmetric Behavior in Functions

A function f : R — R is symmetric at a point p iff
lim (f(p + h) + f(p — h) = 2f(p)) = 0.

Refer to [2] for the definitions of smoothness, symmetric continuity and sym-
metric derivative.

Throughout our discussion SM(f), S(f), SD(f), and SC(f) will denote the
set of points where a function f is smooth, symmetric, symmetrically differen-
tiable, and symmetrically continuous, respectively.

In 1964, Stein and Zygmund in [6] showed that if f : R — R is Lebesgue
measurable and f is symmetric on a Lebesgue measurable set A, then f is
continuous a.e. on M. In 1982, Evans and Larson in [4] showed the category
analogue of the Stein-Zygmund theorem. Theorems 1 and 3 in [1] show that
in the above theorems the additional hypothesis of M being measurable (or
having the Baire property in the wide sense for the Evans-Larson theorem) is
not necessary.

In 1964, Neugebauer in [5] showed that if f : R — R is symmetric (on R)
and Lebesgue measurable, then f has to be of Baire class 1. In 1982, Evans
and Larson in [4] showed this result for a function which has the Baire property.
It follows from the Evans-Larson theorem and the Neugebauer theorem that
a symmetric function f : R — R is Lebesgue measurable iff it has the Baire
property in the wide sense. The following example of [1] shows that this is not
the case if the function is not symmetric on the entire line.

Example 1 Under the assumplion of the continuum hypothesis, there erists a
universally measurable function f : R — R which is symmetric on a second
category sel, yel fIM is not continuous for every second calegory set M which
has the Baire property in the wide sense. Note that for such f, S(f) \ C(f) is
second catlegory.

Example 9 of [1] is the category analogue of the above example.

Marcus submitted the following problem at the Summer Symposium on Real
Analysis at Smolenice, Czechoslovakia, August, 1991: Given an arbitrary real

40



Wolfville Symposium — U. B. Darji 41

function characterize its points of symmetric continuity. In [2] we show that
there is no such characterization of topological nature, i.e.

Theorem 1 Let M be a zero dimensional subset of R. Then, there is a function
f :R — R such that M is topologically equivalent to SD(|f]), SC(|f|), SM(f)
and S(f).

However, if we put some restricticn on f then more can be said about S(f)

and SC(f).

Theorem 2 Suppose f : R — R, then we have the following:
(i) If f is of Baire class one, then S(f) and SC(f) are Gsos-
(i1) If f is Borel measurable, then S(f) and SC(f) are coanalytic.

The following theorem of [3] shows that the above theorem can not be im-
proved.

Theorem 3 Let M be a zero-dimensional coanalytic subset of R. Then, there
ezists a Baire 2 function f such that each of SD(|f]), SC(|f]), SM(f) and S(f)

1s homeomorphic to M.
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