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JOHN MALIK, CHAO SHEN, HAU-TIENG WU AND NAN WU

Local covariance structure under the manifold setup has been widely applied in the machine-learning
community. Based on the established theoretical results, we provide an extensive study of two relevant
manifold learning algorithms, empirical intrinsic geometry (EIG) and locally linear embedding (LLE)
under the manifold setup. Particularly, we show that without an accurate dimension estimation, the
geodesic distance estimation by EIG might be corrupted. Furthermore, we show that by taking the local
covariance matrix into account, we can more accurately estimate the local geodesic distance. When
understanding LLE based on the local covariance structure, its intimate relationship with the curvature
suggests a variation of LLE depending on the “truncation scheme”. We provide a theoretical analysis of
the variation.

1. Introduction

Covariance is arguably one of the most important quantities in data analysis. It has been widely studied
in the past century and is still an active research topic nowadays. In this paper, we focus on the local
covariance structure under the manifold setup, which has been widely applied, explicitly or implicitly, to
various applications in different fields; see, for example, a far-from-complete list [Kambhatla and Leen
1997; Roweis and Saul 2000; Donoho and Grimes 2003; Brand 2003; Zhang and Zha 2004; Kushnir
et al. 2006; Goldberg et al. 2009; Salhov et al. 2012; Gong et al. 2012; Singer and Wu 2012; Pedagadi
et al. 2013; Little et al. 2017; Arias-Castro et al. 2017]. In the past few years, its mathematical and
statistical properties have been well-established [Singer and Wu 2012; Cheng and Wu 2013; Bernstein
and Kuleshov 2014; Kaslovsky and Meyer 2014; Tyagi et al. 2013; Wu and Wu 2018] for different
purposes. In this paper, based on the established theoretical foundation, we extensively discuss two topics
in the manifold-learning community that are related to the local covariance structure — empirical intrinsic
geometry (EIG) and locally linear embedding (LLE).

EIG [Talmon and Coifman 2012; 2013], or originally called nonlinear independent component analysis
[Singer and Coifman 2008], is a technique aiming to deal with the distortion underlying the collected
dataset that is caused by the observation process. In many applications, the manifold structure of interest
can only be accessed via an observation and not directly. However, the observation process might
nonlinearly deform the manifold of interest. As a result, the information inferred from the observed
data point cloud might not faithfully reflect the intrinsic properties. The goal of EIG is correcting
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this deformation by taking the local covariance matrix into account. From the statistical viewpoint, it
is a nonlinear latent space model, and the local covariance structure leads to a generalization of the
Mahalanobis distance. While it has been successfully applied to different problems [Wu et al. 2015;
Mishne et al. 2015; Yair and Talmon 2017; Shemesh et al. 2017; Liu et al. 2018], to the best of our
knowledge, besides an argument on the Euclidean space setup [Singer and Coifman 2008], a systematic
evaluation of how the algorithm works under the manifold setup, and its sensitivity to the parameter
choice, is missing. Due to its importance, the first contribution of this paper is providing a quantification
of EIG under the manifold setup, and discussing how the chosen parameter influences the final result. In
the special case that there is no deformation (that is, we can access the manifold directly), we show a
more accurate geodesic distance estimator, called the covariance-corrected geodesic distance estimator,
by correcting the Euclidean distance when the manifold is embedded in the Euclidean space.

LLE [Roweis and Saul 2000] is a widely applied nonlinear dimension-reduction technique in the
manifold-learning community. Despite its wide application, its theoretical properties were studied only
recently. See [Wu and Wu 2018] as an example. Based on the analysis, several peculiar behaviors of LLE
have been better understood. While LLE depends on the barycentric coordinate to determine the affinity
between pairs of points, it has a natural relationship with the local covariance matrix; the kernel associated
with LLE is not symmetric, which is different from the kernel commonly used in graph Laplacian-based
algorithms like Laplacian eigenmaps [Belkin and Niyogi 2003] or diffusion maps [Coifman and Lafon
2006]. The regularization plays an essential role in the algorithm. Different regularizations lead to
different embedding results. Based on the intimate relationship between the curvature and regularization,
the second contribution of this paper is studying a variation of LLE by directly truncating the local
covariance matrix.

The paper is organized in the following way. In Section 2, we introduce the notation for the local covari-
ance structure analysis and some relevant known results. In Section 3, we provide a theoretical argument of
EIG under the manifold setup; when the observation process is trivial, we analyze the covariance-corrected
geodesic distance estimator. In Section 4, we discuss the relationship of EIG and LLE, and provide a
variation of LLE. Numerical results are shown in each section to support the theoretical findings. In
Section 5, we provide some numerical results. In Section 6, discussion and conclusion are provided.

1.1. Notation and mathematical setup. Let X be a p-dimensional random vector with the range sup-
ported on a d-dimensional, compact, smooth Riemannian manifold .M;g/ isometrically embedded in
Rp via � WM ,! Rp. We assume that M is boundary-free in this work. Let expx W TxM !M be the
exponential map at x. Unless otherwise specified, we will carry out calculations using normal coordinates.
Let TxM denote the tangent space at x 2M, and let ��TxM denote the embedded tangent space in Rp.
Write the normal space at y D �.x/ as .��TxM /?. Let IIx be the second fundamental form of � at x.
Let P be the probability density function (p.d.f.) associated with the random vector X [Cheng and
Wu 2013, Section 4]. We assume that P 2 C5.�.M // and that there exist 0 < Pm � PM such that
Pm � P .y/ � PM <1 for all y 2 �.M /. Let ei 2 Rp be the unit p-dimensional unitary vector with
a 1 in the i-th entry. Let BRp

h
.z/ denote the p-dimensional Euclidean ball of radius h > 0 with center

z 2 Rp, and let �AWR
p ! f0; 1g denote the indicator function of the set A � Rp. Define O.p/ to be
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the orthogonal group in dimension p 2 N. We define two main quantities, the truncated inverse and
regularized inverse, of a symmetric matrix that are related to EIG and LLE respectively.

Definition 1. Let A 2 Rp�p be a real symmetric matrix and set r D rank.A/. Let �1 � � � � � �p be the
eigenvalues of A, and let u1; : : : ;up be the corresponding normalized eigenvectors. For 0< ˛ � r , the
˛-truncated inverse of A is defined as

T˛ ŒA�D
�
u1 � � � u˛

�264��1
1

: : :

��1
˛

375
264u>

1:::

u>˛

375 : (1)

Choose a regularization constant c > 0. The c-regularized inverse of A is defined as

Ic ŒA�D
�
u1 � � � ur

�264.�1Cc/�1

: : :

.�rCc/�1

375
264u>

1:::

u>r

375 : (2)

Note that if ˛D r , then T˛ ŒA� is the Penrose–Moore pseudoinverse. When c! 0, Ic ŒA� becomes Tr ŒA�.

2. Local covariance matrix and some facts

We start with the definition of the local covariance matrix.

Definition 2. For x 2M and a measurable set O � �.M /, the local covariance matrix at �.x/ 2 �.M /

associated with O is defined as

Cx;O WD E Œ.X � �.x//.X � �.x//>�O.X /� 2 Rp�p: (3)

When O is BRp

h
.�.x//\ �.M /, where h> 0, we define

Ch.x/ WD C
x;BRp

h
.�.x//\�.M /

and simply call Ch.x/ the local covariance matrix at �.x/.

The local covariance matrix and its relationship with the embedded tangent space of the manifold have
been widely studied recently, including (but not exclusively) [Singer and Wu 2012; Cheng and Wu 2013;
Tyagi et al. 2013; Bernstein and Kuleshov 2014; Kaslovsky and Meyer 2014; Little et al. 2017]. Recently,
in order to systematically study the LLE algorithm, the higher-order structure of the local covariance
matrix was explored in [Wu and Wu 2018]. We now summarize the result for our purpose. Since the
local covariance matrix is invariant up to translation and rotation and the analysis is local at one point,
to simplify the discussion, from now on, when we analyze the local covariance matrix at x, we always
assume that the manifold is translated and rotated in Rp so that ��TxM is spanned by e1; : : : ; ed 2 Rp.

Lemma 3 [Wu and Wu 2018, Proposition 3.2]. Fix x 2M and take h> 0. Write the eigendecomposition
of Ch.x/ as Uh.x/ƒh.x/Uh.x/

>. Then, when h is sufficiently small, the diagonal matrix ƒh.x/ 2 Rp�p

satisfies

ƒh.x/D
jSd�1jP .x/hdC2

d.d C 2/

�
Id�dCO.h2/ 0

0 O.h2/

�
; (4)
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and the orthogonal matrix Uh.x/ 2O.p/ satisfies

Uh.x/D

�
U1 0

0 U2

�
.Ip�pC h2S/CO.h4/; (5)

where U1 2O.d/, U2 2O.p� d/, and S is an antisymmetric matrix.

First, note that the local covariance matrix depends on the p.d.f. Particularly, when the sampling is
nonuniform, the eigenvalues are deviated and the p.d.f. is responsible for this deviation. Equation (4) in
this lemma says that the first d eigenvalues of Ch.x/ are of order hdC2, while the rest of the eigenvalues
are two orders higher, that is, of order O.hdC4/. Moreover, note that Ip�pCh2S approximates a rotation,
so (5) says that the first d normalized eigenvectors of Ch.x/ deviate from an orthonormal basis of ��TxM

by a rotational error of order O.h2/, and the rest of the orthonormal eigenvectors of Ch.x/ deviate from
an orthonormal basis of .��TxM /? within a rotational error of order O.h2/.

In practice, we are given a finite sampling of points from the embedded manifold and need to approxi-
mate the local covariance matrix. Since the finite convergence argument of the sample local covariance
matrix to the local covariance matrix is standard (see, for example, [Wu and Wu 2018, Propositions 3.1
and 3.2 and Lemma E.4]), to focus on the main idea and simplify the discussion, below we work directly
on the continuous setup; that is, we consider only the asymptotical case when n!1.

It is well known that when a manifold M is isometrically embedded into another manifold M 0, then
for two close points x;y 2M, the geodesic distance between x;y in M could be well-approximated by
the geodesic distance between x;y in M 0, with the error depending on the second fundamental form of
the embedding; see, for example [Smolyanov et al. 2007, Proposition 6]. We have the following lemma
when M 0 is Euclidean space.

Lemma 4 [Wu and Wu 2018, Lemma B.2]. Suppose that M is isometrically embedded in Rp through �.
Fix x 2M and use polar coordinates .t; �/ 2 Œ0;1/�Sd�1 to parametrize TxM. For y D expx.� t/ for
sufficiently small t , we have

�.y/� �.x/D .���/t C
IIx.�; �/

2
t2
C
r� IIx.�; �/

6
t3
CO.t4/: (6)

Moreover, when h WD k�.y/� �.x/kRp is sufficiently small, we have

hD t �
kIIx.�; �/k

2

24
t3
�
r� IIx.�; �/ � IIx.�; �/

24
t4
CO.t5/; (7)

and hence

t D hC
kIIx.�; �/k

2

24
h3
C
r� IIx.�; �/ � IIx.�; �/

24
h4
CO.h5/: (8)

The proof of the lemma can be found in, for example, [Smolyanov et al. 2007, Proposition 6] when
M 0 is a generic manifold or [Wu and Wu 2018, Lemma B.2] when M 0 is Euclidean space.
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Figure 1. The illustration of the theoretical framework of EIG.

3. Empirical intrinsic geometry and local covariance matrix

EIG [Talmon and Coifman 2012; Singer and Coifman 2008] is a technique aiming to deal with the
underlying distortion caused by the observation process. The basic idea of the technique is that the local
covariance matrix captures the distortion, under suitable assumptions, and we can correct the distortion
by manipulating the local covariance matrix and recover the local geodesic distance. From the statistical
viewpoint, it is a generalization of the Mahalanobis distance. We now examine the intimate relationship
between EIG and the covariance-corrected geodesic estimator.

Suppose that M is a d -dimensional closed Riemannian manifold that hosts the information in which
we are interested but we cannot directly access. We assume that there is a method to indirectly ac-
cess M via an observation, and hence collect a dataset that contains indirect information of M in
which we are interested. We model the observation as a nonlinear function ˆ W M ! N, where ˆ
is a diffeomorphism of M and N is isometrically embedded in Rq via �. Under this setup, for the
point x 2 M that we cannot access, there is a corresponding point �.y/ 2 �.N / � Rq that we can
access and collect as the dataset, where y D ˆ.x/. The mission is estimating the geodesic distance
between two close points x 2 M and w 2 M through accessible data points �.y/ D �.ˆ.x// and
�.z/D �.ˆ.w//. This situation is commonly encountered in data analysis; for example, the brain activity
information contained in an electroencephalogram recorded from the scalp might be deformed due to
the process of recording the electroencephalogram, the anatomical structure and physiological properties.
Clearly, due to the diffeomorphism associated with the observation, the pairwise distance estimated
from the collected database no longer faithfully reflects the pairwise distance of the inaccessible space.
Hence, analysis tools depending on the pairwise distance are biased. The interest of EIG is correcting
this bias.
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The main idea of EIG can be summarized in the following way. For each hidden point x 2M, take the
geodesic ball B".x/�M with the radius " and centered at x. As is discussed in [Singer and Coifman
2008], if we can determine E.y/ WDˆ.B".x//�N around y that is associated with B".x/, then up to
a constant, the geodesic distance between two close points w and x can be well-approximated by �.y/,
�.z/, and the local covariance matrix Cy;�.E.y// associated with �.E.y// as defined in (3). To simplify
the notation, set C".y/ WD Cy;�.E.y//. See Figure 1 for an illustration of the setup. Note that when M

is Euclidean and ˆ is linear, E.y/ is an ellipsoid. In the following, although we consider the manifold
model that is in general not Euclidean, we abuse the terminology and call E.y/ an ellipsoid. Numerically,
C".y/ is estimated by taking points in E.y/ into account. Again, since the convergence proof is standard,
to simplify the discussion, we skip the finite convergence step and focus on the continuous setup.

This main idea is carried out by noting that the local covariance matrix at y associated with C".y/
captures the Jacobian of the diffeomorphism associated with the observation; that is, C".y/�rˆjxˆj>x
[Singer and Coifman 2008]. Under the assumption that the ellipsoid E.y/ is known, C".y/�rˆjxˆj>x
is true and the dimension of the manifold d is known, authors in [Singer and Coifman 2008; Talmon and
Coifman 2012] consider the following quantity, called the EIG distance, to estimate the geodesic distance
between x and w:

.�.z/� �.y//>
�
T˛ ŒC".y/�C T˛ ŒC".z/�

2

�
.�.z/� �.y//; (9)

where ˛ is chosen to be the dimension of d .

3.1. Challenges of EIG and analysis. There are two challenges of applying the EIG idea: how to
determine the ellipsoid E.y/ associated with B".x/, and how to estimate the dimension d of the intrinsic
manifold. In [Singer and Coifman 2008] and most of its citations, the state-space model combined with
the stochastic differential equation (SDE) is considered, and the ellipsoid can be determined simply by
taking the temporal relationship into account under this model. We refer readers with interest to [Singer
and Coifman 2008; Talmon and Coifman 2012] for more details about this state-space model. If the
state-space model and SDE cannot be directly applied, this task is most of time a big challenge and to
the best of our knowledge not too much is known. This challenge is however out of the scope of this
paper. On the other hand, most of time we do not have an access to the dimension of d , and a dimension
estimation is needed. Although theoretically we can count on the spectral gap to estimate d , in practice
it depends on the try-and-error process and little can be guaranteed. Particularly, when the manifold is
highly distorted by the observation, faithfully estimating the dimension is another challenging task. To
the best of our knowledge, although EIG has obtained several successes in different applications [Wu
et al. 2015; Mishne et al. 2015; Yair and Talmon 2017; Shemesh et al. 2017], a systematic exploration of
the approximation under the general manifold setup is lacking. It is also not clear what may happen when
the dimension is not estimated correctly.

Below, we assume that we have the knowledge of the ellipsoid associated with B".x/ for all x,
and hence we can evaluate the local covariance matrix at y D ˆ.x/ associated with E.y/. We show
how C".y/�rˆjxˆj>x holds under the manifold setup, and the influence of an erroneously estimated
dimension. We start with the following definitions.
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Definition 5. For y 2N, define the normalized local covariance matrix at y associated with E.y/�N as

C".y/ WD
C".y/

"2E Œ�E.y/.Y /�
; (10)

where Y WD � ıˆ ıX is the induced random variable.

The normalization step in (10) is introduced to remove the impact of the nonuniform sampling. As we
will see, without this normalization, when the sampling is nonuniform, the p.d.f. will play a role in the
final analysis.

Lemma 6. Let x 2M and B".x/�M be the geodesic ball around x. The local covariance matrix at
y Dˆ.x/ associated with the ellipsoid E.y/Dˆ.B".x//�N satisfies

C".y/D
jSd�1jP .x/"dC2

d.d C 2/
Œ��jyrˆ.x/� Œrˆ.x/

>��j
>
y �CO."dC4/ (11)

and the normalized local covariance matrix at y associated with E.y/ satisfies

C".y/D
1

d C 2
Œ��jyrˆ.x/� Œrˆ.x/

>��j
>
y �CO."2/: (12)

If v1; v2 2 .��TyN /?, then

v>1 C".y/v2D
d"2

4jSd�1j.d C 4/

Z
Sd�1

v>1 IIy.r�ˆ.x/;r�ˆ.x//.IIy.r�ˆ.x/;r�ˆ.x///
>v2 d�CO."4/:

By this lemma, we see that the expansion of C".y/ depends not only on the p.d.f. but also on the
Jacobian of the deformation, and the normalization step cancels this dependence. The proof is postponed
until Appendix, page 531. Based on this lemma and the considered setup in [Singer and Coifman 2008;
Talmon and Coifman 2012], we consider the following quantity.

Definition 7. For y; z 2N, define the EIG distance of order ˛ between y; z, where 1� ˛ � q, as

EIG2
˛.y; z/D .�.y/� �.z//

>

�
T˛ ŒC".y/�C T˛ ŒC".z/�

2

�
.�.y/� �.z//: (13)

Note that this definition is slightly different from that considered in (9). Since the only difference is
the normalization step, the result below can be directly translated for (9). Below we show that the EIG
distance between y Dˆ.x/ 2N and zDˆ.w/ 2N is a good estimator of the geodesic distance between
x 2M and w 2M only when some conditions are satisfied.

Theorem 8. Suppose two d-dimensional smooth closed Riemannian manifolds M and N are diffeo-
morphic via ˆ W M ! N, and suppose N is isometrically embedded in Rq via �. Take x 2 M and
w 2 B".x/ �M, where " > 0, and denote by t the geodesic distance between x and w. Let y D ˆ.x/,
z Dˆ.w/. Take ˛ �min.rank ŒC".y/�; rank ŒC".z/�/. When " is sufficiently small, we have the following:

(1) When ˛ D d , we have

EIGd .y; z/D
p

d C 2t CO.t"2/CO.t3/:
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(2) When 1� ˛ < d , we have

EIG˛.y; z/D
p

d C 2 t CO.t/: (14)

Let V˛.y/ and V˛.z/ be the subspaces of ��TyN and ��TzN generated by the first ˛ eigenvectors of
C".y/ and C".z/ respectively. Suppose zD expy #.y/ for #.y/2TyN and yD expz #.z/ for #.z/2TzN.
If ��jy#.y/ 2 V˛.y/ and ��jz#.z/ 2 V˛.z/, we have

EIG˛.y; z/D
p

d C 2 t CO.t"2/CO.t3/: (15)

(3) When ˛ > d , assume that the smallest nonzero eigenvalues of C".y/ and C".z/ are of order "4 and
there are ly � 0 and lz � 0 such eigenvalues respectively. In general, we have

EIG˛.y; z/D
p

d C 2 t CO.t/: (16)

When ly D 0 or ˛ � q� ly hold, and lz D 0 or ˛ � q� lz hold, for t D "ˇ, where ˇ > 1, we have

EIG˛.y; z/D
p

d C 2 t CO.t.t="C "/2/

D

p
d C 2 t CO.t1Cminf1�1=ˇ;1=ˇg/:

(17)

The proof is postponed until Appendix A. We now have discussion of the theorem. In general,
rank ŒC".y/� and rank ŒC".z/� are different; thus we need the condition ˛ �min.rank ŒC".y/�; rank ŒC".z/�/.
First of all, if we know the dimension of the manifold, then the EIG distance of order d between
y Dˆ.x/ 2N and z Dˆ.w/ 2N is an accurate estimator of the geodesic distance between x 2M and
w 2M, up to a global constant

p
d C 2. This result coincides with the claim in [Singer and Coifman

2008; Talmon and Coifman 2012] when the sampling on N is uniform. However, when the sampling on
N is nonuniform, the result is deviated by the p.d.f. if we replace the normalized local covariance matrix
C".y/ in (13) by the local covariance matrix C".y/. This deviation can be seen by comparing (11) and
(12) in Lemma 6.

Second, if the dimension is unknown and wrongly estimated, the result depends on the situation. When
the dimension is underestimated, in general the estimator is wrong. In a nongeneric situation where
the geodesic direction from y to z and that from z to y are both located on the first ˛ eigenvectors of
the associated local covariant matrices, we may still obtain an accurate estimator. Note that due to the
curvature, there is no guarantee that the first ˛ eigenvectors of C".y/ will contain #.y/; even if they do,
there is no guarantee that the first ˛ eigenvectors of C".z/ will contain #.z/. When the dimension is
overestimated and some assumptions are satisfied, we still can obtain a reasonably good estimate of the
intrinsic geodesic distance when t=" is sufficiently small, but with a slow convergence rate, as is shown
in (17).

Third, it is important to note that this estimate for the geodesic distance is valid only for points that are
“not too far away”. The estimate might be degenerate if two points are far away. For example, if y¤ z 2N

are two points such that the vector �.z/� �.y/ is orthogonal to the column space of T˛ ŒC".y/�CT˛ ŒC".z/�,
then the quantity (9) is zero, and hence the degeneracy. This obviously destroys the topology of the
manifold in which we are interested. A concrete example of this happening is when y and z are conjugate
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points on the sphere N D Sd. In practice, we thus should only evaluate EIG when two points are “close”
in N.

The assumption “the smallest nonzero eigenvalues of C".y/ and C".z/ are of order "4” needs some
discussion. The rule of thumb is that eigenvalues of C".y/ associated with the tangent directions are
of order 1, but the eigenvalues associated with the normal directions are of order "2 or higher. The
assumption that the smallest eigenvalues are of order "4 means that when the principle curvature is zero,
the higher-order curvature is not too small. As is shown in the proof of this theorem, under this assumption,
we can control the error induced by the interaction between �.y/� �.z/ and T˛ ŒC".y/�. However, when
there is an eigenvalue of even higher order, the interaction between �.y/� �.z/ and T˛ ŒC".y/� becomes
more complicated, and a more delicate analysis involving a systematic recursive formula of Taylor
expansion of �.y/� �.z/ and T˛ ŒC".y/� is needed. We will explore this issue in our future work.

To sum up, in practice if we are not confident about the estimated dimension, we may want to choose
a larger ˛. Although we do not discuss it in this paper, we mention that this conservative approach might
not be preferred if noise exists, since the noise will contaminate the eigenvector associated with the small
eigenvalues. A more statistical approach to solve these issues will be studied in our future work.

3.2. A special EIG setupW covariance-corrected geodesic estimator. When ˆ is the identity, EIG is
reduced to the ordinary manifold learning setup; that is, we have samples from the manifold and we
want to estimate its geometric structure. By Lemma 4, when two points on the smooth manifold are
close enough, we can accurately estimate their geodesic distance t by the ambient Euclidean distance
h D k�.y/ � �.x/kRp up to the third order O.t3/, and the third-order term is essentially the second
fundamental form. We call h the Euclidean-distance-based geodesic distance estimator. In general, it
is not an easy task to directly estimate the second fundamental form from the point cloud if M 0 is not
Euclidean space. However, when M 0 is Euclidean, like the setup in Lemma 4, the second fundamental
form information could be well-approximated by the local covariance matrix. We define the following
projection operator associated with the local covariance matrix.

Definition 9. Suppose M is a closed, smooth d-dimensional Riemannian manifold isometrically em-
bedded in Rp through �. Fix x 2M. For Nh > 0, let C Nh.x/ WD C

x;BRp

Nh
.�.x//\�.M /

as defined in (3). Let
�1 � � � � � �p be the eigenvalues of C Nh.x/, and u1; : : : ;up be the corresponding normalized eigenvectors.
Define P?

Nh
to be the orthogonal projection from Rp to the subspace spanned by udC1; : : : ;up.

The name orthogonal projection follows from Lemma 3, where we prove that udC1; : : : ;up deviate
from an orthonormal basis of .��TxM /? within a rotational error of order O. Nh2/. Inspired by Lemmas 3
and 4, we have the following theorem. The proof is postponed until Appendix B.

Theorem 10. Fix x 2 M. Suppose that y 2 M and �.y/ 2 BRp

Nh
.�.x//. We use the polar coordinate

.t; �/2 Œ0;1/�Sd�1 to parametrize TxM so that yDexpx.� t/ for t>0. Define h WDk�.y/��.x/kRp � Nh.
When Nh is small enough, ˇ̌̌̌

t �

�
hC
kP?
Nh
.�.y/� �.x//k2Rp

6h

�ˇ̌̌̌
DO.h2 Nh2/: (18)
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Based on this theorem, we have the following definition.

Definition 11. Following the notation in Theorem 10, the covariance-corrected geodesic distance estima-
tor between points x;y 2M is defined as

hC
kP?
Nh
.�.y/� �.x//k2Rp

6h
: (19)

Clearly, the covariance-corrected geodesic distance estimator accurately estimates the geodesic distance
t up to the fourth order. It is worth mentioning that a better estimation for the geodesic distance cannot
be directly achieved with only the local covariance matrix. Indeed, to estimate d.x;y/ within an error
of O.h5/, by Lemma 4, we need to estimate r� IIx.�; �/

? within an error of order O.h/. Thus, more
information is needed if a more accurate geodesic distance estimate is needed.

4. Locally linear embedding and a variation by truncation

LLE [Roweis and Saul 2000] is a widely applied dimension-reduction technique in the manifold-learning
community. Some of its theoretical properties have been explored in [Wu and Wu 2018]. For example,
under the manifold setup, the barycentric coordinate is intimately related to the local covariance structure
of the manifold. By reformulating the barycentric coordinate in the local covariance structure framework,
the natural kernel associated with LLE is discovered, and it is very different from the kernel in graph
Laplacian-based algorithms like Laplacian eigenmaps [Belkin and Niyogi 2003], diffusion maps [Coifman
and Lafon 2006] or commute time embeddings [Qiu and Hancock 2007]. The regularization step in LLE
is crucial to the whole algorithm, and it might provide different embeddings with different regularizations.
In this section, we connect LLE and EIG via the local covariance structure, and use the geometric structure
to explore a variation of LLE via truncation.

4.1. A summary of the LLE algorithm. We start with recalling the LLE algorithm in the finite sampling
setup. Let X D fxig

n
iD1
� Rp denote a set of point clouds. Fix one point xk 2 X . For h > 0, assume

Nxk
WD X \ .BRp

h
.xk/ n fxkg/ D fxk;1; : : : ;xk;Nk

g, where h > 0. Here we use the h-radius ball to
determine neighbors to be consistent with the following discussion. In practice we can use the k-nearest
neighbors, where k 2 N is determined by the user. The relationship between the h-radius ball and
k-nearest neighbors is discussed in [Wu and Wu 2018, Section 5]. Define the local data matrix associated
with xk as

Gn;h.xk/ WD

24 j j

xk;1�xk � � � xk;Nk
�xk

j j

35 2 Rp�Nk :

With the local data matrix, the LLE algorithm is composed of three steps. First, for each xk 2 X , find its
barycentric coordinate associated with Nxk

by solving

wxk
D argmin
w2RNk;w>1Nk

D1





xk �

NkX
jD1

w.j /xk;j





2

2 RNk : (20)
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Solving (20) is equivalent to minimizing w>Gn;h.xk/
>Gn;h.xk/w over w 2 RNk under the constraint

w>1Nk
D 1. Since in general Gn;h.xk/

>Gn;h.xk/ is singular, it is recommended in [Roweis and Saul
2000] to solve .Gn;h.xk/

>Gn;h.xk/C cINk�Nk
/y D 1Nk

, where c > 0 is the regularizer chosen by the
user, and hence obtain

wxk
D

.Gn;h.xk/
>Gn;h.xk/C cINk�Nk

/�11Nk

..Gn;h.xk/
>Gn;h.xk/C cINk�Nk

/�11Nk
/>1N

: (21)

By viewing wxk
as the “affinity” of xk and its neighbors, the second step is defining an LLE matrix

W 2 Rn�n by

Wk;l D

�
wxk

.j / if xl D xk;j 2Nxk
;

0 otherwise:
(22)

Finally, to reduce the dimension of X or to visualize X , it is suggested in [Roweis and Saul 2000] to
embed X into a low-dimensional Euclidean space

xk 7! Œv1.k/; : : : ; v`.k/�
>
2 R` (23)

for each xk 2X , where ` is the dimension of the embedded points chosen by the user, and v1; : : : ; v` 2Rn

are eigenvectors of .I �W />.I �W / corresponding to the ` smallest eigenvalues. Note that in general
W is not symmetric, and this is why the spectrum of .I �W />.I �W / is suggested but not that of
I �W .

It is shown in [Wu and Wu 2018, Section 2] that by taking the relationship between the sample
covariance matrix Cn;h.xk/ WD Gn;h.xk/Gn;h.xk/

> and the Gramian matrix Gn;h.xk/
>Gn;h.xk/ into

account, we can rewrite (21) as

w>xk
D

1>Nk
� 1>Nk

Gn;h.xk/
>Ic.Cn;h.xk//Gn;h.xk/

Nk � 1>Nk
Gn;h.xk/

>Ic.Cn;h.xk//Gn;h.xk/1Nk

; (24)

and view 1>Nk
�1>Nk

Gn;h.xk/
>Ic.Cn;h.xk//Gn;h.xk/ as the “kernel” associated with the LLE algorithm.

It is clear that in general this kernel has negative values, and the LLE matrix is not a transition matrix. By
defining

Tn;xk
WD Ic.Cn;h.xk//Gn;h.xk/1Nk

; (25)

we obtain the result claimed in [Wu and Wu 2018, Proposition 2.1].

4.2. LLE and Mahalanobis distance in the continuous setup. The above is for the general dataset.
When the dataset X D f�.xi/g

n
iD1
� �.M /� Rp is sampled from a manifold M, with (24) and (25), the

asymptotical behavior of LLE under the manifold setup is explored in [Wu and Wu 2018]. As is shown
in [loc. cit., (3.12)], in the continuous setup, the unnormalized kernel associated with LLE at x 2M is

KLLE
h .x;y/D Œ1�T >�.x/.�.y/� �.x//��BRp

h
.�.x//\�.M /

.�.y//; (26)

where y 2M and
T�.x/ WD Ic.Ch.x//ŒE.X � �.x//�BRp

h
.x/
.X /� 2 Rp; (27)
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and hence the normalized kernel is defined by

P LLE
h .x;y/ WD

KLLE
h

.x;y/R
M KLLE

h
.x;y/P .y/ dV .y/

: (28)

Clearly, (24) and (25) are discretizations of P LLE
h

.x;y/ and T�.x/, and their convergence behavior can be
found in [Wu and Wu 2018, (3.7) and Theorem 3.1].

There are two geometric facts we should mention. First, rewriting (21) as (24) is equivalent to
representing (21) in the frame-bundle setup, and hence an explicit form of the kernel underlying LLE.
Second, the unnormalized kernel at x involves projecting �.y/� �.x/ onto the vector space spanned by
u1; : : : ;ur , and scaling the resulting vector componentwise by .�1C c/�1=2; : : : ; .�r C c/�1=2. When
r >d , the involvement of the regularizer c and the eigenvalues �dC1; : : : ; �r are associated with the normal
bundle. An important intuition is that when c! 0, if we put aside the expectation in T >

�.x/
.�.y/� �.x//

and replace E.X � �.x// by .�.y/ � �.x//, we obtain the term .�.y/ � �.x//>Tr .Ch.x//.�.y/ � �.x//,
which can be understood as a variation of the Mahalanobis distance. Therefore, we can interpret LLE as
mixing together the neighbor information (the 0-1 kernel in (26), that is, �

BRp

h
.�.x//\�.M /

.�.y//) and the
Mahalanobis distance of neighboring points (that is, T >

�.x/
.�.y/� �.x//�

BRp

h
.�.x//\�.M /

.�.y// in (26)) to
design the kernel.

Lemma 3 guarantees that the first d eigenvalues of Ch.x/ are sufficiently large. However, the remaining
r � d nontrivial eigenvalues are small. Moreover, the remaining r � d nontrivial eigenvalues are related
to the curvature of the manifold. The importance of choosing the regularization constant c has been
extensively discussed in [Wu and Wu 2018, Theorem 3.2], and it is known that c is to adjust the curvature
information in these scaling factors .�dC1C c/�1=2; : : : ; .�r C c/�1=2 for different purposes. To be more
precise, the regularization c plays a role of “radio tuner”. The larger the c is, the more enhanced the
p.d.f. information will be; the smaller the c is, the more dominated the curvature information will be [Wu
and Wu 2018, Theorem 3.2]. It is shown that if we want to obtain the Laplace–Beltrami operator of the
Riemannian manifold, c should be chosen properly so as to suppress the curvature information contained
in the .dC1/-th to the r -th eigenvalues.

4.3. A variation of LLE and EIG. Under the manifold setup, the above discussion suggests that the
curvature information associated with the d C 1; : : : ; r eigenvalues and eigenvectors is not needed if
we want to obtain the Laplace–Beltrami operator. Therefore, an alternative to choosing a regularization
parameter is a direct truncation by taking only the largest d eigenvalues into account; that is, replace
Ic ŒCh.x/� in (26) by Td ŒCh.x/�, and define the normalized truncated LLE kernel at x 2M by

P tLLE
h .x;y/ WD

KtLLE
h

.x;y/R
M KtLLE

h
.x;y/P .y/ dV .y/

; (29)

where
KtLLE

h .x;y/ WD Œ1� zT >�.x/.�.y/� �.x//��BRp

h
.�.x//\�.M /

.�.y//; (30)

y 2M and
zT�.x/ WD Td .Ch.x//ŒE.X � �.x//�BRp

h
.x/
.X /� 2 Rp: (31)
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Numerically when we have only finite data points, we run the same LLE algorithm, but replace w>xk
and

Tn;xk
by the terms

Qw>xk
WD

1>Nk
� zT >n;xk

Gn;h.xk/

Nk �
zT >n;xk

Gn;h.xk/1Nk

; (32)

and
zTn;xk

WD Td .Gn;h.xk/Gn;h.xk/
>/Gn;h.xk/1Nk

I (33)

that is, instead of running a regularized pseudoinversion, we run a truncated inversion. LLE with low-
dimensional neighborhood representation (LDR-LLE) proposed in [Goldberg and Ritov 2008] is an
algorithm related to this truncated idea. While the geometric structure of the local covariance matrix is
not specifically discussed in LDR-LLE, it can be systematically studied in our framework. For simplicity,
we also call the above truncation scheme LDR-LLE.

Geometrically, .�.y/� �.x//>Td ŒCh.x/�.�.y/� �.x// evaluates geodesic distances between points in
the h-neighborhood of x using a method directly related to EIG in (9) when ˆ is the identity. With
the normalized truncated LLE kernel, we can proceed with the standard LLE dimension-reduction step.
Therefore, LDR-LLE takes the neighbor information, 1��

BRp

h
.�.x//\�.M /

.�.y//), and the EIG distance
of neighboring points into account to design the kernel.

Under the same condition specified in [Wu and Wu 2018, Theorem 3.2], LDR-LLE has the same
asymptotical behavior as that in [loc. cit., Theorem 3.3] with the properly chosen regularization; that is:

Theorem 12. Assume the setup in Section 1.1. Take f 2 C 4.M /. If hD h.n/ so thatp
log.n/

n1=2hd=2C1
! 0

and h! 0 when n!1, with probability greater than 1� n�2, for all xk 2 X we have
NkX

jD1

Qwn;xk
.j /f .xk;j /D

Z
M

P tLLE
h .xk ;y/f .y/P .y/ dV .y/CO

� p
log.n/

n1=2"d=2�1

�
and Z

M

P tLLE
h .x;y/f .y/P .y/ dV .y/D f .y/C

h2

2.d C 2/
�f .x/CO.h3/:

As a result, with probability greater than 1� n�2, for all xk 2 X we have

1

h2

� NkX
jD1

Qwn;xk
.i/f .xk;j /�f .xk/

�
D

1

2.d C 2/
�f .x/CO.h/CO

� p
log.n/

n1=2"d=2C1

�
:

In other words, by LDR-LLE, we recover the Laplace–Beltrami operator of the manifold even if the
second fundamental form is nontrivial and the sampling is nonuniform. While the proof is a direct
modification of the proof of [Wu and Wu 2018, Theorem 3.2], we provide the proof in Appendix C for
the sake of self-containedness. We mention that the finite sample convergence has the same statement
and follows exactly the same line as that of [loc. cit., Theorem 3.1], so we skip it.
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Based on the theoretical development, we identify two benefits of LDR-LLE. First, the normal bundle
information is automatically removed by the truncation, and we obtain the intrinsic geometric quantity �.
Second, the nonuniform sampling effect is automatically removed, and no kernel density estimation is
needed. This comes from the fact that the EIG part of the kernel zT�.x/ (or the Mahalanobis distance part
of the kernel T�.x/) automatically provides the density information (see Lemma 18). Compared with
diffusion maps (DM), since we do not need normalization as is proposed in [Coifman and Lafon 2006]
to eliminate the nonuniform sampling effect, the convergence rate is faster, as is stated in [Wu and Wu
2018, Theorem 3.3].

However, we emphasize that although this approach leads to aesthetic asymptotical properties under
the manifold assumption, it may not work well when we do not have a manifold structure. For a general
graph or point cloud, we found it more reliable to apply the original LLE, and a model or analysis
explaining why is needed. Last but not least, note that this action requires that we know the dimension
of the manifold, so even if we know the point cloud is sampled from a manifold, we need to estimate
its dimension before applying LDR-LLE. This requirement might render LDR-LLE less applicable in
nonmanifold data.

5. Numerical results

We demonstrate some numerical results associated with the algorithms studied in this paper. Uniformly
sample nD 8000 points from the logarithmic spiral L� R2, a 1-dimensional manifold parametrized as
x.s/ D

�
sp
2
C 1

�
cos log

�
sp
2
C 1

�
and y.s/ D

�
sp
2
C 1

�
sin log

�
sp
2
C 1

�
, and choose " D 0:2. We fix

xk 2L and plot the absolute error between the true geodesic distance and the Euclidean and covariance-
corrected distances. The result is shown in Figure 2. Note that the two “branches” correspond to
differences in curvature on either side of xk . In some manifold-learning algorithms, knowing the local
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Figure 2. Comparison of the Euclidean-distance-based geodesic distance estimator
(black) and the covariance-corrected geodesic distance estimator (red) in the logarithmic
spiral L. Left: local distance for "D 0:2. Right: global geodesic distance estimation by
applying Dijkstra’s algorithm with different local geodesic distance estimators.
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Figure 3. The eigenvalues of the Laplace–Beltrami operator on S1 are well-recovered
by LDR-LLE in the presence of a nonuniform sampling, compared with the ˛-
normalized DM.

geodesic distance is not enough, and we need to know the global geodesic distance between any two
points. ISOMAP [Tenenbaum et al. 2000] is a typical example. Usually, we estimate the global geodesic
distance by applying Dijkstra’s algorithm to find the shortest-path distance between all pairs, where the
geodesic distance between neighboring points is estimated by the Euclidean distance. By combining the
covariance-corrected geodesic distance estimator and Dijkstra’s algorithm, we achieve a more accurate
global geodesic distance, as is shown in Figure 2.

We show in Figure 3 that on S1 � R2 with a nonuniform sampling, the eigenvalues of the Laplace–
Beltrami operator can be accurately recovered using LDR-LLE. When compared with the eigenvalues
obtained from the 1-normalized DM, we see that LDR-LLE performs better, which comes from the
faster convergence rate of LDR-LLE. We use nD 8000 points and we choose hD 0:03. The nonuniform
sampling is obtained as follows. Sample n points f�ig

n
iD1

uniformly from Œ0; 1� and set

xi D
�
cos.2�.�i C 0:3 sin.�i///; sin.2�.�i C 0:3 sin.�i///

�
2 S1;

where i D 1; : : : ; n.

6. Conclusion

In this paper, we extend the knowledge of local covariance matrix, particularly the higher-order expansion
of the local covariance matrix, to study two commonly applied manifold-learning algorithms, EIG and
LLE. We provide a theoretical analysis of EIG under different situations under the manifold setup, and
emphasize the importance of correctly estimating the dimension and its sensitivity to chosen parameters.
The curvature effect is specifically carefully discussed. Under the trivial EIG setup when there is no
deformation, that is, ˆ is the identity, we show that the local covariance matrix structure allows us to
obtain a more accurate geodesic distance for neighboring points. The geometric relationship between the
local covariance matrix and LLE leads to a natural generalization of LLE by taking EIG into account. We
provide a theoretical justification of LDR-LLE and compare its pros and cons with the original LLE.



530 JOHN MALIK, CHAO SHEN, HAU-TIENG WU AND NAN WU

Appendix A: Proof of Theorem 8

Suppose that M and N are d -dimensional closed Riemannian manifolds and ˆ WM !N is a diffeomor-
phism. Moreover, suppose that N is isometrically embedded in Rq via �. In this section, all the derivatives
of ˆ are calculated in normal coordinates. Hence for x 2M,

r
kˆ.x/ W TxM � � � � �TxM„ ƒ‚ …

k

! Tˆ.x/N

is a multilinear map. We set rkˆ.x/.�; : : : ; �/Drk
� ����

ˆ.x/ for � 2 Sd�1 � TxM. For any y 2Rq, we
identify TyRq with Rq. The proof of the theorem is composed of three lemmas, including Lemma 6.

Lemma 13. Fix x 2M and use polar coordinates .t; �/ 2 Œ0;1/ � Sd�1 to parametrize TxM. For
w D expx.� t/ for sufficiently small t , let y Dˆ.x/ and z Dˆ.w/; then we have

�.z/� �.y/D ��jy# t C 1
2
ŒIIy.#; #/C ��jyr2

��ˆ.x/�t
2

C
1
6
Œr# IIy.#; #/C 3IIy.r2

��ˆ.x/; #/C ��jyr
3
���ˆ.x/�t

3
CO.t4/; (34)

where # WDr�ˆ.x/2TyN, IIy is the second fundamental form of �.N / at �.y/, and rIIy is the covariant
derivative of the second fundamental form. Moreover, we have

2t2
D .�.z/� �.y//>��jy Œrˆ.x/rˆ.x/

>��1��j
>
y .�.z/� �.y//

C .�.y/� �.z//>��jz Œrˆ.w/rˆ.w/
>��1��j

>
z .�.y/� �.z//CO.t4/: (35)

The lemma above can be regarded as a generalization of Lemma 4. Indeed, when N DM and ˆ is
the identity, rˆ is the identity and we recover Lemma 4.

Proof. Equation (34) follows from a direct Taylor expansion. Since t is small enough, let 
 W Œ0; t � 7!M

to be the unique unit speed geodesic from x to w; that is, 
 .0/D x and 
 .t/D w. By (34), we have

�.z/� �.y/D ��jy# t C 1
2
ŒIIy.#; #/C ��jyr2


 0.0/
 0.0/ˆ.x/�t
2
CO.t3/;

where # WD r�ˆ.x/Drˆjx.�/. Since the calculation is made in normal coordinates, we have ��jy D
OyJp;d , where Oy 2O.q/ and Jq;d 2Rq�d with 1 on the diagonal entries and 0 on the others. Therefore,
we have ��j>y ��jy D Id�d . Moreover, ��j>y IIy.�; �/ D 0 for any � 2 Sd�1. Hence, if we multiply by
Œrˆ.x/��1��j

>
y on both sides of above equation, we have

Œrˆ.x/��1��j
>
y .�.z/� �.y//D 


0.0/t C 1
2
Œrˆ.x/��1

r
2

 0.0/
 0.0/ˆ.x/t

2
CO.t3/:

Consequently,

.�.z/� �.y//>��jy Œrˆ.x/rˆ.x/
>��1��j

>
y .�.z/� �.y//

D .�.z/� �.y//>��jy Œrˆ.x/
�1�>rˆ.x/�1��j

>
y .�.z/� �.y//

D 
 0.0/>
 0.0/t2
C 
 0.0/>Œrˆ.x/��1

r
2

 0.0/
 0.0/ˆ.x/t

3
CO.t4/

D t2
C 
 0.0/>Œrˆ.x/��1

r
2

 0.0/
 0.0/ˆ.x/t

3
CO.t4/: (36)

Note that the last step follows from 
 0.0/>
 0.0/D 1.
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Let c W Œ0; t � 7!M be the unique geodesic from w to x so that c.0/D w and c.t/D x. Similarly, we
obtain

.�.y/� �.z//>��jz Œrˆ.w/rˆ.w/
>��1��j

>
z .�.y/� �.z//

D t2
C c0.0/>Œrˆ.w/��1

r
2
c0.0/c0.0/ˆ.w/t

3
CO.t4/

D t2
� 
 0.t/>Œrˆ.
 .t//��1

r
2

 0.t/
 0.t/ˆ.
 .t//t

3
CO.t4/

D t2
� 
 0.0/>Œrˆ.x/��1

r
2

 0.0/
 0.0/ˆ.x/t

3
CO.t4/; (37)

where the second-to-last equality comes from wD 
 .t/, c0.0/D�
 0.t/ and the last equality comes from
the Taylor expansion of 
 0.t/>Œrˆ.
 .t//��1r2


 0.t/
 0.t/
ˆ.
 .t// at t D 0. The conclusion follows from

adding (36) and (37) together. �

Proof of Lemma 6. Fix x 2M and use polar coordinates .t; �/ 2 Œ0;1/�Sd�1 to parametrize TxM.
Set y0 D ˆ.x0/ and x0 D expx.� t/. Let X be the random variable defined on the probability space
.�;F ;P/ with the range M, where P is the probability measure defined on the sigma algebra F in the
event space �. Define P DX�P to be the induced measure defined on the Borel sigma algebra on M.
By the Radon–Nikodym theorem, P.x0/D P .x0/ dVM .x0/, where P is the probability density function
of X associated with the Riemannian volume measure, dVM , defined on M. Furthermore, define Q to be
the induced measure by ˆ defined on the Borel sigma algebra on N ; that is, QDˆ�P D .ˆıX /�P. By
Radon–Nikodym chain rule,

Q.y0/D
dQ.y0/

dVN .y0/
D

dP.ˆ�1.y0//

dVM .ˆ�1.y0//

dVM .ˆ�1.y0//

dVN .y0/
D

P .ˆ�1.y0//

jrˆ.ˆ�1.y0//j
(38)

is the probability density function of the random variable Y WDˆ ıX associated with the Riemannian
volume measure defined on N. The regularity of Q is thus the same as that of P.

By definition we have

C".y/D
Z

E.y/

.�.y0/� �.y//.�.y0/� �.y//>Q.y0/ dVN .y
0/ 2 Rq�q: (39)

By a direct Taylor expansion we have

C".y/D
Z

B".x/

.�ıˆ.x0/��ıˆ.x//.�ıˆ.x0/��ıˆ.x//>
P .x0/

jrˆ.x0/j
jrˆ.x0/jdVM .x0/

D

Z
Sd�1

Z "

0

.��jyrˆ.x/� tCO.t2//.��jyrˆ.x/� tCO.t2//>.P .x/CO.t//.td�1
CO.tdC1//dt d�

DP .x/

Z
Sd�1

Z "

0

.��jyrˆ.x/�/.��jyrˆ.x/�/
>tdC1

CO.tdC2/dt d�

D
P .x/"dC2

dC2
Œ��jyrˆ.x/�

�Z
Sd�1

��>d�

�
Œ��jyrˆ.x/�

>
CO."dC4/:

Note that all terms of order tdC2 above contain a factor ��>� . Due to the symmetry of the sphere,R
Sd�1 ��

>� d� D 0. Hence, the error in the last step above is of order O."dC4/ rather than O."dC3/.
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Moreover, we have
R

Sd�1 ��
> d� D .jSd�1j=d/Id�d ; therefore

C".y/D
jSd�1jP .x/"dC2

d.d C 2/
Œ��jyrˆ.x/� Œrˆ.x/

>��jy
>�CO."dC4/: (40)

By a similar calculation, we have

E Œ�E".y/.Y /�D

Z
E.y/

Q.y0/ dVN .y
0/D

Z
B".x/

P .x0/ dVM .x0/

D

Z
Sd�1

Z "

0

.P .x/CO.t//.td�1
CO.tdC1// dt d�

D
jSd�1jP .x/"d

d
CO."dC2/: (41)

Note that all the terms of order td above contain a factor � . Due to the symmetry of the sphere,R
Sd�1 � d� D 0. Hence, the error in the last step above is of order O."dC2/ rather than O."dC1/. The

first result follows from taking the quotient of the above two equations.
By Lemma 13, we have

� ıˆ.x0/� � ıˆ.x/D ��jyr�ˆ.x/t C
1
2
ŒIIy.r�ˆ.x/;r�ˆ.x//C ��jyr

2
��ˆ.x/�t

2
CO.t3/:

If v1; v2 2 .��TyN /?, since ��jyr�ˆ.x/ and ��jyr2
��
ˆ.x/ are in ��TyN, then

v>1 .� ıˆ.x
0/� � ıˆ.x//D 1

2
v>1 IIy.r�ˆ.x/;r�ˆ.x//t

2
CO.t3/; (42)

v>2 .� ıˆ.x
0/� � ıˆ.x//D 1

2
v>2 IIy.r�ˆ.x/;r�ˆ.x//t

2
CO.t3/; (43)

and we have

v>1 C".y/v2

D

Z
B".x/

v>1 .� ıˆ.x
0/� � ıˆ.x//.� ıˆ.x0/� � ıˆ.x//>v2P .x0/ dVM .x0/

D

Z
Sd�1

Z "

0

1
4
.v>1 IIy.r�ˆ.x/;r�ˆ.x//t

2
CO.t3//.v>2 IIy.r�ˆ.x/;r�ˆ.x//t

2
CO.t3//>

� .P .x/CO.t//.td�1
CO.tdC1// dt d�

D
P .x/

4

Z
Sd�1

Z "

0

v>1 IIy.r�ˆ.x/;r�ˆ.x//.IIy.r�ˆ.x/;r�ˆ.x///
>v2tdC3

CO.tdC4/ dt d�

D
P .x/"dC4

4.d C 4/

Z
Sd�1

v>1 IIy.r�ˆ.x/;r�ˆ.x//.IIy.r�ˆ.x/;r�ˆ.x///
>v2 d� CO."dC6/:

Due to the symmetry of the sphere, the error in the last step above is of order O."dC6/ rather than
O."dC5/. The result follows from taking the quotient. �

To further control the influence of the truncated pseudoinverse, we need the following lemma to explore
the higher-order eigenvalue structure of the local covariance matrix.
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Lemma 14. Up to a rotation of Rq, we have

C".y/D

"
1

dC2
rˆ.x/rˆ.x/>CO."2/ O."2/

O."2/ d
4.dC4/

M "2CO."4/

#
; (44)

where M is a .q� d/� .q� d/ diagonal matrix satisfying

Mi;i D
1

jSd�1j

Z
Sd�1

e>q�dCiIIy.r�ˆ.x/;r�ˆ.x//.IIy.r�ˆ.x/;r�ˆ.x///
>eq�dCi d�: (45)

Moreover, if Mi;i D 0, then e>
q�dCi

IIy.r�ˆ.x/;r�ˆ.x//D 0.

Proof. First, we can rotate �.N / so that ��TyN is generated by fe1; e2; : : : ; edg. In other words,

��jy D

�
O1

0

�
2 Rq�d ;

where O1 2Od . Then, by the previous lemma we have

C".y/D

"
1

dC2
O1rˆ.x/rˆ.x/

>O>
1
CO."2/ O."2/

O."2/ M "2CO."4/

#
; (46)

where M is a .q� d/� .q� d/ symmetric matrix. If O2 diagonalizes M, let

OD
�
O1 0

0 O2

�
;

and we have

O>C".y/OD

"
1

dC2
rˆ.x/rˆ.x/>CO."2/ O."2/

O."2/ d
4.dC4/

M "2CO."4/

#
;

where M is a .q� d/� .q� d/ diagonal matrix. And by the previous lemma

Mi;i D
1

jSd�1j

Z
Sd�1

e>q�dCiIIy.r�ˆ.x/;r�ˆ.x//.IIy.r�ˆ.x/;r�ˆ.x///
>eq�dCi d�:

Note that if � D
Pd

jD1�j@j 2 Sd�1 � TyN, then e>
q�dCi

IIy.r�ˆ.x/;r�ˆ.x// D pi.�1; �2; : : : ; �d /,
where pi is a quadratic form. If Mi;i D 0, then

R
Sd�1 p2

i d� D 0. Hence pi D 0, and the conclusion
follows. �

We are now ready to finish the proof of Theorem 8.

Proof of Theorem 8. Note that .�.z/� �.y//>T˛ ŒC".y/�.�.z/� �.y// is invariant under any rotation of Rq.
Therefore, by Lemma 14 we can assume that

C".y/D

"
1

dC2
rˆ.x/rˆ.x/>CO."2/ O."2/

O."2/ d
4.dC4/

M "2CO."4/

#
; (47)
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where M is a .q� d/� .q� d/ diagonal matrix shown in (45). Suppose that M has l � 0 zero diagonal
entries. By assumption, we have q� d � l eigenvalues of order "2 that are related to principle curvatures,
and l eigenvalues of order "4. Write the eigendecomposition of C".y/ as

C".y/D U".x/ƒ".x/U".x/
>; (48)

where U".x/2O.q/ andƒ".x/ is a q�q diagonal matrix. By the perturbation argument (see Appendix A
of [Wu and Wu 2018] for details), ƒ".x/ and U".x/ satisfy

ƒ".x/D

264
1

dC2
ƒ1.x/CO."2/ 0 0

0 d
4.dC4/

ƒ2.x/"
2CO."4/ 0

0 0 O."4/

375 ; (49)

whereƒ1.x/ is the eigenvalue matrix of rˆ.x/rˆ.x/>, which is of order 1, andƒ2.x/ is a .q�d�l/�

.q� d � l/ diagonal matrix which consists of nonzero diagonal entries of M, which is also of order 1,
and

U".x/D

24U1.x/ 0 0

0 U2.x/ 0

0 0 U3.x/

35 .Ip�pC "
2S.x//CO."4/; (50)

where U1.x/ 2 O.d/ is the orthonormal eigenvector matrix of ˆ.x/rˆ.x/>, U2.x/ 2 O.q � d � l/,
U3.x/ 2O.l/ and S.x/ is antisymmetric.1 We now finish the proof.

Case 1: ˛ D d . In this case,

Td ŒC ".y/�D .d C 2/

�
U1.x/CO."2/

O."2/

�
Œƒ�1

1;".x/CO."2/�
�
U1.x/

>CO."2/ O."2/
�

D .d C 2/

�
Œrˆ.x/rˆ.x/>��1 0

0 0

�
CO."2/

D .d C 2/��jy Œrˆ.x/rˆ.x/
>��1��j

>
y CO."2/:

Therefore,

.�.z/� �.y//>Td ŒC".y/�.�.z/� �.y//
D .d C 2/.�.z/� �.y//>��jy Œrˆ.x/rˆ.x/

>��1��j
>
y .�.z/� �.y//CO."2

k�.y/� �.z/k2Rq /

D .d C 2/.�.z/� �.y//>��jy Œrˆ.x/rˆ.x/
>��1��j

>
y .�.z/� �.y//CO."2t2/; (51)

where the last step follows from O.k�.y/� �.z/k2Rq /DO.t2/ by Lemma 13. Similarly,

.�.y/� �.z//>Td ŒC".z/�.�.y/� �.z//

D .d C 2/.�.y/� �.z//>��jz Œrˆ.w/rˆ.w/
>��1��j

>
z .�.y/� �.z//CO."2t2/: (52)

1We mention that if the eigenvalues of ˆ.x/rˆ.x/> repeat, U1.x/ may not be uniquely determined, or if the nonzero
diagonal terms of ƒ2.x/ repeat, U2.x/ may not be the identity matrix. In this case, if one wants to fully determine U1.x/,
U2.x/ and U3.x/, he/she needs to further explore the higher-order expansion of C".y/. Since it is irrelevant to this proof, we
refer readers with interest to Appendix A of [Wu and Wu 2018].
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By Lemma 13, we have

EIG2
d .y; z/D .�.z/� �.y//

>

�
Td ŒC".y/�C Td ŒC".z/�

2

�
.�.z/� �.y//

D .d C 2/t2
CO.t2"2/CO.t4/: (53)

Preparation for ˛ ¤ d . To show the case when ˛ 6D d , we need some preparations. Let �1��2� � � � ��q

denote the eigenvalues of C".y/, and let fuig be the corresponding normalized eigenvectors. Note that
ui is the i -th column of ŒU1.x/

> 0 0�>CO."2/ when 1� i � d in (50). Based on (50), for 1� i � d ,
the first d entries of ui are of order 1 and the other entries are of order "2. Note that the first d entries
of ui are associated with the tangent space and the others are associated with the normal space. For
d C 1 � i � q � l , the tangent components of ui (the first d entries) are of order "2 and the normal
components of ui (the remaining p� d entries) are of order 1. On the other hand, based on Lemma 13,
the tangent component of �.z/� �.y/ is of order t and the normal component of �.z/� �.y/ is of order t2.
Following the notation in Lemma 13 and putting the above together, for 1� i � p� l , we have

.�.z/� �.y//>ui DO.t/ for 1� i � d ; (54)

.�.z/� �.y//>ui DO.t2
C t"2/ for d C 1� i � q� l : (55)

For q � l C 1 � i � q, we have ui D Nui CO."2/, where Nui is .i � q � l/’s column of Œ0 0 U3.x/
>�>

shown in (50). By Lemma 13, Nu>i .�.z/� �.y// becomes

Nu>i ��jyr�ˆ.x/t C
1
2
Œ Nu>i IIy.r�ˆ.x/;r�ˆ.x//C Nu

>
i ��jyr

2
��ˆ.x/�t

2
CO.t3/:

Note that Nu>i ��jyr�ˆ.x/D 0 and Nu>i ��jyr
2
��
ˆ.x/D 0, since Nui is in the normal direction. By Lemma 14,

we have Nu>i IIy.r�ˆ.x/;r�ˆ.x//D0. Therefore Nu>i .�.z/��.y//DO.t3/. Since ui� Nui is of order O."2/

and �.z/� �.y/ is of order O.t/, we have .ui � Nui/
>.�.z/� �.y//DO.t"2/. Putting the above together

gives

.�.z/� �.y//>ui DO.t3
C t"2/ for q� l C 1� i � q: (56)

With (54), (55) and (56), we can finish the proof for ˛ ¤ d .

Case 2: 1� ˛ < d . In this case, we have

.�.z/� �.y//>.T˛ ŒC".y/�� Td ŒC".y/�/.�.z/� �.y//D .�.z/� �.y//>
� dX

jD˛C1

uj u>j

�j

�
.�.z/� �.y//: (57)

Recall that �j is of order 1 for 1� j � d and also (54). As a result,

.�.z/� �.y//>T˛ ŒC".y/�.�.z/� �.y//D .�.z/� �.y//>Td ŒC".y/�.�.z/� �.y//CO.t2/:

Similarly,

.�.z/� �.y//>T˛ ŒC".z/�.�.z/� �.y//D .�.z/� �.y//>Td ŒC".z/�.�.z/� �.y//CO.t2/:
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We then achieve the claim
EIG2

˛.y; z/D .d C 2/t2
CO.t2/: (58)

We now show a special case when 1� ˛ < d . Let the geodesic distance between y and z be d.y; z/;
then by Lemma 13, we have d.y; z/D k�.y/� �.z/kRq CO.k�.y/� �.z/k3Rq /DO.t/. In a special case
when ��jy#.y/ 2 V˛.y/, where V˛.y/ is the subspace of ��TyN generated by the first ˛ eigenvectors of
C".y/, we have

.�.z/� �.y//>.T˛ ŒC".y/�� Td ŒC".y/�/.�.z/� �.y//

D .�.z/� �.y//>
� dX

jD˛C1

uj u>j

�j

�
.�.z/� �.y//DO.d.y; z/4/DO.t4/: (59)

If furthermore ��jz#.z/ 2 V˛.z/, where V˛.z/ is the subspace of ��TzN generated by the first ˛ eigen-
vectors of C".z/, we have

.�.z/� �.y//>.T˛ ŒC".z/�� Td ŒC".z/�/.�.z/� �.y//DO.t4/ (60)

and hence
EIG2

˛.y; z/D .d C 2/t2
CO.t2"2/CO.t4/: (61)

Case 3: ˛ > d . In this case, we have 0� ly � q� d . By a similar calculation, we have

.�.z/� �.y//>.T˛ ŒC".y/�� Td ŒC".y/�/.�.z/� �.y//

D .�.z/� �.y//>
� q�lyX

jDdC1

uj u>j

�j
C

X̨
jDq�lyC1

uj u>j

�j

�
.�.z/� �.y//: (62)

Since �j is of order "2 for d C 1� j � q� ly , by (55)

.�.z/� �.y//>
q�lyX

jDdC1

uj u>j

�j
.�.z/� �.y//DO..t2="C t"/2/: (63)

When q� ly C 1� j � ˛, the eigenvalue �j is of order "4 by assumption. By (56)

.�.z/� �.y//>
X̨

jDq�lyC1

uj u>j

�j
.�.z/� �.y//DO..t3="2

C t/2/:

Hence, when ˛ � q� ly C 1,

.�.z/� �.y//>.T˛ ŒC".y/�� Td ŒC".y/�/.�.z/� �.y//DO..t2="C t"/2C .t3="2
C t/2/I

otherwise we have

.�.z/� �.y//>.T˛ ŒC".y/�� Td ŒC".y/�/.�.z/� �.y//DO..t2="C t"/2/:

By the same argument, when ˛ � q� lzC 1, we have

.�.z/� �.y//>.T˛ ŒC".z/�� Td ŒC".z/�/.�.z/� �.y//DO..t2="C t"/2C .t3="2
C t/2/I
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otherwise we have

.�.z/� �.y//>.T˛ ŒC".z/�� Td ŒC".z/�/.�.z/� �.y//DO..t2="C t"/2/:

Summing above two equations together leads to the fact that when ly > 0 and ˛ � q � ly C 1 hold, or
lz > 0 and ˛ � q� lzC 1 hold, we have

EIG2
˛.y; z/D .d C 2/t2

CO..t2="C t"/2C .t3="2
C t/2/I (64)

otherwise we have
EIG2

˛.y; z/D .d C 2/t2
CO..t2="C t"/2/:

Set t D "ˇ, where ˇ � 1. By a straightforward calculation, when ly D 0 or ˛ � q � ly holds, and
lz D 0 or ˛ � q� lz holds, t2 dominates O..t2="C t"/2/ asymptotically when ˇ > 1; otherwise t2 and
O..t2="C t"/2C .t3="2C t/2/ are asymptotically of the same order. We thus conclude the claim. �

Remark 15. We would like to make a comment when ly > 0 and ˛ > q � ly hold, or lz > 0 and
˛ > q� lz hold. To simplify the discussion, assume ly D lz D l > 0 and ˛ > q� l . For u 2 Rq, we write
uD Œu>

1
; u>

2
; u>

3
�>, where u1 2 Rd . u2 2 Rq�d�l and u3 2 Rl . As we stated in the proof of (55), uj D

ŒO."2/; O.1/; O."2/�> for j D dC1; : : : ; q� l . On the other hand, �.z/� �.y/D ŒO.t/;O.t2/;O.t3/�>.
Here, based on the structure of C".y/, the first d components of �.z/� �.y/ are in the tangent direction of
�.N / at �.y/, and they are of order O.t/. The next q�d � l components are in the direction of the second
fundamental form of � at �.y/, and they are of order O.t2/. The last l components are in the normal
direction and perpendicular to the second fundamental form of � at �.y/, and they are of order O.t3/.
When we calculate the product .�.z/� �.y//>uj , the products of components in the tangent directions
and the products of components in the normal directions cannot be canceled in general. The argument
holds for (56). Hence, the order estimation for the case ˛ > d cannot be improved for an arbitrary vector
�.z/� �.y/ without imposing more conditions. In other words, an expansion of uj or �.z/� �.y/ into
higher orders might not improve the results.

Appendix B: Proof of Theorem 10

By Lemma 3, we have

U Nh.x/D

�
U1 0

0 U2

�
CO. Nh2/;

where U1 2O.d/ and U2 2O.p� d/. By (6),

�.y/� �.x/D .���/t C
IIx.�; �/

2
t2
CO.t3/:

By (7),

t D hC
kIIx.�; �/k

2

24
h3
CO.h4/:

Hence

�.y/� �.x/D .���/hC
IIx.�; �/

2
h2
CO.h3/:
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Note that .���/h is in ��TxM. Therefore

P?h .�.y/� �.x//D
IIx.�; �/

2
h2
CO.h3

C h Nh2/D
IIx.�; �/

2
h2
CO.h Nh2/;

where we use the fact that h< Nh in the last step. Hence,

kP?
h
.�.y/� �.x//k2Rp

6h
D
kIIx.�; �/k

2

24
h3
CO.h2 Nh2/:

The conclusion follows. �

Appendix C: Proof of Theorem 12

The proof of Theorem 12 consists of two steps, the variance analysis and bias analysis. The variance
analysis of LDR-LLE is similar to Case 0 in [Wu and Wu 2018, Theorem 3.1], so we only provide the
result and the proof is omitted.

Proposition 16. Fix f 2 C.�.M //. Suppose hD h.n/ so thatp
log.n/

n1=2hd=2C1
! 0

and h! 0 as n!1. With probability greater than 1� n�2, for all xk 2 X ,

NX
jD1

Qwn;xk
.i/f .xk;j /D

Z
M

P tLLE
h .xk ;y/f .y/P .y/ dV .y/CO

� p
log.n/

n1=2hd=2�1

�
:

The bias analysis part of Theorem 12 depends on the following two technical lemmas. We use the
following notation to simplify the proof. For p; d 2 N such that d � p, let Jp;d 2 Rp�d be such that the
.i; i/ entry is 1 for i D 1; : : : ; d , and the other entries are 0. For v 2 Rp,

v D ŒŒv1; v2�� 2 Rp; (65)

where v1 2 Rd forms the first d coordinates of v and v2 2 Rp�d forms the last p� d coordinates of v.
Thus, by a proper translation and rotation of �.M / in Rp so that �.x/D 0 and ��Tx occupies the first
d axes of Rp, for v D ŒŒv1; v2�� 2 T�.x/R

p, v1 D J>
p;d
v is tangential to ��TxM and ŒŒ0; v2�� is normal to

��TxM.

Lemma 17 [Wu and Wu 2018, Lemma B.5]. Fix x 2M and f 2 C 3.M /. When h > 0 is sufficiently
small, the following expansions hold:

(1) The scalar E Œ�
BRp

h
.�.x//

.X /� satisfies

E Œ�
BRp

h
.�.x//

.X /�D P .x/
jSd�1j

d
hd
CO.hdC2/:
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(2) The scalar E Œ.f .X /�f .x//�
BRp

h
.�.x//

.X /� satisfies

E Œ.f .X /�f .x//�
BRp

h
.�.x//

.X /�D
jSd�1j

d.d C 2/

�
1
2
P .x/�f .x/Crf .x/ � rP .x/

�
hdC2

CO.hdC3/:

(3) The vector E Œ.X � �.x//�
BRp

h
.�.x//

.X /� satisfies

E Œ.X � �.x//�
BRp

h
.�.x//

.X /�D

��
jSd�1j

d.d C 2/
J>p;d ��rP .x/hdC2

CO.hdC3/;O.hdC2/

��
:

(4) The vector E Œ.X � �.x//.f .X /�f .x//�
BRp

h
.�.x//

.X /� satisfies

E Œ.X��.x//.f .X /�f .x//�
BRp

h
.�.x//

.X /�D

��
jSd�1j

d.dC2/
J>p;dP .x/��rf .x/h

dC2
CO.hdC3/;O.hdC4/

��
:

The proof of the above lemma can be found in [Wu and Wu 2018, Lemma B.5]. The next lemma
describes the vector T when h is sufficiently small. The main significance is that the vector zT�.x/ almost
recovers r log P .x/ in the tangent direction.

Lemma 18. Fix x 2M. When h is sufficiently small, we have

zT�.x/ D

��
J>

p;d
��rP .x/

P .x/
CO.h2/; O.h2/

��
:

Proof. Note that

zT�.x/ WD Td ŒCh.x/� ŒE.X � �.x//�BRp

h
.�.x//

�D

dX
iD1

uiu
>
i ŒE.X � �.x//�BRp

h
.�.x//

�

�i
;

where ui and �i form the i -th eigenpair of Ch.x/.
By Lemma 3,

ui D

"
U1J>

p;d
ei CO.h2/

O.h2/

#
; i D 1; : : : ; d

and U1 2O.d/, and

�i D
jSd�1jP .x/

d.d C 2/
hdC2

CO.hdC4/:

By Lemma 17 , we have for 1� i � d

u>i E Œ.X � �.x//�
BRp

h
.xk/

.X /�

D
jSd�1j

d C 2

��
J>

p;d
��rP .x/

d
hdC2

CO.hdC4/; O.hdC2/

��
�

��
U1J>p;dei CO.h2/;O.h2/

��
D
jSd�1j

d.d C 2/
.��rP .x//>Jp;dU1J>p;deih

dC2
CO.hdC4/:
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Thus, for 1� i � d ,

u>i E Œ.X � �.x//�
BRp

h
.xk/

.X /�

�i
D

jSd�1j

d.dC2/
.��rP .x//>Jp;dU1J>

p;d
eih

dC2CO.hdC4/

jSd�1jP .x/

d.dC2/
hdC2CO.hdC4/

D

.��rP .x//>Jp;dU1J>
p;d

ei

P .x/
CO.h2/:

Hence, we have

zT�.x/ D

dX
iD1

u>i E Œ.X � �.x//�
BRp

h
.xk/

.X /�

�i
ui

D

dX
iD1

�
.��rP .x//>Jp;dU1J>

p;d
ei

P .x/
CO.h2/

���
U1J>p;dei CO.h2/; O.h2/

��

D

��
J>

p;d
��rP .x/

P .x/
CO.h2/; O.h2/

��
;

where the last step follows from the fact that U1 2O.d/. �
We are ready to prove Theorem 12.

Proof of Theorem 12. Note thatZ
M

PtLLE.x;y/f .y/P .y/ dV .y/�f .x/

D

E Œ.f .X /�f .x//�
BRp

h
.�.x//

.X /�� zT >
�.x/

E Œ.X � �.x//.f .X /�f .x//�
BRp

h
.�.x//

.X /�

E Œ�
BRp

h
.�.x//

.X /�� zT >
�.x/

E Œ.X � �.x//�
BRp

h
.�.x//

.X /�
:

By Lemmas 17 and 18, we have

zT >�.x/E Œ.X � �.x//�BRp

h
.�.x//

.X /�DO.hdC2/; (66)
and

zT >�.x/E Œ.X � �.x//.f .X /�f .x//�BRp

h
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.X /�D
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rP .x/ � rf .x/hdC2
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Hence,
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If we combine the above two equations, we conclude the claim thatZ
M

PtLLE.x;y/f .y/P .y/ dV .y/�f .x/D
1

2.d C 2/
�f .x/h2

CO.h3/: �
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