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We define an abstract Apollonian supergasket using the solution set of a certain
Diophantine equation, showing that the solutions are in bijective correspon-
dence with the circles of any concrete supergasket. Properties of the solution set
translate directly to geometric and algebraic properties of Apollonian gaskets,
facilitating their study. In particular, curvatures of individual circles are explored
and geometric relationships among multiple circles are given simple algebraic
expressions. All results can be applied to a concrete gasket using the curvature-
center coordinates of its four defining circles. These techniques can also be
applied to other types of circle packings and higher-dimensional analogs.

An Apollonian gasket is a type of circle packing in the plane generated recursively
starting from a set of four mutually tangent circles. The curvatures of any four such
circles are related by an equation discovered by Descartes, and every circle in a
gasket generated by four circles with integer curvatures will have integer curvature.
While these gaskets have been fascinating to mathematicians for some time — the
use of group theory in their study was initiated by Keith Hirst [1967] and they
even inspired a poem1 — it was only relatively recently that Jeffrey Lagarias, Colin
Mallows, and Allan Wilks [Lagarias et al. 2002] gave an algebraic characterization
of Descartes configurations. One question in particular has inspired much work
but resisted a complete answer: given the four original integer curvatures, which
other curvatures can or will occur, and how frequently? Peter Sarnak [2011], Elena
Fuchs [2013], and Hee Oh [2014] have recent surveys on this topic, which has seen
significant progress in the past five years [Bourgain 2012; Bourgain and Kontorovich
2014; Bourgain and Fuchs 2011; Fuchs and Sanden 2011].

In this paper, inspired by recent work of Sam Northshield [2015], we provide a
four-dimensional label to each circle that does not depend on the location of the
circle but refers instead to its geometric relationship to the original four circles.
Since we consider only the process of generating the gasket, the labels provide an
abstract version of an Apollonian circle packing that can represent any concrete

MSC2010: primary 52C26; secondary 11D09.
Keywords: Apollonian circle packing, Apollonian gasket, Apollonian supergasket.

1The Kiss Precise by Frederick Soddy, 1936.
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packing once an initial set of four circles is specified. These labels can be used to
determine location and radius, find whether given circles in a gasket are tangent
or not, perform operations such as inversion, and obtain curvature results. This
technique is equally applicable to any packing generated in a similar fashion, such as
the generalizations of Apollonian packings of Gerhard Guettler and Colin Mallows
[2010] or packings in higher-dimensional Euclidean, spherical, or hyperbolic spaces
[Lagarias et al. 2002].

1. Descartes configurations

Descartes configurations are the basic building blocks of Apollonian circle packings.
We begin by providing a brief introduction; for more detail, see the paper by Lagarias,
Mallows, and Wilks [Lagarias et al. 2002] or any of the surveys mentioned above.

An oriented circle in the plane consists of a circle and an orientation, thought of
as a unit normal vector, of “inward” or “outward” that specifies its interior. The
curvature of a circle is the inverse of its radius; the oriented curvature of an oriented
circle is the curvature if the circle has an inward-pointing normal vector and the
negative of the curvature otherwise. Two circles are tangent if they intersect in a
single point. Lines are considered to be circles of curvature zero, and two lines that
are not the same are considered to be tangent at infinity. In what follows, by a circle
we will mean either an oriented circle or oriented line, tangent will mean externally
tangent, and by the curvature of a circle, we will mean the oriented curvature.

A Descartes configuration (hereafter, configuration) consists of four circles in
the plane that are pairwise externally tangent and such that no three share a point of
tangency. There are four basic types of configurations, shown in Figure 1. Descartes
discovered that the oriented curvatures κi of four oriented circles in a configuration
satisfy

2(κ2
1 + κ

2
2 + κ

2
3 + κ

2
4 )= (κ1+ κ2+ κ3+ κ4)

2, (1)

which we will call the Descartes condition.2

The Descartes condition is not enough to characterize configurations, but a
characterization exists using additional information [Graham et al. 2005; Lagarias
et al. 2002], and the geometry of inversion over a circle plays an important part.
For a line, inversion over the line is simply reflection. For a circle C with center O
and radius r , inversion over C is the Möbius transformation IC that maps a point P
to the point Q on the ray from O through P such that r2

= |O P||O Q|. Each
inversion is anticonformal in that it preserves magnitudes of angles but reverses
their directions; further, inversion over a circle or line maps oriented circles and
lines to oriented circles and lines.

2Descartes considered configurations without lines, but with our definitions, (1) is true for any
type of configuration [Lagarias et al. 2002].
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Figure 1. Descartes configurations.

Each circle that is not a line is uniquely identified by its center and curvature,
since the curvature provides both radius and orientation. To uniquely identify all
circles, Lagarias, Mallows, and Wilks devised curvature-center coordinates, which
for any circle are of the form k ′, k, x, y, where k is the curvature and k ′ is the
curvature of the inversion of the circle over the unit circle; if the curvature k is
nonzero, then x = kcx and y = kcy , where (cx , cy) is the center of the circle; if
the curvature k is zero, then x and y are the corresponding components of the unit
normal vector. For example, the curvature-center coordinates of the unit circle with
the origin in its interior are −1, 1, 0, 0 and the curvature-center coordinates of the
line y = 1 with the origin in its interior are 2, 0, 0,−1.

Here is the characterization of configurations: let C1, . . . ,C4 be circles, let
M = M(C1, . . . ,C4) be the curvature-center matrix of the circles C1, . . . ,C4,
where each row consists of the curvature-center coordinates of the corresponding
circle, and let

Q=


1 –1 –1 –1

–1 1 –1 –1
–1 –1 1 –1
–1 –1 –1 1

.
(Our Q matrix is twice the Q of Lagarias et al. [2002] for notational convenience.)

Theorem 1 (augmented Euclidean Descartes theorem [Lagarias et al. 2002; Graham
et al. 2005]). Circles C1, . . . ,C4 form a configuration if and only if

MTQM =


0 –8 0 0

–8 0 0 0
0 0 4 0
0 0 0 4

=:W. (2)

Note that the matrix Q is related to the Descartes condition in that if Ex =
(x1 x2 x3 x4)

T is a column vector then

〈Ex, Ex〉Q := ExTQEx = 2(x2
1 + x2

2 + x2
3 + x2

4)− (x1+ x2+ x3+ x4)
2.

Indeed, the first two diagonal entries of W correspond to the Descartes condition.
Given any three mutually tangent circles C1, C2, and C3 that do not share a

point of tangency, there are exactly two other circles that each form a configuration
with the original three [Sarnak 2011]. The operation that takes a configuration
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C1 C2

C5

C4

C3

Figure 2. An example of reflection.

C1,C2,C3,C4 to the configuration C1,C2,C3,C5 is defined to be the reflection
(of C4 over C1, C2, and C3) [Graham et al. 2005] (and when the context allows
we will speak of replacing C4 with C5 in this fashion). In Figure 2, for example,
C5 is the reflection of C4 over C1, C2, and C3 (and C4 is the reflection of C5 over
C1, C2, and C3), and hence we can speak of replacing C4 in the configuration
C1,C2,C3,C4 with C5 to obtain the configuration C1,C2,C3,C5.

Since inversion over a circle preserves tangency, inverting three circles of a
configuration over the fourth will also result in another Descartes configuration.
For example, in Figure 3, the three smallest circles invert over circle C1 to the three
largest circles.

C1

1

Figure 3. An example of inversion.

Figure 4. A configuration (solid lines) and its dual (dashed lines).
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Finally, each configuration C1, . . . ,C4 also has a dual configuration C ′1, . . . ,C ′4
such that each C ′i does not intersect Ci and goes through the three points of tangency
of the other three C j with j 6= i . For example, in Figure 4, a configuration (solid
lines) is superimposed with its dual (dashed lines).

2. Apollonian gaskets

Apollonian Gaskets can be defined geometrically and algebraically. In this section,
we will review the geometric construction.

Given three mutually tangent circles, there are exactly two other circles that form
a configuration with the original three. Thus, starting with a configuration of four
circles, any three of the four define a new configuration not including the other
circle. Repeatedly creating new configurations in this fashion, a circle packing (a
collection of circles with mutually disjoint interiors) is created, called an Apollonian
circle packing or Apollonian gasket; see Figure 5.

If κ1, . . . , κ5 are the curvatures of five circles C1, . . . ,C5 such that C1,C2,C3,C4

and C1,C2,C3,C5 are configurations, the Descartes condition implies

κ5 = 2κ1+ 2κ2+ 2κ3− κ4. (3)

Thus, in an Apollonian gasket, because each circle belongs to a configuration that
can be obtained from the original one by repeated replacement operations, if the
original curvatures are integers then the curvatures of all the circles in the gasket
will also be integers.

The gasket with starting curvatures 0, 0, 2, and 2 contains another set of well-
known circles called the Ford circles, shown in Figure 6, which can be defined
as follows. For r > 0 and arbitrary real a, let C(a, r) be the circle with radius r
above and tangent to the x-axis at x = a. For relatively prime integers c and d
with d 6= 0, let Cc,d = C(c/d, 1/(2d2)); the set of all such Cc,d are the Ford
circles. These circles have a number of interesting properties. To see they are
part of the (2, 2, 0, 0)-gasket (which we will call the Ford gasket) invokes one
of these properties: if Ca,b and Cc,d are mutually tangent, then Ca+c,b+d forms a

Figure 5. An Apollonian gasket.
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Figure 6. Ford circles.

Descartes configuration with Ca,b, Cc,d , and the x-axis. The claim then follows
from C0,1, C1,1, and the x-axis being part of the original four gasket circles.

Sam Northshield [2015] recently discovered a new characterization and labeling
for the Ford circles. For integers s and t with s+ t > 0, define

〈s, t〉 = C
(

s
s+ t

,
1

(s+ t)2

)
.

Then the set of Ford circles is exactly the set of those 〈s, t〉 with integer s and t
that satisfy two conditions: s + t > 0 and there exists an integer u such that
gcd(s, t, u)= 1 and s2

+ t2
+ u2
= (s+ t + u)2. This characterization also allowed

Northshield to study natural generalizations of the Ford circles in higher dimensions.

3. The Apollonian group

Each geometric operation described above has a matrix counterpart. For example,
consider two configurations C1,C2,C3,C4 and C1,C2,C3,C5, let

S4 =


1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 –1


and let M = M(C1,C2,C3,C4). We claim that S4 M = M(C1,C2,C3,C5). Since
ST

4 QS4 = Q, we have (S4 M)TQS4 M = MTQM =W, so that S4 M is also a config-
uration. Since S4 does not change C1, C2, or C3, it follows that S4 M must be the
unique configuration obtained by reflection of C4. This provides an alternate way
of defining an Apollonian gasket.

The Apollonian group A is generated by S4 along with

S1 =


–1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

, S2 =


1 0 0 0
2 –1 2 2
0 0 1 0
0 0 0 1

, S3 =


1 0 0 0
0 1 0 0
2 2 –1 2
0 0 0 1

.
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Figure 7. A dual Apollonian packing.

These matrices satisfy S2
i = I and ST

i QSi = Q for each i . With this notation, the
Apollonian gasket generated by an initial Descartes configuration whose circles
have curvature-center matrix M consists of the circles in the configurations of the
orbit of M under the left action of A.

Given a column vector of initial curvatures (κ1, κ2, κ3, κ4)
T that satisfy the

Descartes condition, in light of (3) and the above, multiplication by Si can be
viewed as removing curvature κi and substituting the curvature of its replacement.
Thus the curvatures that occur in an Apollonian gasket with initial curvature vector v
are those that occur in the vectors of the orbit of v under the action of the Apollonian
group.

One can verify that the matrix Ti := ST
i corresponds to inversion over the i-th

circle of a configuration, that the matrix D := −1
2 Q gives DM(C1, . . . ,C4) =

M(C ′1, . . . ,C ′4), and that D= D−1
= DT. These matrices are related by Si D=DTi

for each i . As a result, the dual Apollonian group A⊥ generated by T1, . . . , T4 is
conjugate to the Apollonian group. The orbit of a configuration under A⊥ is called
a dual Apollonian packing; see Figure 7.

4. An abstract supergasket

Having now reviewed the geometric and algebraic constructions of Apollonian
circle packings, we proceed to transpose the algebraic viewpoint; instead of looking
at configurations, we will focus on identifying individual circles. From now on, for
convenience, we will view (a, b, c, d) both as a point and as a vector. We will also
use it to identify a circle: given a configuration with curvature-center matrix M, let
(a, b, c, d) be the circle whose curvature-center coordinates are given by the vector
(a, b, c, d)M .

There are two motivations for this notation. One is to extend Northshield’s
coordinates for Ford circles. The other is to view the process of generating an
Apollonian gasket in an abstract fashion: if M is the curvature-center matrix
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of the configuration that generates an Apollonian gasket, then by definition any
configuration in the gasket has curvature-center matrix of the form AM, where A is
an element of the Apollonian group A. In particular, M = IM, and we can view the
rows of the identity matrix I as giving the four original circles, which correspond to
the labels e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1).

Information contained in these labels can be applied to any gasket by using the
corresponding curvature-center matrix. For example, using the curvature-center
coordinates of the first four circles in the Ford gasket, the reader can verify that
each label (a, b, c, d) with a+ b 6= 0 corresponds to the circle with

x =
b

a+ b
, y =

a+ b− c+ d
2(a+ b)

, k = 2(a+ b), (4)

where (x, y) is the center and k is the curvature, while labels of the form (a,−a, c, d)
correspond to lines.

While any label (a, b, c, d) corresponds to a circle, which ones give circles in
the gasket? This question is equivalent to asking what rows can occur in matrices
in A. If l is a circle in the gasket, then l is a row of some matrix A ∈ A and, for
any i , we have ASi ∈ A. Then lSi is a row of ASi , and so lSi is the label of a
circle in the gasket. Since any A ∈A can be written as a word in the Si , any vector
corresponding to the label of a circle in the gasket can be written as ei A for some
A ∈A and some 1≤ i ≤ 4. Thus the question becomes what are the orbits of the ei

under A?
Let

fQ(a, b, c, d)= 2(a2
+ b2
+ c2
+ d2)− (a+ b+ c+ d)2.

Then fQ(ei )=〈ei , ei 〉Q=1 for each i . Moreover, since fQ(ei )=1 and 〈uSi , uSi 〉Q=

〈u, u〉Q for each i and every vector u, each label (a, b, c, d) of a circle in the gasket
satisfies fQ(a, b, c, d) = 1. Unfortunately, this condition does not characterize
the gasket circles.3 One way to discover this is to start plotting integer solutions
to fQ(a, b, c, d) = 1 using (4); in doing so, an interesting picture emerges (see
Figure 8).

The group AS generated by the Si and the Ti is the super Apollonian group, and
an orbit of a configuration under the super Apollonian group is a superpacking or
supergasket [Graham et al. 2006]. In fact, as we will prove, integer solutions to
fQ(a, b, c, d)=1 correspond bijectively to the circles of any Apollonian supergasket.

The rest of this section is devoted to proving this characterization.
Let I be the set of integer solutions to fQ(a, b, c, d) = 1. Note first that
〈uSi , uSi 〉Q = 〈uTi , uTi 〉Q = 〈u, u〉Q for each i and every vector u, so that
〈ei A, ei A〉Q = 1 for each i and any A ∈ AS . Thus each orbit of an ei is a subset

3Such a condition would be of much interest, and we mention this again as an open problem later.
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1

Figure 8. Plot of integer solutions to fQ(a, b, c, d)= 1.

of I. Our next few results explore properties of I. One fact we will use repeatedly
is that (a, b, c, d) ∈ I means

a = b+ c+ d ±
√

4(bc+ bd + cd)+ 1. (5)

Lemma 2. There is no element of I with two negative coordinates and two positive
coordinates.

Proof. Assume without loss of generality that a and b are negative and that c and d
are positive, and rewrite fQ(a, b, c, d)= 1 as

(a− b)2+ (c− d)2 = 2(a+ b)(c+ d)+ 1. (6)

Then the left side is positive but the right is negative, a contradiction. �

If (a, b, c, d) ∈ I, then (−a,−b,−c,−d) ∈ I, and they are the same circle but
with opposite orientations. Since orientation changes are already present in the
curvature-center matrices, they should not be needed in the labels. Let I+ be the
subset of I consisting of labels with at least one positive coordinate and at least as
many positive coordinates as negative.

Our eventual proof that I+ will behave as the abstract supergasket will depend
on an algorithm to take any element of I+ and produce a series of transformations
that will take us back to some ei . The next four results show that the S and T
transformations map I+ to itself.
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Lemma 3. Let (a, b, c, d)∈I+ have no negative entries and let a=max{a, b, c, d}.
Then b+ c+ d < a. Further, a < 3(b+ c+ d) unless (a, b, c, d)= e1.

Proof. If a ≤ b+ c+ d , then (5) implies −(bc+ bd + cd) > 1
2 , a contradiction. If

a ≥ 3(b+ c+ d), then (5) yields b2
+ c2
+ d2
≤

1
2 , implying b = c = d = 0. �

Lemma 4. For (a, b, c, d) ∈ I+ with no negative entries and a =max{a, b, c, d},
unless (a, b, c, d)= e1, we have

(a′, b′, c′, d ′) := (a, b, c, d)T1 ∈ I+ and a+ b+ c+ d > a′+ b′+ c′+ d ′ > 0.

Proof. Since T1 only changes a, we know (a, b, c, d)T1 has at most one negative
entry. Thus, if (a, b, c, d) 6= e1, then (a, b, c, d)T1 ∈ I+. Further, a′+b′+c′+d ′=
3b+3c+3d−a, so assuming (a, b, c, d) 6= e1, we have 3b+3c+3d−a>a−a= 0.
Using b+ c+ d < a,

a′+ b′+ c′+ d ′− a− b− c− d = 2b+ 2c+ 2d − 2a > 0. �

Lemma 5. Let (a, b, c, d) ∈ I+ have exactly one negative entry a. Then a ≥
−

1
6(b+ c+ d). If a =− 1

6(b+ c+ d) then (a, b, c, d)= (−1, 2, 2, 2).

Proof. Assume a ≤− 1
6(b+ c+ d). Then (5) implies

36≥ 49(b2
+ c2
+ d2)− 46(bc+ bd + cd).

Assume without loss of generality that d ≥ c ≥ b ≥ 0. Using that

b2
+ c2
+ d2
− bc− bd − cd = (b− c)2+ (d − b)(d − c)≥ 0,

we have 12≥ b2
+ c2
+ d2. The only such nonnegative values of b, c, and d that

admit an a with fQ(a, b, c, d)= 1 are b = c = d = 2. �

Lemma 6. For (a, b, c, d) ∈ I+ with exactly one negative entry a,

(a′, b′, c′, d ′) := (a, b, c, d)S1 ∈ I+ and a+ b+ c+ d > a′+ b′+ c′+ d ′ > 0.

Proof. Since a is negative, a′ = −a is positive. If (a′, b′, c′, d ′) /∈ I+, then by
Lemma 2, each of b′, c′, and d ′ are negative. Thus b+ 2a = b′ < 0, and similarly
c+ 2a < 0 and d + 2a < 0. Taken together, b+ c+ d + 6a < 0, a contradiction.

Since a < 0, it follows that a′+ b′+ c′+ d ′− a− b− c− d = 4a > 0. Finally,

a′+ b′+ c′+ d ′ = 5a+ b+ c+ d > 6a+ b+ c+ d > 0. �

Now for the main result that establishes the connection between I+ and the
action of AS .

Lemma 7. Suppose l ∈ I+. There exists an element A ∈ AS and an i such that
l = ei A.
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Proof. Since l = (a1, a2, a3, a4) ∈ I+, either it has no negative entries or exactly
one negative entry. Consider the operation

l 7→
{

lTi if l has no negative entries and ai =max{a1, a2, a3, a4},
lSj if l has exactly one negative entry aj .

By Lemmas 4 and 6, repeated application of this operation will eventually result
in ei for some i and we will have l A = ei for some A ∈AS. Since each Ti and Si

are invertible, l = ei A−1. �

Conversely, for any A∈AS and any i , we have ei A∈AS, establishing our bijection.

Theorem 8. The circles of an Apollonian supergasket are in one-to-one correspon-
dence with I+.

If l= ei A as in Lemma 7, then the three circles ej A for j 6= i form a configuration
with l, and we can call them the “parents” of l. From (6), the elements of I must
have exactly one odd entry, and one can verify the location of this entry is not
altered by replacement or inversion. Thus the odd entry provides a quick indicator
of which ei will be obtained by the procedure of Lemma 7.

Since duality D preserves the Q-inner product, the labels (a, b, c, d) of dual
circles also satisfy fQ(a, b, c, d)= 1, but the one odd entry of elements of I means
that the elements of 2ID are all odd integers. Results similar to Lemmas 2, 3, and 5
hold for dual circles, and thus a procedure similar to that of Lemma 7 can return a
dual circle to one of the original four dual circles:

(
−

1
2 ,

1
2 ,

1
2 ,

1
2

)
or a permutation

thereof.

5. Label operations

Having now defined our abstract supergasket as the set I+, we can begin to put it
to use. We are particularly interested in properties shared by all gaskets. As we
will see in this section, the labels give a simple way to identify individual circles,
but they can also be combined to give simple computations for the configuration
operations. As a first example, the next theorem follows directly from analyzing
the entries of the Si .

Theorem 9. Let C1, . . . ,C4 be the circles of a Descartes configuration with labels
c1, . . . , c4. Let C5 be the replacement of C4, let C ′j be the inversion of C j , 2≤ j ≤ 4,
over C1, and let c5 and c′j denote the corresponding labels. Using entrywise
operations, c5 = 2c1+ 2c2+ 2c3− c4 and c′j = 2c1+ cj .

A key fact is that, using duality and as witnessed by Si D = DTi for each i ,
replacement can be viewed as inversion and inversion can be viewed as replacement.
As an example of an application, for any circle C in the plane and any Descartes
configuration with curvature-center matrix M, let IC be the operation of inversion
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C5 X1

X2

C4

C3

C1 C2

D3

D4

D1D2

Figure 9. Circle X1 is the inversion of C5 over D1, and X2 is the
inversion of C5 over C1.

over C . If, for some i , the intersection of the interior of C with the interior of
any circle represented by M or Si M is empty, then Si IC M = ICSi M, and the
similar results hold for Ti and for duality D. To see this, recall that the replacement
of a circle determines a unique circle tangent to the other three in the original
configuration. Inversion preserves tangency, and the unique circle tangent to three
of IC M must be the inversion of the unique circle tangent to the corresponding
three of M. Duality is similarly uniquely defined by the points of intersection which
preserve their status under inversion. This view can help us to understand the action
of an individual Si or Ti on a given label, since multiplication of a label vector
on the right corresponds to “premultiplication” on the left of the matrix M for a
configuration.

Theorem 10. Multiplication of a label vector on the right by Ti corresponds to
inversion over the i-th circle of the original configuration, while multiplication on
the right by Si corresponds to inversion over the i-th dual circle.

For example, using (4), the label (1, 0, 0, 0) corresponds to the circle with center(
0, 1

2

)
and curvature 2, called C1 in Figure 9, and (0, 1, 0, 0), (0, 0, 1, 0), and

(0, 0, 0, 1) correspond to C2, C3, and C4, respectively. The dual circles are the Di .
According to Theorem 9, C5 has label (2, 2, 2,−1). According to Theorem 10,
for example, (2, 2, 2,−1)S1 = (−2, 6, 6, 3) gives circle X1, which is the inversion
of C5 over D1, and (2, 2, 2,−1)T1 = (4, 2, 2,−1) gives circle X2, which is the
inversion of C5 over C1.



A NEW LOOK AT APOLLONIAN CIRCLE PACKINGS 357

6. An inner product

Curvature-center coordinate vectors take on another meaning when viewed in R4

with the indefinite inner product 〈 · , · 〉G given by the matrix

G= 1
2


0 1 0 0
1 0 0 0
0 0 –2 0
0 0 0 –2

.
For circles C1 and C2 that are not lines, let d be the distance between their centers
and let r1 and r2 be their respective radii. If C1 and C2 intersect at an angle θ , then
d2
=r2

1+r2
2−2r1r2 cos θ . Define a quantity A for C1 and C2 as 2Ar1r2=d2

−r2
1−r2

2
[Kotlov et al. 1997]. A then generalizes the intersection angle to any pair of circles.
Moreover, if v1 and v2 are the curvature-center coordinate vectors of C1 and C2,
respectively, then A = 〈v1, v2〉G = v1GvT

2 . For two circles C1 and C2 (including
lines), letting 〈C1,C2〉G be the G-inner product of their curvature-center vectors,
we get the following characterization:

〈C1,C2〉G C1 and C2

−1 are internally tangent
1 are externally tangent
0 are mutually orthogonal

− cosα intersect at angle α
<−1 are disjoint, one inside the other
> 1 are disjoint, outside each other

In general, given four circles C1, . . . ,C4 with curvature-center coordinate vectors
v1, . . . ,v4, Jerzy Kocik [2007] defines their configuration matrix F=F(C1, . . . ,C4)

to be the Gram matrix of the vectors v1, . . . , v4 with respect to 〈 · , · 〉G; that is,
Fi j = 〈vi , vj 〉G. Thus if M is the curvature-center matrix for C1, . . . ,C4, then
F = MGMT.

For a (Descartes) configuration, the configuration matrix F is −Q. In that case,
F is invertible, thus so is M, and F = MGMT if and only if MT F−1 M =G−1. The
inverses of F and G are also related to previously defined matrices: G−1

=−
1
4 W

and F−1
=−

1
4 Q.

From the above, if M is the curvature-center matrix of a Descartes configuration,
MGMT

=−Q. Thus for labels u and v, we have 〈u, v〉Q =−〈uM, vM〉G, so that
Q-inner products of our label vectors also give the geometric relationships between
the circles they represent. For example, letting 〈C1,C2〉Q be the Q-inner product
of the labels of circles C1 and C2, we have the following theorem.

Theorem 11. Circles C1 and C2 are externally tangent, mutually orthogonal, or
internally tangent if and only if 〈C1,C2〉Q is −1, 0, or 1, respectively.
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Viewing the circles as vectors suggests additional constructions, including one
that resembles a Householder transformation:4 Let C be any circle in a superpacking
and let c be its label. For other labels d , consider the map d 7→ d(I−2QcTc) (with
labels used as vectors). Since C is internally tangent to itself, 〈C,C〉Q = cQcT

= 1
and this map is an involution. Moreover, for any circle C ′ tangent to C , from
Theorem 11 we have 〈C,C ′〉Q = −1, so that c′ 7→ c′ + 2c. From Theorem 9,
this map inverts the circles tangent to C over C . Finally, every other circle in the
supergasket can be obtained via replacement and/or duality and we saw earlier that
those operations commute with inversion over C .

Theorem 12. If c and d are circles in the abstract superpacking, then d(I−2QcTc)
is the inversion of d over c.

Note that by computing (I−2QeT
i ei ) for i ∈{1, . . . , 4}, Theorem 12 also provides

another justification for part of Theorem 10.

7. Curvatures

We return now to the fascinating problem mentioned at the start: given four original
integer curvatures, which other curvatures can or will occur? Certain conditions
modulo 24 are known [Graham et al. 2003], and recent progress has been made in
the form of a positive density theorem [Bourgain and Fuchs 2011] and a local-global
theorem [Bourgain and Kontorovich 2014]. Our labels can provide an analysis
similar to the proof of the positive density theorem, which involves looking at the
curvatures of circles tangent to a given circle.

In the proof of the positive density theorem, if a, b, c, and d are the curvatures of
the first four circles, then the set of curvatures of the circles tangent to the circle C1

of curvature a involves the quadratic form f (x, y)= Ax2
+ 2Bxy+Cy2, where

A= a+b, B = 1
2(a+b+d−c), and C = a+d . In particular, the set of curvatures

of the circles tangent to C1 is shown to contain the set { f (x, y)−a : gcd(x, y)= 1}.
For our approach, notice that the Ford circles are the circles tangent to one of the
four original circles in the Ford gasket (the x-axis). Our labels extend Northshield’s
[2015] in that the abstract Ford circles are (s, t, u, v), where gcd(s, t, u)= 1 and
s2
+ t2
+ u2
= (s + t + u)2. In particular, using Northshield’s ideas, the abstract

Ford circle labels can be parametrized as(
x(x+ y), y(x+ y), x2

+ xy+ y2
−1, −xy

)
with gcd(x, y)= 1. Thus, if a, b, c, and d are the initial curvatures of a gasket, then(

x2
+ xy+ y2

−1, x(x+ y), −xy, y(x+ y)
)

4A Householder transformation of a vector is the result of multiplication by a matrix of the form
I − vvT, where I is an identity matrix and v is a column vector of the appropriate size.
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has curvature

a(x2
+ xy+ y2

− 1)+ b(x(x + y))+ c(−xy)+ d(y(x + y))= f (x, y)− a.

Equation (6) also gives some information about the set of curvatures of the Ford
supergasket since 2(a+ b) is the curvature of the circle (a, b, c, d). In particular,
given a desired curvature κ , the equations

2(a+ b)= κ, a− b = y1, c− d = y2, and c+ d = y3

provide a connection to the solutions of the equation y2
1 + y2

2 = κy3+ 1. Recalling
Fermat’s result that any number of the form pq2, where the prime factorization
of p consists of primes that are congruent to 1 modulo 4, can be written as the
sum of two perfect squares gives a quick way to see that every integer occurs as a
curvature in the Ford supergasket.

Ideally, we could characterize the subset of supergasket labels that form a gasket
and find a parametrization using that characterization. Suppose fQ(a, b, c, d)= 1
and d is odd. Then 4(ab+ac+bc)+1 is a perfect square, say m2, so 4(ab+ac+bc)=
m2
− 1 and m must be odd. Thus ab+ ac+ bc = n(n − 1) for some integer n.

Conversely, if ab+ac+bc= n(n−1), then 4(ab+ac+bc)+1 is a perfect square.
Perhaps there exists a simple characterization of the n that occur in this fashion.
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