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Weighted Inequalities in Function Spaces

The problem of characterizing non-negative locally integrable (weight) func-
tions u and v on R*, for which Hardy’s inequality
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holds for all non-negative f € L? has been completely solved. The formulation
for the discrete version of this result in the index range 1 < p,g < 0o is

Theorem 1 ([1],[4]) Suppose 1 < p,q < 0o and {ur}, N, {vk} N are sequences
such that up >0, v > 0, k € N. Then there ezists a constant B > 0, such that
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holds for all non-negative sequences {ar} € 8’;%}, if and only if

(i) in case 1l <p< g< o0
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(i1) in case 1 < g < p < o0
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where L = % — L and p/, ¢’ are the conjugate indices of p and q, respectively.
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In this talk we discuss weight characterizations of inequalities of the form
(1) and (2), where the weighted Lebesgue spaces are replaced by more general
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function spaces. Specifically, we consider weighted amalgams €9 (Lf), 1 < p,q <
0o, which consist of functions locally in L%, and whose integrals over [n,n + 1]
form an €9 sequence. Under the norm

g = { > [ wolsera] %} ,

€9 (L?) becomes a Banach space.

A generalization of (1) and (2) in a different direction is obtained by replac-
ing the weighted Lebesgue spaces by weighted Orlicz spaces. We discuss, in
particular, under what conditions the modular inequality

n
Q! {ZQ[u,‘,Zak] u,‘:} < AP-! {ZP(a,,v},)vg} (3)
neN k=1 neN
holds for all non—negative sequences {an} N and certain Young’s functions
P and Q. In fact, conditions on the weight sequences {u{,}neN, {v{,}nEN,
j = 0,1 are given which are equivalent to (3). Of course, the choice Q(z) = z?,
P(z)=12zP,1<p<g<oo,ul =v} =1forne€Nin (3) yields Theorem 1(i).
In higher dimensions, applications of the corresponding continuous form of
the inequality provide weighted Friedrich type inequalities.
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