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On products of shifts in arbitrary fields

Audie Warren

We adapt the approach of Rudnev, Shakan, and Shkredov (2018) to prove that in an arbitrary field F, for
all A ⊂ F finite with |A|< p1/4 if p := Char(F) is positive, we have

|A(A+ 1)| �
|A|11/9

(log |A|)7/6
, |AA| + |(A+ 1)(A+ 1)| �

|A|11/9

(log |A|)7/6
.

This improves upon the exponent of 6
5 given by an incidence theorem of Stevens and de Zeeuw.

1. Introduction and main result

For finite A ⊆ F, we define the sumset and product set of A as

A+ A = {a+ b : a, b ∈ A}, AA = {ab : a, b ∈ A}.

It is an active area of research to show that one of these sets must be large relative to A. The central
conjecture in this area is the following.

Conjecture 1 (Erdős–Szemerédi). For all ε > 0, and for all A ⊆ Z finite, we have

|AA| + |A+ A| � |A|2−ε .

The notation X � Y is used to hide absolute constants; i.e., X � Y if and only if there exists an
absolute constant c > 0 such that X � cY. If X � Y and Y � X we write X � Y. We will let p denote
the characteristic of F throughout (p may be zero). Due to the possible existence of finite subfields in F,
extra restrictions on |A| relative to p must be imposed if p is positive; all such conditions can be ignored
if p = 0.

Although Conjecture 1 is stated over the integers, it can be considered over fields, the real numbers
being of primary interest. Current progress over R places us at an exponent of 4

3+c for some small c, due
to Shakan [2018], building on [Konyagin and Shkredov 2015; Solymosi 2009]. Incidence geometry, and
in particular the Szemerédi–Trotter theorem, are tools often used to prove such results in the real numbers.

Conjecture 1 can also be considered over arbitrary fields F. Over arbitrary fields we replace the
Szemerédi–Trotter theorem with a point-plane incidence theorem of [Rudnev 2018], which was used by
Stevens and de Zeeuw [2017] to derive a point-line incidence theorem. An exponent of 6

5 was proved
in 2014 by Roche-Newton, Rudnev, and Shkredov [Roche-Newton et al. 2016]. An application of the
Stevens–de Zeeuw theorem also gives this exponent of 6

5 for Conjecture 1, so that 6
5 became a threshold

to be broken.
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The 6
5 threshold has recently been broken; see [Shakan and Shkredov 2018; Rudnev et al. 2018; Chen

et al. 2018]. The following theorem was proved by Rudnev, Shakan, and Shkredov and is the current
state-of-the-art bound.

Theorem 2 [Rudnev et al. 2018]. Let A ⊂ F be a finite set. If F has positive characteristic p, assume
|A|< p18/35. Then we have

|A+ A| + |AA| � |A|11/9−o(1).

Another way of considering the sum-product phenomenon is to consider the set A(A+ 1), which we
would expect to be quadratic in size. This encapsulates the idea that a translation of a multiplicatively
structured set should destroy its structure, which is a main theme in sum-product questions. Study
of growth of |A(A+ 1)| began in [Garaev and Shen 2010]; see also [Jones and Roche-Newton 2013;
Zhelezov 2015; Mohammadi 2018]. Current progress for |A(A+ 1)| comes from an application of the
Stevens–de Zeeuw theorem, giving the same exponent of 6

5 . In this paper we use the multiplicative
analogue of ideas in [Rudnev et al. 2018] to prove the following theorem.

Theorem 3. Let A, B,C, D ⊂ F be finite with the conditions

|C(A+ 1)||A| ≤ |C |3, |C(A+ 1)|2 ≤ |A||C |3, |B| ≤ |D|, |A|, |B|, |C |, |D|< p1/4.

Then we have

|AB|8 |C(A+ 1)|2 |D(B− 1)|8�
|B|13
|A|5 |D|3 |C |

(log |A|)17(log |B|)4
.

In our applications of this theorem we have |A| = |B| = |C | = |D| so that the first three conditions are
trivially satisfied. The conditions involving p could likely be improved; however, for sake of exposition
we do not attempt to optimise these. The main proof closely follows [Rudnev et al. 2018] (in the multi-
plicative setting), the central difference being a bound on multiplicative energies in terms of products of
shifts. An application of Theorem 3 beats the threshold of 6

5 , matching the 11
9 appearing in Theorem 2.

Specifically, we have:

Corollary 4. Let A ⊆ F be finite, with |A|< p1/4. Then

|A(A+ 1)| �
|A|11/9

(log |A|)7/6
, |AA| + |(A+ 1)(A+ 1)| �

|A|11/9

(log |A|)7/6
.

Corollary 4 can be seen by applying Theorem 3 with B = A+ 1, C = A and D = A+ 1 for the first
result, and B =−A, D = C = A+ 1 for the second result.

2. Preliminary results

We require some preliminary theorems. The first is the point-line incidence theorem of Stevens and
de Zeeuw.

Theorem 5 [Stevens and de Zeeuw 2017]. Let A and B with |A| ≥ |B| be finite subsets of a field F, and
let L be a set of lines. Assuming |L||B| � p2 and |B||A|2 ≤ |L|3, we have

I (A× B, L)� |A|1/2 |B|3/4 |L|3/4+ |L|.
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Note that as |A| ≥ |B|, we have |A|1/2 |B|3/4 ≤ |A|3/4 |B|1/2; in particular with the same conditions we
have the above result with the exponents of A and B swapped. Because of this, the condition |A| ≥ |B|
is only needed to specify the second two conditions. We may therefore restate Theorem 5 as:

Theorem 6. Let A and B be finite subsets of a field F, and let L be a set of lines. Assuming

|L|min{|A|, |B|} � p2 and |A||B|max{|A|, |B|} ≤ |L|3,
we have

I (A× B, L)�min{|A|1/2 |B|3/4, |A|3/4 |B|1/2}|L|3/4+ |L|.

This second formulation will be how we apply Theorem 5. Before stating the next two theorems we
require some definitions. For x ∈ F we define the representation function

rA/D(x)=
∣∣∣{(a, d) ∈ A× D : a

d
= x

}∣∣∣.
Note that for all x we have rA/D(x)≤min{|A|, |D|}. This is seen as fixing one of a, d in the equation
a/d = x necessarily determines the other. The set A/D in this definition can be changed to any other
combination of sets, changing the fraction a/d in the definition to match. For n ∈ R+, we define the n-th
moment multiplicative energy of sets A, D ⊆ F as

E∗n(A, D)=
∑

x

rA/D(x)n.

When n = 2 we shall simply write E∗(A, D), and when A = D we write E∗n(A) := E∗n(A, A). By
considering that we have a/a = 1 for all a ∈ A, we have the trivial lower bound E∗n(A)≥ |A|

n. When n
is in fact a natural number, E∗n(A, D) can be considered as the number of solutions to

a1

d1
=

a2

d2
= · · · =

an

dn
, ai ∈ A, di ∈ D,

giving the trivial upper bound E∗n(A, D) ≤ |A|n|D| by fixing a1 to an and then choosing a single di ,
which necessarily determines all other di .

We use Theorem 6 to prove two further results. The first is a bound on the fourth-order multiplicative
energy relative to products of shifts.

Theorem 7. For all finite nonempty A,C, D ⊂ F with

|A|2 |C(A+ 1)| ≤ |D||C |3, |A||C(A+ 1)|2 ≤ |D|2 |C |3, |A||C ||D|2� p2,

we have

E∗4(A, D)�min
{
|C(A+ 1)|2 |D|3

|C |
,
|C(A+ 1)|3 |D|2

|C |

}
log |A|.

The second result is similar, but for the second moment multiplicative energy.

Theorem 8. For all finite and nonempty A, C , D ⊂ F with

|A|2 |C(A+ 1)| ≤ |D||C |3, |A||C(A+ 1)|2 ≤ |D|2 |C |3, |A||C ||D|min{|C |, |D|} � p2,

we have

E∗(A, D)�
|C(A+ 1)|3/2 |D|3/2

|C |1/2
log |A|.
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The set A+ 1 appearing in these theorems can be changed to any translate A+ λ for λ 6= 0 by noting
that |C(A+ 1)| = |C(λA+ λ)| and renaming A′ = λA. For our purposes, we will use λ=±1.

Proof of Theorem 7. Without loss of generality, we can assume that 0 /∈ A,C, D. We begin by proving

E∗4(A, D)�
|C(A+ 1)|2 |D|3

|C |
log |A|.

Define the set
Sτ := {x ∈ A/D : τ ≤ rA/D(x) < 2τ }.

By a dyadic decomposition, there is some τ with

|Sτ |τ 4
� E∗4(A, D)� |Sτ |τ 4 log |A|.

Note that τ ≤min{|A|, |D|}. Take an element t ∈ Sτ . It has τ representations in A/D, so there are τ ways
to write t = a/d with a ∈ A, d ∈ D. For all c ∈ C , we have

t =
a
d
=

1
d

(
ac+ c− c

c

)
=

1
d

(
α

c
− 1

)
,

where α = c(a+ 1) ∈ C(A+ 1). This shows that we have |Sτ |τ |C | incidences between the lines

L = {ld,c : d ∈ D, c ∈ C}, ld,c given by y =
1
d

(
x
c
− 1
)
,

and the point set P = C(A+ 1)× Sτ . Under the conditions |D||C |min{|Sτ |, |C(A+ 1)|} � p2 and
|Sτ ||C(A+ 1)|max{|Sτ |, |C(A+ 1)|} ≤ |D|3 |C |3, we have

|Sτ |τ |C | ≤ I (P, L)� |C(A+ 1)|1/2 |Sτ |3/4 |C |3/4 |D|3/4+ |D||C |.

The conditions are satisfied under the assumptions |D||A||C |min{|D|, |C |} � p2, |A|2 |C(A+ 1)| ≤
|D||C |3, and |A||C(A+ 1)|2 ≤ |D|2 |C |3. Assuming that the leading term is dominant, we have

|Sτ |τ 4
|C | � |C(A+ 1)|2 |D|3

so that as E∗4(A, D)/log |A| � |Sτ |τ 4, we have

E∗4(A, D)�
|C(A+ 1)|2 |D|3

|C |
log |A|.

We therefore assume the leading term is not dominant. Suppose |D||C | is dominant so that

|C(A+ 1)|1/2 |Sτ |3/4 |C |3/4 |D|3/4 ≤ |D||C |. (1)

Multiplying by τ 3 and simplifying, we have

|C(A+1)|2
E∗4(A, D)3

log |A|3
�|C(A+1)|2 |Sτ |3τ 12

≤|D||C |τ 12
=⇒ E∗4(A, D)�

|D|1/3 |C |1/3τ 4

|C(A+ 1)|2/3
log |A|.

The result now follows if
|D|1/3 |C |1/3τ 4

|C(A+ 1)|2/3
�
|C(A+ 1)|2 |D|3

|C |
.
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We must therefore prove the result in the case that this is not true; we will prove the result under the
assumption

|C(A+ 1)|2 |D|3

|C |
≤
|D|1/3 |C |1/3τ 4

|C(A+ 1)|2/3
,

which gives (using τ ≤ |A|)

|D|8 |C |4 |A|4 ≤ |D|8 |C(A+ 1)|8 ≤ τ 12
|C |4 ≤ |A|12

|C |4,

so that we have |D| ≤ |A|. We then have (using |C(A+ 1)| ≥ |C |1/2 |A|1/2)

|D||C | ≥ |C(A+ 1)|1/2 |Sτ |3/4 |C |3/4 |D|3/4 ≥ |C(A+ 1)|1/2 |C |3/4 |D|3/4 ≥ |A|1/4 |C ||D|3/4 ≥ |D||C |,

so that the two terms are in fact balanced and the result follows.
Secondly, we prove that

E∗4(A, D)�
|C(A+ 1)|3 |D|2

|C |
log |A|.

To do this, we swap the roles of D and Sτ from above. We define the line set and point set by

L = {lt,c : t ∈ Sτ , c ∈ C}, P = C(A+ 1)× D.

Any incidence from the previous point and line sets remains an incidence for the new ones, via

t =
1
d

(
α

c
− 1
)
⇐⇒ d =

1
t

(
α

c
− 1
)
.

Under the conditions

|Sτ ||C |min{|D|, |C(A+ 1)|} � p2, |D||C(A+ 1)|max{|D|, |C(A+ 1)|} ≤ |Sτ |3 |C |3, (2)

we have
|Sτ |τ |C | ≤ I (P, L)� |C(A+ 1)|3/4 |Sτ |3/4 |C |3/4 |D|1/2+ |Sτ ||C |.

If the leading term dominates, the result follows from |Sτ |τ 4
� E∗4(A, D)/log |A|. Assume the leading

term is not dominant; that is,
|C(A+ 1)|3 |D|2 ≤ |Sτ ||C |.

Then by using |Sτ | ≤ |A||D| and |A|, |C | ≤ |C(A+ 1)| we have

|A||C |2 |D|2 ≤ |C(A+ 1)|3 |D|2 ≤ |Sτ ||C | ≤ |A||D||C |,

so that |C | = |D| = 1 and the result is trivial by E∗4(A, D)≤ |A||D|4 ≤ |A|.
We now check the conditions (2) for using Theorem 5. The first condition in (2) is satisfied if
|A||C ||D|2� p2, which is true under our assumptions. The second depends on max{|D|, |C(A+ 1)|},
which we assume is |D| (if not the first term in Theorem 7 gives stronger information, which we have
already proved). Assuming the second condition does not hold, we have

|Sτ |3 |C |3 < |D|2 |C(A+ 1)|.
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Multiplying by τ 12 and bounding τ ≤ |A|, we get

E∗4(A, D)�
|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
log |A|. (3)

We may now assume the bound

|C(A+ 1)|3 |D|2

|C |
≤
|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
. (4)

Indeed, if we were to have

|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
<
|C(A+ 1)|3 |D|2

|C |

then we may apply this bound in (3) and the result follows. Assuming (4), we have

|A|8 |D|4 ≤ |C(A+ 1)|8 |D|4 ≤ |A|12.

So that |D| ≤ |A|. In turn, this implies |A| ≥ |D| ≥ |C(A+ 1)| ≥ |A|, so that |A| = |C(A+ 1)| = |D|.
Returning to (3), this gives

E∗4(A, D)�
|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
log |A| =

|C(A+ 1)|3 |D|2

|C |
log |A|,

and the result is proved. �

Proof of Theorem 8. The proof follows similarly to that of Theorem 7. We again define the lines and
points

L = {ld,c : d ∈ D, c ∈ C}, ld,c given by y =
1
d

(
x
c
− 1
)
, P = C(A+ 1)× Sτ ,

where in this case the set Sτ is rich with respect to E∗(A, D), so that

|Sτ |τ 2
� E∗(A, D)� |Sτ |τ 2 log |A|.

With the conditions |A||C ||D|min{|D|, |C |}� p2 and |Sτ ||C(A+1)|max{|Sτ |, |C(A+1)|} ≤ |D|3 |C |3

(which are satisfied under our assumptions), we have, by Theorem 6,

|Sτ |τ |C | ≤ I (P, L)� |Sτ |1/2 |C(A+ 1)|3/4 |D|3/4 |C |3/4+ |D||C |.

If the leading term dominates, we have

|Sτ |τ 2
�
|C(A+ 1)|3/2 |D|3/2

|C |1/2

and the result follows from E∗(A, D)/log |A| � |Sτ |τ 2. We therefore assume that the leading term does
not dominate; that is,

|Sτ |1/2 |C(A+ 1)|3/4 |D|3/4 |C |3/4 ≤ |D||C |.
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Multiplying through by τ and squaring, we get the bound

E∗(A, D)�
|D|1/2 |C |1/2τ 2

|C(A+ 1)|3/2
log |A|. (5)

Much as before, we may now assume the bound

|D|3/2 |C(A+ 1)|3/2

|C |1/2
≤
|D|1/2 |C |1/2τ 2

|C(A+ 1)|3/2
, (6)

as assuming otherwise yields the result via (5). The bound (6) then gives

|D||C(A+ 1)|3 ≤ |C |τ 2.

Bounding τ ≤ |A| and |C ||A|2 ≤ |C(A+ 1)|3, we have |D| = 1. Similarly, bounding τ 2
≤ |A||D| and

|C(A+ 1)|3 ≥ |C |2 |A|, we find |C | = 1, so that the result is trivial. �

3. Proof of Theorem 3

We follow a multiplicative analogue of the argument in [Rudnev et al. 2018]. Without loss of generality
we may assume A, B ⊆ F∗. For some δ > 0, define a popular set of products as

P :=
{

x ∈ AB : rAB(x)≥
|A||B|
|AB|δ

}
.

Let Pc
:= AB \ P. Note that by writing

|{(a, b) ∈ A× B : ab ∈ P}| + |{(a, b) ∈ A× B : ab ∈ Pc
}| = |A||B|

and noting that

|{(a, b) ∈ A× B : ab ∈ Pc
}|< |Pc

|
|A||B|
|AB|δ

≤
|A||B|
δ

,

we have
|{(a, b) ∈ A× B : ab ∈ P}| ≥

(
1− 1

δ

)
|A||B|.

We also define a popular subset of A with respect to P as

A′ :=
{
a ∈ A : |{b ∈ B : ab ∈ P}| ≥ 2

3 |B|
}
.

We have

|{(a, b) ∈ A× B : ab ∈ P}| =
∑
a∈A′
|{b : ab ∈ P}| +

∑
a∈A\A′

|{b : ab ∈ P}| ≥
(
1− 1

δ

)
|A||B|. (7)

Suppose that |A \ A′| = c|A| for some c ≥ 0, so that |A′| = (1− c)|A|. Noting that∑
a∈A′
|{b : ab ∈ P}| ≤ (1− c)|A||B|,

∑
a∈A\A′

|{b : ab ∈ P}| ≤ 2c
3
|A||B|,

we have by (7)

(1− c)|A||B| + 2c
3
|A||B| ≥

(
1− 1

δ

)
|A||B| =⇒ c ≤ 3

δ
,

so that |A′| ≥ (1− 3/δ)|A|.



254 AUDIE WARREN

We use a multiplicative version of Lemma 8 in [Rudnev et al. 2018]. The proof we present is an
expanded version of the proof present in that paper.

Lemma 9. For all finite A ⊂ F, there exists A1 ⊆ A with |A1| � |A| such that

E∗4/3(A
′

1)� E∗4/3(A1).

Proof. We give an algorithm which shows such a subset exists, as otherwise we have a contradiction. We
recursively define

Ai = A′i−1, A0 = A, i ≤ log |A|,

where A′i is defined relative to Ai . Using the same arguments as above, we have |A′i | ≥ (1− 3/δ)|Ai |.
We shall set δ = log |A|. We have the chain of inequalities

|Ai | = |A′i−1| ≥

(
1−

3
log |A|

)
|Ai−1| ≥ · · · ≥

(
1−

3
log |A|

)i

|A|.

Note that assuming |A| ≥ 16 (if this is not true then the result is trivial), we have(
1−

3
log |A|

)i

≥

(
1−

3
log |A|

)log |A|

≥

(
1
4

)4

since the function (1− 3/z)z is increasing for z > 3. We now have

|Ai | ≥

(
1
4

)4

|A| � |A|

at all steps i . We assume that at all steps, we have

E∗4/3(A
′

i ) <
E∗4/3(Ai )

4
,

as otherwise we have E∗4/3(A
′

i )� E∗4/3(Ai ) and we are done. After log |A| steps, we have a set Ak with

|Ak | � |A|, E∗4/3(A
′

k) <
E∗4/3(k)

4
<

E∗4/3(Ak−1)

16
< · · ·<

E∗4/3(A)

4log |A| .

But then we have
E∗4/3(A) > E∗4/3(A

′

k)4
log |A|

� |A|4/3+2
= |A|10/3,

which is a contradiction. Therefore at some step we have an Ai satisfying the lemma. �

We now return to the proof of Theorem 3, with δ = log |A| applied in the definition of P. We apply
Lemma 9 to A to find a large subset A1⊂ A with E∗4/3(A

′

1)� E∗4/3(A1), |A1|� |A|. Noting that proving
the result for A1 implies it for A, we shall rename A1 as A for simplicity.

We use a dyadic decomposition to find a set Q ⊂ A′/A′ such that

|Q|14/3
� E∗4/3(A

′)� |Q|14/3 log |A|

for some 1> 0.
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We will bound the size of the set

N =
{
(a, a′, b, b′) ∈ (A′)2× B2

:
a
a′
∈ Q, ab, ab′, a′b, a′b′ ∈ P

}
.

By summing over all a, a′ ∈ A′ with a/a′ ∈ Q, we have

|N | =
∑

a,a′∈A′
a/a′∈Q

|{b ∈ B : ab, a′b ∈ P}|2

and we see that as |{b∈ B :ab∈ P}|≥ 2
3 |B| for all a∈ A′, by considering the intersection of {b∈ B :ab∈ P}

and {b ∈ B : a′b ∈ P}, we have |{b ∈ B : ab, a′b ∈ P}| ≥ 1
3 |B| for all a, a′ ∈ A′. Using that elements

q ∈ Q have at least 1 representations in A′/A′, we have |N | ≥ 1
9 |B|

2
|Q|1.

We now find an upper bound on |N |. Define an equivalence relation on A2
× B2 via

(a, a′, b, b′)∼ (c, c′, d, d ′) ⇐⇒ there exists λ such that a = λc, a′ = λc′, b =
d
λ
, b′ =

d ′

λ
.

Note that the conditions
a
a′
∈ Q, ab, a′b, ab′, a′b′ ∈ P (8)

are invariant in the class (i.e., if one class element satisfies these conditions, then they all do), as λ cancels
in each condition. Let X denote the set of equivalence classes [a, a′, b, b′], where the conditions (8) are
satisfied. We can bound |N | by the sum of the size of each equivalence class [a, a′, b, b′] in X :

|N | ≤
∑

X

|[a, a′, b, b′]|.

By the Cauchy–Schwarz inequality and completing the sum over all equivalence classes, we have

|Q|212
|B|4� |N |2 ≤ |X |

∑
[a,a′,b,b′]

|[a, a′, b, b′]|2. (9)

We must now bound the two quantities on the right-hand side of this equation. We first claim that∑
[a,a′,b,b′]

|[a, a′, b, b′]|2 ≤
∑

x

rA/A(x)2rB/B(x)2. (10)

To see this, note that the left-hand side of (10) counts pairs of elements of equivalence classes. Take any
two elements (a, a′, b, b′), (c, c′, d, d ′) ∈ A2

× B2 from the same equivalence class. By definition, we
may write (c, c′, d, d ′)= (λa, λa′, b/λ, b′/λ). As 0 /∈ A, B, the 8-tuple (a, a′, b, b′, c, c′, d, d ′) satisfies

λ=
c
a
=

c′

a′
=

b
d
=

b′

d ′

for some λ ∈ R, and thus corresponds to a contribution to the quantity rA/A(λ)
2rB/B(λ)

2, and thus also
corresponds to a contribution to the sum

∑
x rA/A(x)2rB/B(x)2. We also see that different pairs from

equivalence classes necessarily give different 8-tuples, and so the claim is proved. We use Cauchy–
Schwarz on the right-hand side of (10) to bound it by a product of fourth energies:∑

x

rA/A(x)2rB/B(x)2 ≤ E∗4(A)
1/2 E∗4(B)

1/2.
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We use Theorem 7 to bound these energies. We bound via

E∗4(A)�
|C(A+ 1)|2 |A|3

|C |
log |A|, E∗4(B)�

|D(B− 1)|2 |B|3

|D|
log |B|,

with conditions

|C(A+ 1)||A| ≤ |C |3, |C(A+ 1)|2 ≤ |A||C |3, |A|3 |C | � p2,

|D(B− 1)||B| ≤ |D|3, |D(B− 1)|2 ≤ |B||D|3, |B|3 |D| � p2,

which are all satisfied under our assumptions. Returning to (9), we now have

|Q|212
|B|4� |X |

|C(A+ 1)||A|3/2 |D(B− 1)||B|3/2

|C |1/2 |D|1/2
(log |A| log |B|)1/2. (11)

We now bound |X |, the number of equivalence classes where the conditions (8) are satisfied. Note that
any (a, a′, b, b′) belonging to an equivalence class in X maps to a solution of the equation

w =
s
t
=

u
v
, (12)

with w ∈ Q, s, t, u, v ∈ P, by taking w = a/a′, s = ab, t = a′b, u = ab′, v = a′b′. Note that taking
two solutions (a, a′, b, b′) and (c, c′, d, d ′) that are not from the same equivalence class necessarily gives
us two different solutions to (12) via the map above. Therefore we may bound |X | by the number of
solutions to (12).

|X | ≤
∣∣∣∣{(w, s, t, u, v) ∈ Q× P4

: w=
s
t
=

u
v

}∣∣∣∣= ∣∣∣∣{(s, t, u, v) ∈ P4
:

s
t
=

u
v
∈ Q

}∣∣∣∣.
The popularity of P allows us to bound this by

|X | ≤
|AB|4(log |A|)4

|A|4 |B|4

∣∣∣∣{(a1, a2, a3, a4, b1, b2, b3, b4) ∈ A4
× B4

:
a1b1

a2b2
=

a3b3

a4b4
∈ Q

}∣∣∣∣.
We dyadically pigeonhole the set B A/A in relation to the number of solutions to r/a = r ′/a′ ∈ Q, with
r, r ′ ∈ B A/A, a, a′ ∈ A, to find popular subsets R1, R2 ⊆ B A/A in terms of these solutions. We have

|X | ≤
|AB|4(log |A|)4

|A|4 |B|4

2 log |A|∑
i=1

∑
x∈AB/A

2i
≤rAB/A(x)<2i+1

rAB/A(x)
∣∣∣∣{(a3, a4, b1, b3, b4)∈ A2

× B3
:

x
b1
=

a3b3

a4a4
∈ Q

}∣∣∣∣.
We use the pigeonhole principle to give us 11 > 0 and R1 ⊆ AB/A such that

|X | �11
|AB|4(log |A|)5

|A|4 |B|4

∣∣∣∣{(r1, a3, a4, b2, b3, b4) ∈ R1× A2
× B3

:
r1

b2
=

a3b3

a4b4
∈ Q

}∣∣∣∣.
We perform a similar dyadic decomposition to get 1′1 > 0 and R2 ⊆ AB/A such that

|X | �111
′

1
|AB|4(log |A|)6

|A|4 |B|4

∣∣∣∣{(r1, r2, b2, b4) ∈ R1× R2× B2
:

r1

b2
=

r2

b4
∈ Q

}∣∣∣∣.
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These decompositions now allow us to bound via fourth energies, as follows:

|X | �111
′

1
|AB|4(log |A|)6

|A|4 |B|4

∣∣∣∣{(r1, r2, b2, b4) ∈ R1× R2× B2
:

r1

b2
=

r2

b4
∈ Q

}∣∣∣∣
=111

′

1
|AB|4(log |A|)6

|A|4 |B|4
∑
q∈Q

rR1/B(q)rR2/B(q)

≤111
′

1
|AB|4(log |A|)6

|A|4 |B|4

(∑
q∈Q

rR1/B(q)2
)1/2(∑

q∈Q

rR2/B(q)2
)1/2

≤111
′

1|Q|
1/2 |AB|4(log |A|)6

|A|4 |B|4
E∗4(B, R1)

1/4 E∗4(B, R2)
1/4, (13)

where the third and fourth lines follow from applications of the Cauchy–Schwarz inequality. We will
now show that given |B||D||Ri |

2
� p2 and |B| ≤ |D| (which are true under our assumptions), we have

E∗4(B, Ri )�
|D(B− 1)|3 |Ri |

2

|D|
log |B|. (14)

Firstly, with the additional conditions

|B|2 |D(B− 1)| ≤ |Ri ||D|3, |B||D(B− 1)|2 ≤ |Ri |
2
|D|3 (15)

we may bound these fourth energies by Theorem 7 to get (14). We can therefore assume one of these
conditions does not hold.

Firstly, suppose that |B|2 |D(B− 1)|> |Ri ||D|3. We will use the trivial bound

E∗4(B, Ri )≤ |Ri |
4
|B|.

Note that it would be enough to prove

E∗4(B, Ri )≤
|D(B− 1)|3 |Ri |

2

|D|
,

which would follow from

|Ri |
4
|B| ≤

|D(B− 1)|3 |Ri |
2

|D|
, (16)

which is true if and only if |Ri |
2
|B||D| ≤ |D(B − 1)|3. Using our assumed bound |B|2 |D(B − 1)| >

|Ri ||D|3, we know

|Ri |
2
|B||D|<

|B|5 |D(B− 1)|2

|D|5
.

By the assumption |B| ≤ |D|, we have

|Ri |
2
|B||D|<

|B|5 |D(B− 1)|2

|D|5
≤ |D(B− 1)|3,

and so by (16) the bound on the fourth energy holds.
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Now assume the second condition from (15) does not hold; that is, |B||D(B−1)|2 > |Ri |
2
|D|3. Again,

we use the trivial bound
E∗4(B, Ri )≤ |Ri |

4
|B|.

We have

|Ri |
4
|B| ≤

|D(B− 1)|3 |Ri |
2

|D|
⇐⇒ |Ri |

2
|B||D| ≤ |D(B− 1)|3,

so it is enough to prove |Ri |
2
|B||D| ≤ |D(B− 1)|3, as before. Using the assumption |B||D(B− 1)|2 >

|Ri |
2
|D|3, we have

|Ri |
2
|B||D|<

|B|2 |D(B− 1)|2

|D|2

and it follows from our assumption |B| ≤ |D| that

|B|2 |D(B− 1)|2

|D|2
≤ |D(B− 1)|3.

Therefore we have |Ri |
2
|B||D|< |D(B− 1)|3 and so the bound on the fourth energy holds. Returning

to (13), we use (14) to bound |X | as

|X | �111
′

1|Q|
1/2 |AB|4(log |A|)6

|A|4 |B|4
E∗4(B, R1)

1/4 E∗4(B, R2)
1/4

�111
′

1|R1|
1/2
|R2|

1/2
|Q|1/2

|AB|4 |D(B− 1)|3/2

|A|4 |B|4 |D|1/2
(log |A|)6(log |B|)1/2. (17)

As |Ri |1i ≤
∑

x∈Ri
rB A/A(x), the product |R1|

1/2
|R2|

1/2111
′

1 can be bounded by

|R1|
1/2
|R2|

1/2111
′

1 ≤

(∑
x∈R1

rB A/A(x)2
∑
x∈R2

rB A/A(x)2
)1/2

,

where it is important to note that rB A/A(x) gives a triple (b, a, a′). For i = 1, 2, we have∑
x∈Ri

rB A/A(x)2 ≤
∣∣∣∣{(a1, a2, a3, a4, b1, b2) ∈ A4

× B2
:

b1a1

a2
=

b2a3

a4

}∣∣∣∣.
Following a similar dyadic decomposition as before, we find a pair of subsets S1, S2 ⊆ A/A with respect
to these solutions, and some 12,1

′

2 > 0 with∑
x∈Ri

rB A/A(x)2�121
′

2(log |A|)2
∣∣{(s1, s2, b1, b2) ∈ S1× S2× B2

: s1b1 = s2b2}
∣∣

≤121
′

2(log |A|)2
∑

x

rS1 B(x)rS2 B(x)

≤121
′

2(log |A|)2 E∗(B, S1)
1/2 E∗(B, S2)

1/2,

where the third inequality is given by the Cauchy–Schwarz inequality. We will use an argument similar
to that above to prove that with the two conditions |B||D||Si |min{|D|, |Si |} � p2 and |B| ≤ |D| (which
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are satisfied under our assumptions), we have

E∗(B, Si )�
|Si |

3/2
|D(B− 1)|3/2

|D|1/2
log |B|. (18)

Under the extra conditions

|B|2 |D(B− 1)| ≤ |Si ||D|3, |B||D(B− 1)|2 ≤ |Si |
2
|D|3 (19)

we can bound this energy by Theorem 8 to get (18). We therefore assume the first condition from (19)
does not hold; that is, |B|2 |D(B− 1)|> |Si ||D|3. We bound the energy via the trivial estimate

E∗(B, Si )≤ |B||Si |
2.

It is now enough to show that

|B||Si |
2
≤
|Si |

3/2
|D(B− 1)|3/2

|D|1/2
, which is true if and only if |B||D|1/2 |Si |

1/2
≤ |D(B− 1)|3/2.

Using our assumption |B|2 |D(B− 1)|> |Si ||D|3, we have

|B||D|1/2 |Si |
1/2 <

|B|2 |D(B− 1)|1/2

|D|
.

Our assumption that |B| ≤ |D| then gives

|B|2 |D(B− 1)|1/2

|D|
≤ |B||D(B− 1)|1/2 ≤ |D(B− 1)|3/2,

so that |B||D|1/2 |Si |
1/2 < |D(B − 1)|3/2, and the bound (18) holds. Next we assume that the second

condition in (19) does not hold; that is, |B||D(B− 1)|2 > |Si |
2
|D|3. We again use the trivial bound

E∗(B, Si )≤ |B||Si |
2.

Comparing this to our desired bound, we have

|B||Si |
2
≤
|Si |

3/2
|D(B− 1)|3/2

|D|1/2
⇐⇒ |B||D|1/2 |Si |

1/2
≤ |D(B− 1)|3/2,

so that the desired bound would follow from the second inequality above. Using our assumption that
|B||D(B− 1)|2 > |Si |

2
|D|3, we know

|B||D|1/2 |Si |
1/2 <

|B|5/4 |D(B− 1)|1/2

|D|1/4
,

and by our assumption that |B| ≤ |D|, we have

|B|5/4 |D(B− 1)|1/2

|D|1/4
≤ |D(B− 1)|3/2,

so that we have |B||D|1/2 |Si |
1/2 < |D(B− 1)|3/2 as needed.
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In all cases the bound on E∗(B, Si ) holds, so that we find

[|R1|
1/2
|R2|

1/2111
′

1]
2
�12

21
′2
2 E∗(B, S1)E∗(B, S2)(log |A|)4

�
12

21
′2
2 |S1|

3/2
|S2|

3/2
|D(B− 1)|3

|D|
(log |A|)4(log |B|)2

≤
E∗4/3(A)

3
|D(B− 1)|3

|D|
(log |A|)4(log |B|)2,

where the final inequality follows as 12 and 1′2 correspond to representations of elements of S1 and S2

in A/A, so that

|S1|
3/212

2 = (|S1|1
4/3
2 )3/2 ≤

(∑
x

rA/A(x)4/3
)3/2

≤ E∗4/3(A)
3/2,

and similarly for S2. Combining the bounds (11), (17), and the above, we have

|Q|3/212
|B|13/2

|A|5/2 |D|3/2 |C |1/2� |AB|4 |C(A+ 1)||D(B− 1)|4 E∗4/3(A)
3/2(log |A|)17/2(log |B|)2,

which simplifies to

E∗4/3(A
′)3 |B|13

|A|5 |D|3 |C | � |AB|8 |C(A+ 1)|2 |D(B− 1)|8 E∗4/3(A)
3(log |A|)17(log |B|)4.

We know by Lemma 9 that E4/3(A′)� E4/3(A), so we have

|B|13
|A|5 |D|3 |C | � |AB|8 |C(A+ 1)|2 |D(B− 1)|8(log |A|)17(log |B|)4

as needed. �
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