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In this paper, we classify and compute the convex foldings of a particular rhombus
that are obtained via a zipper folding along the boundary of the shape. In the
process, we explore computational aspects of this problem; in particular, we
outline several useful techniques for computing both the edge set of the final
polyhedron and its three-dimensional coordinates. We partition the set of possible
zipper starting points into subintervals representing equivalence classes induced
by these edge sets. In addition, we explore nonconvex foldings of this shape which
are obtained by using a zipper starting point outside of the interval corresponding
to a set of edges where the polygon folds to a convex polyhedron; surprisingly,
this results in multiple families of nonconvex and easily computable polyhedra.

1. Introduction

A folding of a polygon is a gluing together of the points on the perimeter to form
a polyhedron. A theorem of Alexandrov [1958] shows that as long as the sum
of the angles at every glued point is no more than 27, every folding of a convex
polygon leads to unique convex polyhedron (in which a doubly covered polygon is
considered a flat polyhedron). If a folding meets the requirements for Alexandrov’s
theorem then we are given the existence of a convex polyhedron corresponding to
the folding. A more recent constructive proof by Bobenko and Izmestiev [2008]
allows for the explicit construction of a polyhedron by solving a certain differential
equation. An implementation of the constructive algorithm has been coded by
Stefan Sechelmann'. Given any input triangulation of the polygon with gluing
instructions, the implementation will output the final polyhedron. However, this
particular implementation does not return the corresponding triangulation on the
polygon. The algorithm runs in pseudopolynomial time since the algorithm must
take the initial triangulation and flip it to a geodesic triangulation, which is not, in
general, a polynomial time operation [Kane et al. 2009].
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We seek a more combinatorial approach to computing this information. Given
a set of gluing rules corresponding to a zipper folding, we outline an approach
for computing the crease patterns (i.e., characterize and predict the combinatorial
structure of edges and faces) as well as the exact location of the vertices.

Related work. Work has been done towards determining all the combinatorially
different convex polyhedra obtained via foldings, primarily for regular convex
polygons as well as a few other shapes such as the Latin cross [Lubiw and O’Rourke
1996; Alexander et al. 2003; Akiyama and Nakamura 2003; 2004; 2005]. In each
work, the authors must determine the set of line segments in the polygon which
become edges in the final polyhedron; we refer to these edges as the crease pattern
for the shape. Note that the crease pattern may not contain all boundary edges of
the original polygon; see the left picture in Figure 6 for an example of when the
polyhedral edges cross the boundary of the original polygon.

In [Alexander et al. 2003] (and later in [Demaine and O’Rourke 2007]), all
(combinatorially distinct) convex polyhedra that are foldable from a square are
determined using a combinatorial structure called gluing trees. Crease patterns
and reconstructions of the folded polyhedra are also given, making the study of
foldings of the square complete. In [Akiyama and Nakamura 2003; 2004; 2005],
the focus is on determining all foldings of regular n-gons, without focusing on
reconstructing the actual polyhedron. There is also related work which examines
when the Platonic solids can be unzipped to a polygonal net and rezipped into a
doubly covered flat polygon [O’Rourke 2010]; another paper considers finding
different tetrahedra which unzip to a common polygonal net [O’Rourke 2011]. A
complete analysis of polyhedra that are zipper foldable from the 1x2 rectangle is
given in [Schwent 2013], utilizing the techniques outlined here.

As previously mentioned, our primary goal here is to seek a simpler combinatorial
approach to verify correct crease patterns in a restricted type of folding. To that end,
we consider a restricted class of foldings using the perimeter-halving method, where
the perimeter of the polygon is identified starting from a specified point gluing
together points equidistant from the starting point (as measured along the perimeter),
which zips up the boundary of the polygon into a polyhedron. We will use the
term zipper foldings, which was first introduced in Demaine et al. [2010]; a related
special case is the class of pita polyhedra which arise from zipper folding regular
polygons [Demaine and O’Rourke 2007]. As far as the actual resulting polyhedra,
surprisingly little is known even about this simple class of foldings aside from the
previously mentioned papers which (like ours) consider a particular shape and exam-
ine it in detail [Akiyama and Nakamura 2003; 2004; 2005; Alexander et al. 2003].

Predicting creases. As was observed by Alexandrov and noted in [Alexander et al.
2003], there are a finite number of possible crease patterns. However, in our
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(+/3/2,0)

Figure 1. The crease pattern at € = %, which has a 3-regular
adjacency graph.

experience, verifying or discounting a crease pattern is surprisingly difficult in more
complex polygons since checking a crease pattern either involves seeing if a paper
model will fold (highly prone to error) or attempting to compute the folding in a
program such as Mathematica (which can lead to numerical issues). As a result,
most prior combinatorial work on computing zipper foldings was done using ad hoc
methods.

We describe now points on the polygon which will be of interest as we con-
struct the corresponding polyhedron via zipper folding. Our initial polygon is the
equilateral rhombus (or diamond) centered on the origin with unit edge length and
interior angles 60° and 120°. Label the vertices A, B, C, D; see Figure 1 for an
example of the labeling. Let the starting point of our zipping S be a point on edge
AB located at (\/36/2, (1 —€)/2), and refer to the location of S by this €. Note
that 0 <€ < 1, and the location of S is distance € from point A along edge AB. The
point E on edge CD is the reflection of S through the origin, which is where the
zipper ends. For any such folding, we will use A’, B/, C’, D’ to denote the points
on the boundary of the polygon which glue to A, B, C, D, respectively.

As previously mentioned, for polygonal foldings in general, it is known that if the
requirements for Alexandrov’s theorem are satisfied then there exists a valid folding.
Here, we present several computational reconstruction techniques which may be
of interest in this area. We also develop several methods to prove that a particular
crease pattern is valid as the starting point moves along a continuous interval on
the boundary; previous papers seem to have relied on numerical approximation to
verify validity, which will reach its limit as the polygon becomes more complex.
We also classify all the zipper foldings resulting from the diamond outlined above.

Theorem 1. There are 21 combinatorially distinct convex polyhedra resulting from
zipper foldings of a diamond. There are T polyhedra which have nontriangular
faces and 4 flat polyhedra, all of which occur at isolated points where the crease
pattern changes.
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€~0.13396

€~0.1909

~0.88416

€~x0.94041

e=1

Figure 2. All the crease patterns for the zipper foldings of the
diamond as the start point S varies by distance € from point A
along edge AB. Images are taken from sample values between
each transition point, marked with solid dots. Dashed lines indicate
that a crease extends over an edge. The polyhedra shown between
transition points correspond to the respective crease patterns. The
symmetry of our input shape allows us to study all zipper foldings
by varying the location of S along one edge; moving S to another
edge will give a combinatorially equivalent folding.
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The polyhedra shown in Figure 2 represent the 10 polyhedra with triangular
faces, and the solid dots represent the 11 isolated polyhedra noted above. The
polyhedra with triangular faces form octahedra. Together, these represent all the
zipper foldings of the diamond.

2. Computing the foldings

In our foldings, all polyhedra will have at most 6 vertices, resulting from gluing
each of A, B, C, and D to some other point on the perimeter, as well as the
vertices S and E. We are often interested in the actual adjacencies in the final
folded polyhedron; this network of edges forms an adjacency graph, often called
the graph of the polyhedron, on the (at most) 6 vertices. We refer to this adjacency
graph as the crease pattern.

Our techniques for computing these foldings break down into several relevant
categories. The first (and simplest) are the flat foldings when the entire polygon
folds into a doubly covered polygon. For example, when € = 0, the vertices B
and D zip together and the result is a flat doubly covered regular triangle; flat
foldings also occur when € = 0.5, 0.75, and 1.

The remaining cases in our computation are handled based on whether the graph
of the polyhedron is 4-regular or not; if not, in our shape, as well as in the 1x2
rectangle studied in [Schwent 2013], the graph will always consist of vertices of
degrees 3, 4, and 5. When degree-3 vertices exist, as discussed in Section 2.1,
computing the crease pattern is much simpler since it is not difficult to verify
that the underlying structure of the polyhedron can be decomposed into several
tetrahedra. The more complex 4-regular case requires additional techniques to
calculate exactly; we detail these techniques in Section 2.2. In addition, further
complexity arises when the boundary edges of the initial polygon do not become
edges in the final polyhedron; see, for example, the crease patterns in Figure 2
which are nearest to € = 1. These patterns, which occur much more often in this
shape than previous related work, required an extra set of tools to calculate correct
crease patterns and 3-D realizations. In Section 2.3, we examine these tools which
require zipper folding a related nonconvex polygon to yield the same polyhedron.

In Figure 3, we show the creases with marked points for the places where the
crease pattern undergoes a combinatorial change, which we call a transition. Note
that (as in previous work) at most of these transitions, two triangles become coplanar
to form a quadrilateral (indicated as a dotted line) and then the opposite quadrilateral
diagonal appears in the polyhedron. All other transitions occur when the polyhedron
folds to a flat doubly covered polygon.

2.1. Degree-3 vertices in the pattern. Crease patterns with at least one degree-3
vertex are substantially easier to realize in R, computationally speaking. In this
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Figure 3. All the crease patterns at each transition point (which
are marked by black dots). Dashed lines indicate that a crease
extends over an edge. Dotted lines indicate interior diagonals of a
quadrilateral face that are realized as polyhedral edges on either
side of the transition point.
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Figure 4. Left: The graph of the polyhedron for € = Alf. Middle:
The two outer tetrahedra of the polyhedron joined along the com-
mon edge BD. Right: The final polyhedron decomposed into three
tetrahedra.

shape, this results from the fact that when we have such a graph with our setup, we
can decompose the final polyhedron into three tetrahedra (two outer tetrahedra and
the inner tetrahedron). In Figure 4, we show the adjacency graph of the polyhedron
generated when € = [—11, the reconstruction of the two outer tetrahedra, and the
final polyhedron decomposed into three tetrahedra, where the inner tetrahedron is
composed of two triangles from the outer tetrahedra which meet on an edge, plus a
single additional edge.

For values of € in intervals with a degree-3 vertex in the crease pattern, we wrote
code to find exact coordinates for the three-dimensional polyhedron that results.
Reconstructing a tetrahedron using adjacencies and edge lengths is not difficult
to do, so the general approach we used was to reconstruct the inside tetrahedron
shown in Figure 4, and then reconstruct the outer tetrahedra. We next illustrate this
process via an example.

Consider the crease pattern at € = [—i. This crease pattern contains the edges SE
and BD. In its initial configuration, we note that points B and D are both adjacent
to SE as well as to each other. We can leave edge SE fixed in the z =0 plane. Rotate
points B” and D’ by 6 about edge SE into the positive z-direction. We solve for the
value of & which positions points B’ and D’ at the correct final distance |B'D| = 2¢
from each other; this establishes a central tetrahedron within our final polygon.
Vertex A is adjacent to B’, D', S, and hence can be located by solving a system of
three distance equations. Similarly, C is adjacent to B’, D', E. The resulting figure
is convex and has edge lengths that match those from the polygonal net.

To extend from a specific value of € to the entire interval containing €, we note
that the ability to construct the central tetrahedron BDSE for S corresponding to a
specific 0.1909 < € < % can be verified via an intermediate value theorem argument.
Simply measure the distance between B and D when the dihedral angle at SE is 0
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Figure 5. A crease pattern whose adjacency graph is 4-regular to
illustrate the reconstruction process.

and again when it is &. If the desired length of BD is between these two values,
then folding over SE by some angle 0 < 6 < ;r will attain the correct length for BD.
Then, checking the angle criterion given in Lemma 2 (see the Appendix) confirms
that locations for points A and C can be found that realize all desired distances. It
remains only to verify that the resulting polyhedron is convex. Since for e-values
in this interval, the orthogonal projection of A onto the plane containing triangle
BDS is interior to triangle BDS, the final polyhedron will be convex.

2.2. 4-regular graph of the polyhedron. In folding patterns where all vertices are
degree-4, realization of the vertices in R? is not as simple as the degree-3 case. In
[Demaine and O’Rourke 2007], the authors describe a method for constructing
an octahedron by splitting it into two smaller hexahedra which share an edge that
is an internal diagonal of the octahedron. They vary the length of this edge until
the dihedral angles of the faces incident to the edge match. We utilize a different
method that also reduces a partial polyhedron to one parameter of change. We
illustrate this for € in the interval 0.13396 < € < 0.1909; the crease pattern for this
range is shown in Figure 5.

We consider the following flex over edge SE. Fold triangles SEA’ and SEC’
upward from the z = 0 plane, each by angle 6, leaving edge SE fixed in the plane.
Each choice of 6 results in a fixed measure of ZA'SC’ and /A’EC’. The two
remaining triangular faces SB'C" and ASB’ which are incident to S (or respectively
E) are uniquely configurable into a shell comprised of faces of the final convex
polyhedron. That s, of the two locations in R? for point By that give correct distances
for segments AB, BC, BS, only one is extendable into a convex polyhedron. We
similarly find a location for Dy. (The subscripts here serve as a reminder that the
locations of By and Dy depend on the initial flex by angle 6.) Note that this convex
shell contains six of the eight faces of the final polyhedron; the two missing faces
must share a common edge. We then vary 6 to realize the correct length for this
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Figure 6. The crease patterns for € = % (left) and the range just
below 1 (right) rearranged to a nonconvex polygon.

missing common edge; if no such 6 exists, then we can reject this crease pattern.
Moreover, we can also reject the pattern if the final folding results in a nonconvex
polyhedron; else, it must realize a convex folding of the initial crease pattern.

2.3. Creases over the boundary of the polygon. While the particular approach
varies slightly, this process from the previous section can be repeated for any
4-regular graph of the polyhedron. However, some complications arise when the
crease pattern is more complex. For example, consider the crease pattern when
the source of the zipper S is near B. In this case, many of the edges in the final
polyhedron actually cross an edge of the initial polygon since not all of the polygon’s
edges are edges of the final polyhedron. (This also occurs at several other positions;
see Figure 2.) Computationally speaking, these patterns are more difficult because a
single crease is split into different segments inside the polygon. In order to compute
these foldings, we altered the original polygon to be nonconvex and verified the
crease pattern in this related polygon.

One example occurs when the zipper point reaches near point B in our shape
for the crease patterns above € = 0.75; see Figure 6 for the pattern at € = %. Here,
the creases cross over the edges AB’ (and by symmetry also BA’) as well as C'D
(and DC”). Using the original gluing information, we reconstructed an equivalent
nonconvex polygon which folded to an identical polyhedron and allowed for easier
computation, given the symmetry and reduction in the number of creases.

This set of crossings becomes even more drastic as the zipper point nears B,
which is a vertex of high curvature. The crossing edges do not change, but the
rearranged figure becomes more complex due to extra crossings, and the nonconvex
polygon in turn becomes more complex. See Figure 6 for the final rearranged figure
just below € = 1.

A very different example occurs for the crease pattern at € = %; here, instead
of keeping the shape close to the original diamond, we more drastically rearrange
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Figure 7. A crease pattern for a convex polyhedron when € = 11—0.
The initial net is diamond ABCD. The shaded faces are shown
rearranged to match the algorithmic approach to reconstruction.

to take advantage of symmetry when computing the folding. This crease pattern
contains the edges SE and BD. However, in its initial configuration, we note that
points A" and C’ are both adjacent to SE, but A and C are not adjacent to each other
in the final polyhedron. We use the gluing instructions to rearrange the triangular
faces so that they are as in Figure 7. Now vertices S and E are both incident to
edge BD, so we can fold this polygon symmetrically, leaving edge BD fixed in the
z=0 plane and proceed exactly as outlined in the € = i case described in Section 2.1.

For nets where the vertices incident to the crease through (0, 0) are adjacent,
this rearranging of the net is not always needed. We do take advantage of this
rearrangement technique whenever a three-dimensional edge of our final polyhedron
intersects a two-dimensional boundary edge of our initial polygon. Since the gluing
instructions are preserved, this is merely a bookkeeping tool that allows for easier
computations.

3. Nonconvex polyhedra

One interesting result of our investigation of this pattern is a natural classification of
some types of nonconvex foldings, which to the best of our knowledge have not been
a focus of investigation in related work on zipper foldings. It is known, of course,
that convex shapes will fold to nonconvex polyhedra, and work has been done on
counting the number of foldings of a shape; see, for example, [Demaine et al. 2000].
In addition, recent work has focused on unfolding a polyhedron to a convex shape
and then refolding it to a different (convex) polyhedron [Demaine et al. 2012]; in
contrast, our results consider zipper folding a convex planar shape to one or more
nonconvex polyhedra, which seems to be an interesting variant of refold rigidity.
The main point of interest is how easy these nonconvex foldings are to find
computationally speaking. These foldings result from pushing a particular crease
pattern past the point where two faces become coplanar and a flip in the crease
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Figure 8. Left: A nonconvex folding when the zipper source is at
€ =.36. Right: A nonconvex folding when € = é; here, the folding
results in a flat flap, indicating that this crease pattern will not fold

1
5

to a polyhedron at all when pushed lower than
pattern occurs. In our experiments, the primary method to establish the validity of
a crease pattern is by finding a solution in R? to a system of quadratic equations
defining pairwise distances, then checking the convexity of the resulting polyhedron.
These nonconvex foldings appeared when the code for computing a solution ran
successfully but failed the convexity check.

For an example of these, consider Figure 8. In the example shown on the left,
we consider when the zipper point is at € = 0.36. However, instead of using the
correct crease pattern shown in Figure 2, we are instead using the crease pattern
for the interval below € = % Similarly, on the right side of Figure 8, we have a
nonconvex folding when € = é, but the crease pattern used is the one that is valid
for the interval above € 22 0.1909. In this second picture, we have actually pushed
the nonconvex folding as far is it will extend, since using this crease pattern for any
lower value of € will result in an invalid folding (where the polygon self-intersects).

These calculations lead us to conjecture that any valid crease pattern over an
interval will fold to a nonconvex polyhedron for some value of € close to the interval
of convexity. This conjecture is certainly true in our shape (except for near flat
foldings), and it seems likely to hold for other shapes since convexity does not
impact the existence of a solution.

4. Future directions

We have focused here on zipper foldings of this particular shape. In much of the
previous work in this area, all the foldings of a convex shape have been determined
using techniques such as gluing trees. Using those techniques to calculate all the
convex foldings of this diamond remains an area to address.

Another interesting question is to determine the relationship between the zipper
foldings we discuss here with the zipper foldings of the square, as they appear
similar [Alexander et al. 2003; Demaine and O’Rourke 2007]. A link between the
diamond and square zipper foldings might give a list of constraints for when two
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B

E D
Figure 9. Corresponding figure for Lemma 2.

similar figures have similar foldings. Related lines of questioning could be asked
about rhombi in general. For instance, if the edge lengths are similarly defined, are
the values of € where transitions occur similar?

The nonconvex foldings described in Section 3 are also perhaps worth further
investigation in other shapes. It would also be interesting to examine when these
nonconvex foldings cease to be valid, and to try to discover how many valid
(nonconvex) crease patterns might be present at a particular zipper point.

Appendix: Realizing tetrahedra

In our discussion of calculating the folding where there is a degree-3 vertex in the
graph of the polyhedron, we need a characterization of when a set of vertices and
edges can be realized in R? as a tetrahedron. We then use this to help us discover
the entire range along which the tetrahedron is present in the final folding. We
summarize this tool in the following lemma:

Lemma 2. A net of four triangles as shown in Figure 9 will fold to a tetrahedron if

(1) lengths of corresponding sides are equal (|AF| = |EF|, |AB| = |BC|, and
|CD| = |DEY);

(2) at each vertex, the angle of the base is less than the sum of the other two
incident face angles.

Proof. 1t is clear that the first condition is necessary since, within the tetrahedron,
points A, C, E will all be identified and thus corresponding edge lengths must be
the same. To verify the second condition, we show that, without loss of generality,
all points incident to F can be realized in three dimensions. Assume /BFD <
LAFB+ /DFE. If this condition were not met, then no position of point A rotated
over segment BF will coincide with any position of point E rotated over DF.
When the angle criterion is satisfied, let X be a point in R? where points A and E
coincide after rotations over BF and DF respectively. We know by condition (1)
that | XB|=|AB|=|CB| and | XD|=|ED| =|CD|, so triangle A BCD will fold into
position over edge BD with C identified with point X to complete the tetrahedron. [J



THE ZIPPER FOLDINGS OF THE DIAMOND 533

Acknowledgements

This research was supported in part by the National Science Foundation under Grant
No. CCF 1054779, as well as an REU supplemental to that grant.

References

[Akiyama and Nakamura 2003] J. Akiyama and G. Nakamura, “Foldings of regular polygons to con-
vex polyhedra, II: Regular pentagons”, J. Indones. Math. Soc. 9:2 (2003), 89-99. MR 2005a:52013
Zbl 1102.52300

[Akiyama and Nakamura 2004] J. Akiyama and G. Nakamura, “Foldings of regular polygons to
convex polyhedra, III: Regular hexagons and regular n-gons, n > 7s”, Thai J. Math. 2:1 (2004), 1-15.
Zbl 1066.52014

[Akiyama and Nakamura 2005] J. Akiyama and G. Nakamura, “Foldings of regular polygons to
convex polyhedra, I: Equilateral triangles”, pp. 34—43 in Combinatorial geometry and graph theory
(Bandung, 2003), edited by J. Akiyama et al., Lecture Notes in Comput. Sci. 3330, Springer, Berlin,
2005. MR 2006e:52004 Zbl 1117.52004

[Alexander et al. 2003] R. Alexander, H. Dyson, and J. O’Rourke, “The foldings of a square to convex
polyhedra”, pp. 38-50 in Discrete and computational geometry (Tokyo, 2002), edited by J. Akiyama
and M. Kano, Lecture Notes in Comput. Sci. 2866, Springer, Berlin, 2003. MR 2005g:52047
Zbl 1179.52027

[Alexandrov 1958] A. D. Alexandrov, Konvexe polyeder, Akademie, Berlin, 1958. MR 19,1192¢
Zbl 0079.16303

[Bobenko and Izmestiev 2008] A. I. Bobenko and 1. Izmestiev, “Alexandrov’s theorem, weighted
Delaunay triangulations, and mixed volumes”, Ann. Inst. Fourier (Grenoble) 58:2 (2008), 447-505.
MR 2009j:52016 Zbl 1154.52005

[Demaine and O’Rourke 2007] E. D. Demaine and J. O’Rourke, Geometric folding algorithms:
Linkages, origami, polyhedra, Cambridge University Press, 2007. MR 2008g:52001 Zbl 1135.52009

[Demaine et al. 2000] E. D. Demaine, M. L. Demaine, A. Lubiw, and J. O’Rourke, “Examples, coun-
terexamples, and enumeration results for foldings and unfoldings between polygons and polytopes”,
Technical Report 069, Smith College, 2000. arXiv cs/0007019

[Demaine et al. 2010] E. D. Demaine, M. L. Demaine, A. Lubiw, A. Shallit, and J. L. Shallit, “Zipper
unfoldings of polyhedral complexes”, pp. 219-222 in Proceedings of the 22nd Canadian Conference
on Computational Geometry (Winnipeg MB, 2010), 2010.

[Demaine et al. 2012] E. D. Demaine, M. L. Demaine, J. ichi Itoh, A. Lubiw, C. Nara, and J. O’Rourke,
“Refold rigidity of convex polyhedra”, preprint, 2012, available at http: //madalgo.au.dk/fileadmin/
madalgo/OA_PDF_s/J119.pdf. In Abstracts from the 28th European Workshop on Computational
Geometry.

[Kane et al. 2009] D. Kane, G. N. Price, and E. D. Demaine, “A pseudopolynomial algorithm for
Alexandrov’s theorem”, pp. 435446 in Algorithms and data structures (Banff, Alberta, 2009),
edited by F. Dehne et al., Lecture Notes in Comput. Sci. 5664, Springer, Berlin, 2009. MR 2550627
Zbl 1253.65028

[Lubiw and O’Rourke 1996] A. Lubiw and J. O’Rourke, “When can a polygon fold to a polytope?”,
Technical Report 048, Smith College, 1996, available at http: //cs.smith.edu/~orourke/Papers/
folding.ps.Z. Presented at AMS Conference, 1996.

[O’Rourke 2010] J. O’Rourke, “Flat zipper-unfolding pairs for platonic solids”, preprint, 2010.
arXiv 1010.2450


http://msp.org/idx/mr/2005a:52013
http://msp.org/idx/zbl/1102.52300
http://msp.org/idx/zbl/1066.52014
http://dx.doi.org/10.1007/978-3-540-30540-8_4
http://dx.doi.org/10.1007/978-3-540-30540-8_4
http://msp.org/idx/mr/2006e:52004
http://msp.org/idx/zbl/1117.52004
http://dx.doi.org/10.1007/978-3-540-44400-8_5
http://dx.doi.org/10.1007/978-3-540-44400-8_5
http://msp.org/idx/mr/2005g:52047
http://msp.org/idx/zbl/1179.52027
http://msp.org/idx/mr/19,1192c
http://msp.org/idx/zbl/0079.16303
http://dx.doi.org/10.5802/aif.2358
http://dx.doi.org/10.5802/aif.2358
http://msp.org/idx/mr/2009j:52016
http://msp.org/idx/zbl/1154.52005
http://dx.doi.org/10.1017/CBO9780511735172
http://dx.doi.org/10.1017/CBO9780511735172
http://msp.org/idx/mr/2008g:52001
http://msp.org/idx/zbl/1135.52009
http://msp.org/idx/arx/cs/0007019
http://cccg.ca/proceedings/2010/paper58.pdf
http://cccg.ca/proceedings/2010/paper58.pdf
http://madalgo.au.dk/fileadmin/madalgo/OA_PDF_s/J119.pdf
http://dx.doi.org/10.1007/978-3-642-03367-4_38
http://dx.doi.org/10.1007/978-3-642-03367-4_38
http://msp.org/idx/mr/2550627
http://msp.org/idx/zbl/1253.65028
http://cs.smith.edu/~orourke/Papers/folding.ps.Z
http://msp.org/idx/arx/1010.2450

534 E. W. CHAMBERS, D. FANG, K. A. SKYES, C. M. TRAUB AND P. TRETTENERO

[O’Rourke 2011] J. O’Rourke, “Common edge-unzippings for tetrahedra”, preprint, 2011. arXiv
1105.5401

[Schwent 2013] K. Schwent, Perimeter-halving the one-by-two rectangle, Master’s thesis, Southern
Illinois University Edwardsville, 2013.

Received: 2014-01-31 Revised: 2014-03-20 Accepted: 2014-07-01

echambeb@slu.edu Department of Mathematics and Computer Science,
Saint Louis University, St. Louis, MO 63103, United States

dfangphone@gmail.com Department of Mathematics and Computer Science,
Saint Louis University, St. Louis, MO 63103, United States

ksykes2@slu.edu Department of Mathematics and Computer Science,
Saint Louis University, St. Louis, MO 63103, United States

cytraub@siue.edu Department of Mathematics and Statistics, Southern Illinois
University Edwardsville, Edwardsville, IL 62026, United States

tretten2Q@illinois.edu University of lllinois, Urbana, IL 61801, United States

mathematical sciences publishers :.msp


http://msp.org/idx/arx/1105.5401
http://msp.org/idx/arx/1105.5401
mailto:echambe5@slu.edu
mailto:dfangphone@gmail.com
mailto:ksykes2@slu.edu
mailto:cytraub@siue.edu
mailto:tretten2@illinois.edu
http://msp.org

Colin Adams

John V. Baxley
Arthur T. Benjamin
Martin Bohner
Nigel Boston
Amarjit S. Budhiraja
Pietro Cerone
Scott Chapman
Joshua N. Cooper
Jem N. Corcoran
Toka Diagana
Michael Dorff
Sever S. Dragomir
Behrouz Emamizadeh
Joel Foisy

Errin W. Fulp
Joseph Gallian
Stephan R. Garcia
Anant Godbole
Ron Gould
Andrew Granville
Jerrold Griggs

Sat Gupta

Jim Haglund
Johnny Henderson
Jim Hoste

Natalia Hritonenko
Glenn H. Hurlbert
Charles R. Johnson
K. B. Kulasekera

Gerry Ladas

involve

msp.org/involve

EDITORS
MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

Williams College, USA
colin.c.adams @williams.edu

Wake Forest University, NC, USA
baxley @wfu.edu

Harvey Mudd College, USA
benjamin@hmc.edu

Missouri U of Science and Technology, USA
bohner@mst.edu

University of Wisconsin, USA
boston@math.wisc.edu

U of North Carolina, Chapel Hill, USA
budhiraj @email.unc.edu

La Trobe University, Australia
P.Cerone @latrobe.edu.au

Sam Houston State University, USA
scott.chapman @shsu.edu
University of South Carolina, USA
cooper @math.sc.edu

University of Colorado, USA
corcoran@colorado.edu

Howard University, USA
tdiagana@howard.edu

Brigham Young University, USA
mdorff @math.byu.edu

Victoria University, Australia
sever@matilda.vu.edu.au

The Petroleum Institute, UAE
bemamizadeh @pi.ac.ae

SUNY Potsdam

foisyjs @potsdam.edu

Wake Forest University, USA
fulp@wfu.edu

University of Minnesota Duluth, USA
jeallian@d.umn.edu

Pomona College, USA
stephan.garcia@pomona.edu

East Tennessee State University, USA
godbole @etsu.edu

Emory University, USA
rg@mathcs.emory.edu

Université Montréal, Canada
andrew @dms.umontreal.ca
University of South Carolina, USA
griggs@math.sc.edu

U of North Carolina, Greensboro, USA
sngupta@uncg.edu

University of Pennsylvania, USA
jhaglund @math.upenn.edu

Baylor University, USA
johnny_henderson@baylor.edu
Pitzer College

jhoste @pitzer.edu

Prairie View A&M University, USA
nahritonenko @pvamu.edu

Arizona State University, USA
hurlbert@asu.edu

College of William and Mary, USA
crjohnso@math.wm.edu

Clemson University, USA
kk@ces.clemson.edu

University of Rhode Island, USA
gladas @math.uri.edu

David Larson
Suzanne Lenhart
Chi-Kwong Li
Robert B. Lund
Gaven J. Martin
Mary Meyer

Emil Minchev
Frank Morgan
Mohammad Sal Moslehian
Zuhair Nashed

Ken Ono

Timothy E. O’Brien
Joseph O’Rourke
Yuval Peres

Y.-F. S. Pétermann
Robert J. Plemmons
Carl B. Pomerance
Vadim Ponomarenko
Bjorn Poonen
James Propp
Jozeph H. Przytycki
Richard Rebarber
Robert W. Robinson
Filip Saidak

James A. Sellers
Andrew J. Sterge
Ann Trenk

Ravi Vakil

Antonia Vecchio
Ram U. Verma
John C. Wierman

Michael E. Zieve

PRODUCTION
Silvio Levy, Scientific Editor

Texas A&M University, USA
larson@math.tamu.edu

University of Tennessee, USA
lenhart@math.utk.edu

College of William and Mary, USA
ckli@math.wm.edu

Clemson University, USA
lund@clemson.edu

Massey University, New Zealand
g.j.martin @massey.ac.nz
Colorado State University, USA
meyer @stat.colostate.edu

Ruse, Bulgaria

eminchev @hotmail.com

Williams College, USA
frank.morgan @ williams.edu
Ferdowsi University of Mashhad, Iran
moslehian @ferdowsi.um.ac.ir
University of Central Florida, USA
znashed @mail.ucf.edu

Emory University, USA
ono@mathcs.emory.edu

Loyola University Chicago, USA
tobriel @luc.edu

Smith College, USA

orourke @cs.smith.edu

Microsoft Research, USA

peres @microsoft.com

Université de Geneve, Switzerland
petermann @math.unige.ch

Wake Forest University, USA
plemmons @wfu.edu

Dartmouth College, USA
carl.pomerance @dartmouth.edu
San Diego State University, USA
vadim@sciences.sdsu.edu

UC Berkeley, USA
poonen@math.berkeley.edu

U Mass Lowell, USA
jpropp@cs.uml.edu

George Washington University, USA
przytyck@gwu.edu

University of Nebraska, USA
rrebarbe @math.unl.edu
University of Georgia, USA
rwr@cs.uga.edu

U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

Penn State University, USA
sellersj @math.psu.edu

Honorary Editor

andy @ajsterge.com

Wellesley College, USA

atrenk @wellesley.edu

Stanford University, USA

vakil @math.stanford.edu
Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

University of Toledo, USA
verma99 @msn.com

Johns Hopkins University, USA
wierman@jhu.edu

University of Michigan, USA
zieve @umich.edu

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $140/year for the electronic version, and
$190/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

:I mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
©2015 Mathematical Sciences Publishers


http://msp.org/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:P.Cerone@latrobe.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.org/involve
http://msp.org/
http://msp.org/

Colorability and determinants of 7 (m, n, r, s) twisted torus knots for n = +1 (mod m)
MATT DELONG, MATTHEW RUSSELL AND JONATHAN SCHROCK

Parameter identification and sensitivity analysis to a thermal diffusivity inverse

problem
BRIAN LEVENTHAL, XIAOJING FU, KATHLEEN FOWLER AND OWEN
ESLINGER

A mathematical model for the emergence of HIV drug resistance during periodic

bang-bang type antiretroviral treatment
NICOLETA TARFULEA AND PAUL READ

An extension of Young’s segregation game
MICHAEL BORCHERT, MARK BUREK, RICK GILLMAN AND SPENCER ROACH

Embedding groups into distributive subsets of the monoid of binary operations
GREGORY MEZERA

Persistence: a digit problem
STEPHANIE PEREZ AND ROBERT STYER

A new partial ordering of knots
ARAZELLE MENDOZA, TARA SARGENT, JOHN TRAVIS SHRONTZ AND PAUL
DRUBE

Two-parameter taxicab trigonometric functions
KELLY DELP AND MICHAEL FILIPSKI

3 F>-hypergeometric functions and supersingular elliptic curves
SARAH PITMAN

A contribution to the connections between Fibonacci numbers and matrix theory
MIRIAM FARBER AND ABRAHAM BERMAN

Stick numbers in the simple hexagonal lattice
RYAN BAILEY, HANS CHAUMONT, MELANIE DENNIS, JENNIFER
McLouUD-MANN, ELISE MCMAHON, SARA MELVIN AND GEOFFREY
SCHUETTE

On the number of pairwise touching simplices
BAS LEMMENS AND CHRISTOPHER PARSONS

The zipper foldings of the diamond
ERIN W. CHAMBERS, DI FANG, KYLE A. SYKES, CYNTHIA M. TRAUB AND
PHILIP TRETTENERO

On distance labelings of amalgamations and injective labelings of general graphs
NATHANIEL KARST, JESSICA OEHRLEIN, DENISE SAKAI TROXELL AND
JUNIJIE ZHU

361

385

401

421

433

439

447

467

481

491

503

513

521

535


http://dx.doi.org/10.2140/involve.2015.8.361
http://dx.doi.org/10.2140/involve.2015.8.385
http://dx.doi.org/10.2140/involve.2015.8.385
http://dx.doi.org/10.2140/involve.2015.8.401
http://dx.doi.org/10.2140/involve.2015.8.401
http://dx.doi.org/10.2140/involve.2015.8.421
http://dx.doi.org/10.2140/involve.2015.8.433
http://dx.doi.org/10.2140/involve.2015.8.439
http://dx.doi.org/10.2140/involve.2015.8.447
http://dx.doi.org/10.2140/involve.2015.8.467
http://dx.doi.org/10.2140/involve.2015.8.481
http://dx.doi.org/10.2140/involve.2015.8.491
http://dx.doi.org/10.2140/involve.2015.8.503
http://dx.doi.org/10.2140/involve.2015.8.513
http://dx.doi.org/10.2140/involve.2015.8.535

	1. Introduction
	2. Computing the foldings
	2.1. Degree-3 vertices in the pattern
	2.2. 4-regular graph of the polyhedron
	2.3. Creases over the boundary of the polygon

	3. Nonconvex polyhedra
	4. Future directions
	Appendix: Realizing tetrahedra
	Acknowledgements
	References
	
	

