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1 Introduction

In 1972, R. Lyons examined groups having the property that the centralizer of

an involution is isomorphic to the 2-cover of the alternating group A11 [6, 7].

He could gather a lot of information about groups having this property, but the

questions if such groups exist and if two of them are isomorphic remained open.

In 1973 Charles Sims [8] provided a computer-aided proof showing that there

exists exactly one such group. This group is usually called the Lyons group (short

Ly) or the Lyons–Sims group (short LyS) and is one of the 26 sporadic groups.

Sims’ proof has the disadvantage that it involves computations in the symmet-

ric group of 8835156 letters which can only be done by computer. Therefore it

does not provide any insight in the Lyons group. The first computerfree proof

was done by Aschbacher and Segev in 1992 (see [1]). In 1981, William Kan-

tor constructed a geometry ∆ of rank three with diagram having

PG(2, 5) and the Cayley hexagon of order 5 as non-trivial residues such that Ly

is a flag-transitive automorphism group of ∆ (see [5]). This geometry can be

regarded as the natural geometry of the Lyons group since it is extraordinary

beautiful and almost classical. For this reason, one wishes to prove the existence
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and uniqueness of the Lyons group by using this geometry. The greatest obsta-

cle is that ∆ is not simply connected (the universal cover ∆̃ of ∆ is an infinite

building), hence there is no canonical way to prove existence and uniqueness of

the group from this geometry. In this paper, we will show that ∆ is determined

by certain thin subgeometries which are covered by apartments in ∆̃. We will

conclude that Ly is the univeral completion of a certain amalgam of rank three

and hence uniquely determined.

We will use the following notation:

• For a set X, let P(X) be the power set of X, Pn(X) := {Y ⊆ X; |Y | = n}
and P∗(X) := P(X) \ {∅}.

• For any prime power q we denote the desarguesian projective plane of

order q by PG(2, q) and the Cayley hexagon of order q by H(q).

• If A,B and G are groups, G = A.B means that G possesses a normal

subgroup isomorphic to A such that the factor group is isomorphic to B.

We will write G = A : B if we emphasize that it is a split extension and

G = A · B for a nonsplit extension.

• A cyclic group of order n is denoted by Zn or simply by n.

• If p is a prime, a special group of order pn+k with center of order pn is

denoted by pn+k.

• G = pn1+n2+...+nk .H means that there is an ascending series of normal

subgroups of G of order pn1 , pn1+n2 , . . . , pn1+n2+...+nk such that the last

factor group is isomorphic to H and all other factor groups are elementary

abelian.

This work is mostly contained in the author’s PhD thesis (see [3]).

2 Preliminaries

2.1 Coverings of simplicial complexes

A simplicial complex is a pair ∆ = (V, S) such that V is a nonempty set with

V ∩ P(V ) = ∅ and S is a subset of P∗(V ) such that P1(V ) ⊆ S holds and σ ∈ S

and ∅ 6= τ ⊆ σ implies τ ∈ S. The set V is called the set of vertices of ∆ and

an element of S is called a simplex of ∆. We will say that x, y ∈ V are adjacent

(short x ∼ y) if {x, y} is a simplex and x 6= y. If ∆ = (V, S), ∆′ = (V ′, S′) are

complexes, then ∆′ is called a subcomplex of ∆ if V ′ ⊆ V and S′ ⊆ S holds. For

σ ∈ S, the subcomplex (σ,P∗(σ)) is simply called σ.

For a simplicial complex ∆ = (V, S) let Cl(∆) be the complex (V,Cl(S)),
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where Cl(S) := {σ ∈ P∗(V );x ∼ y for all x, y ∈ σ}. We will call ∆ complete if

∆ = Cl(∆).

If ∆ = (V, S),∆′ = (V ′, S′) are complexes, then a map ϕ : V → V ′ is called a

morphism if ϕ(S) ⊆ S′ holds. We will write ϕ : ∆ → ∆′ instead of ϕ : V → V ′.

ϕ is called an isomorphism if ϕ is bijective and ϕ−1 is also a morphism. Let

Aut ∆ be the group of all automorphisms of ∆.

If σ is in S, we define the subcomplexes ∆σ = (Vσ, Sσ), st(σ) = (Vσ ∪ σ, S′
σ),

where Vσ := {v ∈ V \ σ;σ ∪ {v} ∈ S}, Sσ = {τ ∈ S; τ ∩ σ = ∅, σ ∪ τ ∈ S} and

S′
σ := P∗(σ)∪Sσ ∪{τ ∪ ρ; τ ∈ Sσ, ρ ∈ P∗(σ)}. The subcomplex ∆σ is called the

residue of σ in ∆ and st(σ) is called the star of σ in ∆.

If ∆′ is a subcomplex of ∆ and G a subgroup of Aut ∆, let G(∆′) be the sub-

group of all elements in G∆′ acting trivially on ∆′. The factor group G∆′/G(∆′)

is denoted by G∆′

. For a simplex σ, we simply write G(σ) instead of G(∆σ) and

Gσ instead of G∆σ .

A path of lenght n in ∆ is a sequence δ = (v0, v1, . . . , vn) with {vi, vi+1} ∈ S.

We define l(δ) = n, o(δ) = v0, end(δ) = vn and δ−1 = (vn, vn−1, . . . , v0). If

γ = (v0, . . . , vn), δ = (w0, . . . , wm) are in P (∆) with vn = end(γ) = o(δ) = w0,

then set γδ := (v0, . . . , vn = w0, w1, . . . , wm). The set of all paths in ∆ is denoted

by P (∆), the set of all paths with origin v0 by P (∆)(v0, ∗), the set of all paths

with end vn by P (∆)(∗, vn), and P (∆)(v0, vn) is P (∆)(v0, ∗) ∩ P (∆)(∗, vn). We

say that ∆ is connected if P (∆)(v0, v1) 6= ∅ for all v0, v1 ∈ V . The maximal

connected subcomplexes of ∆ are called the components of ∆.

Two paths γ, δ are said to be elementary homotopic if there are a simplex σ

and paths γ1, γ2, γ
′
2 and γ3 with γ2, γ

′
2 ∈ P (σ) and γ = γ1γ2γ3, δ = γ1γ

′
2γ3. Two

paths γ and δ are called homotopic if there is a sequence γ = γ0, γ1, . . . , γk = δ

such that γi and γi+1 are elementary-homotopic for all i. Homotopy is an equiv-

alence relation; we denote by [γ] the equivalence class of γ. It is straightforward

that homotopic paths have the same origin and the same end.

For a vertex v0 ∈ V we define the fundamental group of ∆ relative to v0 in

the following way: Set π1(∆, v0) := {[γ]; γ ∈ P (∆)(v0, v0)} and [γ] · [δ] :=

[γδ]. for γ, δ ∈ P (∆)(v0, v0). It is easily seen that this multiplication defines a

group structure on π1(∆, v0) with [(v0)] as neutral element and [γ]−1 = [γ−1].

Furthermore, if v1 ∈ V and δ ∈ P (v0, v1), then [γ] 7→ [δ−1γδ] is an isomorphism

between π1(∆, v0) and π1(∆, v1). If ∆ is connected, then the isomorphism type

of the fundamental group does not depend on the choice of the vertex v0. In

this case we set π1(∆) as a group isomorphic to π1(∆1, v0) for any v0 ∈ V .

A complex ∆ is said to be simply-connected if it is connected and π1(∆) = 1.

A map ϕ : ∆̃ → ∆ between simplicial complexes ∆̃ and ∆ is called a covering

if ϕ is surjective and induces an isomorphism from st(σ̃) to st(ϕ(σ̃)) for all
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simplices σ̃ of ∆̃.

For a covering ϕ : ∆̃ → ∆, a path γ = (v0, . . . , vn) ∈ P (∆) and a vertex

ṽ0 ∈ ϕ−1(v0) there exists exactly one path γ̃ ∈ P (∆̃)(ṽ0, ∗) with ϕ(γ̃) = γ. We

say that γ̃ is a lift of γ.

A map g ∈ Aut ∆̃ is called a deck transformation of ϕ if ϕ ◦ g = ϕ. The

deck transformations of ϕ form a subgroup of Aut ∆̃ denoted by Aut ∆̃ϕ. The

normalizer of Aut ∆̃ϕ in Aut ∆̃ is denoted by Aut(∆̃, ϕ). If ∆̃ is connected, then

it is easily seen that Aut ∆̃ϕ operates freely on ϕ−1(v) for all v ∈ V . We call the

covering ϕ normal if this action is transitive for all v ∈ V .

If ∆ is connected, then a covering ϕ : ∆̃ → ∆ is called universal if ∆̃ is

connected and if the following property holds: if ψ : ∆̂ → ∆ is another covering,

then there exists a covering φ : ∆̃ → ∆̂ with ϕ = ψ ◦ φ.

The proof of the following theorem is standard.

Theorem 2.1. If ∆ is a connected complex, then there exists up to isomorphism

exactly one universal covering ϕ : ∆̃ → ∆. This covering is normal, π1(∆) ∼=
Aut ∆̃ϕ and Aut ∆ ∼= Aut(∆̃, ϕ)/Aut ∆̃ϕ. Furthermore, ∆̃ is simply-connected.

Definition 2.2. Let ∆ = (V, S) be a simplicial complex. Set

Eo(∆) :=
{
(x, y) ∈ V 2; {x, y} ∈ S

}

and let G be a group. A 1-cocycle from ∆ to G is a map µ : Eo(∆) → G such

that µ(x, y)µ(y, z) = µ(x, z) for all x, y, z ∈ V with {x, y, z} ∈ S. The set of all

1-cocycles from ∆ to G is denoted by Z1(∆, G).

If ∆ is a simplicial complex and µ : Eo → G is a 1-cocycle, we can define

a new complex (∆ × G)µ by taking ∆ × G as vertex set and all nonempty

sets of the form {(x1, g), (x2, µ(x2, x1)g), . . . , (xn, µ(xn, x1)g)} with g ∈ G and

{x1, . . . , xn} ∈ S as simplices. (Note that this is independent of the choice

of x1.)

The proof of the following theorem is very easy.

Theorem 2.3. Let ϕ : ∆̃ → ∆ be a normal covering and G := Aut ∆̃ϕ. For

each x ∈ V choose an element x̃ ∈ ϕ−1(x). Then, for {x, y} ∈ S there exists a

unique element µ(y, x) ∈ G such that x̃ and ỹµ(y,x) are adjacent. The mapping

µ : Eo(∆) → G : (x, y) 7→ µ(x, y) is a 1-cocycle and (x, g) 7→ x̃g defines an isomor-

phism between (∆ × G)µ and ∆̃. If ∆̃ is connected, then ϕ is an isomorphism iff

µ(x, y) = 1 for all pairs of adjacent vertices x and y.

A geometry of rank n is a pair (∆, τ) where ∆ = (V, S) is a connected, com-

plete simplicial complex and τ : V → {1, . . . , n} is a map such that for every
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σ ∈ S with dimσ < n − 2 the residue ∆σ is connected and the following prop-

erty holds: τ |σ is bijective or there exist at least two different simplices σ1, σ2

such that σ ⊆ σ1 ∩ σ2 and τ |σi is bijective for i = 1, 2.

In a geometry, simplices are called flags, and two adjacent but different ver-

tices are called incident. We set type(σ) := τ(σ), cotype(σ) := {1, . . . , n} \
type(σ), rank(σ) := | type(σ)| and corank(σ) := n − rank(σ). If corank(σ) ≥ 2,

then the residue ∆σ is a geometry of rank equal to corank(σ).

2.2 Groups of Type Ly

Definition 2.4. A finite group G is called a group of type Ly if there is an

involution t ∈ G not contained in Z∗(G) such that CG(t) is isomorphic to 2 ·A11

(the double cover of the alternating group on eleven letters).

We present here some facts about groups of type Ly and the Chevalley group

G2(5).

Theorem 2.5. Let G be a group of type Ly. Then the following statements hold:

(a) G is simple (see [6, 2.1(e)]).

(b) The order of G is 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 ([6, 3.2]).

(c) There is a unique conjugacy class of involutions and elements of order 4

in G, respectively. If t is an element of order 4 in G, then the image of t in

A11
∼= CG(t2)/〈t2〉 is a double transposition ([6, 2.1]).

(d) There are exactly two conjugacy classes of elements of order 3 in G, which

are called 3A and 3B. If t is an involution in G and x is an element of

order 3 in CG(t), then x is in 3A if and only if x corresponds to a 3-cycle

in A11
∼= CG(t)/〈t〉. In this case the normalizer of 〈x〉 in G is isomorphic

to 3 · AutMcL. If x is in 3B, then the normalizer of 〈x〉 is a group of type

36 : (2 · A5.2). ([6, 2.2–2.6]).

(e) There are two conjugacy classes of elements of order 5, called 5A and 5B. If

t is an involution and x is an element of order 5 in CG(t), then x is in 5A if

and only if the image of x in A11 is a 5-cycle. The normalizer of an element

in 5A is a group of type 51+4 : (4 · S6), while the normalizer of an element

in 5B is of type (5 × 53) : S3 (cf. [6, 2.9–2.16] and [7]).

(f) The group G has exactly 53 conjugacy classes. The character table of G is

uniquely determined (see [6, Table II, pp. 557–559] with conjugacy class 25

instead of 53, or [2, p. 175]).

(g) There is up to conjugation a unique subgroup H of G with H ∼= G2(5). The

group G has rank 5 on the set of cosets of H. The non-trivial two-point
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stabilizers are isomorphic to 51+4 : (4 · S4), PSU(3, 3), 2 · (A5 × A4).2 and

3 : PGL(2, 7). If χ is the permutation character belonging to H/G, then

χ = 1a + 45694a + 1534500a + 3029266a + 4226695a (notation as in [2]).

See [6, 5.4–5.7].

(h) If H ≤ G is isomorphic to G2(5) and t ∈ H is an involution, an element in

3A or an element in 3B, then tH = tG ∩ H.

(i) If t is an involution in H, then CH(t) is a group of type 2 · (A5 × A5).2. The

proof of Lemma 5.3 in [6] implies that CH(t)/〈t〉, regarded as subgroup of

A11
∼= CG(t)/〈t〉, has two orbits on the set {1, . . . , 11}. These orbits have

size 5 and 6. It acts as S5 on the orbit of size 5 and as PGL(2, 5) on the orbit

of size 6.

(j) If t is an involution in H, then t fixes exactly 42 points and 42 lines in H(5)

(This can be seen by regarding the permutation characters of G2(5) on the set

of points resp. lines in H(5). We can label these points resp. lines by pi, pij

resp. li, lij with 1 ≤ i, j ≤ 6 such that pi is incident to lij , li is incident to

pij and pij is incident to lji. The group CH(t) acts as PGL(2, 5) on both sets

{li; 1 ≤ i ≤ 6} and {pi; 1 ≤ i ≤ 6}. The kernels of these two actions are

isomorphic to SL(2, 5) and intersect in 〈t〉.

(k) If t ∈ H is an element in 3A, then NH(〈t〉) ∼= 3 · U3(5).2 and t fixes exactly

126 lines and no points in H(5). The lines fixed by t form a spread in H(5).

(l) If t ∈ H is an element in 3B, then t fixes no lines and exactly 6 points

in H(5).

(m) Up to conjugacy, there is a unique subgroup T ≤ H of type 4 × 4. If A is the

set of all elements in H(5) fixed by T , then A is an apartment in H(5).

2.3 Amalgams

An amalgam of rank n of groups consists of a collection of groups (GJ )∅6=J⊆{1,...n}

and homomorphisms (ϕJ,K : GK → GJ )∅6=J⊂K⊆{1,...n} such that ϕJ,K ◦ ϕK,L =

ϕJ,L for J ⊂ K ⊂ L holds. In our case, GK will always be a subgroup of GJ for

J ⊆ K, and ϕJ,K will always be the inclusion. For i1, . . . , im ∈ {1, . . . , n}, we

will write Gi1i2...im
instead of G{i1,i2,...,im}.

A completion of an amalgam A = ((GJ )J , (ϕJ,K)J⊆K) is a group G and a

collection of maps ψJ : GJ → G such that ψJ ◦ ϕJ,K = ψK for all J ⊂ K. A

completion (G, (ψJ )J ) is called faithful if all maps ψJ are injective.

A completion (G, (ψJ )J) of an amalgam A = (GJ )J is called universal if

the following condition holds: For any other completion (H, (πJ )J ) of A there

exists a homomorphism Φ: G → H with Φ ◦ ψJ = πJ for all J . Universal



A new proof for the uniqueness of Lyons’ simple group 41

completions always exist and are unique up to isomorphism (but they are not

always faithful). See for instance [10, 1.1].

If A = ((GJ )J , (ϕJ,K)J⊂K) and A = ((GJ)J , (ρJ,K)J⊂K) are amalgams of

groups, then they are called isomorphic if there exist isomorphisms φJ : GJ → GJ

such that φJ ◦ ϕJ,K = ρJ,K ◦ φK for all J ⊆ K. One easily sees that isomorphic

amalgams have isomorphic universal completions.

3 The 5-local geometry of the Lyons group

3.1 Construction

We briefly describe the construction of the 5-local geometry of a group of type

Ly, for more details see [5] or [3]. Let G be a group of type Ly and H be a

subgroup of G isomorphic to G2(5). We set P := H/G; this will be the set of

points in our geometry. Then G has rank 5 on P with non-trivial double point

stabilizers of type 51+4 : 4 ·S4, PSU(3, 3), 2 · (A4 ×A5).2 and 3 : PGL(2, 7). For a

point x, we denote the corresponding orbits Γ(x), Γ2(x), Γ3(x) and Γ4(x), re-

spectively (or just Γ2, Γ3 etc.). The graph having vertex set P with x, y adjacent

iff y ∈ Γ(x) will also be denoted by Γ.

Let y be in Γ(x) and R := O5(Gxy) ∼= 51+4. If l is the set of fixed points of R

in P, then |l| = 6, NG(R) = Gl is a group of type 51+4 : 4.S6 and Gl = S6. We

set L := {lg; g ∈ G}. This will be the set of lines in our geometry. Let l be a line

and x a point in l. Then there exists a unique line L in the Cayley hexagon H(5)

with Gl,x = GL,x. If P is a point in H(5) incident to L and E is the subgroup

of Gx,L,P fixing all points in H(5) collinear to P , then E is elementary abelian

of order 53. Let π be set of fixed points of E in P and F := {πg; g ∈ G}. The

members of F will be the planes in our geometry.

Now let ∆ be the geometry with P ∪̇ L ∪̇ F as vertes set, symmetrized inclu-

sion as incidence relation and the natural type function. Then we have:

Theorem 3.1. (a) If x is a point, then Gx
∼= G2(5) and ∆x is isomorphic to

H(5). The planes incident to x correspond to the points in H(5) and the lines

incident to x correspond to the lines in H(5).

(b) If l is a line, then ∆l is a generalized digon, Gl = 51+4 : (4 ·S6) and Gl = S6.

The actions on the sets of points resp. planes in ∆l are not isomorphic.

(c) If π is a plane, then ∆π is a projective plane of order 5. We have Gπ
∼=

53 · SL(3, 5) and Gπ ∼= SL(3, 5).
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(d) If σ is a maximal simplex in ∆, then Gσ is a group of type 51+4+1 : (4 × 4).

The group G acts transitively on the set of maximal simplices of ∆.

The geometry ∆ is a geometry with affine diagram G̃2 = . If ϕ : ∆̃ →
∆ is the universal covering of ∆, then ∆̃ is a building having the same diagram

as ∆ by a theorem of J. Tits (see [9, Theorem 1]). Since apartments in ∆̃ are

infinite, ∆̃ is infinite. Thus π1(∆) is infinite and ∆ and ∆̃ are not isomorphic.

Clearly, G is a subgroup of the automorphism group of ∆. By Theorem 2.1,

there exists a subgroup G̃ of Aut(∆̃, ϕ) containing Π := Aut ∆̃ϕ such that

G̃/Π ∼= G. Using the following theorem, we can deduce that G and G̃ are

the full automorphism groups of ∆ and ∆̃ respectively.

Theorem 3.2. Let Ω be a geometry having diagram with non-

trivial residues isomorphic to PG(2, 5) and H(5) such that for every point p the

planes of Ωp correspond to the points in H(5). Suppose X is a subgroup of Aut Ω

acting transitively on the set of maximal simplices such that Xp ∼= G2(5) for a

point p, X l ∼= S6 for a line l and XE = SL(3, 5) for a plane E. Then Aut Ω = X

and X(p) = 1 for every point p.

Proof. Set A := Aut Ω and let p be a point in Ω. Then, by Frattini, we have

A = XAp. Furthermore, since Xp is the full automorphism group of Ωp, we get

Ap = XpA(p), hence A = XA(p). Set U := A(p). We will show U = 1.

If l is a line in Ωp, then U ≤ Al, hence Al = UXl. If K is the kernel of the

action of Al on the set of planes in Ωl, then U ≤ K and X(l)U = K E Al. Hence

K fixes p; since Al is transitive on the set of points in Ωl, we get K = A(l). So

U fixes every point collinear to p.

If E is a plane in Ωp, then U fixes every point in E, so we get U ≤ A(E). If l

is a line in E, then every point in Ωl is fixed by U , so again we get U ≤ A(l).

Now let l be a line in Ωp and p 6= q a point on l. We have proved that

U fixes every element in Ωq having distance at most 3 to l in Ωq
∼= H(5). If

α = (E1, l1, E2, l, E3, l3, E4) is an ordered root in Ωq, then the image of U in

Aq is contained in the root subgroup Uα. Hence we get |U : U ∩ A(q)| ≤ 5 and

U ∩ A(q) = U ∩ A(E1), since Uα is sharply transitive on the set of lines in Ωq,E1

different from l1.

Suppose U ∩ A(q) 6= U . Then we have |U : U ∩ A(q)| = 5. If x is in U \ A(q),

then the image of x in AE1 is an elation with axis l1. If r is the center of x, then

r is incident to l1. So every element in U fixes every line in E1 incident to the

point r. But XE2

E2,p,l1
∼= GL(2, 5) acts transitively on the point set of Ωl1 and on

the set of planes in Ωl1 different from E2. Hence, XE1,E2,l1,p is still transitive

on the set of points incident to l1. Since U is normalized by this group, the

elements of U fix every line in E1, a contradiction.



A new proof for the uniqueness of Lyons’ simple group 43

We have proved A(p) ≤ A(q), and by symmetry equality holds. Therefore, by

induction, A(p) = A(q) for every point q. Hence A(p) must be trivial. ¤

Corollary 3.3. G = Aut ∆ and G̃ = Aut ∆̃.

The crucial point in the proof of the theorem is that an element in Aut Ω

which leaves invariant all points incident to a line automatically fixes all planes

incident to this line and vice versa. This is a very unusual situation. For example,

if Ω is a projective space of dimension 3 over a field K and L is a line in Ω, then

the stabilizer of L in PGL(4, K) acts as a group of type PGL(2, K)×PGL(2, K) on

the generalized digon ΩL, and one factor of this group fixes all points incident

to L and the other factor fixes all planes incident to L.

The automorphism group of the building ∆̃ is relatively small; it does act

transitively on the set of maximal flags, but the stabilizer of a maximal flag is

finite. Therefore, the automorphism group of ∆̃ does not possess a BN-pair and

∆̃ is not a classical building.

3.2 Apartments in ∆

If G is a group of type Ly, then there is exactly one conjugacy class of subgroups

isomorphic to Z4×Z4. If T is such a group, let A be the set of fixed elements of T

in ∆. Then A is a thin subgeometry of ∆ containing exactly 12 points, 24 planes

and 36 lines. The points of A can be labeled by the set {1, 2, 3, 4}×{a, b, c}, two

points are collinear if and only if both coordinates are different. Now lines and

planes can be identified as sets of two respectively three collinear points (see

Figure 1; this description of A can be found on [5, p. 246]).

We call every G-conjugate of A an apartment of ∆. This is justified since it is

easily seen that every connected component Ã of ϕ−1(A) is an apartment in ∆̃.

If N is the normalizer of T in G, then N/T ∼= S4 × S3 acts transitively on the

set of maximal flags of A. This action can be described by the natural action of

S4 × S3 on the set {1, 2, 3, 4} × {a, b, c}.

Let A be set of all apartments of ∆. For any subset X of ∆ let AX be the set

of all apartments containing X.
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Figure 1: The thin subgeometry A

4 Closed paths of small length in ∆

4.1 The diameter of ∆

Lemma 4.1. There are three orbits of triples (x, y, z) such that y is collinear to x

and z but x, y are not contained in a common plane.

(I) In this case d(yx, yz) = 4 and Gx,y,z = 5 : (4 × 4).

(IIa) In this case d(yx, yz) = 6 and Gx,y,z = 4 · S4.

(IIb) In this case d(yx, yz) = 6 and Gx,y,z = 3 : 8.

Here, d refers to the distance function of ∆y (and not the one of ∆).

Proof. Gy acts transitively on both {(l,m); l and m lines in ∆y, d(l,m) = 4} and

{(l,m); l and m lines in ∆y, d(l,m) = 6}. The stabilizer of a pair of lines is in

the first case a group of type 53 : (4× 4), in the second case a group isomorphic

to GL(2, 5). In the first case the stabilizer of a pair (l,m) acts transitively on

the set of pairs (x, z), where x is a point on l and z a point on m and both are

different from y. Hence we get our first orbit.
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Now if l and m are lines in ∆y having maximal distance, then it is easily

seen that Gy,l,m has two orbits on the set {(x, z);x point on l, z point on m,

x 6= y 6= z} and that the stabilizers are isomorphic to 4·S4 and 3 : 8, respectively.

Hence the claim follows. ¤

Lemma 4.2. If (x, y, z) is a path of type (I), then x and z are in relation Γ3.

Proof. Since the order of Gx,y,z is divisible by 5, either z ∈ Γ(x) or z ∈ Γ3(x)

holds. Now let T be a subgroup of type Z4 ×Z4 in Gxz and A := Fix∆(T ). Then

x and z cannot be collinear since in this case the line xz would also be in A,

which can easily be recognized as impossible. ¤

Lemma 4.3. Let z be in Γ3(x).

(a) There are exactly six planes π1, . . . , π6 in ∆x and six planes π′
1, . . . , π

′
6 in ∆z

such that πi and π′
i are incident to a common line li.

(b) The planes π1, . . . , π6 and π′
1, . . . , π

′
6 have pairwise maximal distance in ∆x

and ∆z, respectively.

(c) Every point in Γ(x) ∩ Γ(z) is incident to one of the lines l1, . . . , l6.

Proof. (a) Let (x, y, z) be a path of type (I) and let (yx, π, l, π′, yz) be the

unique shortest path in ∆y between yx and yz. Now Gx,y,z ≤ Gx,z,π ≤
Gx,z, the first group is isomorphic to 5 : (4 × 4), the second to 5 : (4 · S4)

and the third to 2 · (A5 × A4).2. Since G is transitive on the set of paths of

type (I), the claim follows.

(b) Gx,z acts as PGL(2, 5) and hence 2-transitively on each set {π1, . . . , π6}
and {π′

1, . . . , π
′
6}. If i and j are different, then the order of Gπi,πj

is divis-

ible by 3. Hence these two planes must have maximal distance.

(c) Suppose there is a point y ∈ Γ(x) ∩ Γ(z) such that (x, y, z) is a path of

type (IIa) or (IIb). Let t be the central involution in Gxz and s the central

involution in Gx,y,z. If s 6= t, then s corresponds in CG(t)/〈t〉 ∼= A11 to

a product of four disjoint transpositions (see Theorem 2.5(c)). In Gx,y,z,

there is an element of the conjugacy class 3A (i.e. an element correspond-

ing to 3-cycle in A11
∼= CG(t)/〈t〉) centralizing s. Now CGx

(t) fixes a parti-

tion of type (5, 6) and acts as S5 on the set of 5 letters and as PGL(2, 5) on

the set of 6 letters (see Theorem 2.5(i)). Therefore the 3 fixed letters of s

must be in the orbit of size 5. But this implies that s cannot be a square in

Gx,y,z ≤ CGx
(t), a contradiction.

Now if s = t, then by Theorem 2.5(j), there is a plane πi having distance at

most 3 to xy. Clearly, d(πi, xy) = 1 is a contradiction, and if d(xy, πi) = 3,
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then there is a point w in li (and hence collinear to z) such that (w, y, z)

is a path of type (I), also a contradiction. ¤

Lemma 4.4. If x, y and z are three pairwise collinear points, then there is a plane

π incident to all three of them.

Proof. Suppose not. If d(yx, yz) = 4, then (x, y, z) would be a path of type (I)

and hence z would be in Γ3(x). So we must have d(xy, xz) = d(yx, yz) = 6 in

∆x and ∆y, respectively. Let (xy, π1, l1, π2, l2, π3, xz) be a path in ∆x connecting

xy and xz. Then there is a path (xz, π3, l3, π4, l4, π5, yz) connecting xz and yz

in ∆z. There is a point w lying on both l2 and l3. We now have that y ∈ Γ3(w)

and that π2 and π4 are two of the six planes in ∆w containing a line whose

points are all collinear to y. But π2 and π4 have distance 4, a contradiction. ¤

Let Λ := Cl(Γ) be the complex whose vertices are the points of ∆ and whose

simplices are the sets of pairwise collinear points. Then Λ contains all informa-

tion about ∆ since the planes of ∆ can be identified as the maximal simplices in

Λ and the lines in ∆ correspond to the 5-dimensional simplices contained in ex-

actly six maximal simplices. Now we see that every covering of ∆ corresponds

to a covering of Λ and vice versa and that π1(∆) ∼= π1(Λ) holds.

Lemma 4.5. If (x, y, z) is a path of type (IIa), then z ∈ Γ2(x).

Proof. We know that z must be in Γ2(x) or in Γ4(x), and since 32 is a divisor of

|Gx,y,z|, the latter possibility can be excluded. ¤

Lemma 4.6. If (x, y, z) is a path of type (IIb), then z ∈ Γ4(x).

Proof. Again, z ∈ Γ2(x) ∪ Γ4(x) must hold. Suppose that z ∈ Γ2(x). Let g be

an element of order 4 in H := Gx,y,z
∼= 3 : 8. Then there are exactly two lines

l1 and l2 in ∆x which are fixed pointwise by g. With Theorem 2.5(j), it can be

easily seen that these two lines are the only lines in ∆x fixed by H. Hence y

must be incident to one of these lines, say to l1. Set J := NGx,z
(〈g〉). Since g

commutes with an element of order 3 in Gx,y,z ≤ Gx,z
∼= PSU(3, 3), we have

H ≤ J ∼= 4 · S4 (see [2]). So there is an element a ∈ J \ H which fixes l1. The

point ya 6= y is incident to l1 and belongs to Γ(x)∩Γ(z). But now y, ya and z are

pairwise collinear and therefore must be incident to a common plane π. Since

x lies on yya = l1, x and z are collinear, a contradiction. Thus z ∈ Γ4(x). ¤

Since G acts transitively on the sets of paths of type (I), (IIa) and (IIb), we

have shown:
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Theorem 4.7. For all points x and y there is point collinear to both of them. In

particular, the diameter of Γ is 2. If d(x, y) = 2, then Gxy acts transitively on

Γ(x) ∩ Γ(y).

Lemma 4.8. Let x be a point and y ∈ Γ2(x). Let Ψxy be the geometry of rank 2

having Γ(x) ∩ Γ(y) as set of points and Axy as set of lines and canonical incidence

relation. Then Ψxy is Gxy-isomophic to the Cayley hexagon H(2).

Proof. Let z be a point Γ(x) ∩ Γ(y) and A an apartment containing x, y and z.

Then Gx,y
∼= PSU(3, 3) ∼= G2(2)′, Gx,y,A = (4 × 4).S3, Gx,y,z = 4 · S4 and

Gx,y,z,A = (4 × 4).2. Since Gxy acts transitively on the set of maximal flags in

Ψxy, the claim follows. ¤

Lemma 4.9. Let x and y be two points in relation Γ4, H := Gxy
∼= 3 : PGL(2, 7)

and g be an element of order 3 in O3(H). Then g is a 3A-element and O3(H) = 〈g〉
is the kernel of the action of Gx,y on Γ(x)∩Γ(y). If z and w are two different points

in Γ(x) ∩ Γ(y), then xw and xz have maximal distance in ∆x.

Proof. Let S be a Sylow 7-subgroup of H. Then NH(S) contains a 3-sylow

subgroup P of H. By [6, Proposition 2.8] all 3A-Elements in P are contained

in CH(S) ∩ P = O3(H). For z ∈ Γ(x) ∩ Γ(y), Hz fixes a line in ∆x, hence a

3-element in Hz must be a 3A-element, and therefore O3(H) ≤ Hz. Thus the

first claim follows.

Now if w and z are distinct points in Γ(x) ∩ Γ(y), then w and z can neither

be collinear nor in relation Γ3 (since 3 divides |Gx,y,z,w|), hence d(xw, xz) = 6

must hold. ¤

Lemma 4.10. Let x be a point and y ∈ Γ3(x).

(a) If z is in Γ(x) ∩ Γ(y), then Γ(x) ∩ Γ(y) contains five points from each Γ(z)

and Γ3(z) and 25 points from Γ2(z).

(b) Define a graph structure on Γ(x) ∩ Γ(y) such that z and w are adjacent if

and only if x, y, z and w are contained in a common apartment or w and z

are collinear. Then this graph is connected.

Proof. Let π1, . . . , π6 be the six planes in ∆x as in Lemma 4.3.

(a) Suppose z is contained in π1. If w is another point in Γ(x) ∩ Γ(y), then z

and w are collinear exactly if w is also in π1. Hence we have 5 points in

Γ(x) ∩ Γ(y) ∩ Γ(z).

In each plane π2, . . . , π6 there exists exactly one point in Γ(x)∩Γ(y) which

is in relation Γ3 to z, so we have |Γ(x)∩Γ(y)∩Γ3(z)| = 5. The other points

must be in relation Γ2 to z by Lemma 4.9.
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(b) For all i 6= j there is an apartment containing x, y, πi and πj . Hence the

claim follows. ¤

Lemma 4.11. Let y be in Γ4(x).

(a) If z is in Γ(x) ∩ Γ(y), then there is a point w ∈ Γ(x) ∩ Γ(y) ∩ Γ2(z).

(b) The graph having Γ(x)∩Γ(y) as vertex set with z and w adjacent if and only

if they are in relation Γ2 is connected.

Proof. (a) Let H := Gx,y and g be an element of order 3 in O3(H). Then g is a

3A-element by Lemma 4.9, hence g fixes exactly 750 points in Γ4(x) since

NGx
(〈g〉) ∼= 3 ·U3(5).2. Let t be an involution in H and l1, . . . l6 the 6 lines

in ∆x fixed by t pointwise. By Theorem 2.5(j), we have CGx
(t)/〈t〉 ∼=

(A5×PGL(2, 5)).2, and the points on the li different from x can be labeled

by the set {1, . . . , 5}×{1, . . . , 6} where (i, j) is incident to lj such that the

action of CGx
(t)/〈t〉 on the set of these points corresponds to the natural

action of this group on the set {1, . . . , 5} × {1, . . . , 6}.

In CGx
(t)/〈t〉, g corresponds to an element (s, 1) with s a 3-cycle. We can

assume s = (123). Then g fixes all of the lines l1, . . . , l6 and every point

with first coordinate 4 or 5. For 1 ≤ i ≤ 6 set yi := (4, i). Now g fixes

126 lines in ∆yi
, li and 125 others. There are exactly 3 fixed points of g on

each of these 125 lines. These points are yi, the unique point in Γ2(x) on

this line and one other point in Γ4(x). So we get up to 6 · 125 = 750 fixed

points of g in Γ4(x).

Suppose that these points are all different. Then these points are all the

750 fixed points of g in Γ4(x). We can assume that y is collinear to y1. But

if h is a 3B-element in CGx,y
(t), then h fixes none of the lines l1, . . . , l6,

and since h centralizes g, yh
1 must be a point with first coordinate 4. Hence

yh cannot be y, a contradiction.

We conclude that there must be a point z ∈ Γ4(x) and 1 ≤ i < j ≤ 6 such

that z is collinear to yi and yj . Now CGx
(t)∩Gyi,yj

= 2 · (A4 × 2).2. Since

32 is a divisor of |Gyi,yj
|, the points yi and yj are in relation Γ2. Since Gx

is transitive on Γ4(x), the claim follows.

(b) Now by Lemma 4.8, if w, z ∈ Γ(x) ∩ Γ(y) with w ∈ Γ2(z), then Hz = 3 : 8

and Hz,w = 3, hence z has exactly 8 neighbours in Γ(x) ∩ Γ(y). If Hz <

J < H, then |J : Hz| must be 2. Since the connected component of z in

Γ(x) ∩ Γ(y) is a block of size at least 9, we see that Γ(x) ∩ Γ(y) must be

connected. ¤
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4.2 The action of a point stabilizer on the sets of planes and

lines in ∆

Lemma 4.12. Let J1, J2 ≤ SL(3, 5) be isomorphic to S4 and A4, respectively. Then

the following statements hold.

(a) Both J1 and J2 have exactly 5 orbits on the point set of PG(2, 5):

Orbit O Ex1 Ex2 Inn1 Inn2

Number of points 6 3 12 4 6

Stabilizer of a representative in J1 Z4 D4 Z2 S3 Z2
2

Stabilizer of a representative in J2 Z2 V4 1 Z3 Z2

Table 1: Action of J1 and J2 on the points of PG(2, 5)

(b) Both J1 and J2 have exactly 5 orbits on the set of lines of PG(2, 5):

Orbit T Sec1 Sec2 Pas1 Pas2

Number of lines 6 3 12 4 6

Stabilizer of a representative in J1 Z4 D4 Z2 S3 Z2
2

Stabilizer of a representative in J2 Z2 V4 1 Z3 Z2

Table 2: Action of J1 and J2 on the lines of PG(2, 5)

(c) Table 3 shows to how many points/lines on each orbit a line/point is incident:

T Sec1 Sec2 Pas1 Pas2

O 1/1 1/2 4/2 0/0 0/0

Ex1 2/1 2/2 0/0 0/0 2/1

Ex2 2/4 0/0 2/2 1/3 1/2

Inn1 0/0 0/0 3/1 0/0 3/2

Inn2 0/0 1/2 2/1 2/3 1/1

Table 3: Incidence between points and lines in each orbit

For example, the entry in the first column of the second row means that a

point of Ex1 is incident to exactly two lines in T and that a line in T contains

exactly one point in Ex1.
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Proof. In SL(3, 5), there is only one conjugacy class of subgroups isomorphic to

Z2×Z2. The centralizer of such a group is a group isomorphic to Z4×Z4 and the

normalizer a split extension of the centralizer by a group isomorphic to S3. Ev-

ery complement of the centralizer equals the normalizer of a Sylow 3-subgroup

in the normalizer, hence there is a unique conjugacy class of complements. It

follows that there is only one conjugacy class of subgroups isomorphic to S4

and A4, respectively. So we can assume that J1 is the subgroup of monomial

matrices having 1 and −1 as entries and that J2 = J ′
1. Now all the claims can

be easily verified. ¤

For the rest of this section, let x be a point and H := Gx. We will use the

abbrevations Γ,Γ2,Γ3 and Γ4 to represent Γ(x),Γ2(x),Γ3(x) and Γ4(x) respec-

tively.

Theorem 4.13. The group H has exactly seven orbits on F. The stabilizer of a

representative of each orbit is listed in Table 4:

Orbit Stabilizer

F1(x) 53+2 : GL(2, 5)

F2(x) 51+2 : (4 · S4)

F3(x) 5 : (4 × 4)

F4(x) 31 : 3

F5(x) S4

F6(x) S4

F7(x) A4

Table 4: Stabilizers of a representative of each orbit of H on F

Instead of Fi(x) we will simply write Fi.

Proof. The planes in F1 are the planes incident to x, those in F2 contain exactly

one line whose points are all collinear to x and those in F3 contain exactly

one point collinear to x. Now 31 is a divisor of |G|, |H| and |SL3(5)|. A Sylow

31-subgroup has index 3 in its normalizer in SL3(5) and index 6 in its normalizer

in G and H. Looking at the permutation character of G on the set of points in ∆,

one sees that an element of order 31 fixes exactly one point. We conclude that if

g ∈ G has order 31, then there are exactly two 〈g〉-invariant planes in ∆ which

are conjugate under NG(〈g〉). Therefore, we have exactly one orbit of planes

whose stabilizer is a group of type 31 : 3. We call this orbit F4.
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If g ∈ G is of order 5 or 6 and π is a plane fixed by g, then there is a fixed point

of g in π. By counting the number of fixed points of such an element, we see that

if π is a plane outside
⋃4

i=1 Fi, then Gx,π contains no element of order 5 or 6.

Hence Gx,π is a {2, 3}-group. Moreover, Gx,π contains no group of type 4 × 4,

because in the other case x and π would be contained in a common apartment.

But all planes in a common apartment with x are in F1(x) ∪ F2(x) ∪ F3(x) (this

can be seen in Figure 1 on page 44). Therefore |Gx,π| ∈ {6, 8, 12, 16, 24}. If Gx,π

has order 12 or 24, then Gx,π is isomorphic to S4 resp. A4 because these are the

only groups of order 12 resp. 24 containing no element of order 6. There are

exactly 25 · 32 · 56 · 7 · 31 planes in F \
⋃4

i=1 Fi. So we see that there are five

possibilities:

(a) There is only one other orbit with stabilizer of order 6.

(b) There are two other orbits with stabilizers both of order 12, hence isomor-

phic to A4.

(c) There are two other orbits with stabilizers of order 24 and 8.

(d) There are three other orbits with stabilizers of order 16, 16 and 24.

(e) There are three other orbits with stabilizers isomorphic to S4, S4 and A4.

Counting the number of fixed points of an element in the conjugacy class 3B,

we see that the cases (c) and (d) cannot hold.

Now let y be a point in Γ4(x) and z ∈ Γ(x) ∩ Γ(y). Then there is another

point w ∈ Γ(x) ∩ Γ(y) such that 3 : 8 ∼= Gx,y,z = Gx,y,z,w. Let π be a plane in

∆y having distance 3 to both yz and yw. Then |Gx,y,z,w,π| = 4. Since there is

an element in Gx,y which interchanges w and z, we conclude that 8 is a divisor

of |Gx,y,π|. Since y is in Γ4(x), π cannot be in
⋃4

i=1 Fi(x). Hence cases (a) and

(b) can be excluded and (e) must hold. ¤

We will later see that we can distinguish the orbits F5 and F6 by the con-

vention that a plane in F5 contains Γ2-points whereas a plane in F6 does not.

Lemma 4.12 and Theorem 4.13 imply that there are 16 Gx-orbits of pairs (y, π)

where π is a plane in
⋃7

i=4 Fi and y is incident to π.

Lemma 4.14. Let π be a plane in F3. Then π contains exactly one point in Γ(x)

and five points in both Γ2(x) and Γ3(x). There is a line l∗ in π which contains

all points in Γ2(x). All planes incident to l∗ are in F3(x). Moreover, Gx,l∗ is

isomorphic to GL(2, 5) and acts transitively on the set of these planes.

Proof. Let y be the unique point in π collinear to x and l = projyx π (in ∆y).

Then all points on l different from y are in Γ3. The points on π outside l are in
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Γ2 ∪ Γ4, and there is exactly one point from Γ2 on each line incident to {y, π}
different from l. Therefore the first claim is proved.

Set π′ := projxy l. Since Gl
l,π,π′,y = Z4, there is a unique point z on l different

from y such that Gl,π,π′,y = Gl,π,π′,y,z. Of course z is in Γ3(x). Let y1, . . . , y5 be

the five Γ2-points in π and set lij = yiyj for i 6= j. Now, Gx,π acts 2-transitively

on the set {y1, . . . , y5}, hence this group acts transitively on the set of the lij .

Every line lij intersects l in a point different from y since lines incident to y

carry at most one point in Γ2(x). Suppose there is a pair (i, j) such that lij ∩ l is

not z. Because Gx,π acts transitively on the points on l different from y and z, 4

divides |{lij ; i 6= j}|. But Gx,π acts 2-transitively on the points yi, and therefore

every line lij contains either two, three or five points in Γ2. Thus there is no

possibility that the number of lines lij is divisible by 4, a contradiction. Hence

lij and l intersect in z for all pairs (i, j), and by the 2-transitivity of Gx,π on the

set {y1, . . . , y5} we see that l∗ := {z} ∪ {y1, . . . , y5} is a line.

We see Gx,l∗,π = Gx,π = 5 : (4× 4). If π′ is another plane incident to l∗, then

either 5 divides |Gx,l∗,π′ | or Gx,l∗,π′ contains an abelian group of type (4, 4). By

Theorem 4.13 every plane incident to l∗ must be in F3, and if g ∈ Gx such that

l∗ is in πg, then g must be in Gx,l∗ . Hence |Gx,l∗ | = 480 and |Gl∗

x,l∗ | = 120,

therefore Gx,l∗ must be isomorphic to GL(2, 5). ¤

Lemma 4.15. Let π be a plane in F4 and l a line incident to π. Then there is a

plane π′ incident to l which is not in F4.

Proof. Let y be a point in π. Then there is a line m in ∆y containing a point

collinear to x. Now π cannot be incident to m because all points in π are

Gx-conjugate.

There is a path of minimal length between m and π in ∆y, and in this path

there must be at least one line which is incident to a plane in F4 and to a plane

outside F4. Thus the claim follows. ¤

Lemma 4.16. For y ∈ Γ2(x) there are exactly three Hy-orbits of planes incident

to y. Planes in the first orbit are in F3, planes in second orbit are in F5 and planes

in the last orbit are in F7. In the second case we have y ∈ O(π). In the third case,

y ∈ Inn1(π) holds.

Proof. Let χ be the permutation character of Gy on the set of planes incident

to y. Then χ is known by the character table of G2(5) since this set corresponds

to the point set of H(5). Up to conjugacy there is a unique subgroup in G2(5)

isomorphic to PSU(3, 3). For a plane π in ∆y we compute |(Gy)π\Gy/Hy| =

〈χ, 1
Gy

Hy
〉 = 〈χHy

, 1Hy
〉 = 3. Therefore we have proved the first part of the claim.
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There is exactly one orbit of planes whose elements are in F3. This orbit con-

tains exactly 378 planes. By Lemma 4.12 the other orbits have size 3024, 2016,

1512, 1008 or 756. However, 2016 and 1512 is the only possibility to choose two

of these numbers such that their sum is 3906 − 378 = 3528. Thus there is one

orbit such that Hy,π = Z3 for all planes π in this orbit. Hence elements in this

orbit are either contained in F4 or F7. Lemma 4.15 implies that there cannot be

a line whose points are all in Γ2. We conclude that the Inn1-points in a F7-plane

must be points in Γ2.

Now let z be in Γ(x)∩Γ(y). Lemma 4.8 shows together with Lemma 4.10 that

there are exactly 30 points w ∈ Γ(x)∩Γ(y) such that d(yz, yw) = 4 in ∆y holds.

If π is a plane incident to yz, l the unique line in π containing all Γ2-points in

π, then Gl,x
∼= GL(2, 5) operates transitively on the set of planes incident to l

(Lemma 4.14). On each plane apart from π there is exactly one point in Γ(x)

different from z. These points are all different, hence we get all the 6 · 5 = 30

points w in Γ(x) ∩ Γ(y) for which d(yw, yz) = 4 in ∆y holds.

Now let m be a line which is different from l and yz and incident to π and y.

Set J := Gx,y,m,π. Then J is cyclic of order 4, and J fixes exactly one other

plane π′ incident to m. We see that π′ cannot contain a point w in Γ(x) because

in this case we would have d(yz, yw) = 4 in ∆y, which would imply that the

intersection of π and π′ is either y or l.

So π′ cannot be a plane in F3, hence Gx,y,π′ = Z4. Therefore π′ is a plane

in F5 (by convention) and y is in O(π′). ¤

Lemma 4.17. If y is a point in Γ4(x), then there are exactly ten Hy-orbits on the

sets of lines and planes incident to y, respectively.

Proof. Since U3(5) contains a unique conjugacy class of subgroups isomorphic

to PGL(2, 7) (see [2]), there is up to conjugacy exactly one subgroup of type

3 : PGL(2, 7) in G2(5), hence the claim can be verified using the character table

of this group. ¤

Theorem 4.18. (a) If π is a plane in F4, then all points in π are Γ4-points.

(b) If π ∈ F5, then the points in O are in Γ2, the points in Ex1 ∪ Inn2 are in Γ3

and the points in Ex2 ∪ Inn1 are in Γ4.

(c) If π ∈ F6, then the points in Ex1 ∪Ex2 ∪ Inn2 are in Γ4 and the points in

O ∪ Inn1 are in Γ3.

(d) If π is in F7, then the points in Inn1 are in Γ2, the points in Inn2 are in Γ3

and the points in Ex1 ∪Ex2 ∪O are in Γ4.
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Proof. Let y ∈ Γ4(x) and z ∈ Γ(x)∩Γ(y). Since Gx,y,z has index 2 in its stabilizer

in Gxy, there exists another point w ∈ Γ(x)∩Γ(z) such that Hy,z = Hy,w
∼= 3 : 8.

If π is a plane in ∆y with d(π, yz) = d(π, yw) = 3, then we have |Hy,π| = 8.

Set l := projπ yz and π′ := projl yz (here, proj means the projection in ∆y).

Similarly, set m := projπ′ xz (here, proj means the projection in ∆z). For a :=

l ∩ m in π′, we have that a is a Γ3-point in π and that Ha,π contains a cyclic

group of order 4. Hence π must be in F6, a must be a point in O and y must be

a Ex1-point.

Let now be y in Γ3. We have found an orbit of F6-planes in ∆y having length

2880/4 = 720. Furthermore, in F2∪F3, there are exactly 186 planes incident to y.

By Lemma 4.16 and Lemma 4.17 we know that there must be exactly four other

orbits in
⋃7

i=4 Fi. The possible sizes of these orbits are 360, 480, 720, 960, 1440

and 2880. Since 3000 ≡ 8 mod 16, one orbit must have size 360. The only

possibility to choose three of these numbers such that their sum adds up to

2640 without using 960 twice is 2640 = 1440 + 720 + 480. We conclude that

the Ex1-points in a F5-plane are in Γ3 and that all points in F4-plane and the

Ex2-points in F7-plane are in Γ4.

Now let π be in F3 and l a line in π containing exactly one Γ2-point and one

Γ3-point. Then K := Hπ,l is cyclic of order 4. Hence there is exactly one other

plane π′ fixed by K which is incident to l. Now π′ must belong to F5. Hence

the Ex2-points in a F5-plane are points in Γ4. The other four planes incident

to l must be F7-planes. Let π′′ be such a plane. Since l contains exactly one

point in Inn1(π
′′) ⊂ Γ2(x), l must be a line in Sec2(π

′′). Therefore the points in

O(π′′) must be points in Γ4 and the points in Inn2(π
′′) must be Γ3-points. So

the Ex2-points in a F6-plane must be Γ4-points.

Now let π be a F4-plane. Then all points in π are Γ4-points and Hπ = 31 : 3

operates transitively on both lines and points of π. If l is a line in π and K := Hl,

then Kπ is cyclic of order 3. Now Lemma 4.15 implies that |K| < 18. Every

involution in Gl centralizing an element of order 3 in Gl is cointained in G(l),

hence Hl cannot contain an element of order 6. There is no element of order 5

in K, since in the other case there would be a point y in l such that 5 is a divisor

of Ky, a contradiction to y ∈ Γ4. Now suppose |K| = 3. Then l would be a

Sec2-line or a Pas1-line in a F7-plane, a contradiction since in this case l would

be incident to a point in Γ2 or Γ3.

Suppose |K| = 9. Then l is a Pas1-line in F7-plane and we get the same

contradiction. Suppose K ∼= A4. In this case there would be two planes incident

to l fixed by K, surely a contradiction. Hence K must be isomorphic to S3. So

there is one plane π in ∆l with Kπ = S3, two planes with Kπ = Z3 and three

planes with Kπ = Z2. Hence l is incident to one plane in F5 ∪ F6, two planes in

F4 and three planes in F7. In the last case l is a T-line. Therefore the Ex1-points
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in a F7-plane are Γ4-points.

Let π be a F7-plane and l a Pas1-line in π. Then l is incident to three points

in each Γ3 and Γ4. Hπ,l acts transitively on both sets of points. Again, set

K := Hl. Then 3 ≤ |K| ≤ 18. Just like before on easily sees that there is

no element of order 5 or 6 in K and K is not isomorphic to A4. If π is a

F7-plane, then the lines in Pas1 are the only lines in π incident to exactly 3

points in both Γ3 and Γ4. Furthermore, the group H operates transitively on

the set {(π,m);π ∈ F7,m ∈ Pas1(π)}. Therefore all F7-planes incident to l are

Hl-conjugate. We conclude that the order of K can neither be 3 nor 9. |K| = 18

is not possible either since in this case an involution in K would not fix any

plane in ∆l. Therefore K ∼= S3 must hold. If π is a plane in ∆l with Kπ = Z2,

then π must be in F6 and l is a Sec2-line in π. Therefore either the Inn1-points

or the Inn2-points in π are in Γ3. Hence there are two possibilities left:

(I) If π is a F5-plane, then the Inn1-points are in Γ3 and the Inn2-points are

in Γ4. If π is a F6-plane, then the Inn1-points are in Γ4 and the Inn2-points

are in Γ3.

(II) If π is a F5-plane, then the Inn1-points are in Γ4 and the Inn2-points are

in Γ3. If π is a F6-plane, then the Inn1-points are in Γ3 and the Inn2-points

are in Γ4.

Suppose (I) holds. Let l be a Sec1-line in a plane from F5 and set K := Hl.

Then l is incident to two points from each Γ2, Γ3 and Γ4. Hence every plane

π incident to l must be a F5-plane and l must be a Sec1-line in π. Therefore

|K| = 48 since H is transitive on the set {(π,m);m ∈ F5, π ∈ Sec1(π)}. But

K has three orbits of size two on the set of points in ∆l, and so an element of

order 3 in K must be in G(l), surely a contradiction. Hence case (II) must hold

and we are done. ¤

Theorem 4.19. (a) H has exactly thirteen orbits on the set of lines in ∆l as

listed in Table 5.

(b) For l ∈ L8, Hl has two orbits of size 3 on the point set of ∆l, and for l ∈ L13,

Hl fixes one Γ4-point in ∆l and acts transitively on the others. In all other

cases the points and planes in the same H-orbit are Hl-conjugate.

Proof. From Theorem 4.18 and its proof we know that there is in each case just

one orbit of lines with point distribution as follows: 1 Γ2, 1 Γ3, 4 Γ4, 3 Γ3, 3 Γ4

and 6 Γ4. The type of Hl is clear in all these cases. Furthermore there is in each

case just one orbit of lines with the following point distribution: 1 Γ3, 5 Γ4 and

2 Γ2, 4 Γ3. In the second case we have |Hl| = 6 · |Hl,π| for all π ∈ F(l). With this

information we can determine the structure of the stabilizers.
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Orbit Characterization Points Planes Stabilizer
incident to a incident to a in H of a

representative representative representative

L1 x, 5 Γ 6 F1 51+4 : GL(2, 5)

L2 6 Γ 1 F1, 5 F2 54 : (4 × 4)

L3 1 Γ, 5 Γ3 1 F2, 5 F3 52 : (4 × 4)

L4 5 Γ2, 1 Γ3 6 F3 GL(2, 5)

L5 1 Γ, 1 Γ2, 4 Γ4 6 F3 4 · S4

L6 T ∈ F6 1 Γ3, 5 Γ4 1 F3, 5 F6 5 : 4

L7 T in F5, 1 Γ2, 1 Γ3, 4 Γ4 1 F3, 1 F5, 4 F7 4
Sec2 in F7

L8 Pas1 in F6, 6 Γ4 2 F4, 1 F6, 3 F7 S3

T in F7

L9 Sec1 in F5 2 Γ2, 4 Γ3 6 F5 GL(2, 3)

L10 Sec2 in F5, 2 Γ2, 1 Γ3, 3 Γ4 3 F5, 3 F7 S3

Pas2 in F7

L11 Pas1 in F5 and 3 Γ3, 3 Γ4 1 F5, 3 F6, 2 F7 S3

F7, Sec2 in F6

L12 Pas2 in F5, 2 Γ3, 4 Γ4 4 F5, 2 F6 Z8 : Z2

Sec1 in F6

L13 Pas2 in F6, 2 Γ3, 4 Γ4 3 F6, 3 F7 D6

Sec1 in F7

Table 5: Orbits of H on the set of lines in ∆l

Choose l ∈ Sec2(F5). Then l is incident to two points in Γ2, one point in Γ3

and three points in Γ4. Suppose all planes in ∆l are F5-planes. Then |Hl| = 12.

Since H(l) is trivial, Hl cannot contain an element of order 6, hence we have

Hl
∼= A4. But Hl operates transitively on the set of the two Γ2-points in ∆l,

a contradiction. Hence there exists a plane π ∈ F7 such that l ∈ Pas2(π). We

conclude Hl
∼= S3.

The following lines contain exactly two points in Γ3 and four points in Γ4:

Pas2(F5),Sec1(F6),Pas2(F6) and Sec1(F7). For π ∈ F6 and l ∈ Sec1(π) we have

Hπ,l
∼= D4 and H l

π,l
∼= V4. In the other cases one has Hπ,l

∼= V4 and H l
π,l

∼= Z2.

Take l ∈ Pas2(F6) ∪ Sec1(F7). Suppose Hl is transitive on the set of planes

incident to l. Then we get |Hl| = 24 and |H l| = 12. Since H l acts transitively on

the set of the two Γ3-points incident to l, there is a normal subgoup of index 2
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and hence a normal subgroup of order 3 in Hl. We conclude Hl
∼= D6. But in

this case Hl must contain an element inducing a transposition on the point set

of l. The square of such an element is an element in G(l) having order divisible

by 4. This is a contradiction since we have H(l) = 2.

Suppose Sec1(F7) and Pas2(F6) are contained in different H-orbits. Then

there is an orbit consisting of Pas2(F5) and exactly one of these sets. For l ∈
Pas2(F5) we get |Hl| = 4 · 3 = 12, hence H l acts as S3 on the four Γ4-points of l.

But this is a contradiction because if π′ is a F5-plane incident to l, then Hl,π′

fixes no Γ4-point in l.

We see that there are exactly three different possiblities left for the H-orbits

on lines with four Γ4- and two Γ3-points:

(i) Sec1(F7) ∪ Pas2(F6), Sec1(F6) ∪ Pas2(F5).

(ii) Sec1(F7) ∪ Pas2(F5) ∪ Pas2(F6), Sec1(F6).

(iii) Sec1(F7) ∪ Pas2(F6), Sec1(F6),Pas2(F5).

Let y be in Γ4(x). Suppose case (iii) holds. For l ∈ Sec2(F7) ∪ Pas2(F6) one

sees that H l
l = S3 must hold, hence Hl has two orbits on the set of Γ4-points

in l. Therefore Hy has at least eleven orbits on the set of lines incident to l, a

contradiction to Lemma 4.17. Suppose case (ii) holds. Choose l ∈ Sec1(F7) ∪
Pas2(F6) ∪ Pas2(F5). Then |Hl| = 8 and |H l| = 4. Suppose that there is an

element a ∈ Hl with o(a) = 4. Because Hl-orbits on the set of planes in ∆l

have size two, a2 ∈ H(l) must hold. Furthermore a does not fix any plane

incident to l, hence a corresponds to a product of three disjoint transpositions.

This is a contradiction since if we set Z := Z(O5(Gl)), then a must induce an

automorphism of order 4 of Z, therefore a2 cannot be an involution in G(l). We

conclude that Hl is elementary abelian of order 8. This is also a contradiction,

since Gl does not contain an elementary abelian subgroup of order 8. So case

(i) must hold. We see that there are exactly thirteen orbits. We are left to

determine the stabilizer of a line in L12 and in L13.

For l ∈ L12 we have |Hl| = 16 and |H(l)| = 2. Since H(l) = Z2 holds,

every element of Hl induces an even permutation on the sets of points and

planes in ∆l. We conclude that Hl is contained in a subgroup K of Gl with

K ∼= 4 · A6 and H l is isomorphic to a Sylow 2-subgroup of A6. Hence Hl

contains an element corresponding to a permutation of type (2, 4) in A6. Such

an element has order 8 in Gl. Because Hl contains an abelian group of type

(2, 2), this extension must split. (It is not so easy to determine the exact type

of Hl, but this is not important.)

If l is in L13 then |Hl| = 12. Hl possesses a normal subgroup of order 2 and

an elementary abelian Sylow 2-subgroup. If t is an involution in Hl \ H(l) and

s ∈ Hl an element of order 3, then s and t cannot commute. Therefore Hl
∼= D6
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must hold. ¤

Table 6 gives information to how many points of each orbit a point is collinear.

This information can already be found in [5], but without a proof.

p Γ Γ2 Γ3 Γ4

p 19530

Γ 1 154 3125 3750 12500

Γ2 63 2520 4599 12348

Γ3 36 2190 4544 12720

Γ4 42 1056 4452 12978

Table 6: Collinearity of points of each orbit

For example, a point in Γ2 is collinear to 63 points from Γ, 2520 points

from Γ2, 4544 points from Γ3 and 12398 points from Γ4.

5 Coverings of ∆ which induce automorphisms on

apartments

Theorem 5.1. Let θ : ∆∗ → ∆ be a covering such that ∆∗ is connected. Suppose

further that θ induces an isomorphism from Σ∗ to Σ for every apartment Σ of ∆

and every connected component Σ∗ of θ−1(Σ). Then θ itself is an isomorphism.

Proof. Let ϕ : ∆̃ → ∆ be the universal covering of ∆. Then there is a covering

ζ : ∆̃ → ∆∗ such that θ ◦ ζ = ϕ. Set Π := Aut ∆̃ϕ
∼= π1(∆) and Π0 := Aut ∆̃ζ

∼=
π1(∆

∗). Then Π0 ⊆ Π and we have to show that equality holds. Let Σ be an

apartment in ∆, Σ̃ an apartment in ∆̃ with ϕ(Σ̃) = Σ and Σ∗ := ζ(Σ̃). For v ∈ Σ̃

and g ∈ ΠΣ̃ we have ζ(v), ζ(vg) ∈ Σ∗, hence θ◦ζ(v) = ϕ(v) = ϕ(vg) = θ◦ζ(vg).

Since θ|Σ∗ is injective, we conclude ζ(vg) = ζ(v), therefore g ∈ Π0. So we have

ΠΣ̃ ≤ Π0. The same holds for every G̃-conjugate of Σ̃. Hence we can prove

the theorem by showing Π = 〈Πg

Σ̃
; g ∈ G̃〉. We may assume Π0 = 〈Πg

Σ̃
; g ∈ G̃〉.

Since Π0 is normal in Π, θ is a normal covering with B := Π/Π0 as group of

deck transformations. Moreover, Π0 is even normal in G̃, hence G∗ := Aut ∆∗ =

G̃/Π0 acts transitively on the set of maximal flags in ∆∗.

Let Γ∗ be the graph having the point set of ∆∗ as vertex set such that two

collinear points are adjacent. Set Λ∗ as the associated clique complex. Then θ

induces a covering from Λ∗ to Λ which we will also call θ. We will show that this

map is an isomorphism. Choose a point x ∈ P and a point x∗ in the preimage
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of x. We set Eo := {(y, z) ∈ P2; y and z are collinear}. For every y ∈ P we

select a preimage y∗ of y with d(x, y) = d(x∗, y∗). Hence we get a µ ∈ Z1(Λ, B)

such that (y∗)µ(y,z) and z∗ are adjacent for all (y, z) ∈ Eo. If y is adjacent to x,

then we get µ(x, y) = 1. If d(x, y) = 2, then there exists a point z adjacent to

both x and y with µ(x, y) = µ(y, z) = 1.

We need some lemmata to finish the proof.

Lemma 5.2. If z is in Γ2(x) ∪ Γ3(x), then µ(y, z) = 1 for all y ∈ Γ(x) ∩ Γ(z).

Proof. There is a y0 ∈ Γ(x) ∩ Γ(z) with µ(y0, z) = 1. Suppose that x, z, y

and y0 are contained in a common apartment A. In this case the closed path

(x, y0, z, y, x) can be lifted to a closed path having x∗ as origin and end. Now

it is easily seen that µ(y, z) = 1 holds. If y0 and y are collinear, then µ(y, z) =

µ(y, y0)µ(y0, z) = µ(y, x)µ(x, y0) = 1. By Lemma 4.8 and Lemma 4.10, there is

always a chain y0, y1, . . . , yn = y in Γ(x) ∩ Γ(z) such that yi, yi+1 are collinear

or x, z, yi and yi+1 are contained in a common apartment, so the statement can

be proved by induction. ¤

Since G acts transitively on the vertex set of Γ and G∗ acts transitively on the

vertex set of Γ∗, we conclude:

Lemma 5.3. If y, z ∈ P such that z is in Γ2(y) ∪ Γ3(y), there exists a unique

element z+ ∈ θ−1(z) such that d(y∗, z+) = 2. It is z+ = (z∗)µ(z,w)µ(w,y) for any

w ∈ Γ(y) ∩ Γ(z).

Lemma 5.4. For all z ∈ Γ4(x) and y ∈ Γ(x) ∩ Γ(z) one has µ(y, z) = 1.

Proof. Again, there exists an element y0 ∈ Γ(x) ∩ Γ(z) with µ(y, z) = 1. Sup-

pose y and y0 are in relation Γ2. Then y+ = (y∗)µ(y,x)µ(x,y0) = y∗ and y+ =

(y∗)µ(y,z)µ(z,y0) = (y∗)µ(y,z), hence µ(y, z) = 1. By Lemma 4.11, for any y in

Γ(x) ∩ Γ(z) there is a chain y0, y1, . . . , yn = y such that yi and yi+1 are in rela-

tion Γ2, so again we are done by induction. ¤

The two groups Gx and G∗
x∗ are naturally isomorphic, hence we can identify

these two groups and regard Gx as a subgroup of G∗.

Lemma 5.5. For all g ∈ Gx and all (y, z) ∈ Eo we have µ(yg, zg) = µ(x, y)g.

Proof. We have shown that for all y ∈ P the element y∗ is the unique ele-

ment in the preimage of y with d(x, y) = d(x∗, y∗). For g ∈ Gx we have

d(x∗, y∗) = d((x∗)g, (y∗)g) = d(x∗, (y∗)g) and d(x, yg) = d(x∗, (yg)∗). Since

θ((y∗)g) = θ(y∗)g = yg, we conclude (y∗)g = (yg)∗. If (y, z) is in Eo, then we

get (y∗)µ(y,z) ∼ z∗, hence (y∗)µ(y,z)g ∼ (z∗)g and finally ((yg)∗)µ(y,z)g

∼ (zg)∗.

So the statement follows. ¤
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We now continue the proof of Theorem 5.1. We define for every plane π

in ∆ an equivalence relation ⊥=⊥π on the set of points in π such that y ⊥ z

holds if and only if µ(y, z) = 1. Since µ is a 1-cocycle, this relation is really

an equivalence relation. By Lemma 5.5 this relation is Gx,π-invariant. If π is a

plane in
⋃3

i=1 Fi, then there is a point y in π collinear to x, hence µ(y, z) = 1 for

all points z ∈ π. By Lemma 5.2 and Lemma 5.4 all points in π are in relation ⊥
in this case.

Now suppose π ∈ F5 ∪ F6, y ∈ Ex2(π) and let t1, t2 be the two lines in

T(π) incident to y. If yi is a point incident to ti, then y and yi are contained

in a common plane in F3 (see Theorem 4.19), hence we get y ⊥ yi. Hence

the equivalence class of y contains two points in Ex1(π). But Gx,π acts prim-

itively on the set of these points, hence the equivalence class of y contains all

points in Ex1(π). So this class is invariant under Gx,π and contains all points in

O(π),Ex1(π) and Ex2(π).

Now let π be a plane in F7, y a point in O(π) and l1, l2 two different lines

in Sec2(π) incident to y. Then again by Theorem 4.19 we have that for all

points yi incident to li the two points y and yi are contained in a common plane

in F3, hence y ⊥ yi. Therefore the equivalence class of y contains two points in

Inn1(π). But again, Gx,π acts primitively on the set of these points. We conclude

that the equivalence class of y contains all points in O(π), Inn1(π), Inn2(π) and

Ex2(π).

Suppose now that π is a plane in F4 and l a line in π. Then there is plane

π′ ∈ F7 such that l is a T-line in π′. Hence there are two points y, z in l with

y ⊥ z. Since Gx,π is primitive on the set of points in π, we conclude y ⊥ z for

all points y and z in π.

Is π again a plane in F7, t a T-line in π and y, z two points on l with y ∈ O(π)

and z ∈ Ex1(π), then y ⊥ z. We conclude y ⊥ z for all points y, z in π.

Let π be again a plane in F5 and l a line in Sec2(π). Then there is a plane π′

in F7 such that l is in Pas2(π
′). Therefore we get y ⊥ z for all y, z incident to l.

Now l contains points in O(π),Ex2(π), Inn1(π) and Inn2(π), hence y ⊥ z for all

points y and z in π.

Finally let π be again a plane in F6 and l a line in Sec2(π). Then l ∈ Pas1(π
′)

for some plane π′ in F7. We conclude y ⊥ z for all points y, z on l. Since l

contains points in O(π),Ex2(π), Inn1(π) and Inn2(π), we finally get y ⊥ z for

all points y, z on π.

We have shown that µ(y, z) = 1 holds for all pairs of adjacent points y and z.

Since ∆∗ is connected, θ must be an isomorphism by Theorem 2.3. ¤
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6 Amalgams of type Ly and the uniqueness of the

Lyons group

We will now apply our result to prove the uniqueness of the Lyons group.

Definition 6.1. Let G be a group of type Ly, ∆ its 5-local geometry, x, y two

distinct collinear points in ∆ and Σ an apartment containing both points. Set

G1 = Gx, G2 = G{x,y}, G3 = GΣ, Gij = Gi ∩ Gj for 1 ≤ i < j ≤ 3 and G123 =

G1 ∩ G2 ∩ G3. For ∅ 6= J ⊂ K ⊆ {1, 2, 3}, let φJ,K be the inclusion map of GK

in GJ . Let A be the amalgam consisting of these groups and homomorphisms.

Then A is called an amalgam of type Ly.

If A is such an amalgam, then G1
∼= G2(5), G2

∼= 51+4 : (4 · S4.2), G3 =

(4× 4).(S4 ×S3), G12 = 51+4 : (4 ·S4), G13 = (4× 4) : D6, G23 = (4× 4).V4 and

G123 = (4 × 4).2.

A priori, it is not clear if there is only one amalgam of type Ly (up to isomor-

phism). To prove the uniqueness of the Lyons group, we first have to show that

two amalgams of type Ly are isomorphic.

Lemma 6.2. If A = (GJ )J and A = (GJ)J are amalgams of type Ly, then there

are isomorphisms φ : Gi → Gi such that φi(Gij) = Gij and φi(G123) = G123 for

all 1 ≤ i, j ≤ 3, i 6= j.

Proof. This is clear for G1. Proposition 6.8 will show that G2
∼= AutG12

∼=
Aut G12 = G2. Since G23 is a Sylow 2-subgroup of G2 and G12 is normal in G2,

one can choose an isomorphism between G2 and G2 such that G12 is mapped

onto G12, G23 is mapped onto G23 and G123 = G12 ∩ G23 is mapped onto

G12 ∩ G23 = G123.

Both G3 and G3 are extensions of an abelian group T resp. T of type (4, 4)

by a group isomorphic to S4×S3. Since G13
∼= G13, G23

∼= G23, G3 = 〈G13, G23〉
and G3 = 〈G13, G23〉, the action of G3 on T is isomorphic to the action G3 on

T . Moreover, their Sylow 2-subgroups are isomorphic to a Sylow 2-subgroup of

2 · A11. Now one can easily deduce from Gaschütz’ Theorem (see [4, I.17.4])

that G3 and G3 must be isomorphic. Both G3 and G3 act transitively on the

chambers of a geometry described in section 3.2. Thus there is an isomorphism

φ3 : G3 → G3 having the desired properties. ¤

From now on let A = (GJ )J be a fixed amalgam of type Ly. We will need

some facts about the automorphism groups of the groups GJ involved in A.

We first treat the groups contained in G3. Recall that G3 is an extension of an

abelian group T of type (4, 4) with a group W ∼= S4×Sym{a, b, c}. By regarding



62 M. Grüninger

a Sylow 2-subgroup of G3 which is isomorphic to a Sylow 2-subgroup of 2 ·A11,

one sees that this extension is non-split.

Let W be the automorphism group of T , M = Φ(T ) the Frattini subgroup

of T and W0 := CW(M). Then W0 = CW(T/M),W/W0
∼= S3 and W0

∼=
Hom(T/M,M) is elementary abelian of order 24. The center of W is contained

in W0 and generated by the map ρ : T → T : t 7→ t−1. One sees easily that the

W-module W0 is the direct sum of two submodules W1 and W2 such that W1

and M are isomorphic as W-modules, W2 contains Z(W) and W acts trivially

on W2/Z(W).

Set W1 := O2(W ) ∼= V4 and let W2 be the unique normal subgroup of W

isomorphic to S3. Then W ′
2 = CW (T ) and W1W2 is the preimage of W0 in W .

The image of W1 in W is W1 and W2 is mapped onto Z(W). Regarding the

description of apartments of ∆ (see section 3.2) we can assume that the image

of G123 in W is 〈((34), 1)〉, that the image of G13 is

W3 := {(g, h) ∈ S4 × Sym{a, b, c}; 1g = 1, ah = a}

and that the image of G23 is 〈((34), 1), ((12), (ab)〉. We see that W2W3 is com-

plement of W1 in W .

Lemma 6.3. The center of G123 is cyclic of order 4 and equals the center of G23.

Proof. The group G123 is contained in a line stabilizer in G2(5) which is isomor-

phic to 51+4 : GL(2, 5). Hence G123 is isomorphic to the group of all mono-

mial matrices in GL(2, 5) and therefore Z(G123) ∼= Z4. Now G23 is a Sylow

2-subgroup in the normalizer of a group generated by a 5A-element, and so one

sees Z(G123) = Z(G23). ¤

Lemma 6.4. There is exactly one non-trivial automorphism β ∈ Aut(G23) which

centralizes G123. This automorphism is induced by an automorphism α of G3

which centralizes G13.

Proof. By [4, I.17.1], the group of all automorphism of G23 which centralize

G123 (and hence G23/G123 because this group has order 2) is isomorphic to

Z1(G23/G123, Z(G123)). Since Z4
∼= Z(G123) = Z(G23), this group has order 2.

Thus the first claim follows.

Since W1 and M are isomorphic W -modules, there exists a W -isomorphism

ϕ : W1 → M . Set f : W → T : f(xy) = ϕ(y) for x ∈ W2W3 and y ∈ W1. This

map f is well defined because W2W3 is a complement of W1 in W . Since ϕ is

W -homomorphism, we have f ∈ Z1(W,T ). So f defines an automorphism α of

G3 by xα = xf(Tx) (see [4, I.17.1]). Now α centralizes G13 since f vanishes

on G13/T ≤ W2W3, but it does not centralize G23 since f((12)(34)(ab)) =
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ϕ((12)(34)) 6= 1. Hence the restriction of α on G23 is the unique non-trivial

automorphism of G23 which centralizes G123.. ¤

Lemma 6.5. There exists an automorphism ǫ of G3 which centralizes G3/T (and

hence normalizes every subgroup of G3 containing T ) and inverts every element

of T .

Proof. Set C := CG(T ) and X := G3/C. Then C is the direct product of T and

a cyclic group K of order 3 (the A3 part in the decomposition G3/T ∼= S4 × S3).

Since K has a complement in G3 (just take the preimage of S4 × 〈(12)〉 in G3),

there is a f ∈ Z2(X,C) taking values in T which determines the extension of C

by X.

Let σ be the automorphism of C with tσ = t for all t ∈ T and sσ = s−1

for all s ∈ K. We identify X with its image in AutC and set Y := 〈X,σ〉.
Then Y = X × 〈σ〉 since σ is contained in Z(Aut C) but not in X. Since σ

acts trivially on T and f takes only values in T , the map f̃ : Y × Y → C with

f̃((x1, s1), (x2, s2)) = f(x1, x2) for x1, x2 ∈ X, s1, s2 ∈ 〈σ〉 is a 2-cocycle. Let H

be the extension of C by Y with f̃ . Then G3 can be identified with the preimage

of X in H. There is an element s ∈ X such that s inverts every element in C.

Therefore, τ := sσ ∈ Y centralizes K and inverts every element in T . The

preimage of 〈τ〉 in H/T is a cyclic normal subgroup of H/T having order 6.

Hence there is a preimage τ ′ of τ in the center of H/T . If ǫ is a preimage of τ ′

in H, then ǫ induces an autormorphism on G3 with the desired properties. ¤

Proposition 6.6. Every automorphism of G13 which normalizes G123 is induced

by an automorphism of G3 which normalizes G23.

Proof. The group G13 is the normalizer of a maximal torus in G2(5), hence G13

is a semidirect product of T by a group U isomorphic to D6 which acts faithfully

on T . We can therefore regard U as a subgroup of W. Now U is the normalizer

of a Sylow 3-subgroup of G13, which implies that all complements of T in G13

are conjugate. We see that an automorphism of G13 which centralizes T and

G13/T must be an inner automorphism of G13 induced by an element in T .

Hence AutG13 is the semidirect product of T by NW(U).

One easily sees that NW(U) = UW2 and U ∩ W0 = U ∩ W2 = Z(W)

holds. If U0 is the image of G123 in W, then the normalizer of U0 in W is

U0Z(W)CU0
(W1). It follows NW(U) ∩ NW(U0) = U0Z(W). This is just the

image of NG13
(G123) in W.

Let g ∈ G13 be an element whose image in W generates Z(W). Then every

element of T is inverted by g. By Lemma 6.5, there is an automorphism ǫ of

G3 which normalizes G13 and G23 and inverts every element of T . We conclude

that there is a t ∈ T with hg = htǫ for all h ∈ G13. Now the claim follows. ¤
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If H is a line stabilizer in G2(5) and V = O5(H)/Z(O5(H)), then the action

of H ′/O5(H) ∼= SL(2, 5) on V is irreducible. Therefore, this action is isomor-

phic to the action of SL(2, 5) on the space of all homogeneous polynomials of

degree 3 in two indeterminates over F5 since this up to isomorphism the unique

4-dimensional SL(2, 5)-module over F5. Moreover, one can easily see that all

irreducible representations of GL(2, 5) over F5 which extend this representation

are conjugate by AutGL(2, 5). Therefore the following lemma will be useful.

Lemma 6.7. Let H be a subgroup of index 5 in GL(2, 5) and let P be the space of

all homogenous polynomials of degree 3 in F5[X,Y ]. Then the action of H on P is

absolutely irreducible.

Proof. Since there is only one conjugacy class of subgroups of index 5 in GL(2, 5),

we can assume that H is the normalizer of the quaternion group generated by

( 2 0
0 3 ) and ( 0 4

1 0 ). Then H is generated by all diagonal matrices and the matrix

α = ( 1 2
1 3 ).

Suppose the action of H on P is not irreducible. Since H acts semi-simple on

P , there is an H-invariant decompositon P = P1 ⊕ P2 of P with P1, P2 proper

subspaces of P . Now set β := ( 1 0
0 2 ). Then the image of β in GL(P ) has four

distinct eigenvalues. All eigenvectors of β are monomials. Since β|P1 and β|P2

are diagonalizable, these two spaces must be spanned by monomials. Hence we

can assume X3 ∈ P1. But this would mean (X + Y )3 = (X3)α ∈ P1, hence

(X + Y )3 is the sum of at most 3 monomials, a contradiction.

By Schur’s Lemma E := CEnd(P )(H) is a field of order 5d, where d is either

1, 2 or 4. If β is as above, then CP (β) is a E-subspace of P , hence dimF CP (β)

is divisible by d. We conclude that d must be 1. Thus we have CGL(P )(H) =

Z(GL(P )) as desired. ¤

Proposition 6.8. Every automorphism of G12 is induced by an element of of G2.

Proof. Set R := O5(G12), V := R/Z(R), let D be a complement of R in G12 and

set S := NG2
(D). Then S is a complement of R in G2. The central factor group

V of R is a vector space over F5, and the commutator map defines a nondegen-

erate symplectic form f of V which is preserved projectively by S. The whole

outer automorphism group of R is GSp(V, f) (the group of all automorphisms

of V preserving f projectively), and the outer automorphism group of G12 is

given by NGSp(V,f)(D)/D. By Lemma 6.7 we have NGL(V )(D)/Z ≤ Aut D for

Z = Z(D) = Z(GL(V )).

Let A := CAut D(Z) and A0 := CA(D/Z). Since D/Z ∼= S4
∼= AutS4, we

conclude A = Inn(D)A0. A simple commutator argument shows that A0
∼=

Hom(D/Z,Z) ∼= Hom(S4,Z4) is cyclic of order 2. Of course, NGL(V )(D) cen-

tralizes Z, and therefore NGL(V )(D)/Z is a subgroup of A and NGL(V )(D)/D
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is isomorphic to a subgroup of A0. Hence we conclude S = NGL(V )(D) and

Aut G12
∼= G2. ¤

Theorem 6.9. Up to isomorphism, there is only one amalgam of type Ly.

Proof. Suppose A = (GJ )J and A = (G)J are two amalgams of type Ly. Then

by Lemma 6.2 there are isomorphism φi : Gi → Gi for i = 1, 2, 3 such that

φi(GJ ) = GJ for J containing i.

The map φ−1
3 ◦ φ1 : G13 → G13 is an automorphism of G13 normalizing G123.

By Proposition 6.6, there is an automorphism γ of G3 which induces φ−1
3 ◦ φ1

on G13 and normalizes G23. We replace φ3 by φ∗
3 := φ3 ◦ γ. Then φ∗

3 equals φ1

on G13 and stills map G23 to G23.

By Lemma 6.8, there is an element a ∈ G2 such that φ−1
2 (φ1(x)) = xa for

all x ∈ G12. Again we replace φ2 by φ∗
2 with φ∗

2(x) = φ2(x
a) for x ∈ G2. Then

φ1(x) = φ∗
2(x) for all x ∈ G12. Note that φ∗

2 maps G23 to G23 since a normalizes

G123 and G23 is the normalizer of G123 in G2.

Now φ∗
3 and φ∗

2 define an automorphism β of G23. Since φ1(x) = φ∗
2(x) =

φ∗
3(x) for x ∈ G123, we see that β centralizes G123. By Lemma 6.4, there is

an automorphism α of G3 extending β which centralizes G13. We replace φ∗
3 by

φ∗∗
3 = φ∗

3 ◦α. Now the three automorphisms φ1, φ
∗
2 and φ∗∗

3 take the same values

on intersections and thus define an isomorphism between A and A. ¤

From now on let Ĝ be the universal completion of A; since G is a faithful

completion of A, Ĝ is also faithful. Hence G1, G2 and G3 can be regarded as

subgroups of Ĝ.

Since Ĝ is the universal completion of A, there is an epimorphism ξ : Ĝ → G

such that ξ|Gi is an isomorphism for i = 1, 2, 3. Set B := ker ξ. Let t be an

involution in G23 such that G2 = G12〈t〉.

Let Γ̂ be the graph having vertex set P̂ := G1/Ĝ such that G1g and G1thg for

g ∈ Ĝ and h ∈ G1 are joined by an edge. Furthermore, let Σ̂ be the graph with

{G1g; g ∈ G3} as vertex set and all pairs {G1g,G1thg} with g ∈ G3 and h ∈ G23

as edges. Then Σ̂ is a full subgraph of Γ̂. Define ζ : Γ̂ → Γ by ζ(G1g) := xξ(g). It

is Ĝ ≤ Aut Γ̂ and ζ(vg) = ζ(v)ξ(g) for all g ∈ Ĝ and v ∈ P̂.

Lemma 6.10. (a) For all g ∈ Ĝ, ζ induces an isomorphism from Σ̂g to Σξ(g).

(b) The map ζ induces a covering from Cl(Γ̂) to Cl(Γ).

Proof. (a) Σ and Σ̂ are both isomorphic to the graph having G13/G3 as vertex

set and {{G13g,G13thg}; g ∈ G3, h ∈ G13} as set of edges. Therefore the

claim follows.
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(b) Clearly, ζ is a surjective morphism from Γ̂ to Γ. For g ∈ G, ĝ ∈ ξ−1(g) and

h ∈ G1 the vertex G1thĝ is the unique element in the preimage of G1th

which is adjacent to G1ĝ. Thus ζ is a covering.

Let x̂ be in ζ−1(x) ∩ Σ̂ and let ŷ, ẑ be adjacent in Γ̂x̂ such that y := ζ(ŷ)

and z := ζ(ẑ) are adjacent. Suppose first that x, y, z are not incident to

a common line in ∆. Then there is a g ∈ G such that x, y, z are in Σg.

Because all apartments containing x are G1-conjugate, we can assume

that g is in G1. Since ζ is a covering from Γ̂ to Γ, there is for both y and z

exactly one preimage ŷ ∈ ζ−1(y) and ẑ ∈ ζ−1(z) which are adjacent to x̂.

Now ζ induces an isomorphism from Σ̂g to Σg, hence ŷ and ẑ are in Σ̂g.

Because y ∼ z holds in Σg, we can conclude that ŷ and ẑ are adjacent in

Σ̂g and therefore in Γ̂.

Since Ĝ acts transitively on P̂ and since ζ(vg) = ζ(v)ξ(g) for all v ∈ P̂

and all g ∈ Ĝ holds, we have just shown: If y, z and w ∈ P are pairwise

collinear, but not collinear in ∆, and if ŷ ∈ ζ−1(y), ẑ ∈ ζ−1(z) ∩ Γ̂ŷ and

ŵ ∈ ζ−1(w) ∩ Γ̂ŷ, then ẑ ∼ ŵ.

Now we suppose, x, y and z are incident to a common line in ∆. Let π be

a plane incident to the line xy and choose a point w which is incident to π

but not to xy. Then there is a uniquely determined point ŵ ∈ ζ−1(w)∩ Γ̂x̂.

Neither x, y and w nor x, z and w are incident to a common line, hence

ŵ ∼ ŷ and ŵ ∼ ẑ. Now y, z and w are not collinear, therefore ŷ ∼ ẑ.

Hence, ζ induces a covering from Cl(Γ̂) to Cl(Γ). ¤

Theorem 6.11. The map ζ is an isomorphism.

Proof. Let ∆̂ be the geometry whose points are the elements of P̂, whose planes

are the maximal cliques in Γ̂ and whose lines are the cliques of size six in Γ̂

which are contained in exactly six maximal cliques. Then ζ induces a covering

from ∆̂ to ∆ which maps apartments in ∆̂ isomorphically on apartments in ∆.

Therefore this map is an isomorphism itself by Theorem 5.1. ¤

Corollary 6.12. G ∼= Ĝ.

Proof. The claim follows since B = ker ξ acts regularly on each preimage un-

der ξ. ¤

Theorem 6.9 and Corollary 6.12 now imply:

Theorem 6.13. Up to isomorphism, there is at most one group of type Ly.
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