\bullet
 involve

 a journal of mathematicsSmallest numbers beginning sequences of
14 and 15 consecutive happy numbers
Daniel E. Lyons

Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers

Daniel E. Lyons
(Communicated by Nigel Boston)

It is well known that there exist arbitrarily long sequences of consecutive happy numbers. In this paper we find the smallest numbers beginning sequences of fourteen and fifteen consecutive happy numbers.

1. Introduction

Guy [1994, Problem E34] defines a happy number in the following way: "If you iterate the process of summing the squares of the decimal digits of a number, then it is easy to see that you either reach the cycle $4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow$ $145 \rightarrow 42 \rightarrow 20 \rightarrow 4$ or arrive at 1 . In the latter case you started from a happy number." Written another way, a happy number N is one for which some iteration of the function $S(N)=\sum_{j=0}^{k} a_{j}^{2}$ returns a value of 1 , where $\sum_{j=0}^{k} a_{j} 10^{j}$ is the decimal expansion of N. According to Guy, the problem was first brought to the attention of the Western mathematical world when Reginald Allenby's daughter returned with it from school in Britain. It is thought to have originated in Russia.

The first pair of consecutive happy numbers is 31,32 . The first example of three consecutive happy numbers is $1880,1881,1882$. The smallest N beginning a sequence of four and five consecutive happy numbers are 7839 and 44488 , respectively. El-Sedy and Siksek [2000] were the first to publish a proof that there exist arbitrarily long sequences of happy numbers, although Lenstra is known to have had an unpublished proof before them. Styer [2010] found the smallest examples of sequences of j consecutive happy numbers, for j from 6 to 13 .

In this paper, we will use a period (.) to denote the concatenation operator to group sets of digits together within a large number. For convenience and clarity,

[^0]Keywords: happy numbers, consecutive happy numbers, strings of happy numbers, in a row, fourteen consecutive, fifteen consecutive.
we will also write large strings of 9 by their quantity in parenthesis. For example, $615 \cdot 10^{157}+\left(10^{155}-1\right) \cdot 10^{2}+71$ will be written as $615 .(155$ nines $) .71$.

Define the function $S\left(\sum_{j=0}^{k} a_{j} 10^{j}\right)=\sum_{j=0}^{k} a_{j}^{2}$ and

$$
N_{0}=7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .3 .
$$

2. Fourteen consecutive happy numbers

Theorem 1. $N_{0}=7888 .(1604938271577$ nines).1.(345696 nines). 3 is the smallest N that begins a sequence of fourteen consecutive happy numbers. Note: N_{0} has 1604938617279 digits.

Because the S function simply sums the squares of the digits of a number, and because addition is commutative, the ordering of the digits has no effect on the function's output. In other words,

Lemma 1. For every choice of positive integers A, B, and C,

$$
S(A \cdot B \cdot C)=S(B \cdot A \cdot C)=S(A \cdot C \cdot B)=S(A)+S(B)+S(C)
$$

Lemma 2. N_{0} begins a sequence of fourteen consecutive happy numbers.
Proof. Before the carry:

$$
\begin{aligned}
N_{0} & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .3, \\
S\left(N_{0}\right) & =130000027999364, \\
N_{0}+1 & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .4, \\
S\left(N_{0}+1\right) & =130000027999371, \\
N_{0}+2 & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .5, \\
S\left(N_{0}+2\right) & =130000027999380, \\
N_{0}+3 & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .6, \\
S\left(N_{0}+3\right) & =130000027999391, \\
N_{0}+4 & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .7, \\
S\left(N_{0}+4\right) & =130000027999404, \\
N_{0}+5 & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .8, \\
S\left(N_{0}+5\right) & =130000027999419, \\
N_{0}+6 & =7888 .(1604938271577 \text { nines }) .1 .(345696 \text { nines }) .9, \\
S\left(N_{0}+6\right) & =130000027999436 .
\end{aligned}
$$

After the carry:

$$
\begin{aligned}
N_{0}+7 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 0, \\
S\left(N_{0}+7\right) & =129999999997982, \\
N_{0}+8 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 1, \\
S\left(N_{0}+8\right) & =129999999997983, \\
N_{0}+9 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 2, \\
S\left(N_{0}+9\right) & =129999999997986, \\
N_{0}+10 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 3, \\
S\left(N_{0}+10\right) & =129999999997991, \\
N_{0}+11 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 4, \\
S\left(N_{0}+11\right) & =129999999997998, \\
N_{0}+12 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 5, \\
S\left(N_{0}+12\right) & =129999999998007, \\
N_{0}+13 & =7888 .(1604938271577 \text { nines }) \cdot 2 \cdot(345696 \text { zeros }) \cdot 6, \\
S\left(N_{0}+13\right) & =12999999999818 .
\end{aligned}
$$

It is not difficult to see that each of these numbers is happy. The iterations of the S function get small rather quickly, and, after at most nine steps, reach 1.

Lemma 3. If $N_{a}<N_{0}$ is another example of a number beginning a sequence of fourteen consecutive happy numbers, then $S\left(N_{a}\right)<9^{2} \cdot 1604938617279=$ 130000027999599.

Proof. In order for N_{a} to be smaller than N_{0}, it must not contain more digits than N_{0}. N_{0} contains 1604938617279 digits. The largest number containing no more than 1604938617279 digits is $10^{1604938617279}-1$, or 1604938617279 digits 9 , which has an S value of $9^{2} \cdot 1604938617279=130000027999599$. Therefore, if there were a number $N_{a}<N_{0}$ beginning a sequence of fourteen consecutive happy numbers, it would necessarily have $S\left(N_{a}\right)<130000027999599$.

We will let N_{1} denote any candidate less its final digit. Thus we write $N_{a}=N_{1} \cdot x$, where x is the final digit. So, in our case, $N_{0}=N_{1} .3$. Let d be the first (rightmost) non-nine digit of N_{1}, and let N_{2} be the remaining digits of N_{1}, to the left of d. Thus we have

$$
N_{1}=N_{2} \cdot d .(k \text { nines })
$$

for an integer $k \geq 0$.
Lemma 4. $S\left(N_{1}+1\right) \leq S\left(N_{1}\right)+17$.

Proof.

$$
\begin{aligned}
N_{1} & =N_{2} \cdot d \cdot(k \text { nines }), \\
N_{1}+1 & =N_{2} \cdot(d+1) \cdot(k \text { zeros }), \\
S\left(N_{1}\right) & =S\left(N_{2}\right)+d^{2}+9^{2} k, \\
S\left(N_{1}+1\right) & =S\left(N_{2}\right)+(d+1)^{2}, \\
S\left(N_{1}+1\right)-S\left(N_{1}\right) & =(d+1)^{2}-d^{2}-81 k \leq 9^{2}-8^{2}=17 .
\end{aligned}
$$

Lemma 5. Let M have four or more digits and let m, f, g, h be integers. Define

$$
M=M_{2} \cdot f \cdot(m \text { nines }) . g . h,
$$

where $m \geq 0,0 \leq f \leq 8,0 \leq e, g, h \leq 9$, and M_{2} either is a positive integer or else is possibly vacuous (in which case we define $S\left(M_{2}\right)=0$). Then

$$
S\left(M+e^{2}\right)=S\left(M_{2}\right)+S\left(f \cdot(m \text { nines }) \cdot g \cdot h+e^{2}\right) .
$$

Proof. Since $e^{2} \leq 81$, then $g . h+e^{2} \leq 180$. Now $g . h+e^{2}=i . j$ or $g . h+e^{2}=1 . i . j$ for some digits i and j. Then we have $M+e^{2}=M_{2} . f$. $\left(m\right.$ nines). $i . j$ or $M+e^{2}=$ $M_{2} .(f+1) .(m$ zeros).i.j. Now Lemma 1 completes the argument.

Note that $130000027999599+17=130000027999616$.
Lemma 6. If each member of the set $\left\{M+e^{2} \mid e=2,3,4,5,6,7,8,9\right\}$ is happy, then $M>130000027999616$.

Proof. Styer [2010], when dealing with fewer than fourteen consecutive happy numbers, did an exhaustive search on all values of M up to the needed bounds for his purposes. In order to reach a bound as high as 130000027999599 , we order the digits of M. This makes the search approximately seven million times more efficient.

Write $M=M_{2} . f .(m$ nines $) . g . h$ as in Lemma 5. Assume the digits of M_{2} are ordered in nondecreasing order. For each m from 0 to 12, we have a separate Maple script that checks every possible M with the digits of M_{2} ordered to see if each member of $\left\{M+e^{2} \mid e=2,3,4,5,6,7,8,9\right\}$ is happy. A Maple program shows there are none. (For the relevant Maple worksheets, see [Lyons 2012].)
Lemma 7. The final digit x of N_{a} satisfies $x \geq 3$.
Proof. We assumed the existence of $N_{a}<N_{0}$ that begins a sequence of 14 consecutive happy numbers and we have written $N_{a}=N_{1} . x$ where x is a single digit. Suppose $x=0,1$, or 2 . Then $N_{1} . e$ is happy with $e=2, \ldots, 9$. Thus $S\left(N_{1}\right)+e^{2}$ is happy with $e=2, \ldots, 9$. By the previous lemma, we have $S\left(N_{1}\right)>13000002799916$. But $S\left(N_{a}\right)<13000002799599$ by Lemma 3. Moreover,

$$
S\left(N_{1}\right)=S\left(N_{a}\right)-x^{2} \leq S\left(N_{a}\right)-4<13000002799595 .
$$

The upper and lower bounds we have for $S\left(N_{1}\right)$ contradict each other, so $x \geq 3$.

A set of Maple calculations similar to those in Lemma 6 yields the following lemma:
Lemma 8. If each member of the set $\left\{M+e^{2} \mid e=0,1,2,3,4,5,6,7\right\}$ is happy, then $M>130000027999616$.

Lemma 9. The final digit x of N_{a} is $x=3$.
Proof. We know that $x \geq 3$ by Lemma 8. Suppose $x \geq 4$. Now the numbers $N_{a}+u=N_{1} \cdot x+u$ are happy for $u=0,1, \ldots, 14$. If $x \geq 4$ these numbers include $\left(N_{1}+1\right) . e$ with $e=0,1, \ldots, 7$. Therefore $S\left(N_{1}+1\right)>13000002777616$. However, by Lemmas 3 and 4,

$$
S\left(N_{1}+1\right)<13000002799599+17=13000002799616
$$

giving a contradiction. Therefore $x=3$.
Lemma 10. The value $M_{3}=129999999997982$ is the only $M<130000027999616$ such that every member of $\left\{M+e^{2} \mid e=0,1,2,3,4,5,6\right\}$ is a happy number.
Proof. Maple calculations similar to Lemma 5 give this single example with digits in nondecreasing order. While any other permutation of the leading 11 digits (the M_{2} portion of M_{3}) will also result in every member of $\left\{M+e^{2} \mid e=0,1,2,3,4,5,6\right\}$ being a happy number, these permutations will give us an M value which exceeds our bound.

Lemma 11. The value of $S\left(N_{1}\right)$ must satisfy

$$
129999999997982-17<S\left(N_{1}\right)<130000027999599 .
$$

Lemma 12. The only M with $129999999997982-17<M<130000027999599$ such that every member of $\left\{M+e^{2} \mid e=3,4,5,6,7,8,9\right\}$ is a happy number is $M=130000027999355$.

A Maple search over all the numbers within the bounds listed above returned this single result. Call this value M_{1}.

We now have the following relationships:

$$
\begin{gathered}
S\left(N_{1}\right)=S\left(N_{2}\right)+d^{2}+81 k=1300000027999355=M_{1}, \\
S\left(N_{0}+7\right)=S\left(N_{2}\right)+(d+1)^{2}=129999999997982=M_{3} \\
M_{1}-M_{3}=81 k-2 d-1=28001373 .
\end{gathered}
$$

We look for integers k and d that satisfy this last relationship and find the sole solution $k=345696$ and $d=1$.

Now all that is left is to find the smallest N_{2} that will satisfy these three equations. With $d=1$, it reduces to $S\left(N_{2}\right)=129999999997978$. Using the methods elaborated by Styer [2010], we easily find that the minimal N_{2} with $S\left(N_{2}\right)=129999999997978$
is $N_{2}=7888 .(1604938271577$ nines). Putting all this together we see that the smallest N beginning a sequence of fourteen consecutive happy numbers is indeed $N_{0}=7888 .(1604938271577$ nines).1.(345696 nines).3.

3. Fifteen consecutive happy numbers

Using the same methods as outlined above, we have confirmed Styer's previous conjecture that the smallest number beginning a sequence of fifteen consecutive happy numbers is $N=77$.(2222222222222220 nines).3.(97388).3.

References

[El-Sedy and Siksek 2000] E. El-Sedy and S. Siksek, "On happy numbers", Rocky Mountain J. Math. 30:2 (2000), 565-570. MR 2002c:11011 Zbl 1052.11008
[Guy 1994] R. K. Guy, Unsolved problems in number theory, 2nd ed., Springer, New York, 1994. MR 96e:11002 Zbl 0805.11001
[Lyons 2012] D. Lyons, Maple programs, 2012, http://homepage.villanova.edu/robert.styer/ HappyNumbers/happy_numbers.htm.
[Styer 2010] R. Styer, "Smallest examples of strings of consecutive happy numbers", J. Integer Seq. 13:6 (2010), Article 10.6.3, 10. MR 2011f:11007 Zbl 1238.11007

Received: 2012-08-30
danlyons811@gmail.com

Revised: 2012-10-21 Accepted: 2012-10-30
Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2013 vol. 6 no. 4

Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry 383Valmir Bucaj, Sarah Cannon, Michael Dorff, Jamal Lawson and RyanViertel
An elementary inequality about the Mahler measure 393
Konstantin Stulov and RongWei Yang
Ecological systems, nonlinear boundary conditions, and Σ-shaped bifurcation curves 399
Kathryn Ashley, Victoria Sincavage and Jerome Goddard II
The probability of randomly generating finite abelian groups 431
Tyler Carrico
Free and very free morphisms into a Fermat hypersurface 437
Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu
Irreducible divisor simplicial complexes 447Nicholas R. Baeth and John J. Hobson
Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers 461
Daniel E. Lyons
An orbit Cartan type decomposition of the inertia space of $\operatorname{SO}(2 m)$ acting on $\mathbb{R}^{2 m}$ 467
Christopher Seaton and John Wells
Optional unrelated-question randomized response models 483
Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe
On the difference between an integer and the sum of its proper divisors 493
Nichole Davis, Dominic Klyve and Nicole Kraght
A Pexider difference associated to a Pexider quartic functional equation in topological 505vector spacesThemistocles M. Rassias

[^0]: MSC2010: 11A63.

