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Our work is motivated by a theorem proved by von Neumann: Let S1 and S2 be
subspaces of a closed Hilbert space X and let x ∈ X . Then

lim
k→∞

(PS2 PS1)
k(x)= PS1∩S2(x),

where PS denotes the orthogonal projection of x onto the subspace S. We
look at the linear algebra realization of the von Neumann theorem in Rn . The
matrix A that represents the composition PS2 PS1 has a form simple enough that
the calculation of lim k→∞Ak x becomes easy. However, a more interesting result
lies in the analysis of eigenvalues and eigenvectors of A and their geometrical
interpretation. A characterization of such eigenvalues and eigenvectors is shown
for subspaces with dimension n− 1.

1. Introduction

In Euclidean n-space, we wish to find the point x∞ in the intersection of two
(n− 1)-dimensional subspaces, S1 and S2, that is closest to an initial point x0 in
Rn . That is, we want x∞ ∈ S1 ∩ S2 to be such that

‖x0− x∞‖ ≤ ‖x0− y‖ for all y ∈ S1 ∩ S2.

We call x∞ the orthogonal projection of x0 onto S1 ∩ S2. We start by stating
von Neumann’s theorem; see [Deutsch 2001], for example.

Theorem 1. Let S1 and S2 be subspaces of a closed Hilbert space X and let x ∈ X.
Then

lim
k→∞

(PS2 PS1)
k(x)= PS1∩S2(x), (1-1)

where PS denotes the orthogonal projection onto the subspace S.

Von Neumann’s theorem provides an iterative procedure (left-hand side of (1-1))
to find the orthogonal projection of x onto S1 ∩ S2 (right-hand side of (1-1)).
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2. An example in R2

To illustrate von Neumann’s theorem we consider the R2 case. Let a1, b1, a2, b2 ∈R

and let

S1 = {(x, y) | a1x + b1 y = 0} and S2 = {(x, y) | a2x + b2 y = 0}.

In order for S1 and S2 to be distinct 1-dimensional subspaces, we require that the ai

and bi are not both zero1 and that a1/b1 6= a2/b2. Since the orthogonal projection
onto a subspace is a linear transformation, we can represent such transformations
by matrices. In the plane, the matrix that projects any point in R2 onto Si is given
by

Ai =
1

a2
i + b2

i

(
b2

i −ai bi

−ai bi a2
i

)
,

where i = 1, 2. Therefore, the matrix A = A2 A1 gives us the composition of the
two projections.

A =
a1a2+ b1b2

(a2
1 + b2

1)(a
2
2 + b2

2)

(
b1b2 −a1b2

−a2b1 a1a2

)
To compute iterations of the matrix A, we wish to express A in terms of a

diagonal matrix D similar to A. This is possible, of course, if A is nondefective;
that is, if the dimension of each of the eigenspaces of A is equal to the multiplicity
of the corresponding eigenvalue. It is easily shown that A is nondefective in the R2

case. The matrix S of eigenvectors of A is then

S =
(

a1 b1

b1 −a2

)
,

with D being
D = S−1 AS.

Computing powers of the matrix A is then a matter of raising the eigenvalues of
A to that power:

Ak
= SDk S−1.

Applying von Neumann’s theorem to this equation, we obtain

lim
k→∞

(A2 A1)
k
= lim

k→∞
Ak
= S

(
lim

k→∞
Dk)S−1

= A∞,

where A∞ is the matrix representation of PS1∩S2 . Note that the limit exists if the
eigenvalues of A have absolute value less than or equal to unity.

1If, say, a1 = b1 = 0 then S1 = R2.
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3. Solution algorithm

It is possible to extend the solution method in the previous section to Rn . Here
we present a brief outline of the solution algorithm, as explained in [Hoffman and
Kunze 1971].

(1) Choose bases for S1 and S2.

(2) Use the Gram–Schmidt procedure to produce orthonormal bases β(1) and β(2)

for S1 and S2 respectively:

β(1) = {u(1)1 , . . . , u(1)n−1}, β(2) = {u(2)1 , . . . , u(2)n−1}. (3-1)

(3) Use the standard basis β = {e1, . . . , en} for the parent vector space Rn .

(4) Use the following general formula to obtain the matrix representations Ai ,
with i = 1, 2, of the orthogonal projections Pi : R

n
→ Si :

Ai =

[(n−1∑
j=1

〈e1, u(i)j 〉u
(i)
j

)
, . . . ,

(n−1∑
j=1

〈en, u(i)j 〉u
(i)
j

)]
.

(5) Compute A = A2 A1. Find the eigenvalues λ1, . . . , λn and corresponding
independent eigenvectors E1, . . . , En of A. These give us the n× n matrices

D =

λ1 0
. . .

0 λn

 , S = (E1, . . . , En).

(6) Compute S−1.

(7) Iteration now proceeds as follows:

vk = Avk−1 = (SDS−1)vk−1 = (SDS−1)(SDS−1)vk−2

= · · · = (SDk S−1)v0 = Akv0 (3-2)

for k = 1, 2, 3, . . . .

(8) Finally, we obtain v∞ = [S(limk→∞ Dk)S−1
]v0.

In step (5), we rely on the assumption that the matrix A is nondefective in order
to find a similar diagonal matrix. We address this question in Section 5.

4. Eigenvalues in R3: geometric argument

If we consider two 2-dimensional subspaces in 3-space, S1 and S2, it is easy to
illustrate geometrically the eigenvectors of the alternating projections. By examining
a picture of two planes containing the origin in R3, we see three different types of
eigenvectors; the first two are trivial, but the third is less so (refer to Figure 1).
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Figure 1. Top left: a vector orthogonal to S1 gets projected to the
origin (eigenvalue 0). Top right: a vector in S1 ∩ S2 remains fixed
(eigenvalue 1). Bottom: a vector in (S1 ∩ S2)

⊥ gets projected to a
collinear vector (eigenvalue in [0, 1]).

(1) A vector orthogonal to S1 is in the kernel of PS1 ; therefore, it is an eigenvector
of PS1 with eigenvalue 0.

(2) A vector in S1 ∩ S2 is an eigenvector of both PS2 and PS1 with eigenvalue 1.

(3) A vector in the orthogonal complement (S1 ∩ S2)
⊥ will stay in (S1 ∩ S2)

⊥ as
it is projected orthogonally onto S1 and S2; i.e., (S1 ∩ S2)

⊥ is invariant under
both PS1 and PS2 . Therefore, a vector in S2 ∩ (S1 ∩ S2)

⊥ is an eigenvector of
PS2 PS1 . We claim that this eigenvector corresponds to an eigenvalue in the
interval [0, 1].

It is easy to see from this geometric argument the characterization of eigenvalues
in the case of R3. Next we address the question of whether this geometric intuition
somehow generalizes to Rn .

5. Characterization of eigenvalues in Rn.

When we consider (n− 1)-dimensional subspaces in Rn , it is easy to see that the
first two eigenvectors described in Section 4 generalize to higher dimensions. It
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is less trivial to show that the third type of eigenvector also generalizes to higher
dimensions, and that these three types of vectors fully characterize the spectrum
of PS2 PS1 .

Let S1 and S2 be (n− 1)-dimensional subspaces of Rn with S1 6= S2.

Lemma 2. S1 ∩ S2 is a proper subspace of Rn with dim(S1 ∩ S2)= n− 2.

Proof. The intersection of two subspaces is always a subspace. Note that for two
distinct subspaces, we have

n = dim(S1)+ dim(S2)− dim(S1 ∩ S2).

Therefore,
dim(S1 ∩ S2)= dim(S1)+ dim(S2)− n

= n− 1+ n− 1− n = n− 2. �

Now, let S3 = (S1 ∩ S2)
⊥. Note that n = dim(S1 ∩ S2)+ dim(S3), which implies

that dim(S3)= 2.

Lemma 3. dim(S3 ∩ S1)= dim(S3 ∩ S2)= 1.

Proof. We write dim(S3 ∩ S1) = dim(S3)+ dim(S1)− n = 2+ n − 1− n = 1.
Similarly, dim(S3 ∩ S2)= 1. �

Lemma 4. Let T1 : R
n
→ S1 and T2 : R

n
→ S2 be the orthogonal projections onto

S1 and S2, respectively. Then S3 is invariant under T1 and T2.

Proof. Let {w,w⊥} be a basis for S3 such that w ∈ S1 and w⊥ ∈ S⊥1 . If v0 ∈ S3,
then v0 = c1w+ c2w

⊥ for some scalars c1, c2; therefore,

T1(v0)= c1T1(w)+ c2T1(w
⊥)= c1w ∈ S3.

Similarly, we can construct a basis {u, u⊥} for S3 such that u ∈ S2 and u⊥ ∈ S⊥2
to conclude that T2(v0) ∈ S3. �

Now we are ready to prove the following theorem. Let θ be the angle between
two hyperplanes defined as the angle between two vectors n1 and n2 normal to S1

and S2, respectively. Note that n1, n2 ∈ S3.

Theorem 5. Let S1 and S2 be distinct (n− 1)-dimensional subspaces of Rn , and
let T1 : Rn

→ S1 and T2 : Rn
→ S2 be the orthogonal projections onto S1 and

S2, respectively. Also, let 0 < θ < π
2 be the angle between the two hyperplanes.

The spectrum of T := T2T1 is characterized by the following eigenvalues and
multiplicities:

λ1 = 0, m1 = 1, λ2 = 1, m2 = n− 2, λ3 = cos2 θ, m3 = 1.
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Proof. First, consider u0 to be a vector orthogonal to S1. Then T (u0)= 0, and so
m1 ≥ 1. Now let {w1, . . . , wn−2} be a basis for S1 ∩ S2. Then T (wi )= wi for all
1≤ i ≤ n−2. Therefore, λ2= 1 is an eigenvalue. Since the basis vectors for S1∩ S2

are linearly independent eigenvectors corresponding to λ2, we have m2 ≥ n − 2.
Furthermore, consider v0 ∈ S3∩ S2. Then T (v0) ∈ S3 by Lemma 4, and T (v0) ∈ S2

since the range of T is S2. Moreover,

dim(S3 ∩ S2)= 1;

therefore, T (v0) = λv0 for some scalar λ. Furthermore, let v1 := T1(v0) and
v2 := T2(v1)= T (v0). For vectors n1 and n2 in the orthogonal complement of S1

and S2, respectively, we have that n1, n2, v0, v1, and v2 are coplanar, since they are
in the 2-dimensional subspace S3. Thus

6 (v0, v1)= 6 (v1, v2)= 6 (n1, n2)= θ.

Hence, cos θ = 〈v0, v1〉

‖v0‖‖v1‖
and

‖v2‖‖v1‖ cos θ =
‖v2‖

‖v0‖
〈v0, v1〉 = λ〈v0, v1〉.

Note that 〈v1, (v0− v1)〉 = 〈v2, (v1− v2)〉 = 0, so

‖v2‖‖v1‖ cos θ = λ〈v1+ (v0− v1), v1〉 = λ‖v1‖
2
:

thus ‖v2‖

‖v1‖
cos θ = λ. Moreover,

‖v2‖‖v1‖ cos θ = 〈v2, v1〉 = 〈v2, v2+ (v1− v2)〉 = ‖v2‖
2,

so cos θ = ‖v2‖

‖v1‖
. It follows that λ= cos2 θ . �

6. Conclusion

We have shown that for every finite-dimensional inner product space, the method
of alternating orthogonal projections between two hyperplane subspaces S1 and S2

yields at most three distinct eigenvalues when we consider the composition of
two orthogonal projections. Also, the eigenvectors of such a composition can be
quickly identified to be in the subspaces S⊥1 , S1 ∩ S2, and S2 ∩ (S1 ∩ S2)

⊥. We
should mention the special, and somewhat trivial, cases where the angle between S1

and S2 is 0◦ or 90◦. In the case where θ = 90◦, we have that PS2 PS1 = PS1∩S2 , and
PS2 PS1 = PS1 = PS2 when θ = 0◦. In these cases, there are two distinct eigenvalues:
0 and 1. For θ = 90◦, the respective multiplicities are 2 and n− 2; for θ = 0◦, they
are 1 and n− 1. It is also noteworthy that the multiplicities obtained in Theorem 5
guarantee that PS2 PS1 is nondefective, a necessary condition for the algorithm
presented in Section 3.
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