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A note on locally elliptic actions on cube complexes

Nils Leder and Olga Varghese

We deduce from Sageev’s results that whenever a group acts locally elliptically
on a finite-dimensional CAT(0) cube complex, then it must fix a point. As an
application, we partially prove a conjecture by Marquis concerning actions on
buildings and we give an example of a group G such that G does not have prop-
erty (T), but G and all its finitely generated subgroups can not act without a
fixed point on a finite-dimensional CAT(0) cube complex, answering a question
by Barnhill and Chatterji.

1. Introduction

The questions we investigate in this note are concerned with fixed points on CAT(0)
cube complexes. Roughly speaking, a cube complex is a union of cubes of any
dimension which are glued together along isometric faces. Let C be a class of
finite-dimensional CAT(0) cube complexes. A group G is said to have property
FC if any simplicial action of G on any member of C has a fixed point. For a
subclass A consisting of simplicial trees the study of property FA was initiated by
Serre [1980].

Bass [1976] introduced a weaker property FA′ for groups. A group has property
FA′ if any simplicial action of G on any member of A is locally elliptic, i.e. each
g ∈ G fixes some point on a tree. We define a generalization of property FA′. A
group G has property FC′ if any simplicial action of G on any member of C is
locally elliptic, i.e. each g ∈ G fixes some point on a CAT(0) cube complex.

A finitely generated group which is acting locally elliptically on a simplicial tree
has a global fixed point; see [Serre 1980, §6.5, Corollary 2]. The following result
of Sageev is well known to the experts. It follows from the proof of Theorem 5.1
in [Sageev 1995].
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Theorem A. Let G be a finitely generated group acting by simplicial isometries
on a finite-dimensional CAT(0) cube complex. If the G-action is locally elliptic,
then G has a global fixed point.

In particular, a finitely generated group G has property FC′ if and only if G has
property FC.

The result of Theorem A was also observed by Caprace and Lytchak in [Chatterji
et al. 2016, Proposition B.8] and was proven for median spaces in [Fioravanti 2018,
Theorem 3.1].

Before we state the corollaries of Theorem A, we observe that the result in
Theorem A is not true for infinite-dimensional CAT(0) cube complexes. Let G be
a finitely generated torsion group. Then, by the Bruhat–Tits fixed point theorem
[Bridson and Haefliger 1999, Corollary II 2.8] follows, that G has property FC′

and thus by Theorem A the group G has property FC. Free Burnside groups are
finitely generated torsion groups and thus these groups have always property FC,
but many of these groups act without a fixed point on infinite-dimensional CAT(0)
cube complexes; see [Osajda 2018, Theorem 1].

The next corollary follows from Theorem A and is known in the case of trees
by a result of Tits [1970, Proposition 3.4].

Corollary B. Let G be a group acting by simplicial isometries on a finite-dimen-
sional CAT(0) cube complex X. If the G-action is locally elliptic, then G has a
global fixed point in X ∪ ∂X , where ∂X denotes the visual boundary of X.

Proof. For the proof we need the following result by Caprace [2010, Theorem 1.1]:
Let X be a finite-dimensional CAT(0) cube complex and {Xα}α∈A be a filtering

family of closed convex nonempty subsets. Then either the intersection
⋂
α∈A Xα

is nonempty or the intersection of the visual boundaries
⋂
α∈A ∂Xα is a nonempty

subset of ∂X .
Recall that a family F of subsets of a given set is called filtering if for all E, F

in F there exists D ∈ F such that D ⊆ E ∩ F .
Let X be a finite-dimensional CAT(0) cube complex and 8 a simplicial action of

G on X . For S ⊆G we define the set Fix(S)= {x ∈ X |8(s)(x)= x for all s ∈ S}.
It is closed and convex. If S is a finite set, it follows by Theorem A that Fix(S) is
nonempty. Further, we define Fix(G)∂ = {ξ ∈ ∂X |8(g)(ξ)= ξ for all g ∈ G} .

Now we consider the following family F = {Fix(S) | S ⊆ G and #S <∞} . If
S, T ⊆ G are finite subsets, we have Fix(S ∪ T )⊆ Fix(S)∩Fix(T ) and thus F is
a filtering. The result of Caprace stated above implies that⋂

F = Fix(G) is nonempty

or ⋂
{∂Fix(S) | S ⊆ G and #S <∞} ⊆ Fix(G)∂ is nonempty.
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Since the Davis realization of a right-angled building carries the structure of a
finite-dimensional CAT(0) cube complex, we can apply Corollary B to confirm
the following conjecture by Marquis [2015, Conjecture 2] in the special case of
right-angled buildings.

Conjecture. Let G be a group acting by type-preserving simplicial isometries on
a building 1. If the G-action on the Davis realization X of 1 is locally elliptic,
then G has a global fixed point in X ∪ ∂X.

Another fixed point property of interest is Kazhdan’s property (T). Niblo and
Reeves [1997, Theorem B] proved in that if a group G has Kazhdan’s property (T),
then G also has property FC. Barnhill and Chatterji raised the following question
[2008, Question 5.3]:

Question. Is FC equivalent to (T), or does there exist a group G such that G does
not have property (T), but G and all its finite-index subgroups have property FC?

With the next result we can answer this question in the negative.

Corollary C. Let G be the first Grigorchuk group. Then G and all its finitely gen-
erated subgroups have property FC, but G doesn’t have property (T). In particular,
all finite-index subgroups of G also have property FC.

Proof. The first Grigorchuk group G is a finitely generated infinite torsion group
(see [Grigorchuk 1980]) and thus G and all its finitely generated subgroups have
property FC. But G does not have property (T) since G is amenable, see [Grig-
orchuk 1984]. �

Further, many free Burnside groups have property FC, but don’t have property
(T), see [Osajda 2018, Theorem 1]. Other examples of groups with property FC and
without property (T) were given by Cornulier in [Cornulier 2015] and by Genevois
in [Genevois 2019].

Acknowledgement. We would like to thank Rémi Coulon for pointing us on The-
orem 5.1 in [Sageev 1995]. Further, we want to thank Elia Fioravanti and Anthony
Genevois for making us aware of important references.

2. Proof of Theorem A

In this section we give the proof of Theorem A, which is hidden in the proof of
Theorem 5.1 in [Sageev 1995] by Sageev. For definitions and properties of CAT(0)
cube complexes see [Sageev 1995].

We first need the following result.
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Proposition. Let X be a d-dimensional CAT(0) cube complex and S be a finite set
of hyperplanes in X. If #S ≥ d + d · (d + 1), then there exist three hyperplanes in
S that do not intersect pairwise.

Proof. Let T = {J1, . . . , Jk} ⊆ S be a maximal set of pairwise intersecting hyper-
planes. Then by Helly’s Theorem for CAT(0) cube complexes or [Sageev 1995,
Theorem 4.14] follows that

⋂
T is not empty. Further, since the dimension of X

is d we have: k ≤ d. By maximality of T , for each hyperplane J ∈ S − T there
exists i = 1, . . . , k such that J ∩ Ji =∅. This yields a well-defined map

q : S − T → {1, . . . , k}, J 7→min{i | J ∩ Ji =∅}.

Let Bi denote the preimage q−1(i) for i = 1, . . . , k. Since #S ≥ d+d · (d+1) and
k ≤ d, we have #(S − T ) ≥ d · (d + 1). Thus, by the pigeon-hole principle there
exists j ∈ {1, . . . , k} such that #B j ≥ d+1. By maximality of T , not all hyperplanes
of B j intersect pairwise, i.e there are H1, H2 ∈ B j such that H1 ∩ H2 =∅. Then,
J j , H1, H2 are three hyperplanes that do not intersect each other. �

Proof of Theorem A. Let G be a finitely generated group with a symmetric generat-
ing set Y = {g1, . . . , gn}. Let X be a d-dimensional CAT(0) cube complex, v ∈ X
be a vertex and G→ Isom(X) be a simplicial locally elliptic action.

For i = 1, . . . , n we choose a combinatorial geodesic λi from v to gi (v) . Further,
we denote by Si the set of hyperplanes crossed by λi . We have #Si = D(v, gi (v)),
where we denote by D the metric on the 1-skeleton of X . Hence the union S :=⋃n

i=1 Si is a finite set.
Let us assume that the action has no global fixed point. Then the Bruhat–Tits

fixed point theorem implies that the orbit of v is unbounded. Thus, there exists
g ∈ G such that

N := D(v, g(v))≥ #S · (d + d(d + 1)).

Since Y generates G, we can write g = gi1 . . . gil with gi j ∈ Y for i = 1, . . . , l. We
define

v j := gi1 . . . gi j (v) and γ j := gi1 . . . gi j (λi j+1).

The map γ j is a combinatorial geodesic from v j to v j+1. Hence α := γl . . . γ1λgi1

is a combinatorial path from v to g(v). Since D(v, g(v))= N , there exists a set of
hyperplanes T = {K1, . . . , KN } such that α crosses each hyperplane in T .

By construction, for each Ki in T there exists J ∈ S such that Ki = h J for some
h ∈ G. By pigeon-hole principle there exists a hyperplane J ∈ S such that

# {K ∈ T | ∃h ∈ G : K = h J } ≥ d + d(d + 1).

By the Proposition there exist three hyperplanes h1 J, h2 J and h3 J in

{K ∈ T | ∃h ∈ G : K = h J }
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whose pairwise intersection is empty. But each of these hyperplanes is crossed
precisely once by a combinatorial geodesic from v to g(v). Therefore one of these
hyperplanes separates the other two.

It is not difficult to verify the following: If there exist a hyperplane J ⊆ X and
g, h ∈ G such that J, g J, h J do not intersect pairwise and g J separates J and h J ,
then g, h or hg−1 is hyperbolic.

This completes the proof. �
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