Neighborhood distinguishing coloring in graphs

Ramar Rajasekaran
Swaminathan Venkatasubramanian

Abstract

In the case of a finite dimensional vector space V, any ordered basis can be used to give distinct codes for elements of V. Chartrand et al [1] introduced coding for vertices of a finite connected graph using distance. A binary coding of vertices of a graph (connected or disconnected) was suggested in [2]. Motivated by these papers, a new type of coding, called neighborhood distinguishing coloring code, is introduced in this paper. A study of this code is initiated.

Keywords: Neighborhood distinguishing coloring code, neighborhood distinguishing coloring number of a graph

MSC 2000: 05C15

1 Introduction

Definition 1.1. Let $G=(V, E)$ be a simple connected graph. Two adjacent vertices are referred to as neighbors of each other in G. The set of neighbors of a vertex v is called the open neighborhood of v (or simply the neighborhood of v) and is denoted by $N(v)$.

Definition 1.2. Let $G=(V, E)$ be a simple connected graph. A proper vertex coloring of a graph G is an assignment of colors to the vertices of G, one color to each vertex, so that adjacent vertices are colored differently. A proper coloring can be considered as a function $C: V(G) \rightarrow N$ (where N is the set of positive integers) such that $C(u) \neq C(v)$ if u and v are adjacent in G. If each color used is one of k given colors, then we refer to the coloring as k-coloring. Suppose that c is a k-coloring of a graph G, where each color is one of the integers $1,2,3, \ldots, k$ that are being used. If $V_{i}(1 \leq i \leq k)$ is the set of vertices in G colored i (where
one or more of these set may be empty), then each nonempty set V_{i} is called a color class and the nonempty elements of $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ produce a partition of $V(G)$. This is called a proper color partition.

Let $G=(V, E)$ be a simple connected graph. Chartrand et al [1] introduced a coding for vertices of G as follows: Let S be a subset of $V(G)$. For a fixed ordering of S, say, $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, the code of a vertex $u \in V(G)$ with respect to S is defined as

$$
\operatorname{code}(u)=\left(d\left(u, v_{1}\right), d\left(u, v_{2}\right), \ldots, d\left(u, v_{r}\right)\right) .
$$

The set S is called a resolving set if the codes of any two vertices of G with respect to S are distinct. The minimum cardinality of a resolving set of G is called the metric dimension of G. This concept and its manifestations were studied by many. Instead of involving distances, Suganthi [2] introduced a binary coding using neighborhoods. A subset S of V is called a neighborhood resolving set if for some order of $S=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$, the codes of the vertices defined by code $(u)=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ where $a_{i}=1$ if $u \in N\left(u_{i}\right)$ and 0 otherwise, are distinct. A detailed study of neighborhood resolving sets has been made in [2]. A question was raised whether a partition of the vertex set of a graph may be used for defining codes for vertices. An attempt to answer this question led to the study of neighborhood distinguishing coloring codes. If $\pi=\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ is a partition of the vertex set $V(G)$, then a code for a vertex u in $V(G)$ may be defined as

$$
\operatorname{code}(u)=\left(\left|N(u) \cap\left(V_{1}\right)\right|,\left|N(u) \cap\left(V_{2}\right)\right|, \ldots,\left|N(u) \cap\left(V_{r}\right)\right|\right) .
$$

The partition is said to be distinguishing if the codes of distinct vertices of G are distinct. For neighborhood distinguishing code, instead of taking any arbitrary partition, proper color partitions of $V(G)$ are considered. A study of this new type of coding is made in this paper.

2 Main Results

Definition 2.1. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a proper color partition of G. Fixing this order of π, for each $u \in V(G)$, we assign a code denoted by $C(u)$ as $C(u)=$ $\left\{\left|N(u) \cap V_{i}\right|, i=1,2, \ldots, k\right\}$. Then π is called a neighborhood distinguishing coloring (abbreviated as NDC) if $C(u) \neq C(v)$ for all distinct $u, v \in V$.
Definition 2.2. The minimum cardinality of a neighborhood distinguishing coloring of a graph G is called the neighborhood distinguishing coloring number of G, and it is denoted by $\chi_{\mathrm{NDC}}(G)$. Also, a neighborhood distinguishing color partition of G with $\chi_{\mathrm{NDC}}(G)$ elements is called a $\chi_{\mathrm{NDC}}-$ partition of G.

Definition 2.3. Let $G=(V, E)$ be a simple connected graph. A walk whose initial and terminal vertices are distinct is an open walk; otherwise, it is a closed walk. A walk in a graph G in which no vertex is repeated is called a path. A path with n vertices denoted by P_{n}.

Definition 2.4. Let $G=(V, E)$ be a simple connected graph. A graph G is complete if every two distinct vertices in the graph are adjacent. The complete graph of order n is denoted by K_{n}.

Definition 2.5. Let $G=(V, E)$ be a simple connected graph. A graph G is a bipartite graph if it is possible to partition $V(G)$ into two subsets U and W, called partite sets, such that every edge of G joints a vertex U and a vertex of W. A bipartite graph having partite sets U and W is a complete bipartite graph if every vertex of U is adjacent to every vertex of W. If the partite sets U and W of a complete bipartite graph contain s and t vertices, then this graph is denoted by $K_{s, t}$ or $K_{t, s}$. The graph $K_{1, t}$ is called a star.

Theorem 2.6. A graph G has NDC if and only if any two non-adjacent vertices of G do not have the same neighborhood.

Proof. Let G admit NDC. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a NDC. Let $x, y \in V(G)$ be distinct vertices. Then $C(x) \neq C(y)$. Therefore, there exists $i, 1 \leq i \leq k$ such that $\left|N(x) \cap V_{i}\right| \neq\left|N(y) \cap V_{i}\right|$. Hence $N(x) \neq N(y)$.

Conversely, suppose for any x and y which are non-adjacent, $N(x) \neq N(y)$. Let $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{k}\right\}\right\}$ where $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. If u_{i} and u_{j}, $1 \leq i, j \leq k, i \neq j$ are adjacent then $C\left(u_{i}\right)$ has 0 in the $i^{t h}$ place and $C\left(u_{j}\right)$ has 1 in the $i^{t h}$ place. Therefore $C\left(u_{i}\right) \neq C\left(u_{j}\right)$. If u_{i} and u_{j} are non-adjacent then there exists u_{k} such that $u_{k} \in N\left(u_{i}\right)$ and $u_{k} \notin N\left(u_{j}\right)$ or vice versa. Hence $C\left(u_{i}\right) \neq C\left(u_{j}\right)$. Therefore, π is a NDC.

Corollary 2.7. Let G be a graph which admits neighborhood distinguishing coloring. Then $\pi=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\}, \ldots,\left\{u_{n}\right\}\right\}$ is an NDC with $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.

Remark 2.8. (a) For any graph G, $\chi(G) \leq \chi_{\mathrm{NDC}}(G)$.
(b) $\chi_{\mathrm{NDC}}(G)>1$. For if $\chi_{\mathrm{NDC}}(G)=1$, then $G=\bar{K}_{n}$ and \bar{K}_{n} has no NDC.
(c) If $G=K_{n}$, the complete graph of order n, then $\chi_{\mathrm{NDC}}(G)=n$.
(d) $2 \leq \chi_{\mathrm{NDC}}(G) \leq n$, with $|V(G)|=n$, and the bounds are sharp, since $\chi_{\mathrm{NDC}}\left(P_{4}\right)=2$ and $\chi_{\mathrm{NDC}}\left(K_{n}\right)=n$.
(e) A graph admitting NDC has at most one isolated vertex.

Definition 2.9. Let G be a graph. The Mycielskian $\mu(G)$ of G is the graph obtained as follows: Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Attach vertices $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$
and v. Make u_{i}^{\prime} adjacent with all the neighbors of u_{i} in $G(1 \leq i \leq n)$ and make v adjacent with $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$. The resulting graph is called the Mycielskian of G and is denoted by $\mu(G)$.

Theorem 2.10. Let G be a graph which admits NDC. Let $\mu(G)$ be the Mycielskian of G. Then $\chi_{\mathrm{NDC}}(\mu(G))=\chi_{\mathrm{NDC}}(G)+1$.

Proof. Let G be a graph which admits NDC. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a $\chi_{\mathrm{NDC}}-$ partition of G. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and

$$
V(\mu(G))=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}, v\right\} .
$$

Let $\pi^{\prime}=\left\{V_{1} \cup\{v\}, V_{2}, \ldots, V_{k},\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}\right\}$. Then it can be verified that π^{\prime} is a χ_{NDC}-partition of $\mu(G)$. Therefore, $\chi_{\mathrm{NDC}}(\mu(G))=\chi_{\mathrm{NDC}}(G)+1$.

Corollary 2.11. Given any positive integer k, there exists a triangle free connected graph G such that $\chi_{\mathrm{NDC}}(G)=k$. More precisely, if $k=1$ or 2 , take $G=K_{1}$ or K_{2}; if $k \geq 3$, take $G=\mu^{(k-3)}\left(C_{5}\right)$; then G is triangle free, connected and $\chi_{\mathrm{NDC}}(G)=k$.

Definition 2.12. Let $G=(V, E)$ be a simple connected graph. The degree of a vertex v in a graph G is the number of vertices in G that are adjacent to v. Thus the degree of a vertex v is the number of the vertices in its neighborhood $N(v)$. The largest degree among the vertices of G is called the maximum degree of G and is denoted by $\Delta(G)$.

Theorem 2.13. Suppose G admits $N D C$, and $|V(G)|=n$. Then

$$
n \leq(\Delta+1)^{\chi \mathrm{NDC}(G)}
$$

Proof. Suppose $n>(\Delta+1)^{\chi_{\mathrm{NDC}}(G)}$. Let $\chi_{\mathrm{NDC}}(G)=k$. Then any $\chi_{\mathrm{NDC}}-$ partition π of G can yield at most $(\Delta+1)^{k}$ distinct codes. Since $n>(\Delta+1)^{k}, \pi$ cannot be a distinguishing coloring, a contradiction. Therefore, $n \leq(\Delta+1)^{\chi_{\mathrm{NDC}}(G)}$.

Definition 2.14. Let $G=(V, E)$ be a simple connected graph. The graph G^{+}is defined as the graph obtained from G by adjoining exactly one pendant vertex at each of the vertices of G.

Theorem 2.15. Any graph can be embedded in a graph which admits NDC.
Proof. Let G be a graph. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. If G admits NDC, then we are through. Suppose G does not admit NDC. Consider G^{+}. Let $V\left(G^{+}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ where u_{i}^{\prime} is a pendant vertex adjacent with $u_{i}, 1 \leq i \leq n$. Let $x, y \in V\left(G^{+}\right)$and let x and y be distinct and nonadjacent. If $x=u_{i}^{\prime}$ and $y=u_{j}^{\prime}$, then x and y are non-adjacent and $N(x) \neq N(y)$.

If $x=u_{i}$ and $y=u_{j}^{\prime}(i \neq j)$ then x and y are non-adjacent, $u_{j}^{\prime} \in N(y)$ and $u_{j}^{\prime} \notin N(x)$. Therefore $N(x) \neq N(y)$. Let $x=u_{i}$ and $y=u_{j}$. Then $u_{i}^{\prime} \in N\left(u_{i}\right)$ and $u_{i}^{\prime} \notin N\left(u_{j}\right)$. Therefore $N(x) \neq N(y)$. Therefore G^{+}admits NDC. Hence the theorem.
Definition 2.16 (Embedding index of a graph which does not admit NDC). Let G be a graph which does not admit NDC. Let H be a graph which admits NDC such that G is an induced subgraph of H, and H is a graph with the smallest order satisfying these properties. Then $|V(H)|-|V(G)|$ is called the NDC embedding index of G.
Remark 2.17. Let G be a graph in which t pairs of non-adjacent vertices have the same neighborhood. Let S be the set of vertices formed by these t pairs. Attach one pendant vertex at each of the vertices of S. Let H be the resulting graph. Then H admits NDC and the embedding index of G is at most $|S|$.
Remark 2.18. (a) There are graphs in which $\chi(G)=\chi_{\mathrm{NDC}}(G)$, e.g. C_{5}.
(b) Given a positive integer k, there exists a connected graph G such that $\chi_{\mathrm{NDC}}(G)-\chi(G)=k$.

Proof. Case (i): k is even.
Let $G=K_{1,(k+2) / 2}$. Let $V(G)=\left\{u, v_{1}, v_{2}, \ldots, v_{(k+2) / 2}\right\}$. Subdivide each edge of G exactly once. Let H be the resulting graph. Let the new vertices in H be $\left\{w_{1}, w_{2}, \ldots, w_{(k+2) / 2}\right\}$. Then

$$
\left\{\left\{u, v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{(k+2) / 2}\right\},\left\{w_{1}\right\},\left\{w_{2}\right\}, \ldots,\left\{w_{(k+2) / 2}\right\}\right\}
$$

is a χ_{NDC}-partition of H and hence $\chi_{\mathrm{NDC}}(H)=k+2$. Since H is a tree $\chi(H)=2$. Therefore, $\chi_{\mathrm{NDC}}(H)-\chi(H)=k+2-2=k$.

Case (ii): k is odd.
Let $G=K_{1, k}$. Let $V(G)=\left\{u, v_{1}, v_{2}, \ldots, v_{(k+3) / 2}\right\}$. Subdivide each edge of G except the last one exactly once. Let H be the resulting graph and the new vertices in H be $\left\{w_{1}, w_{2}, \ldots, w_{(k+1) / 2}\right\}$. Then

$$
\left\{\left\{u, v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{(k+3) / 2}\right\},\left\{w_{1}\right\},\left\{w_{2}\right\}, \ldots,\left\{w_{(k+1) / 2}\right\}\right\}
$$

is a χ_{NDC}-partition of H and hence $\chi_{\mathrm{NDC}}(H)=k+2$. Since H is a tree $\chi(H)=2$. Therefore, $\chi_{\mathrm{NDC}}(H)-\chi(H)=k+2-2=k$.
(c) Even in graphs in which no two non-adjacent vertices have the same neighbor, $\chi(G)$ need not be equal to $\chi_{\mathrm{NDC}}(G)$. For example, in $P_{5}, \chi(G)=2$, and $\chi_{\mathrm{NDC}}(G)=3$.

3 Areas for further study

(a) Properties of NDC-partitions.
(b) A vertex u is said to be
(i) NDC-fixed if $\{u\}$ appears in every $\chi_{\text {NDC }}$-partition.
(ii) NDC-free if $\{u\}$ appears in some χ_{NDC}-partition and does not appear in some other $\chi_{\mathrm{NDC}}-$ partition.
(iii) NDC-totally free if $\{u\}$ does not appear in any $\chi_{\mathrm{NDC}}-$ partition.
(c) Characterize fixed, free and totally free vertices in a graph which admits NDC.
(d) Characterize graphs which admit a unique $\chi_{\mathrm{NDC}}-$ partition.
(e) Find a necessary and sufficient condition for a partition to be NDC.
(f) Characterize graphs G for which $\chi_{\mathrm{NDC}}(G)=\chi(G)$.

References

[1] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
[2] S. Suganthi, A Study on Resolving sets in Graphs, Thesis submitted to Madurai Kamaraj University.

Ramar Rajasekaran

Research Scholar, Research and Development Centre, Bharathiar University, CoimbatORE - 641 046, INDIA.
e-mail: rramarmathematics@gmail.com

Swaminathan Venkatasubramanian
Ramanujan Research Centre in Mathematics, Saraswathi Narayanan College, Madurai Kamaraj University, Madurai, India.
e-mail: swaminathan.sulanesri@gmail.com

