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Every Leibniz algebra has a maximal homomorphic image that is a Lie algebra.
We classify cyclic Leibniz algebras over an arbitrary field. Such algebras have the
1-dimensional abelian Lie algebra as their maximal Lie quotient. We then give
examples of Leibniz algebras whose associated maximal Lie quotients exhaust
all 2-dimensional possibilities.

1. Introduction

The theory of Leibniz algebras has blossomed since the pioneering work [Loday
1993]. Transitioning from Lie to Leibniz algebras is similar to transitioning from
commutative to noncommutative rings. Both transitions drop one defining property,
leading to many new and interesting structures. In a Leibniz algebra we keep a
version of the Jacobi identity but no longer assume that multiplication is alternating,
and hence it is not necessarily skew-symmetric either. To truly understand an
algebraic structure one needs a varied collection of illuminating examples. In this
paper we seek to provide a small collection of examples of non-Lie (left) Leibniz
algebras.

In [Scofield and Sullivan 2014] the authors provide a classification of cyclic
Leibniz algebras over the complex field. We offer a variant of their proof which
avoids the use of n-th roots and thus provides a complete classification of cyclic
Leibniz algebras over arbitrary fields. In addition, we construct two classes of non-
cyclic Leibniz algebras with nonisomorphic 2-dimensional maximal Lie quotients,
exhausting all possibilities for such quotients.

The paper is structured as follows: after providing some background in Section 2,
we use Section 3 to construct and classify all cyclic Leibniz algebras over an
arbitrary field. The next two sections present examples of Leibniz algebras with
both nonabelian (Section 4) and abelian (Section 5) 2-dimensional maximal Lie
quotients.
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2. Background

Let F be a field. For our purposes it suffices to consider only finite-dimensional
vector spaces over F.

Definition 2.1. Let L be a vector space equipped with a bilinear map [ · , · ] :
L × L→ L , called a bracket, such that for all x, y, z ∈ L the (left) Leibniz identity
[x, [y, z]] = [[x, y], z]+ [y, [x, z]] holds. Then L is called a (left) Leibniz algebra.

Briefly, a (left) Leibniz algebra is an algebra whose left multiplication operators
are derivations. Similarly we could assume that right multiplication operators are
derivations and define the notion of a right Leibniz algebra. Just as with many other
algebraic constructions our choice of left versus right is arbitrary. All of our results
for left Leibniz algebras can easily be translated to results for right Leibniz algebras.
For the remainder of the paper Leibniz algebra will mean left Leibniz algebra.

Notice that the Leibniz identity could replace the Jacobi identity in the definition
of a Lie algebra. In fact, the left Leibniz identity, the corresponding right Leibniz
identity [[y, z], x] = [y, [z, x]] + [[y, x], z], and the Jacobi identity [[x, y], z] +
[[y, z], x] + [[z, x], y] = 0 are all equivalent if we assume our bracket is bilinear
and alternating, that is, [x, x] = 0 for all x . We refer the reader to [Demir et al.
2014] for more details concerning basic definitions related to Leibniz algebras.

Definition 2.2. For L a Leibniz algebra, Leib(L)= spanF{[x, x] | x ∈ L}.

We have that L is a Lie algebra if and only if Leib(L)= {0}. Notice that Leib(L)
is a (two-sided) ideal of L . Moreover, L/Leib(L) is the largest quotient of L that
is a Lie algebra. Specifically, if I is any ideal of L such that L/I is a Lie algebra,
then Leib(L)⊆ I. Here we use the term ideal in the familiar Lie algebra sense: a
subalgebra I of a Leibniz algebra L is a (two-sided) ideal of L if and only if [L , I ]
and [I, L] are both contained in I. We write I G L when I is an ideal of L .

Many other definitions extend directly from Lie to Leibniz algebras. As a second
example, we say L is an abelian Leibniz algebra if and only if [L , L] = {0}, that
is, if [x, y] = 0 for all x, y ∈ L . The definitions of nilpotency and solvability also
carry over without modification.

Definition 2.3. Recall that L1
= L and L j+1

= [L , L j
] for j ≥ 1 gives us the lower

central series. L is nilpotent of class n if Ln+1
= {0} but Ln

6= {0}. In particular, L
is nilpotent if Ln

={0} for some n≥ 1. Likewise, L(0)= L and L( j+1)
=[L( j), L( j)

]

for j ≥ 0 gives us the derived series. L is solvable if L(n) = {0} for some n ≥ 0.

The proofs of many basic results given in introductory Lie algebra texts such as
[Erdmann and Wildon 2006] apply just as well to Leibniz algebras. In particular,
abelian implies nilpotent and nilpotent implies solvable. Recall that rad(L) is the
largest solvable ideal of L . As with Lie algebras, this is just the sum of all ideals I
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of L such that I itself is a solvable algebra. Likewise, nil(L) is the largest nilpotent
ideal.

The notion of internal direct sum for Leibniz algebras also carries over from
Lie theory. As with Lie algebras, if L = L1⊕ · · · ⊕ Ln is an internal direct sum
of Leibniz algebras, each L i is in fact an ideal of L and L is isomorphic to the
external direct sum of Leibniz algebras L1, . . . , Ln , defined in the obvious way.

Definition 2.4. Let L be a Leibniz algebra with subalgebras L1, . . . , Ln . We write
L = L1⊕· · ·⊕ Ln , an internal direct sum of Leibniz algebras, if L = L1⊕· · ·⊕ Ln

as subspaces and [x, y] = 0 for any x ∈ L i and y ∈ L j , where i 6= j .

It is not hard to show that for Ij G L j , we have

(L1⊕ · · ·⊕ Ln)/(I1⊕ · · ·⊕ In)∼= (L1/I1)⊕ · · ·⊕ (Ln/In)

with the direct sum on the right an external direct sum. Likewise,

Z(L1⊕ · · ·⊕ Ln)= Z(L1)⊕ · · ·⊕ Z(Ln),

Leib(L1⊕ · · ·⊕ Ln)= Leib(L1)⊕ · · ·⊕Leib(Ln),

[L1⊕ · · ·⊕ Ln, L1⊕ · · ·⊕ Ln] = [L1, L1]⊕ · · ·⊕ [Ln, Ln].

Some important definitions from Lie theory require minor modifications as we
move to Leibniz algebras. For example, if we apply the Lie theory definitions
of simple and semisimple algebras directly to Leibniz algebras, both simple and
semisimple Leibniz algebra would necessarily be Lie and thus there would be
nothing new to consider. We modify these definitions for Leibniz algebras as follows:

Definition 2.5. Let L be a Leibniz algebra. L is simple if and only if [L , L] 6=
Leib(L) and {0}, Leib(L), and L are the only ideals of L . L is semisimple if and
only if rad(L)= Leib(L).

When L is also a Lie algebra, Leib(L)= {0}, so these definitions collapse back
down to the usual definitions for a Lie algebra. In fact, these definitions guarantee
that L is simple (resp. semisimple) as a Leibniz algebra if and only if L/Leib(L)
is simple (resp. semisimple) as a Lie algebra.

When working with Lie algebras, taking powers of elements is uninteresting:
x1
= x and then x2

= [x, x] = 0 because of the alternating axiom. In Leibniz
algebras much more is possible. We fix the notation x1

= x , x2
= [x, x], and in

general, xn+1
= [x, xn

] for n ≥ 1. Consider the following basic, well known result:

Lemma 2.6. Let L be a Leibniz algebra and x, y ∈ L. Then [[x, x], y] = 0 and
more generally [xn, y] = 0 for all n ≥ 2. Moreover, the only potentially nonzero
n-th power of x is

xn
= [x, [x, . . . , [x, x] · · · ]]︸ ︷︷ ︸

n times

.
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Proof. The Leibniz identity states that [x, [x, y]] = [[x, x], y]+ [x, [x, y]] so that
0= [[x, x], y]. Assume inductively that [xn, z] = 0 for any z ∈ L and some n ≥ 2.
The Leibniz identity states that [x, [xn, y]] = [[x, xn

], y] + [xn, [x, y]]. By our
inductive hypothesis, we have [x, 0] = [xn+1, y] + 0 so that [xn+1, y] = 0.

Finally, the only first and second powers of x are x1
= x and x2

= [x, x]. Third
powers of x can be written either as x3 or [[x, x], x]=0. Assume that all k-th powers
of x other than xk are 0 where 1≤k<n and letw be some n-th power of x . Thenw=
[u, v], where u and v are k-th and `-th powers of x such that k+`= n. By induction,
if u 6= 0 and v 6= 0, we must have u = xk and v = x`. So either k ≥ 2 and thus
w= [u, v] = [xk, v] = 0 or k = 1 and we have w= [u, v] = [x, x`] = x`+1

= xn. �

We can see that generally Leibniz algebras are not power associative. Notice that
for a right Leibniz algebra we would have that the only potentially nonzero powers
would be of the form [[· · · [x, x], . . . , x], x]. This means that if an algebra was both
a left and right Leibniz algebra, the only nonzero power could be x2

= [x, x]. In
fact, L = spanF{x, x2

}, where [x, x] = x2, [x, x2
] = [x2, x] = [x2, x2

] = 0, gives
an example of a simultaneously left and right Leibniz algebra which is not a Lie
algebra.

3. Cyclic Leibniz algebras

A cyclic Leibniz algebra is a Leibniz algebra that can be generated from a single
element. We do not consider cyclic Lie algebras since the only cyclic Lie algebras
are either the trivial algebra {0} or the 1-dimensional abelian Lie algebra. Scofield
and Sullivan [2014] have classified complex cyclic Leibniz algebras. In this section,
we give a similar construction which allows us to classify cyclic (left) Leibniz
algebras over an arbitrary field.

Definition 3.1. Let L be a Leibniz algebra. L is cyclic if and only if there exists
some x ∈ L such that L = 〈x〉 = spanF{x

k
| k = 1, 2, . . . }. If L = 〈x〉, we call x a

generator of L .

The trivial algebra {0} = 〈0〉 is cyclic. Likewise, any 1-dimensional algebra is
cyclic as it is generated by any nonzero element.

Let L 6= {0} be a cyclic (left) Leibniz algebra and fix a generator x 6= 0. By
definition L = 〈x〉 = {xk

| k = 1, 2, . . . } and since L is finite-dimensional, we
must have that {x, x2, . . . , xn+1

} is linearly dependent for some n ≥ 1. Let n be
the smallest such power. This means that {x, x2, . . . , xn

} is linearly independent
and xn+1 can be written as a linear combination of {x, . . . , xn

}. Consequently all
higher powers of x can be written as a linear combination of x, x2, . . . , xn. Thus
β = {x, x2, . . . , xn

} is a basis for L and so dim(L)= n.
We have xn+1

∈ L = 〈x〉 = spanF{x, x2, . . . , xn
}. Let xn+1

=
∑n

i=1 ci x i , where
ci ∈ F. When dim(L) = n > 1, Lemma 2.6 guarantees 0 = [x, 0] = [x, [xn, x]].
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Applying the Leibniz identity and Lemma 2.6 once more yields

0=[x, [xn, x]]=[[x, xn
], x]+[xn, x2

]=[xn+1, x]+0=c1x2
+

n∑
i=2

ci [x i , x]=c1x2.

Since dim(L) = n > 1, we conclude x2
6= 0 and thus c1 = 0. Therefore, xn+1

=∑n
i=2 ci x i , a summation that does not involve i = 1.
It turns out that the necessary condition xn+1

=
∑n

i=2 ci x i for some c2, . . . , cn ∈F

is also sufficient for any n-dimensional cyclic Leibniz algebra L = 〈x〉.

Proposition 3.2. Fix n ≥ 1 and c2, . . . , cn ∈ F and let L = spanF{x, x2, . . . , xn
}

be an n-dimensional vector space. Define a bilinear operation on the basis
{x, x2, . . . , xn

} as follows: [x, x j
] = x j+1 for 1 ≤ j < n, [x, xn

] =
∑n

i=2 ci x i ,
and [xk, x`] = 0 for k ≥ 2, 1≤ `≤ n. Then L = 〈x〉 is a cyclic Leibniz algebra.

Proof. Clearly L is a cyclic algebra equipped with a bilinear operation. It just
remains to verify the Leibniz identity. It is enough to do so on our basis. We note
that when n = 1, we have xn+1

= x2
= 0 and the Leibniz identity is

[x, [x, x]] = [x, 0] = 0= 0+ 0= [0, x] + [x, 0] = [[x, x], x] + [x, [x, x]].

Assume n > 1and let 1≤ i, j, k ≤ n.
If i ≥ 2, then

[x i , [x j , xk
]] = 0= 0+ 0= [0, xk

] + [x j , 0] = [[x i , x j
], xk
] + [x j , [x i , xk

]].

If i = 1 and j = 1, then

[x, [x, xk
]] = 0+[x, [x, xk

]] = [x2, xk
]+ [x, [x, xk

]] = [[x, x], xk
]+ [x, [x, xk

]].

If i = 1 and 2≤ j < n, then

[x, [x j , xk
]] = [x, 0] = 0= 0+ 0

= [x j+1, xk
] + [x j , xk+1

] = [[x, x j
], xk
] + [x j , [x, xk

]].

If i = 1 and j = n > 1, then

[x, [xn, xk
]] = [x, 0] = 0

=

n∑
m=2

cm[xm, xk
] = [xn+1, xk

] + 0= [[x, xn
], xk
] + [xn, [x, xk

]].

Notice that here we used the fact that our sum begins at m = 2 so [xm, xk
] = 0. �

For n > 0 fix a cyclic Leibniz algebra L with basis β = {x, x2, . . . , xn
}. Next,

we will further investigate the structure of this algebra by considering Leib(L)
and the derived series of L . Note that by definition x2

∈ Leib(L). But then since
Leib(L) is an ideal of L , x j

∈ Leib(L) for all j ≥ 2. Since brackets among
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elements of L never result in an element involving x itself, we conclude Leib(L)=
span{x2, x3, . . . , xn

} = [L , L], an abelian Leibniz algebra of dimension n− 1. It
quickly follows that the derived series for L is given by

L(0) = L ) L(1) = [L , L] = span{x2, x3, . . . , xn
}) L(2) = {0}.

The series goes to zero and thus cyclic Leibniz algebras are always solvable.
We next consider the lower central series of the cyclic Leibniz algebra L = 〈x〉

with basis β = {x, x2, . . . , xn
} and xn+1

=
∑n

i=2 ci x i . First consider the case when
xn+1
= 0, that is, when c2 = c3 = · · · = cn = 0. Then keeping in mind that only

left multiplication by x can yield a nonzero result, we have

[L , span{xm, xm+1, . . . , xn
}] = span{[x, xm

], [x, xm+1
], . . . , [x, xn

]}

= span{xm+1, . . . , xn
}.

This means that L j
= span{x j , . . . , xn

} for 1 ≤ j ≤ n and Ln+1
= {0}. In other

words, L is nilpotent of class n.
Next assume that xn+1

6= 0. In particular, assume cj = 0 for all j < k and ck 6= 0.
Let 1≤ m ≤ k and consider [L , span{xm, . . . , xn

}]. Again, only left multiplication
by x yields a nonzero result so that

[L , span{xm, . . . , xn
}] = span{xm+1, . . . , xn, xn+1

}.

If m < k, we have xn+1
=
∑n

`=k c`x` ∈ span{xm+1, . . . , xn
} so that

[L , span{xm, . . . , xn
}] = span{xm+1, . . . , xn

}.

If m = k, we have xn+1
= ck xk

+
∑n

`=k+1 c`x` with ck 6= 0. Thus

span{xm+1, . . . , xn+1
} = span{xk+1, . . . , xn+1

} = span{xk, . . . , xn
}

and in this case [L , span{xk, . . . , xn
}] = span{xk, . . . , xn

}. In particular,

[L , span{xm, . . . , xn
}] = span{xmin(k,m+1), . . . , xn

}.

This means Lm
= span{xm, . . . , xn

} for 1 ≤ m < k and Lk
= Lk+1

= · · · =

span{xk, . . . , xn
}. Proposition 3.3 summarizes our findings.

Proposition 3.3. Let L be an n-dimensional cyclic Leibniz algebra. Then either L
is nilpotent of class n or L ) L2 ) · · ·) Lk

= Lk+1
= · · · 6= {0} for some 2≤ k ≤ n.

In this case, we say that L is cyclic of type k. Moreover, let x be any generator
for L. Then L is nilpotent if and only if xn+1

= 0. If L is not nilpotent and is of
type k, then xn+1

=
∑n

`=k c`x` for some ck, . . . , cn ∈ F and ck 6= 0. In particular,
nilpotency and type do not depend on the choice of generator.
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As we turn our attention towards a classification of cyclic Leibniz algebras,
again let L 6= {0} be an n-dimensional cyclic Leibniz algebra generated by x with
basis β = {x, x2, . . . , xn

} and xn+1
=
∑n

j=2 cj x j . Using an approach introduced
in [Batten Ray et al. 2014], we consider the left multiplication operator Lx : L→ L
defined by Lx(z) = [x, z]. We have Lx(x j ) = x j+1 for 1 ≤ j < n and Lx(xn) =∑n

j=2 cj x j . Thus we get the following coordinate matrix relative to the basis β:

[Lx ]β =



0 0 · · · · · · 0 0 0
1 0 · · · · · · 0 0 c2
...
. . .

. . .
...
...

...
...

. . .
. . . 0 0

...

0
. . . 1 0 cn−1

0 0 · · · · · · 0 1 cn


.

The matrix [Lx ]β is the companion matrix to the polynomial

p(t)= tn
− cntn−1

− · · ·− c2t

and thus the linear operator Lx has characteristic polynomial p(t). Note that the
polynomial p(t) is in direct correspondence with our defining relation for xn+1.

Suppose that y =
∑n

i=1 bi x i
∈ L . Then

Ly(x j )=

[ n∑
i=1

bi x i , x j
]
=

n∑
i=1

bi [x i , x j
] = b1[x, x j

] = b1x j+1

since [x i , x j
] = 0 for i ≥ 2. This means [Ly]β = b1[Lx ]β . With only small,

obvious modifications, the standard approach to determining the characteristic
polynomial for a companion matrix, see, for example, [Hoffman and Kunze 1971,
Theorem 1, page 228], shows that the matrix [Ly]β , and thus the linear operator Ly ,
has characteristic polynomial

tn
− b1cntn−1

− b2
1cn−1tn−2

− · · ·− bn−1
1 c2t.

Note that if y is a generator for L , using the correspondence between the char-
acteristic polynomial of Ly and our defining relation for yn+1, we see yn+1

=∑n
i=2 bn−i

1 ci yi .
In summary for n ≥ 2 and any (c2, . . . , cn) ∈ Fn−1 there is an n-dimensional

cyclic Leibniz algebra L with generator x such that {x, x2, . . . , xn
} is a basis for

L and xn+1
=
∑n

j=2 cj x j. If y is any other generator with y =
∑n

i=1 bi x i then
{y, y2, . . . , yn

} is a basis for L and yn+1
=
∑n

j=2 bn− j
1 cj y j. For n ≥ 2, define an

equivalence relation on Fn−1 such that (c2, . . . , cn) ∼ (bn−1c2, bn−2c3, . . . , bcn)

for any b ∈ F. Denote the equivalence classes as [(c2, . . . , cn)]. This equivalence
relation allows a simple classification of cyclic Leibniz algebras.
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Theorem 3.4. Up to isomorphism the only cyclic Leibniz algebras of dimensions 0
and 1 are the trivial {0} algebra and the 1-dimensional abelian Lie algebra. For
n ≥ 2, up to isomorphism there is exactly one n-dimensional cyclic Leibniz algebra
associated with each equivalence class [(c2, . . . , cn)], where (c2, . . . , cn) ∈ Fn−1.

The nilpotent cyclic Leibniz algebras are associated with the class [(0, . . . , 0)] =
{(0, . . . , 0)}. Cyclic Leibniz algebras of type k are associated with the class
[(0, . . . , 0, ck, . . . , cn)] for some ck, . . . , cn ∈F with ck 6=0. In this case, dim(Lk)=

n− k+ 1 and Lk
= Lk+1

= · · · .
The classification of complex cyclic Leibniz algebras obtained in [Scofield and

Sullivan 2014] split isomorphism classes of cyclic Leibniz algebras into cases of
nilpotent or type k. For algebras of type k, they insist on a normalized generator
such that ck = 1. Note that their equivalence class [(ck+1, . . . , cn)] corresponds to
our class [(0, . . . , 0, 1, ck+1, . . . , cn)]. By avoiding this normalization we no longer
need the existence of roots of unity and our equivalence relation is much simpler.

As in our construction, Batten Ray et al. [2014] identify the matrix for the left
multiplication operator as a companion matrix to the polynomial p(t). They use
this observation as a tool to develop several important properties of cyclic Leibniz
algebras. In particular they give a construction of the unique Cartan subalgebra for
each cyclic Leibniz algebra, L , and in the process describe all maximal subalgebras
of L as well as the minimal ideals of L and the unique maximal ideal of L .

4. A class of non-Lie, noncyclic Leibniz algebras

In this section we introduce a class of noncyclic Leibniz algebras and study their
properties. Fix some n ≥ 1 and let L be the (n+1)-dimensional vector space with
basis β = {x, x2, . . . , xn, y}. To determine a bilinear operation on L it is enough
to specify how multiplication works on basis elements.

Example 4.1. Let L be the algebra with basis β = {x, x2, . . . , xn, y} and the
bilinear bracket defined on the basis elements as follows:

(1) [x, x j
] = x j+1, 1≤ j < n.

(2) [x, xn
] = xn+1

= 0.

(3) [xk, x j
] = [xk, y] = 0 for all 2≤ k ≤ n and 1≤ j ≤ n.

(4) [x, y] = x , [y, x j
] = − j x j for 1≤ j ≤ n.

(5) [y, y] = 0.

To see that L is a Leibniz algebra, we need to verify that the Leibniz identity
holds. First, notice that 〈x〉 = span{x, x2, . . . , xn

} forms an n-dimensional cyclic,
nilpotent Leibniz subalgebra. Likewise, 〈y〉= span{y} forms a 1-dimensional cyclic
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Leibniz subalgebra which is an abelian Lie algebra. Thus we only need to check
the Leibniz identity among triples of basis elements which involve both x and y.

First, we consider triples that involve two occurrences of y:

• For 1≤ j ≤ n,

[y, [y, x j
]] = 0+ [y, [y, x j

]] = [0, x j
] + [y, [y, x j

]] = [[y, y], x j
] + [y, [y, x j

]].

• For 2≤ j ≤ n,

[x j , [y, y]] = [x j , 0] = 0= 0+ 0= [0, y] + [y, 0] = [[x j , y], y] + [y, [x j , y]],

and for j = 1,

[x, [y, y]] = [x, 0] = 0= x − x = [x, y] + [y, x] = [[x, y], y] + [y, [x, y]].

• For 2≤ j ≤ n,

[y, [x j , y]] = [y, 0] = 0= 0+ 0= [0, y] + [x j , 0] = [[y, x j
], y] + [x j , [y, y]],

and for j = 1,

[y, [x, y]]= [y, x]=−x =−[x, y]+0=[−x, y]+[x, 0]= [[y, x], y]+[x, [y, y]].

Finally, we consider triples that involve one occurrence of y:

• Note that [y, x j
]=− j x j holds even when j =n+1 since xn+1

= 0. Let 1≤ k≤n.

• For 2≤ j ≤ n,

[y, [x j , xk
]]=[y,0]=0=− j[x j , xk

]=[− j x j , xk
]+0=[[y, x j

], xk
]+[x j , [y, xk

]],

and for j = 1,

[y, [x, xk
]] = [y, xk+1

] = −(k+ 1)xk+1

= [−x, xk
] + [x,−kxk

] = [[y, x], xk
] + [x, [y, xk

]].

• For 2≤ j ≤ n,

[x j , [y, xk
]] = 0= 0+ 0= [0, xk

] + [y, 0] = [[x j , y], xk
] + [y, [x j , xk

]],

and for j = 1,

[x, [y, xk
]] = [x,−kxk

] = −kxk+1
= xk+1

− (k+ 1)xk+1

= [x, xk
] + [y, xk+1

] = [[x, y], xk
] + [y, [x, xk

]].

• For 2≤ j ≤ n,

[x j , [xk, y]] = 0= 0+ [xk, 0] = [[x j , xk
], y] + [xk, [x j , y]],
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and for j = 1 and k ≥ 2,

[x, [xk, y]] = [x, 0] = 0= [xk+1, y] + 0= [[x, xk
], y] + [xk, [x, y]].

When j = k = 1,

[x, [x, y]] = 0+ [x, [x, y]] = [[x, x], y] + [x, [x, y]].

We use the remainder of this section to investigate the structure of the Leibniz
algebra L described in Example 4.1. Let us begin by determining the lower central
series of L , Leib(L), and the derived series for L . Since none of the brackets output
a y, [L , L] must be contained in 〈x〉 = span{x, x2, . . . , xn

}. We have seen that
[−y, x]= x ∈[L , L] and therefore 〈x〉⊆[L , L] and hence L2

=[L , L]=〈x〉. In fact,
it follows by induction that Lk

=〈x〉 for k≥ 2. We then have the lower central series

L = span{x, x2, . . . , xn, y}) L2
= L3

= · · · = span{x, x2, . . . , xn
} 6= {0},

and thus L is not nilpotent.
Next observe B = span{x j

| j ≥ 2} is an abelian ideal of codimension 2 in L so
that B ⊆ Leib(L). Also, L/B is a Lie algebra and thus Leib(L) ⊆ B. Therefore
Leib(L)= B = span{x j

| j ≥ 2}. Furthermore, since

[x +Leib(L), y+Leib(L)] = [x, y] +Leib(L)= x +Leib(L),

we have that L/Leib(L) is the nonabelian 2-dimensional Lie algebra. In addition,
the derived series is given by

L(0) = L ) L(1) = 〈x〉) L(2) = Leib(L)= span{x j
| j ≥ 2}) L(3) = {0}

and thus L is solvable.
Could it be that L is simply a sum of cyclic Leibniz algebras? Recall that for

a cyclic Leibniz algebra C , C/Leib(C) is the 1-dimensional abelian Lie algebra.
Thus if M =C1⊕· · ·⊕C` is a Leibniz algebra direct sum of cyclic Leibniz algebras
C1, . . . ,C`, then

M/Leib(M)= (C1⊕ · · ·⊕C`)/(Leib(C1)⊕ · · ·⊕Leib(C`))
∼= (C1/Leib(C1))⊕ · · ·⊕ (C`/Leib(C`))

and so M/Leib(M) is a direct sum of 1-dimensional abelian Lie algebras. In other
words, M/Leib(M) is the `-dimensional abelian Lie algebra. Since L/Leib(L)
is not abelian, L is neither cyclic nor a (Leibniz algebra) direct sum of cyclic
subalgebras.

Also, since L is solvable, L= rad(L) and so L is (unsurprisingly) not semisimple.
Additionally, span{xm, xm+1, . . . , xn

} for 1 ≤ m ≤ n are easily seen to be ideals.
In particular, span{x, x2, . . . , xn

} is an ideal distinct from {0}, Leib(L), and L so
that L is not simple. In summary:
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Theorem 4.2. The Leibniz algebra L = span{x, x2, . . . , xn, y} with bracket struc-
ture given in Example 4.1 is not nilpotent, semisimple, or simple. But L is solvable.
Its maximal Lie algebra homomorphic image, L/Leib(L), is the nonabelian 2-
dimensional Lie algebra. Consequently L is not a (Leibniz algebra) direct sum of
cyclic Leibniz algebras.

5. Adjoining a module

In this section we offer a second class of examples. By first extending the familiar
Lie algebra construction of adjoining a module to an algebra to the context of
Leibniz algebras and then considering adjoining a cyclic module to a nilpotent
cyclic Leibniz algebra, we obtain a class of algebras with similar properties to
those of the previous section except here we will have that the maximal Lie algebra
homomorphic image is abelian.

Definition 5.1. Let L be a Leibniz algebra and M a vector space over F equipped
with bilinear maps [ , ] : L ×M→ M and [ , ] : M × L→ M (a left and a right
action) such that for all a, b ∈ L and m ∈ M the following hold:

(1) [a, [b,m]] = [[a, b],m] + [b, [a,m]].

(2) [a, [m, b]] = [[a,m], b] + [m, [a, b]].

(3) [m, [a, b]] = [[m, a], b] + [a, [m, b]].

We note that if L is a Lie algebra with L-module M and action x ·m for x ∈ L
and m ∈ M, then the left action [x,m] = x ·m and the right action [m, x] = −x ·m
turn M into a module viewing L as merely a Leibniz algebra.

Example 5.2. Let L=span{x, x2, . . . , xn
} be the n-dimensional nilpotent cyclic Leib-

niz algebra. Consider the vector space M = span(β) with basis β={y1, y2, . . . , yn}.
Let 2≤ j≤n and 1≤k≤n and define [x j , yk]=0. When k<n, define [x, yk]= yk+1

and let [x, yn] = 0. For convenience let yn+1 = 0 so that [x, yk] = yk+1 for all
1≤ k ≤ n. Finally, let [yk, x j

] = 0 for all 1≤ j ≤ n and 1≤ k ≤ n. In other words,
the right action of L on M is trivial, whereas x acts in cyclic fashion on the left.

With these definitions, M is an L-module. To see this we must verify the relations
in Definition 5.1. In relation (1), all terms are zero unless a = b = x . In this case
relation (1) becomes [x, [x,m]] = [[x, x],m] + [x, [x,m]], which is clearly true
since [[x, x],m] = [x2,m] = 0. Relations (2) and (3) hold because all terms are
zero as they each involve the trivial right action of L .

We show in the following proposition that for L a Leibniz algebra and M an L-
module, the vector space direct sum L⊕M becomes a Leibniz algebra if for x1, x2 ∈

L and m1,m2 ∈ M we define [x1+m1, x2+m2] = [x1, x2] + [x1,m2] + [m1, x2].
Notice that in the definition of the bracket on L ⊕M, [x1, x2] is the bracket in L ,
[x1,m2] is the left action of L on M, and [m1, x2] is the right action of L on M.
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Proposition 5.3. Let L be a Leibniz algebra and M an L-module. The vector space
direct sum L ⊕ M becomes a Leibniz algebra if for x1, x2 ∈ L and m1,m2 ∈ M
we define [x1 +m1, x2 +m2] = [x1, x2] + [x1,m2] + [m1, x2]. Moreover, L is a
subalgebra and M is an abelian ideal of L ⊕M.

Proof. It is obvious that the bracket on L ⊕M is bilinear. We need to verify the
Leibniz identity. Let x1, x2, x3 ∈ L and m1,m2,m3 ∈ M. Consider the following
brackets:

[x1+m1, [x2+m2, x3+m3]]︸ ︷︷ ︸
LMA

= [x1+m1, [x2, x3] + [x2,m3] + [m2, x3]]

= [x1, [x2, x3]]︸ ︷︷ ︸
LeibnizA

+ [x1, [x2,m3]]︸ ︷︷ ︸
1A

+ [x1, [m2, x3]]︸ ︷︷ ︸
2A

+ [m1, [x2, x3]]︸ ︷︷ ︸
3A

,

[[x1+m1, x2+m2], x3+m3]︸ ︷︷ ︸
LMB

= [[x1, x2], x3+m3] + [[x1,m2], x3+m3] + [[m1, x2], x3+m3]

= [[x1, x2], x3]︸ ︷︷ ︸
LeibnizB

+ [[x1, x2],m3]︸ ︷︷ ︸
1B

+ [[x1,m2], x3]︸ ︷︷ ︸
2B

+ [[m1, x2], x3]︸ ︷︷ ︸
3B

,

[x2+m2, [x1+m1, x3+m3]]︸ ︷︷ ︸
LMC

= [x2+m2, [x1, x3]] + [x2+m2, [x1,m3]] + [x2+m2, [m1, x3]]

= [x2, [x1, x3]]︸ ︷︷ ︸
LeibnizC

+ [m2, [x1, x3]]︸ ︷︷ ︸
2C

+ [x2, [x1,m3]]︸ ︷︷ ︸
1C

+ [x2, [m1, x3]]︸ ︷︷ ︸
3C

.

The module axioms 1, 2, and 3 for M guarantee that 1A= 1B+1C, 2A= 2B+2C,
and 3A=3B+3C. The Leibniz identity for L guarantees that LeibnizA=LeibnizB+

LeibnizC. Putting these together we see that LMA=LMB+LMC and so the Leibniz
identity holds on L ⊕M. �

Taking L and M as defined in Example 5.2, let

K = L ⊕M = span{x, x2, . . . , xn, y1, . . . , yn}.

We have that K is a Leibniz algebra using the above construction and can now
investigate the structure of this algebra.

For x ∈ L and m ∈ M, we have [x + m, x + m] = [x, x] + [x,m] + [m, x].
Therefore,

Leib(L ⊕M)= Leib(L)⊕ span{[x,m] + [m, x] | x ∈ L and m ∈ M},
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where⊕ represents a vector space direct sum. Furthermore, we know that Leib(L)=
span{x2, . . . , xn

} and all brackets (i.e., actions) between L and M either output 0
or something in span{y2, . . . , yn}. In fact,

[x, yk] + [yk, x] = yk+1+ 0= yk+1 ∈ span{[x,m] + [m, x] | x ∈ L and m ∈ M}

for 1≤ k ≤ n. Therefore, Leib(K )= span{x2, . . . , xn, y2, . . . , yn}.
Next we explicitly calculate the lower central series for K. First, looking at the

brackets for K we see that they never output any power of x smaller than x2 and
never output y1. Thus [K , K ] ⊆ span{x2, . . . , xn, y2, . . . , yn}. But by definition,
Leib(K )⊆ [K , K ]. Therefore, [K , K ] = Leib(K )= span{x2, . . . , xn, y2, . . . , yn}.
We claim that K `

= span{x`, . . . , xn, y`, . . . , yn} for 1≤ `≤ n and {0} = K n+1
=

K n+2
= . . . so that K is nilpotent of class n. We proceed by induction; notice

that [x, K `
] = span{x`+1, . . . , xn+1, y`+1, . . . , yn+1}, where for convenience we

let xm
= ym = 0 for m > n. Also, [x j , K `

] = [y, K `
] = {0} for j ≥ 2. The result

follows and from it we observe that L is nilpotent.
Note that we could forgo the explicit construction of the lower central series and

still arrive at the nilpotency of K by applying a theorem of [Bosko et al. 2011].
Every left multiplication by an element of L on K is nilpotent and trivially left
multiplication on K by elements from M is nilpotent. Therefore since L∪M is a Lie
set (i.e., it is closed under brackets and spans K ), Jacobson’s refinement of Engel’s
theorem for Leibniz algebras [Bosko et al. 2011] shows K = L ⊕M is nilpotent.

Next we examine the structure of the cyclic subalgebras of K. Let

z =
n∑

i=1

ai x i
+

n∑
j=1

bj yj ∈ K.

Then

z2
= [z, z] = a1

n−1∑
i=1

ai x i+1
+a1

n−1∑
j=1

bj y j+1=

n∑
i=2

a1ai−1x i
+

n∑
j=2

a1b j−1 yj ,

z3
= [z, z2

] = a1

n−1∑
i=2

a1ai−1x i+1
+a1

n−1∑
j=2

a1b j−1 y j+1=

n∑
i=3

a2
1ai−2x i

+

n∑
j=3

a2
1b j−2 yj .

In general,

z` =
n∑

i=`

a`−1
1 ai−`+1x i

+

n∑
j=`

a`−1
1 b j−`+1 yj for 1≤ `≤ n and z` = 0 for ` > n.

As a consequence, if a1= 0, then z2
= 0. If a1 6= 0 and 1≤ `≤ n then the coefficient

of x` in z` is a`−1
1 a`−`+1= a`1 6= 0. In all cases zn+1

= 0 and thus by Proposition 3.3
all cyclic subalgebras, 〈z〉, are nilpotent. For n > 1 they are either trivial (z = 0),
1-dimensional (z 6= 0 but a1 = 0), or n-dimensional (a1 6= 0). For n = 1, they are
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either trivial or 1-dimensional. Our understanding of the cyclic subalgebras of K
plays a key role in understanding the structure of this Leibniz algebra.

Theorem 5.4. The Leibniz algebra K = span{x, x2, . . . , xn, y1, y2, . . . , yn} with
brackets given in Example 5.2 and Proposition 5.3 is neither semisimple nor simple.
But K is nilpotent of class n and solvable. Its maximal Lie algebra homomorphic
image, K/Leib(K ), is the 2-dimensional abelian Lie algebra. Also, for n > 1, K is
not a (Leibniz algebra) direct sum of cyclic Leibniz algebras.

Proof. We have already seen that K is nilpotent. Since K is nilpotent, it is also
solvable. Referring back to definitions, it is obvious that K is neither simple nor
semisimple. By definition,

K/Leib(K )= span{x +Leib(K ), y1+Leib(K )}.
Notice that

[x+Leib(K ), y1+Leib(K )] = [x, y1]+Leib(K )= y2+Leib(K )= 0+Leib(K ),

since y2 ∈ Leib(K ). Hence K/Leib(K ) is the 2-dimensional abelian Lie algebra.
Suppose that K is a (Leibniz algebra) direct sum of cyclic Leibniz algebras. We

have seen previously that if C = C1⊕ · · ·⊕C` is a direct sum of cyclic algebras
then

C/Leib(C)= C1/Leib(C1)⊕ · · ·⊕C`/Leib(C`)

and that each Ci/Leib(Ci ) is the 1-dimensional abelian algebra. Thus if K is a
(Leibniz algebra) direct sum of cyclic subalgebras, it must be a sum of exactly
dim(K/Leib(K ))= 2 subalgebras. Considering that cyclic subalgebras of K have
dimensions 0, 1, and n and that dim(K )= 2n, we must have two cyclic subalgebras
of dimension n. Suppose that K = 〈z1〉⊕ 〈z2〉, where

z1 =

n∑
i=1

ai x i
+

n∑
j=1

bj yj , z2 =

n∑
i=1

ci x i
+

n∑
j=1

dj yj .

Since these are n-dimensional subalgebras we must have a1 6= 0 and c1 6= 0. But
then

[z1, z2] = a1

n−1∑
i=1

ci x i+1
+ a1

n−1∑
j=1

dj y j+1.

Notice that the coefficient of x2 in [z1, z2] is a1c1 6= 0. Since [z1, z2] 6= 0, this is
not a Leibniz algebra direct sum (contradiction). �

Note that when n = 1, K = span{x, y1} where [x, x] = [x, y1] = [y1, x] =
[y1, y1] = 0 so K is the 2-dimensional abelian Lie algebra and is in this trivial
situation a direct sum of cyclic subalgebras. For example, one such decomposition
is K = 〈x〉⊕ 〈y1〉.
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