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We study the behavior of nonnegative sequences which satisfy certain difference
inequalities. Several comparison tests involving difference inequalities are de-
veloped for nonnegative sequences. Using the aforementioned comparison tests,
it is possible to determine the global stability and boundedness character for
nonnegative solutions of particular rational difference equations in a range of
their parameters.

1. Introduction

There has been a significant amount of work done at the University of Rhode Island
pertaining to the boundedness character of rational difference equations. Recently
a general boundedness result has appeared in the literature. This result proves the
boundedness of solutions for many special cases of the k-th order rational dif-
ference equation [Camouzis et al. 2006, Theorem 6]. In this paper we intend to
generalize this result.

Rather than working with solutions of difference equations, we intend to work
with sequences which satisfy recursive inequalities, which we call difference in-
equalities. This approach bears relevance to the field of difference equations, as
every solution to a difference equation satisfies several difference inequalities. The
use of difference inequalities provides a general and efficient way to obtain bounds,
attracting intervals, and convergence results for a variety of difference equations.
These four theorems presented below provide the theoretical groundwork needed.

The first theorem demonstrates that the previously mentioned boundedness re-
sult extends to the framework of difference inequalities. In fact Theorem 1 demon-
strates a much stronger result. Theorem 1 acts as a comparison test between
difference inequalities, showing that any sequence of nonnegative real numbers
which satisfies one of the assumed difference inequalities also satisfies a Riccati
inequality.
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A Riccati inequality is a difference inequality of the form

xn ≤
α + β maxi=1,...,k (xn−i )

A + B maxi=1,...,k (xn−i )
, n ≥ J,

where J is a nonnegative integer. It is easy to see that with A, B > 0 and α, β ≥ 0
any nonnegative sequence which satisfies a Riccati inequality is bounded. Theorem
2 will demonstrate something stronger, however, namely a comparison between
any nonnegative sequence which satisfies a Riccati inequality, and a solution to a
particular associated Riccati equation.

Combining Theorem 1 and Theorem 2 a strong comparison is made between
the solutions of certain rational difference equations and the solutions of associated
Riccati equations. Using this comparison it is possible to prove global convergence
results for certain rational difference equations in a range of their parameters. This
global convergence result is given in Theorem 4.

2. Boundedness by iteration

Here the general theorem which proves boundedness through the method of itera-
tion [Camouzis et al. 2006, Theorem 6] is extended to the framework of difference
inequalities. Nonnegative sequences which satisfy certain difference inequalities
are shown to satisfy a Riccati inequality. A direct result of this is that every solu-
tion of every rational difference equation which is bounded through the method of
iteration satisfies a Ricatti inequality.

Theorem 1. Suppose that we have a sequence of nonnegative real numbers {xn}
∞

n=1
which satisfies the inequality

xn ≤
α +

∑k
i=1 βi xn−i

A +
∑k

i=1 Bi xn−i
, n ≥ J, (1)

with nonnegative parameters.
Let us define the sets of indices

Iβ = {i ∈ {1, 2, . . . , k} : βi > 0} and IB = {i ∈ {1, 2, . . . , k} : Bi > 0}.

Suppose that the following conditions hold true:

(1) A > 0 .

(2) There exists a positive integer η, such that for every sequence {cm}
∞

m=1 with
cm ∈ Iβ , for m = 1, 2, . . ., there exist positive integers, N1, N2 ≤ η, such that∑N2

m=N1
cm ∈ IB .

Then {xn}
∞

n=1 satisfies a Riccati inequality for n ≥ J + kη.
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In particular, if A ≥
∑k

i=1 βi , then, for n ≥ J + kη,

xn ≤
αη

A
+

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A + mini∈IB (Bi ) maxi=1,...,kη (xn−i )
, (2)

and if A <
∑k

i=1 βi , then for n ≥ J + kη,

xn ≤

αη

A
+

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A + mini∈IB (Bi ) maxi=1,...,kη (xn−i )

(∑k
i=1 βi

A

)η−1

. (3)

Proof. Let us consider a particular term xN in {xn}
∞

n=1. Now for xN , with N ≥

max(J, k + 1), let us define a finite sequence {cm}
τ
m=1 recursively based on xN ,

{xn}
∞

n=1, and Iβ . We will define this sequence by letting

c1 = min
(

i : xN−i = max
ρ∈Iβ

(
xN−ρ

))
, (4)

and supposing that c1, . . . , ct−1 exist, and N −
∑t−1

m=1 cm ≥ max(J, k+1), and then
letting

ct = min
(

i : xN−i−
∑t−1

m=1 cm
= max

ρ∈Iβ

(
xN−ρ−

∑t−1
m=1 cm

))
.

Notice that this is a finite sequence, and that τ is the first integer such that N −∑τ
m=1 cm < max(J, k + 1). This finite sequence {cm}

τ
m=1 has two noteworthy

properties. First it is a finite sequence {cm}
τ
m=1 with cm ∈ Iβ for m = 1, . . . , τ ;

second,

max
i∈Iβ

(
xN−i−

∑t−1
m=1 cm

)
= xN−

∑t
m=1 cm

. (5)

We will use these properties to establish bounds for the term xN .
For the sake of notation let us define c0 = 0. Now we will show by induction

that when N ≥ max(J, k + 1), for all t such that 1 ≤ t ≤ τ , we have

xN ≤

(α

A

) t−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t (
xN−

∑t
m=1 cm

)
∏t−1

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) . (6)

First we will establish the base case

xN ≤
α +

∑k
i=1 βi xN−i

A +
∑k

i=1 Bi xN−i
≤

α

A
+

(∑k
i=1 βi

)
maxi∈Iβ (xN−i )

A +
∑k

i=1 Bi xN−i
.
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Now using Equation (4) we get that

xN ≤
α

A
+

(∑k
i=1 βi

)
xN−c1

A +
∑k

i=1 Bi xN−i
.

This is since maxi∈Iβ (xN−i ) = xN−c1 , by (4). Thus (6) holds for t = 1. Now
suppose (6) holds for t < τ , we must show that it holds for t + 1.

xN ≤

(α

A

) t−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t (
xN−

∑t
m=1 cm

)
∏t−1

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (7a)

≤

(α

A

) t−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t (
α +

∑k
i=1 βi xN−i−

∑t
m=1 cm

)
∏t

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (7b)

≤

(α

A

) t∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t+1 (
maxi∈Iβ

(
xN−i−

∑t
m=1 cm

))
∏t

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (7c)

≤

(α

A

) t∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)t+1 (
xN−

∑t+1
m=1 cm

)
∏t

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) . (7d)

Our induction assumption is (7a). We get (7b) from (7a) using our original inequal-
ity (1). We get (7c) from (7b), since A > 0 and our parameters are nonnegative.
We get (7d) from (7c) since

max
i∈Iβ

(
xN−i−

∑t
m=1 cm

)
= xN−

∑t+1
m=1 cm

,

from (5). Thus we have shown that (6) holds for all t such that 1 ≤ t ≤ τ .
Since τ is the first integer such that N −

∑τ
m=1 cm < max(J, k + 1), then

N − max(J, k + 1) <

τ∑
m=1

cm < kτ.

Thus τ > (N − max(J, k + 1))/k. So if we choose N ≥ J + kη, where η is the
integer η defined in Condition (2), then τ ≥η. We know there exist positive integers
N1, N2 ≤ η, so that

∑N2
m=N1

cm ∈ IB ; this is from Condition (2) in our original
assumptions. Thus

N2∑
m=1

cm =

N1−1∑
m=0

cm + i,
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for some i ∈ IB . Since N2 ≤ η ≤ τ , by Equation (6)

xN ≤

(α

A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
∏N2−1

L=0

(
A +

∑k
i=1 Bi xN−i−

∑L
m=0 cm

) (8a)

≤

(α

A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A +

∑k
i=1 Bi xN−i−

∑N1−1
m=0 cm

) (8b)

≤

(α

A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A +

(
mini∈IB (Bi )

)(
x

N−
∑N2

m=1 cm

)) . (8c)

We get (8a) directly from (6) with t = N2. We get (8b) from (8a), since A > 0 and
our parameters are nonnegative. This expression is obtained by reducing all of the
terms of the product in the denominator of this fraction, except for the term where
L = N1 − 1, which is kept as it is needed to establish a bound. We get (8c) from
(8b) since

N2∑
m=1

cm =

N1−1∑
m=0

cm + i,

for some i ∈ IB . Now we will consider two cases, namely

A ≥

k∑
i=1

βi and A <

k∑
i=1

βi .

Considering the former case, since 1 ≤ N2 ≤ η, we have that,

xN ≤

(α

A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A+

(
mini∈IB (Bi )

)(
x

N−
∑N2

m=1 cm

)) (9a)

≤
αη

A
+

(∑k
i=1 βi

)
x

N−
∑N2

m=1 cm

A +
(
mini∈IB (Bi )

)
x

N−
∑N2

m=1 cm

. (9b)

Notice that our bound in (9b) is increasing with respect to x
N−

∑N2
m=1 cm

, and that
1 ≤

∑N2
m=1 cm ≤ kη; thus, by (9b),

xN ≤
αη

A
+

(∑k
i=1 βi

)
maxi=1,...,kη (xN−i )

A +
(
mini∈IB (Bi )

)
maxi=1,...,kη (xN−i )

,

for all N ≥ J + kη. Thus we have shown the inequality (2).
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If A <
∑k

i=1 βi , then, since 1 ≤ N2 ≤ η, we have,

xN ≤

(α

A

)N2−1∑
D=0

(∑k
i=1 βi

A

)D
+

(∑k
i=1 βi

)N2
(

x
N−

∑N2
m=1 cm

)
AN2−1

(
A+

(
mini∈IB (Bi )

)(
x

N−
∑N2

m=1 cm

)) (10a)

≤

αη

A
+

(∑k
i=1 βi

)
x

N−
∑N2

m=1 cm

A +
(
mini∈IB (Bi )

)
x

N−
∑N2

m=1 cm

(∑k
i=1 βi

A

)η−1

. (10b)

Notice that our bound in Equation (10b) is increasing with respect to x
N−

∑N2
m=1 cm

,
and that 1 ≤

∑N2
m=1 cm ≤ kη. Thus, by (10b),

xn ≤

αη

A
+

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A +
(
mini∈IB (Bi )

)
maxi=1,...,kη (xn−i )

(∑k
i=1 βi

A

)η−1

,

for all N ≥ J + kη. Thus we have shown the inequality (3) and the theorem is
proved. �

Theorem 1 immediately establishes the boundedness character for a number of
special cases of the k-th order rational difference equation. These boundedness
results were completely established in [Camouzis et al. 2006]. For related works,
see [Kocić and Ladas 1993; Kulenović and Ladas 2002; Camouzis et al. 2004a;
2004b; 2005a; 2005b; 2006; Ladas 2004; Camouzis and Ladas 2005; Grove and
Ladas 2005; Camouzis 2006].

Since Theorem 1 only assumes that the inequality (1) eventually holds for our
sequence {xn}

∞

n=1, it is also possible to quickly establish the boundedness character
for several nonautonomous rational difference equations.

3. Comparison tests of the maximum and minimum

The following two theorems deal with comparison tests involving the maximum
and minimum. One important consequence of these tests is that when combined
with Theorem 1 they allow for the comparison between solutions of certain special
cases of the k-th order rational difference equation and solutions of a Riccati type
difference equation.

Theorem 2. Let g : [0, ∞) → [0, ∞) be defined and increasing for all x ∈ [0, ∞).
Suppose that we have a sequence of nonnegative real numbers {xn}

∞

n=1 which
satisfies the inequality, xn ≤ g(max(xn−1, . . . , xn−k)), with n ≥ N . Let {yn}

∞

n=0 be
a solution of the difference equation yn = g(yn−1), given n = 1, 2, . . . , and with
y0 = max(xN−1, . . . , xN−k), then, for all n ≥ N ,

max(xn−1, . . . , xn−k) ≤ max(y
b

n−N
k c

, . . . , yn−N ). (11)
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Proof. This result follows by strong induction. From our assumptions we have
that max(xN−1, . . . , xN−k) = y0. This establishes the base case for n = N . Now
suppose that

max (xn−1, . . . , xn−k) ≤ max
(

y
b

n−N
k c

, . . . , yn−N

)
,

for all N ≤ n < J . Then, for all N ≤ n < J ,

xn ≤ g (max (xn−1, . . . , xn−k)) ≤ g
(

max
(

y
b

n−N
k c

, . . . , yn−N

))
.

Since g is defined and increasing for all x ∈ [0, ∞),

xn ≤ max
(

g
(

y
b

n−N
k c

)
, . . . , g (yn−N )

)
= max

(
y1+b

n−N
k c

, . . . , yn+1−N

)
.

From this it follows that,

max (x J−1, . . . , x J−k) ≤ max
n=J−1,...,J−k

(
max

(
y1+b

n−N
k c

, . . . , yn+1−N

))
.

Thus,

max (x J−1, . . . , x J−k) ≤ max
(
y1+b

J−k−N
k c

, . . . , yJ−N

)
= max

(
y
b

J−N
k c

, . . . , yJ−N

)
.

This proves that Equation (11) holds for J, and completes the proof by induction.
�

Theorem 3. Let g : [0, ∞) → [0, ∞) be defined and increasing for all x ∈ [0, ∞).
Suppose that we have a sequence of nonnegative real numbers {xn}

∞

n=1 which
satisfies the inequality, xn ≥ g(min(xn−1, . . . , xn−k)) with n ≥ N . Let {yn}

∞

n=0 be
a solution of the difference equation yn = g(yn−1), with n = 1, 2, . . . , and with
y0 = min(xN−1, . . . , xN−k), then for all n ≥ N ,

min (xn−1, . . . , xn−k) ≥ min
(

y
b

n−N
k c

, . . . , yn−N

)
. (12)

Proof. This result follows by strong induction. From our assumptions we have
that min(xN−1, . . . , xN−k) = y0. This establishes the base case for n = N . Now
suppose that

min (xn−1, . . . , xn−k) ≥ min
(

y
b

n−N
k c

, . . . , yn−N

)
,

for all N ≤ n < J . Then, for all N ≤ n < J ,

xn ≥ g (min (xn−1, . . . , xn−k)) ≥ g
(

min
(

y
b

n−N
k c

, . . . , yn−N

))
.

Since g is defined and increasing for all x ∈ [0, ∞),

xn ≥ min
(

g
(

y
b

n−N
k c

)
, . . . , g (yn−N )

)
= min

(
y1+b

n−N
k c

, . . . , yn+1−N

)
.
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From this it follows that

min (x J−1, . . . , x J−k) ≥ min
n=J−1,...,J−k

(
min

(
y1+b

n−N
k c

, . . . , yn+1−N

))
.

Thus,

min (x J−1, . . . , x J−k)≥ min
(

y1+b
J−k−N

k c
, . . . , yJ−N

)
= min

(
y
b

J−N
k c

, . . . , yJ−N

)
.

This proves that Equation (12) holds for J, and completes the proof by induction.
�

Theorem 2 and its dual Theorem 3 provide a general and useful method for ob-
taining tighter bounds on both the solutions of difference equations and sequences
which satisfy difference inequalities. Indeed using Theorem 2 it is sometimes
possible to obtain upper bounds for the solutions of certain difference equations
which are arbitrarily close to an equilibrium. The discovery of such bounds coupled
with a thorough understanding of semicycle analysis may yield some interesting
convergence results. We will leave this idea for future investigation.

4. A convergence result for difference inequalities

Here we will give one example which demonstrates convergence even in the frame-
work of difference inequalities. The convergence result here also settles an open
problem in rational difference equations in the case A =

∑k
i=1 βi .

Theorem 4. Suppose that we have a sequence of nonnegative real numbers {xn}
∞

n=1
which satisfies the inequality,

xn ≤

∑k
i=1 βi xn−i

A +
∑k

i=1 Bi xn−i
, n ≥ J,

with nonnegative parameters.
Let us define the sets of indices

Iβ = {i ∈ {1, 2, . . . , k} : βi > 0} and IB = {i ∈ {1, 2, . . . , k} : Bi > 0}.

Suppose that the following conditions hold true:

(1) A ≥
∑k

i=1 βi .

(2) There exists a positive integer η, such that for every sequence {cm}
∞

m=1 with
cm ∈ Iβ for m = 1, 2, . . . there exists positive integers, N1, N2 ≤ η, such that∑N2

m=N1
cm ∈ IB .

Then {xn}
∞

n=1 converges to 0.
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Proof. By Theorem 1, for n ≥ J + kη,

xn ≤

(∑k
i=1 βi

)
maxi=1,...,kη (xn−i )

A +
(
mini∈IB (Bi )

)
maxi=1,...,kη (xn−i )

.

Dividing the numerator and denominator by
∑k

i=1 βi , we may rewrite the inequal-
ity in the form,

xn ≤
maxi=1,...,kη (xn−i )

ρ + C maxi=1,...,kη (xn−i )
,

where ρ ≥ 1 and C > 0. Applying Theorem 2 we get that for {yn}
∞

n=0, a solution
of the difference equation,

yn =
yn−1

ρ + Cyn−1
, n = 1, 2, . . . , (13)

with y0 = max
(
x J+kη−1, . . . , x J+kη−k

)
, then for all n ≥ J + kη,

max (xn−1, . . . , xn−k) ≤ max
(

y
b

n−J−kη
k c

, . . . , yn−J−kη

)
.

Since {yn}
∞

n=0 is decreasing and bounded below by zero, {yn}
∞

n=0 converges. Since
the only equilibrium of equation Equation (13) is zero, {yn}

∞

n=0 converges to zero.
Since {yn}

∞

n=0 converges to zero, given ε > 0, there exists a natural number N
sufficiently large so that yn < ε for all n ≥ N . Choose D to be a natural number so
that N = b(D − J − kη) /kc. Then, for n ≥ D,

xn−1 ≤max(xn−1, . . . , xn−k)≤max
(

y
b

n−J−kη
k c

, . . . , yn−J−kη

)
<max(ε, . . . , ε)=ε.

Thus, given ε > 0, there exists a natural number D sufficiently large so that xn < ε

for all n ≥ D. Therefore {xn}
∞

n=1 converges to 0. �
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