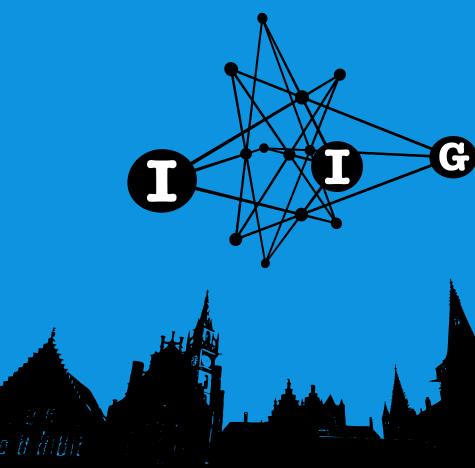
Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial



A note on locally elliptic actions on cube complexes

Nils Leder and Olga Varghese

Vol. 18 No. 1 2020

Innovations in Incidence Geometry Algebraic, Topological and Combinatorial

A note on locally elliptic actions on cube complexes

Nils Leder and Olga Varghese

We deduce from Sageev's results that whenever a group acts locally elliptically on a finite-dimensional CAT(0) cube complex, then it must fix a point. As an application, we partially prove a conjecture by Marquis concerning actions on buildings and we give an example of a group G such that G does not have property (T), but G and all its finitely generated subgroups can not act without a fixed point on a finite-dimensional CAT(0) cube complex, answering a question by Barnhill and Chatterji.

1. Introduction

The questions we investigate in this note are concerned with fixed points on CAT(0) cube complexes. Roughly speaking, a cube complex is a union of cubes of any dimension which are glued together along isometric faces. Let C be a class of finite-dimensional CAT(0) cube complexes. A group G is said to have property FC if any simplicial action of G on any member of C has a fixed point. For a subclass A consisting of simplicial trees the study of property FA was initiated by Serre [1980].

Bass [1976] introduced a weaker property $F\mathcal{A}'$ for groups. A group has property $F\mathcal{A}'$ if any simplicial action of *G* on any member of \mathcal{A} is locally elliptic, i.e. each $g \in G$ fixes some point on a tree. We define a generalization of property $F\mathcal{A}'$. A group *G* has property $F\mathcal{C}'$ if any simplicial action of *G* on any member of \mathcal{C} is locally elliptic, i.e. each $g \in G$ fixes some point on a CAT(0) cube complex.

A finitely generated group which is acting locally elliptically on a simplicial tree has a global fixed point; see [Serre 1980, §6.5, Corollary 2]. The following result of Sageev is well known to the experts. It follows from the proof of Theorem 5.1 in [Sageev 1995].

MSC2010: primary 20F65; secondary 51F99.

Funded by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics-Geometry-Structure.

Keywords: cube complexes, locally elliptic actions, global fixed points.

Theorem A. Let G be a finitely generated group acting by simplicial isometries on a finite-dimensional CAT(0) cube complex. If the G-action is locally elliptic, then G has a global fixed point.

In particular, a finitely generated group G has property FC' if and only if G has property FC.

The result of Theorem A was also observed by Caprace and Lytchak in [Chatterji et al. 2016, Proposition B.8] and was proven for median spaces in [Fioravanti 2018, Theorem 3.1].

Before we state the corollaries of Theorem A, we observe that the result in Theorem A is not true for infinite-dimensional CAT(0) cube complexes. Let *G* be a finitely generated torsion group. Then, by the Bruhat–Tits fixed point theorem [Bridson and Haefliger 1999, Corollary II 2.8] follows, that *G* has property FC' and thus by Theorem A the group *G* has property FC. Free Burnside groups are finitely generated torsion groups and thus these groups have always property FC, but many of these groups act without a fixed point on infinite-dimensional CAT(0) cube complexes; see [Osajda 2018, Theorem 1].

The next corollary follows from Theorem A and is known in the case of trees by a result of Tits [1970, Proposition 3.4].

Corollary B. Let G be a group acting by simplicial isometries on a finite-dimensional CAT(0) cube complex X. If the G-action is locally elliptic, then G has a global fixed point in $X \cup \partial X$, where ∂X denotes the visual boundary of X.

Proof. For the proof we need the following result by Caprace [2010, Theorem 1.1]:

Let X be a finite-dimensional CAT(0) cube complex and $\{X_{\alpha}\}_{\alpha \in A}$ be a filtering family of closed convex nonempty subsets. Then either the intersection $\bigcap_{\alpha \in A} X_{\alpha}$ is nonempty or the intersection of the visual boundaries $\bigcap_{\alpha \in A} \partial X_{\alpha}$ is a nonempty subset of ∂X .

Recall that a family \mathcal{F} of subsets of a given set is called *filtering* if for all E, F in \mathcal{F} there exists $D \in \mathcal{F}$ such that $D \subseteq E \cap F$.

Let X be a finite-dimensional CAT(0) cube complex and Φ a simplicial action of G on X. For $S \subseteq G$ we define the set $Fix(S) = \{x \in X \mid \Phi(s)(x) = x \text{ for all } s \in S\}$. It is closed and convex. If S is a finite set, it follows by Theorem A that Fix(S) is nonempty. Further, we define $Fix(G)^{\partial} = \{\xi \in \partial X \mid \Phi(g)(\xi) = \xi \text{ for all } g \in G\}$.

Now we consider the following family $\mathcal{F} = {\text{Fix}(S) | S \subseteq G \text{ and } \#S < \infty}$. If $S, T \subseteq G$ are finite subsets, we have $\text{Fix}(S \cup T) \subseteq \text{Fix}(S) \cap \text{Fix}(T)$ and thus \mathcal{F} is a filtering. The result of Caprace stated above implies that

$$\bigcap \mathcal{F} = \operatorname{Fix}(G)$$
 is nonempty

or

$$\bigcap \{\partial \operatorname{Fix}(S) \mid S \subseteq G \text{ and } \#S < \infty\} \subseteq \operatorname{Fix}(G)^{\partial} \text{ is nonempty.}$$

Since the Davis realization of a right-angled building carries the structure of a finite-dimensional CAT(0) cube complex, we can apply Corollary B to confirm the following conjecture by Marquis [2015, Conjecture 2] in the special case of right-angled buildings.

Conjecture. Let G be a group acting by type-preserving simplicial isometries on a building Δ . If the G-action on the Davis realization X of Δ is locally elliptic, then G has a global fixed point in $X \cup \partial X$.

Another fixed point property of interest is Kazhdan's property (T). Niblo and Reeves [1997, Theorem B] proved in that if a group *G* has Kazhdan's property (T), then *G* also has property FC. Barnhill and Chatterji raised the following question [2008, Question 5.3]:

Question. *Is* FC equivalent to (T), or does there exist a group G such that G does not have property (T), but G and all its finite-index subgroups have property FC?

With the next result we can answer this question in the negative.

Corollary C. Let G be the first Grigorchuk group. Then G and all its finitely generated subgroups have property FC, but G doesn't have property (T). In particular, all finite-index subgroups of G also have property FC.

Proof. The first Grigorchuk group G is a finitely generated infinite torsion group (see [Grigorchuk 1980]) and thus G and all its finitely generated subgroups have property FC. But G does not have property (T) since G is amenable, see [Grigorchuk 1984].

Further, many free Burnside groups have property FC, but don't have property (T), see [Osajda 2018, Theorem 1]. Other examples of groups with property FC and without property (T) were given by Cornulier in [Cornulier 2015] and by Genevois in [Genevois 2019].

Acknowledgement. We would like to thank Rémi Coulon for pointing us on Theorem 5.1 in [Sageev 1995]. Further, we want to thank Elia Fioravanti and Anthony Genevois for making us aware of important references.

2. Proof of Theorem A

In this section we give the proof of Theorem A, which is hidden in the proof of Theorem 5.1 in [Sageev 1995] by Sageev. For definitions and properties of CAT(0) cube complexes see [Sageev 1995].

We first need the following result.

Proposition. Let X be a d-dimensional CAT(0) cube complex and S be a finite set of hyperplanes in X. If $\#S \ge d + d \cdot (d + 1)$, then there exist three hyperplanes in S that do not intersect pairwise.

Proof. Let $\mathcal{T} = \{J_1, \ldots, J_k\} \subseteq S$ be a maximal set of pairwise intersecting hyperplanes. Then by Helly's Theorem for CAT(0) cube complexes or [Sageev 1995, Theorem 4.14] follows that $\bigcap \mathcal{T}$ is not empty. Further, since the dimension of *X* is *d* we have: $k \leq d$. By maximality of \mathcal{T} , for each hyperplane $J \in S - \mathcal{T}$ there exists $i = 1, \ldots, k$ such that $J \cap J_i = \emptyset$. This yields a well-defined map

$$q: S - T \to \{1, \ldots, k\}, J \mapsto \min\{i \mid J \cap J_i = \emptyset\}.$$

Let B_i denote the preimage $q^{-1}(i)$ for i = 1, ..., k. Since $\#S \ge d + d \cdot (d + 1)$ and $k \le d$, we have $\#(S - T) \ge d \cdot (d + 1)$. Thus, by the pigeon-hole principle there exists $j \in \{1, ..., k\}$ such that $\#B_j \ge d + 1$. By maximality of T, not all hyperplanes of B_j intersect pairwise, i.e there are $H_1, H_2 \in B_j$ such that $H_1 \cap H_2 = \emptyset$. Then, J_j, H_1, H_2 are three hyperplanes that do not intersect each other.

Proof of Theorem A. Let *G* be a finitely generated group with a symmetric generating set $Y = \{g_1, \ldots, g_n\}$. Let *X* be a *d*-dimensional CAT(0) cube complex, $v \in X$ be a vertex and $G \rightarrow \text{Isom}(X)$ be a simplicial locally elliptic action.

For i = 1, ..., n we choose a combinatorial geodesic λ_i from v to $g_i(v)$. Further, we denote by S_i the set of hyperplanes crossed by λ_i . We have $\#S_i = D(v, g_i(v))$, where we denote by D the metric on the 1-skeleton of X. Hence the union $S := \bigcup_{i=1}^n S_i$ is a finite set.

Let us assume that the action has no global fixed point. Then the Bruhat–Tits fixed point theorem implies that the orbit of v is unbounded. Thus, there exists $g \in G$ such that

$$N := D(v, g(v)) \ge \#\mathcal{S} \cdot (d + d(d+1)).$$

Since *Y* generates *G*, we can write $g = g_{i_1} \dots g_{i_l}$ with $g_{i_j} \in Y$ for $i = 1, \dots, l$. We define

$$v_j := g_{i_1} \dots g_{i_j}(v)$$
 and $\gamma_j := g_{i_1} \dots g_{i_j}(\lambda_{i_{j+1}})$.

The map γ_j is a combinatorial geodesic from v_j to v_{j+1} . Hence $\alpha := \gamma_l \dots \gamma_1 \lambda_{g_{i_1}}$ is a combinatorial path from v to g(v). Since D(v, g(v)) = N, there exists a set of hyperplanes $\mathcal{T} = \{K_1, \dots, K_N\}$ such that α crosses each hyperplane in T.

By construction, for each K_i in \mathcal{T} there exists $J \in S$ such that $K_i = hJ$ for some $h \in G$. By pigeon-hole principle there exists a hyperplane $J \in S$ such that

$$\#\{K \in \mathcal{T} \mid \exists h \in G : K = hJ\} \ge d + d(d+1).$$

By the Proposition there exist three hyperplanes h_1J , h_2J and h_3J in

$$\{K \in \mathcal{T} \mid \exists h \in G : K = hJ\}$$

whose pairwise intersection is empty. But each of these hyperplanes is crossed precisely once by a combinatorial geodesic from v to g(v). Therefore one of these hyperplanes separates the other two.

It is not difficult to verify the following: If there exist a hyperplane $J \subseteq X$ and $g, h \in G$ such that J, gJ, hJ do not intersect pairwise and gJ separates J and hJ, then g, h or hg^{-1} is hyperbolic.

This completes the proof.

References

- [Barnhill and Chatterji 2008] A. Barnhill and I. Chatterji, "Property (T) versus property FW", *Enseign. Math.* (2) **54** (2008), 16–18.
- [Bass 1976] H. Bass, "Some remarks on group actions on trees", *Comm. Algebra* **4**:12 (1976), 1091–1126. MR Zbl
- [Bridson and Haefliger 1999] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] **319**, Springer, 1999. MR Zbl
- [Caprace and Lytchak 2010] P.-E. Caprace and A. Lytchak, "At infinity of finite-dimensional CAT(0) spaces", *Math. Ann.* **346**:1 (2010), 1–21. MR
- [Chatterji et al. 2016] I. Chatterji, T. Fernós, and A. Iozzi, "The median class and superrigidity of actions on CAT(0) cube complexes", *J. Topol.* **9**:2 (2016), 349–400. With an appendix by Pierre-Emmanuel Caprace. MR
- [Cornulier 2015] Y. Cornulier, "Irreducible lattices, invariant means, and commensurating actions", *Math. Z.* 279:1-2 (2015), 1–26. MR Zbl
- [Fioravanti 2018] E. Fioravanti, "The Tits alternative for finite rank median spaces", *Enseign. Math.* **64**:1-2 (2018), 89–126. MR Zbl
- [Genevois 2019] A. Genevois, "Hyperbolic and cubical rigidities of Thompson's group V", J. Group Theory **22**:2 (2019), 313–345. MR Zbl
- [Grigorchuk 1980] R. I. Grigorchuk, "К проблеме Бернсайда о периодических группах", *Funktsional. Anal. i Prilozhen.* 14:1 (1980), 53–54. Translated as "On Burnside's problem on periodic groups" in *Funct. Anal. Appl.* 14:1 (1980), 41–43. MR Zbl
- [Grigorchuk 1984] R. I. Grigorchuk, "Степени роста конечно-порожденных групп и теория инвариантных средних", *Izv. Akad. Nauk SSSR Ser. Mat.* **48**:5 (1984), 939–985. Translated as "Degrees of growth of finitely generated groups, and the theory of invariant means" in *Math. USSR Izv.* **25**:2 (1985), 259–300. MR Zbl
- [Marquis 2015] T. Marquis, "A fixed point theorem for Lie groups acting on buildings and applications to Kac–Moody theory", *Forum Math.* **27**:1 (2015), 449–466. MR Zbl
- [Niblo and Reeves 1997] G. Niblo and L. Reeves, "Groups acting on CAT(0) cube complexes", *Geom. Topol.* **1** (1997). MR Zbl
- [Osajda 2018] D. Osajda, "Group cubization", Duke Math. J. 167:6 (2018), 1049–1055. MR Zbl
- [Sageev 1995] M. Sageev, "Ends of group pairs and non-positively curved cube complexes", *Proc. London Math. Soc.* (3) **71**:3 (1995), 585–617. MR Zbl
- [Serre 1980] J.-P. Serre, Trees, Springer, 1980. MR Zbl
- [Tits 1970] J. Tits, "Sur le groupe des automorphismes d'un arbre", pp. 188–211 in *Essays on topology and related topics (Mémoires dédiés à Georges de Rham)*, 1970. MR Zbl

Received 21 Nov 2018.

NILS LEDER:

n_lede02@uni-muenster.de Department of Mathematics, Münster University, Einsteinstraße 62, 48149 Münster, Germany

OLGA VARGHESE:

olga.varghese@uni-muenster.de

Department of Mathematics, Münster University, Einsteinstraße 62, 48149 Münster, Germany

Innovations in Incidence Geometry

MANAGING EDITOR

Tom De Medts	Ghent University tom.demedts@ugent.be
Linus Kramer	Universität Münster linus.kramer@wwu.de
Klaus Metsch	Justus-Liebig Universität Gießen
	klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr	Justus-Liebig Universität Gießen
	bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas	Ghent University
	thas.joseph@gmail.com
Koen Thas	Ghent University
	koen.thas@gmail.com
Hendrik Van Maldeghem	Ghent University
	hendrik.vanmaldeghem@ugent.be

HONORARY EDITORS

Jacques Tits Ernest E. Shult †

EDITORS

Peter Abramenko	University of Virginia
Francis Buekenhout	Université Libre de Bruxelles
Philippe Cara	Vrije Universiteit Brussel
Antonio Cossidente	Università della Basilicata
Hans Cuypers	Eindhoven University of Technology
Bart De Bruyn	University of Ghent
Alice Devillers	University of Western Australia
Massimo Giulietti	Università degli Studi di Perugia
James Hirschfeld	University of Sussex
Dimitri Leemans	Université Libre de Bruxelles
Oliver Lorscheid	Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Guglielmo Lunardon	Università di Napoli "Federico II"
Alessandro Montinaro	Università di Salento
James Parkinson	University of Sydney
Antonio Pasini	Università di Siena (emeritus)
Valentina Pepe	Università di Roma "La Sapienza"
Bertrand Rémy	École Polytechnique
Tamás Szonyi	ELTE Eötvös Loránd University, Budapest
-	¥ * 1

PRODUCTION

Silvio Levy

(Scientific Editor) production@msp.org

See inside back cover or msp.org/iig for submission instructions.

The subscription price for 2019 is US \$275/year for the electronic version, and \$325/year (+\$15, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN 2640-7345 electronic, 2640-7337 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

IIG peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2019 Mathematical Sciences Publishers

Innovations in Incidence Geometry

Vol. 18 No. 1	2020
A note on locally elliptic actions on cube complexes	1
NILS LEDER and OLGA VARGHESE	
Tits arrangements on cubic curves	
MICHAEL CUNTZ and DAVID GEIS	
Chamber graphs of minimal parabolic sporadic geometries	
VERONICA KELSEY and PETER ROWLEY	
Maximal cocliques in the Kneser graph on plane-solid flags in	
PG(6, q)	
KLAUS METSCH and DANIEL WEDNED	

