Innovations in Incidence Geometry Volume 13 (2013), Pages 135–140 ISSN 1781-6475

Neighborhood distinguishing coloring in graphs

Ramar Rajasekaran

Swaminathan Venkatasubramanian

Abstract

In the case of a finite dimensional vector space V, any ordered basis can be used to give distinct codes for elements of V. Chartrand et al [1] introduced coding for vertices of a finite connected graph using distance. A binary coding of vertices of a graph (connected or disconnected) was suggested in [2]. Motivated by these papers, a new type of coding, called neighborhood distinguishing coloring code, is introduced in this paper. A study of this code is initiated.

Keywords: Neighborhood distinguishing coloring code, neighborhood distinguishing coloring number of a graph

MSC 2000: 05C15

1 Introduction

Definition 1.1. Let G = (V, E) be a simple connected graph. Two adjacent vertices are referred to as neighbors of each other in G. The set of neighbors of a vertex v is called the open neighborhood of v (or simply the neighborhood of v) and is denoted by N(v).

Definition 1.2. Let G = (V, E) be a simple connected graph. A proper vertex coloring of a graph G is an assignment of colors to the vertices of G, one color to each vertex, so that adjacent vertices are colored differently. A proper coloring can be considered as a function $C : V(G) \rightarrow N$ (where N is the set of positive integers) such that $C(u) \neq C(v)$ if u and v are adjacent in G. If each color used is one of k given colors, then we refer to the coloring as k-coloring. Suppose that c is a k-coloring of a graph G, where each color is one of the integers $1, 2, 3, \ldots, k$ that are being used. If V_i $(1 \le i \le k)$ is the set of vertices in G colored i (where

one or more of these set may be empty), then each nonempty set V_i is called a color class and the nonempty elements of $\{V_1, V_2, \ldots, V_k\}$ produce a partition of V(G). This is called a proper color partition.

Let G = (V, E) be a simple connected graph. Chartrand et al [1] introduced a coding for vertices of G as follows: Let S be a subset of V(G). For a fixed ordering of S, say, $S = \{v_1, v_2, \ldots, v_r\}$, the code of a vertex $u \in V(G)$ with respect to S is defined as

$$code(u) = (d(u, v_1), d(u, v_2), \dots, d(u, v_r)).$$

The set *S* is called a resolving set if the codes of any two vertices of *G* with respect to *S* are distinct. The minimum cardinality of a resolving set of *G* is called the metric dimension of *G*. This concept and its manifestations were studied by many. Instead of involving distances, Suganthi [2] introduced a binary coding using neighborhoods. A subset *S* of *V* is called a neighborhood resolving set if for some order of $S = \{u_1, u_2, \ldots, u_r\}$, the codes of the vertices defined by $code(u) = (a_1, a_2, \ldots, a_r)$ where $a_i = 1$ if $u \in N(u_i)$ and 0 otherwise, are distinct. A detailed study of neighborhood resolving sets has been made in [2]. A question was raised whether a partition of the vertex set of a graph may be used for defining codes for vertices. An attempt to answer this question led to the study of neighborhood distinguishing coloring codes. If $\pi = \{V_1, V_2, \ldots, V_r\}$ is a partition of the vertex set V(G), then a code for a vertex *u* in V(G) may be defined as

$$code(u) = (|N(u) \cap (V_1)|, |N(u) \cap (V_2)|, \dots, |N(u) \cap (V_r)|).$$

The partition is said to be distinguishing if the codes of distinct vertices of G are distinct. For neighborhood distinguishing code, instead of taking any arbitrary partition, proper color partitions of V(G) are considered. A study of this new type of coding is made in this paper.

2 Main Results

Definition 2.1. Let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a proper color partition of *G*. Fixing this order of π , for each $u \in V(G)$, we assign a code denoted by C(u) as $C(u) = \{|N(u) \cap V_i|, i = 1, 2, \ldots, k\}$. Then π is called a *neighborhood distinguishing coloring* (abbreviated as NDC) if $C(u) \neq C(v)$ for all distinct $u, v \in V$.

Definition 2.2. The minimum cardinality of a neighborhood distinguishing coloring of a graph *G* is called the *neighborhood distinguishing coloring number* of *G*, and it is denoted by $\chi_{NDC}(G)$. Also, a neighborhood distinguishing color partition of *G* with $\chi_{NDC}(G)$ elements is called a χ_{NDC} -partition of *G*.

Definition 2.3. Let G = (V, E) be a simple connected graph. A walk whose initial and terminal vertices are distinct is an open walk; otherwise, it is a closed walk. A walk in a graph G in which no vertex is repeated is called a path. A path with n vertices denoted by P_n .

Definition 2.4. Let G = (V, E) be a simple connected graph. A graph G is *complete* if every two distinct vertices in the graph are adjacent. The complete graph of order n is denoted by K_n .

Definition 2.5. Let G = (V, E) be a simple connected graph. A graph G is a bipartite graph if it is possible to partition V(G) into two subsets U and W, called partite sets, such that every edge of G joints a vertex U and a vertex of W. A bipartite graph having partite sets U and W is a complete bipartite graph if every vertex of U is adjacent to every vertex of W. If the partite sets U and W of a complete bipartite graph contain s and t vertices, then this graph is denoted by $K_{s,t}$ or $K_{t,s}$. The graph $K_{1,t}$ is called a star.

Theorem 2.6. A graph G has NDC if and only if any two non-adjacent vertices of G do not have the same neighborhood.

Proof. Let G admit NDC. Let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a NDC. Let $x, y \in V(G)$ be distinct vertices. Then $C(x) \neq C(y)$. Therefore, there exists $i, 1 \leq i \leq k$ such that $|N(x) \cap V_i| \neq |N(y) \cap V_i|$. Hence $N(x) \neq N(y)$.

Conversely, suppose for any x and y which are non-adjacent, $N(x) \neq N(y)$. Let $\pi = \{\{u_1\}, \{u_2\}, \dots, \{u_k\}\}\)$ where $V(G) = \{u_1, u_2, \dots, u_k\}$. If u_i and u_j , $1 \leq i, j \leq k, i \neq j$ are adjacent then $C(u_i)$ has 0 in the i^{th} place and $C(u_j)$ has 1 in the i^{th} place. Therefore $C(u_i) \neq C(u_j)$. If u_i and u_j are non-adjacent then there exists u_k such that $u_k \in N(u_i)$ and $u_k \notin N(u_j)$ or vice versa. Hence $C(u_i) \neq C(u_j)$. Therefore, π is a NDC.

Corollary 2.7. Let G be a graph which admits neighborhood distinguishing coloring. Then $\pi = \{\{u_1\}, \{u_2\}, \dots, \{u_n\}\}\)$ is an NDC with $V(G) = \{u_1, u_2, \dots, u_n\}$.

Remark 2.8. (a) For any graph G, $\chi(G) \leq \chi_{\text{NDC}}(G)$.

(b) $\chi_{\text{NDC}}(G) > 1$. For if $\chi_{\text{NDC}}(G) = 1$, then $G = \overline{K}_n$ and \overline{K}_n has no NDC.

- (c) If $G = K_n$, the complete graph of order n, then $\chi_{\text{NDC}}(G) = n$.
- (d) $2 \leq \chi_{\text{NDC}}(G) \leq n$, with |V(G)| = n, and the bounds are sharp, since $\chi_{\text{NDC}}(P_4) = 2$ and $\chi_{\text{NDC}}(K_n) = n$.
- (e) A graph admitting NDC has at most one isolated vertex.

Definition 2.9. Let G be a graph. The Mycielskian $\mu(G)$ of G is the graph obtained as follows: Let $V(G) = \{u_1, u_2, \dots, u_n\}$. Attach vertices u'_1, u'_2, \dots, u'_n

and v. Make u'_i adjacent with all the neighbors of u_i in G $(1 \le i \le n)$ and make v adjacent with u'_1, u'_2, \ldots, u'_n . The resulting graph is called the Mycielskian of G and is denoted by $\mu(G)$.

Theorem 2.10. Let G be a graph which admits NDC. Let $\mu(G)$ be the Mycielskian of G. Then $\chi_{\text{NDC}}(\mu(G)) = \chi_{\text{NDC}}(G) + 1$.

Proof. Let G be a graph which admits NDC. Let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a χ_{NDC} -partition of G. Let $V(G) = \{u_1, u_2, \ldots, u_n\}$ and

 $V(\mu(G)) = \{u_1, u_2, \dots, u_n, u'_1, u'_2, \dots, u'_n, v\}.$

Let $\pi' = \{V_1 \cup \{v\}, V_2, \dots, V_k, \{u'_1, u'_2, \dots, u'_n\}\}$. Then it can be verified that π' is a χ_{NDC} -partition of $\mu(G)$. Therefore, $\chi_{\text{NDC}}(\mu(G)) = \chi_{\text{NDC}}(G) + 1$. \Box

Corollary 2.11. Given any positive integer k, there exists a triangle free connected graph G such that $\chi_{NDC}(G) = k$. More precisely, if k = 1 or 2, take $G = K_1$ or K_2 ; if $k \ge 3$, take $G = \mu^{(k-3)}(C_5)$; then G is triangle free, connected and $\chi_{NDC}(G) = k$.

Definition 2.12. Let G = (V, E) be a simple connected graph. The degree of a vertex v in a graph G is the number of vertices in G that are adjacent to v. Thus the degree of a vertex v is the number of the vertices in its neighborhood N(v). The largest degree among the vertices of G is called the maximum degree of G and is denoted by $\Delta(G)$.

Theorem 2.13. Suppose G admits NDC, and |V(G)| = n. Then

$$n \le (\Delta + 1)^{\chi_{\text{NDC}}(G)}$$

Proof. Suppose $n > (\Delta+1)^{\chi_{\text{NDC}}(G)}$. Let $\chi_{\text{NDC}}(G) = k$. Then any χ_{NDC} -partition π of G can yield at most $(\Delta+1)^k$ distinct codes. Since $n > (\Delta+1)^k, \pi$ cannot be a distinguishing coloring, a contradiction. Therefore, $n \leq (\Delta+1)^{\chi_{\text{NDC}}(G)}$. \Box

Definition 2.14. Let G = (V, E) be a simple connected graph. The graph G^+ is defined as the graph obtained from G by adjoining exactly one pendant vertex at each of the vertices of G.

Theorem 2.15. Any graph can be embedded in a graph which admits NDC.

Proof. Let G be a graph. Let $V(G) = \{u_1, u_2, \ldots, u_n\}$. If G admits NDC, then we are through. Suppose G does not admit NDC. Consider G^+ . Let $V(G^+) = \{u_1, u_2, \ldots, u_n, u'_1, u'_2, \ldots, u'_n\}$ where u'_i is a pendant vertex adjacent with $u_i, 1 \leq i \leq n$. Let $x, y \in V(G^+)$ and let x and y be distinct and non-adjacent. If $x = u'_i$ and $y = u'_i$, then x and y are non-adjacent and $N(x) \neq N(y)$.

If $x = u_i$ and $y = u'_j$ $(i \neq j)$ then x and y are non-adjacent, $u'_j \in N(y)$ and $u'_j \notin N(x)$. Therefore $N(x) \neq N(y)$. Let $x = u_i$ and $y = u_j$. Then $u'_i \in N(u_i)$ and $u'_i \notin N(u_j)$. Therefore $N(x) \neq N(y)$. Therefore G^+ admits NDC. Hence the theorem. \Box

Definition 2.16 (Embedding index of a graph which does not admit NDC). Let *G* be a graph which does not admit NDC. Let *H* be a graph which admits NDC such that *G* is an induced subgraph of *H*, and *H* is a graph with the smallest order satisfying these properties. Then |V(H)| - |V(G)| is called the NDC embedding index of *G*.

Remark 2.17. Let G be a graph in which t pairs of non-adjacent vertices have the same neighborhood. Let S be the set of vertices formed by these t pairs. Attach one pendant vertex at each of the vertices of S. Let H be the resulting graph. Then H admits NDC and the embedding index of G is at most |S|.

Remark 2.18. (a) There are graphs in which $\chi(G) = \chi_{\text{NDC}}(G)$, e.g. C_5 .

(b) Given a positive integer k, there exists a connected graph G such that $\chi_{NDC}(G) - \chi(G) = k$.

Proof. Case (i): k is even.

Let $G = K_{1,(k+2)/2}$. Let $V(G) = \{u, v_1, v_2, \dots, v_{(k+2)/2}\}$. Subdivide each edge of G exactly once. Let H be the resulting graph. Let the new vertices in H be $\{w_1, w_2, \dots, w_{(k+2)/2}\}$. Then

 $\{\{u, v_1\}, \{v_2\}, \dots, \{v_{(k+2)/2}\}, \{w_1\}, \{w_2\}, \dots, \{w_{(k+2)/2}\}\}$

is a χ_{NDC} -partition of H and hence $\chi_{\text{NDC}}(H) = k + 2$. Since H is a tree $\chi(H) = 2$. Therefore, $\chi_{\text{NDC}}(H) - \chi(H) = k + 2 - 2 = k$.

Case (ii): k is odd.

Let $G = K_{1,k}$. Let $V(G) = \{u, v_1, v_2, \dots, v_{(k+3)/2}\}$. Subdivide each edge of G except the last one exactly once. Let H be the resulting graph and the new vertices in H be $\{w_1, w_2, \dots, w_{(k+1)/2}\}$. Then

 $\{\{u, v_1\}, \{v_2\}, \dots, \{v_{(k+3)/2}\}, \{w_1\}, \{w_2\}, \dots, \{w_{(k+1)/2}\}\}$

is a χ_{NDC} -partition of H and hence $\chi_{\text{NDC}}(H) = k + 2$. Since H is a tree $\chi(H) = 2$. Therefore, $\chi_{\text{NDC}}(H) - \chi(H) = k + 2 - 2 = k$.

(c) Even in graphs in which no two non-adjacent vertices have the same neighbor, $\chi(G)$ need not be equal to $\chi_{NDC}(G)$. For example, in P_5 , $\chi(G) = 2$, and $\chi_{NDC}(G) = 3$.

3 Areas for further study

- (a) Properties of NDC-partitions.
- (b) A vertex u is said to be
 - (i) NDC-fixed if $\{u\}$ appears in every χ_{NDC} -partition.
 - (ii) NDC-free if $\{u\}$ appears in some χ_{NDC} -partition and does not appear in some other χ_{NDC} -partition.
 - (iii) NDC-totally free if $\{u\}$ does not appear in any χ_{NDC} -partition.
- (c) Characterize fixed, free and totally free vertices in a graph which admits NDC.
- (d) Characterize graphs which admit a unique $\chi_{\rm NDC}$ -partition.
- (e) Find a necessary and sufficient condition for a partition to be NDC.
- (f) Characterize graphs G for which $\chi_{NDC}(G) = \chi(G)$.

References

- [1] G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Appl. Math.* **105** (2000), 99–113.
- [2] **S. Suganthi**, A Study on Resolving sets in Graphs, *Thesis submitted to Madurai Kamaraj University*.

Ramar Rajasekaran

Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore - 641046, India.

e-mail: rramarmathematics@gmail.com

Swaminathan Venkatasubramanian

RAMANUJAN RESEARCH CENTRE IN MATHEMATICS, SARASWATHI NARAYANAN COLLEGE, MADURAI KAMARAJ UNIVERSITY, MADURAI, INDIA.

e-mail: swaminathan.sulanesri@gmail.com