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Abstract

We show that d-dimensional dual hyperovals in PG(2d, 2) constructed

from a regular nearfield of characteristic 2 are not isomorphic to Yoshiara’s

d-dimensional dual hyperovals in PG(2d, 2) constructed in [5]. Thus we

show that, in Cooperstein-Thas’s family [1], there exist non-isomorphic dual

hyperovals.
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1 Introduction

Let GF(q) be a finite field with q elements. Let d, m be integers with d ≥ 2 and

m > d. Let PG(m, 2) be an m-dimensional projective space over the binary field

GF(2).

Definition 1.1. A family S of d-dimensional subspaces of PG(m, 2) is called a

d-dimensional dual hyperoval in PG(m, 2) if it satisfies the following conditions:

(1) any two distinct members of S intersect in a projective point,

(2) no three mutually distinct members of S have a common projective point,

(3) all members of S generate PG(m, 2), and

(4) there are exactly 2d+1 members of S.

In Example 2.5 and Theorem 6.1 of [1] (see also Proposition 3.1 of [2]),

B. N. Cooperstein and J. A. Thas showed that each d-dimensional dual hyperoval

in PG(2d, 2) is obtained as a dual of a partition of PG(2d, 2) \ PG(d, 2).
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Theorem 1.2 ([1, Example 2.5 and Theorem 6.1]). Let PG(d, 2) be a d-dimen-

sional subspace of PG(2d, 2). Consider a partition of PG(2d, 2) \ PG(d, 2) into

2d+1 (d − 1)-dimensional subspaces. Then the set S of the dual subspaces of these

(d − 1)-dimensional subspaces in PG(2d, 2) is a d-dimensional dual hyperoval in

PG(2d, 2). The converse also holds.

This family is called as Cooperstein-Thas’s family in [2]. In [5] (see also [6]),

Yoshiara constructed a family of d-dimensional dual hyperovals in PG(2d, 2) in

a different way, as follows.

Theorem 1.3 ([5, Proposition 3]). Let σ be a generator of the automorphism

group of GF(2d+1) over GF(2). Inside GF(2d+1) ⊕ GF(2d+1), let us define XY (t)

for t ∈ GF(2d+1) as

XY (t) :=
{

(x, xσt + xtσ
−1

) | x ∈ GF(2d+1) \ {0}
}

.

Then SY :=
{

XY (t) | t ∈ GF(2d+1)
}

is a d-dimensional dual hyperoval in PG(2d, 2).

Then, it is quite natural to ask whether all the members of the Cooperstein-

Thas’s family are the Yoshiara’s dual hyperovals or not. In the case d = 2, the

answer is affirmative ([2, Theorem 1]). In this paper, we will give a negative

answer to this question in general.

Definition 1.4 ([3]). Let Π be a vector space over GF(q). A spread T of Π is a

collection of at least two subspaces of Π which satisfies the following conditions:

(1) two distinct elements of T are isomorphic subspaces,

(2) every point except {0} of Π is on exactly one subspace in T , and

(3) for any U1, U2 ∈ T with U1 6= U2, Π is a direct (vector space) sum of U1

and U2.

It is known that the vector space Π has even dimension 2m with m > 0.

Moreover, the cardinality of the spread |T | = qm + 1. (See [3] or [4].)

From spreads of the vector space V ⊕ V , where V is a (d + 1)-dimensional

vector space over GF(2), we are able to construct d-dimensional dual hyperovals

as follows:

Theorem 1.5. Let V := GF(2)d+1 be a (d + 1)-dimensional vector space over

GF(2), and T := {K0,K1, . . . ,K2d+1} a spread of V ⊕ V . Let v be a non-zero

element of V ⊕ V . We may assume that v is contained in K0. Let

π : V ⊕ V ∋ x 7→ x̄ ∈ V ⊕ V := (V ⊕ V )/〈v〉
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be a GF(2)-linear mapping with kernel {0, v} (which we denote by 〈v〉), and image

(V ⊕ V )/〈v〉. We regard PG
(

(V ⊕ V )/〈v〉
)

= PG(2d, 2). Then,

S :=
{

π(K1) \ {0}, π(K2) \ {0}, . . . , π(K2d+1) \ {0}
}

is a d-dimensional dual hyperoval in PG(2d, 2).

We will give the proof of this theorem in the following section. We refer

the relations among spreads, quasifields and translation affine planes to Kalla-

her [3] or Lüneburg [4].

Example 1. We regard V := GF(2d+1) as a (d + 1)-dimensional vector space

over GF(2). Let σ be a generator of the Galois group Gal(GF(2d+1)/GF(2)). Let

π′ : GF(2d+1) ⊕ GF(2d+1) ∋ (x, y) 7→ (x, yσ + y) ∈ GF(2d+1) ⊕ GF(2d+1) .

Then it is easy to see that the kernel of π′ is {(0, 0), (0, 1)}, and the image of π′

is W := {(x, y) | Tr(y) = 0}, which is a (2d + 1)-dimensional vector space over

GF(2), where Tr is a trace function from GF(2d+1) to GF(2).

In V ⊕ V , let

K∞ :=
{

(0, x) | x ∈ GF(2d+1)
}

and

Ka :=
{

(x, xa) | x ∈ GF(2d+1)
}

for a ∈ GF
(

2d+1
)

.

Then, T := {K∞} ∪ {Ka | a ∈ GF(2d+1)} is a spread of V ⊕ V . (It is well known

that the translation affine plane constructed from this spread is a Desarguesian

affine plane.) Let S′ :=
{

π′(Ka) \ {0} | a ∈ GF(2d+1)
}

. Then, by Theorem 1.5,

S′ is a d-dimensional dual hyperoval in PG(2d, 2) = PG(W ).

Proposition 1.6. The dual hyperoval S′ above is isomorphic to Yoshiara’s dual

hyperoval SY .

Proof. We have π′(Ka) \ {0} =
{

(x, (ax)σ + ax) | x ∈ GF(2d+1) \ {0}
}

. If we

put aσ := t, then a = tσ
−1

, hence we have

{

(x, (ax)σ + ax) | x ∈ GF(2d+1) \ {0}
}

=
{

(x, xσt + xtσ
−1

) | x ∈ GF(2d+1) \ {0}
}

.

Therefore, we have π′(Ka) \ {0} = XY (t), where XY (t) is as in Theorem 1.3.

Hence, we have
{

π′(Ka) \ {0} | a ∈ GF(2d+1)
}

=
{

XY (t) | t ∈ GF(2d+1)
}

and

consequently, we have S′ = SY . �

Now, we will use quasifields Q to construct spreads of Q ⊕ Q.
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Definition 1.7 ([3, 4]). An algebraic structure (Q; +, ◦) is called a quasifield if

it satisfies the following conditions:

(i) Q is an abelian group under + with identity 0 ;

(ii) for a, c ∈ Q with a 6= 0, there exists exactly one x ∈ Q such that a ◦ x = c ;

(iii) for a, b, c ∈ Q with a 6= b, there exists exactly one x ∈ Q such that x ◦ a −

x ◦ b = c ;

(iv) for all a ∈ Q, a ◦ 0 = 0 ◦ a = 0 ;

(v) there exists an element 1 ∈ Q\{0} such that 1◦a = a◦1 = a for all a ∈ Q ;

(vi) for all a, b, c ∈ Q, (a + b) ◦ c = a ◦ c + b ◦ c .

A nearfield is a quasifield N in which the multiplication ◦ is associative; that

is, in which (N \ {0}, ◦) is a group. A semifield is a quasifield S in which the left

distributive law

a ◦ (b + c) = a ◦ b + a ◦ c

holds for all a, b, c ∈ S.

In Q ⊕ Q, we define K∞ :=
{

(0, y) | y ∈ Q
}

and Ka :=
{

(x, x ◦ a) | x ∈ Q
}

for a ∈ Q. Then it is known that {K∞} ∪ {Ka | a ∈ Q} is a spread of Q ⊕ Q.

Example 2 ([3, 2.1 and 2.3]). Consider the field GF(qn) where n ≥ 1 and q = ps

with p a prime and s ≥ 1. Let λ : GF(qn) → In = {0, 1, . . . , n − 1} be a mapping

satisfying: (i) λ(0) = λ(1) = 0, and (ii) given a, b ∈ GF(qn) \ {0} there exists

x 6= 0 with

xqλ(a)

a = xqλ(b)

b

if and only if a = b. We define x ◦ y := xqλ(y)

y. Then
(

GF(qn),+, ◦
)

is a quasifield

called a generalized André system.

Consider also the field GF(qn) and q = ps with p a prime and s ≥ 1, and

assume every prime divisor of n divides q − 1. Also assume n 6≡ 0 (mod 4) if q ≡ 3

(mod 4). Choosing a primitive element ω of GF(qn), define λ : GF(qn) \ {0} →

In = {0, 1, . . . , n − 1} by

(qλ(a) − 1)(q − 1)−1 ≡ i (mod n), where a = wi ∈ GF(qn) .

With λ(0) = 0, the mapping λ satisfies the conditions (i) and (ii) for a generalized

André system. This system, denoted by N(q, n), is a nearfield and is called a regular

nearfield (or a Dickson nearfield).

Proposition 1.8 ([4, Theorem 7.3 and Theorem 7.4]). The group consisting of

non-zero elements of the regular nearfield (N(q, n)\{0}, ◦) in Example 2 is a non-

abelian metacyclic group. Moreover, there exist φ(n)/m non-isomorphic N(q, n)’s,

where φ is the Euler function and m is the order of p mod n.
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Moreover, it is known that, in GF(2d+1), using a natural addition of the field

GF(2d+1), we are able to define more multiplications ◦ so that we have some

semifields, such as Knuth semifields, Kantor semifields or Albert semifields, and

so on. (See [3].)

Definition 1.9 (Dual hyperoval SK). Let
(

GF(2d+1),+, ◦
)

be a quasifield, and

regard V := GF(2d+1) as a vector space over GF(2). In V ⊕ V , we define

K∞ :=
{

(0, x) | x ∈ GF(2d+1)
}

and

Ka :=
{

(x, x ◦ a) | x ∈ GF(2d+1)
}

for a ∈ GF(2d+1) .

Then, T := {K∞} ∪
{

Ka | a ∈ GF(2d+1)
}

is a spread of V ⊕ V . Let σ be a

generator of the Galois group Gal(GF(2d+1)/GF(2)). Let π′ be a GF(2)-linear

mapping defined by

π′ : GF(2d+1) ⊕ GF(2d+1) ∋ (x, y) 7→ (x, yσ + y) ∈ GF(2d+1) ⊕ GF(2d+1) .

Then, as in Example 1, the image of π′ is W := {(x, y) | Tr(y) = 0}, which is

a (2d + 1)-dimensional vector space over GF(2). We note that the kernel of π′,

{(0, 0), (0, 1)}, is contained in K∞. We define XK(a) := π′(Ka) \ {0}. Then, by

Theorem 1.5, SK :=
{

XK(a) | a ∈ GF(2d+1)
}

is a d-dimensional dual hyperoval

in PG(2d, 2) = PG(W ), where

XK(a) =
{

(x, (x ◦ a)σ + x ◦ a) | x ∈ GF(2d+1) \ {0}
}

.

Then we have the following proposition.

Proposition 1.10. If the algebraic system
(

GF(2d+1),+, ◦
)

is a regular nearfield,

then the automorphism group GK of the dual hyperoval SK contains the subgroup

N :=
{

nb | b ∈ GF(2d+1) \ {0}
}

with nb(XK(t)) = XK(b ◦ t) defined by

nb((x, y)) := (x ◦ b′, y) ,

where b′ is an element which satisfies that b′ ◦ b = 1. Moreover, N is isomorphic

to the group (GF(2d+1) \ {0}, ◦), and so, by Proposition 1.8, N is a non-abelian

metacyclic group with the cardinality |N | = 2d+1 − 1. If the algebraic system

(GF(2d+1),+, ◦) is a semifield, then the automorphism group GK of the dual hy-

peroval SK contains the subgroup T :=
{

ta | a ∈ GF(2d+1)
}

with ta(XK(t)) =

XK(t + a), defined by

ta((x, y)) :=
(

x, y + (x ◦ a)σ + x ◦ a
)

,

and T is isomorphic to GF(2d+1) as an additive group.
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Proof. Since the multiplication ◦ is associative in the regular nearfield, we have

nb(XK(t)) =
{

(x ◦ b′, ((x ◦ b′) ◦ (b ◦ t))σ + (x ◦ b′) ◦ (b ◦ t))
}

= XK(b ◦ t)

for b ∈ GF(2d+1) \ {0}. Hence

nb2

(

nb1(XK(t))
)

= nb2(XK(b1 ◦ t)) = XK((b2 ◦ b1) ◦ t) = nb2◦b1(XK(t))

for b1, b2 ∈ GF(2d+1) \ {0}. Therefore N :=
{

nb | b ∈ GF(2d+1) \ {0}
}

is

isomorphic to the group
(

GF(2d+1) \ {0}, ◦
)

. Since the multiplication ◦ has left

distributive law in the semifield, we also have

ta(XK(t)) =
{

(x, (x ◦ t)σ + x ◦ t + (x ◦ a)σ + x ◦ a)
}

= XK(t + a) ,

hence we have T ∼= GF(2d+1) as an additive group. �

By Theorem 1.2 (see also [2, 1.2. Examples (a)]), the complement of the

points on the members of the dual hyperoval in PG(2d, 2), that is,

PG(2d, 2) \
⋃

{

the points on the members of the dual hyperoval
}

is a (d − 1)-dimensional subspace. Hence we have the following lemma.

Lemma 1.11. Let U :=
{

(0, y) | y ∈ GF(2d+1),Tr(y) = 0
}

. Note that U ⊂

W :=
{

(x, y) | x, y ∈ GF(2d+1),Tr(y) = 0
}

. Then, in PG(2d, 2) = PG(W ), the

(d − 1)-dimensional subspace PG(U) is the complement of the set
⋃

XK(a) of the

points which are on some members of the dual hyperoval SK in Definition 1.9,

that is,

PG(U) = PG(W ) \
⋃

a∈GF(2d+1) XK(a) .

In section 3, we will prove the following theorem, hence we give a negative

answer to the previous question.

Theorem 1.12. Let the algebraic system
(

GF(2d+1),+, ◦
)

in Example 2 be a reg-

ular nearfield. Then, a d-dimensional dual hyperoval SK in PG(2d, 2) in Defini-

tion 1.9 is not isomorphic to the Yoshiara’s dual hyperoval SY .

2 Proof of Theorem 1.5

Since Ki 6∋ v for 1 ≤ i ≤ 2d+1, π(Ki) \ {0} is a d-dimensional subspace in

PG(2d, 2) = PG((V ⊕ V )/〈v〉) for 1 ≤ i ≤ 2d+1. Let π(Ki) \ {0} and π(Kj) \ {0}

have a common point π(xi) = π(xj) for xi ∈ Ki \ {0} and xj ∈ Kj \ {0} with

1 ≤ i < j ≤ 2d+1. Then, since π(xi + xj) = 0, we have xi + xj = v. However,
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since V ⊕ V is a direct sum of Ki and Kj by (3) of Definition 1.4, there exist

unique xi ∈ Ki \ {0} and unique xj ∈ Kj \ {0} which satisfies that xi + xj = v.

Thus, we have proved that π(Ki) \ {0} and π(Kj) \ {0} have only one common

point. Assume that π(Ks) \ {0}, π(Kt) \ {0} and π(Ku) \ {0} have a common

point π(xs) = π(xt) = π(xu) for xs ∈ Ks \ {0}, xt ∈ Kt \ {0} and xt ∈ Kt \ {0}

with 1 ≤ s < t < u ≤ 2d+1. Then, since π(xs +xt) = 0, we have xs +xt = v. We

also have xs + xu = v. However, we have xt = xu from these equations, which

contradicts (2) of Definition 1.4. Hence π(Ks)\{0}, π(Kt)\{0} and π(Ku)\{0}

with 1 ≤ s < t < u ≤ 2d+1 have no common point. Since the cardinality

∣

∣S
∣

∣ =
∣

∣{π(K1) \ {0}, π(K2) \ {0}, . . . , π(K2d+1) \ {0}}
∣

∣ = 2d+1 ,

and since it is trivial that all members of S generate PG(2d, 2), we conclude that

S is a d-dimensional dual hyperoval in PG(2d, 2) = PG
(

(V ⊕ V )/〈v〉
)

. �

3 Proof of Theorem 1.12

We consider the dual hyperovals inside the projective space

PG(2d, 2) =
{

(x, y) | (x, y) ∈ GF(2d+1) ⊕ GF(2d+1) \ {(0, 0)},Tr(y) = 0
}

.

We recall that an automorphism of the dual hyperoval S in PG(2d, 2) is a linear

transformation which permute the members of S. We also define an isomor-

phism of the dual hyperovals S to S′ as a linear transformation of PG(2d, 2)

which sends each member of S to that of S′.

Let d+1 = sn with s ≥ 1, and assume every prime divisor of n divides 2s−1.

(For example, (s, n) = (4, 3), etc.) Then, by Example 2, we are able to define

a multiplication ◦ of GF(2d+1) such that
(

GF(2d+1),+, ◦
)

is a regular near field.

Hence, by Definition 1.9, we have a dual hyperoval

SK =
{

XK(t) | t ∈ GF(2d+1)
}

,

where

XK(t) :=
{

(x, (x ◦ t)σ + x ◦ t) | x ∈ GF(2d+1) \ {0}
}

.

By Proposition 1.10, the automorphism group GK of the dual hyperoval SK

contains a subgroup N :=
{

nb | b ∈ GF(2d+1)\{0}
}

with nb(XK(t)) = XK(b◦t)

defined by

nb((x, y)) := (x ◦ b′, y) ,

where b′ ◦ b = 1. Let GK(0) be a subgroup of GK which fixes XK(0) := {(x, 0) |

x ∈ GF(2d+1)}. Then it is easy to see that N ⊂ GK(0). By Proposition 1.8, N is

a non-abelian metacyclic group with the cardinality |N | = 2d+1 − 1.
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We recall that the automorphism group GY of Yoshiara’s dual hyperoval SY

is generated by the groups T , M and F , where T =
{

ta | a ∈ GF(2d+1)
}

with

ta(XY (t)) = XY (t + a) defined by

ta : (x, y) 7→ (x, xσa + xaσ−1

+ y) ,

M =
{

mb | b ∈ GF(2d+1) \ {0}
}

with mb(XY (t)) = XY (bt) defined by

mb : (x, y) 7→ (xb−1, y) ,

and F =
{

fτ | τ ∈ Gal(GF(2d+1)/GF(2))
}

with fτ (XY (t)) = XY (tτ ) defined by

fτ : (x, y) 7→ (xτ , yτ ) .

We also have GY = T : (M : F ). Hence GY is doubly transitive on the mem-

bers of SY . (See [5, Proposition 7].) We note that M is a cyclic group with

cardinality |M | = 2d+1 − 1.

Let GY (0) be a subgroup of GY which fixes XY (0) :=
{

(x, 0) | x ∈ GF(2d+1)
}

.

Then, we have GY (0) = M : F from the expressions of T , M and F and the

fact that GY = T : (M : F ).

Lemma 3.1. Let g be an element of GY (0) = M : F with the action g : (x, y) 7→

(g1(x, y), g2(x, y)), where g1 and g2 are GF(2)-linear mapping. If g2(x, y) = y for

any (x, y) ∈ GF(2d+1) ⊕ GF(2d+1) with Tr(y) = 0, then we have g ∈ M .

Proof. Let g = mbfτ ∈ GY (0) = M : F , then g(x, y) =
(

xτ (b−1)τ , yτ
)

by

definition. Assume that g2(x, y) = yτ = y for any y ∈ GF(2d+1) with Tr(y) = 0.

Then, since the subset
{

y ∈ GF(2d+1) | Tr(y) = 0
}

is not contained in any

proper subfield of GF(2d+1), we have τ = id ∈ Gal
(

GF(2d+1)/GF(2)
)

. Hence

we have g ∈ M . �

We assume to the contrary that there exists an isomorphism i from SK to SY .

Since GY is doubly transitive on the members of SY , we may assume that

i(XK(0)) = XY (0), that is, i maps
{

(x, 0) | x ∈ GF(2d+1)
}

onto itself. Hence,

we may assume that i maps GK(0) to GY (0). On the other hand, since i is an iso-

morphism from SK =
{

XK(t) | t ∈ GF(2d+1)
}

to SY =
{

XY (t) | t ∈ GF(2d+1)
}

,

we have

i
(

⋃

t∈GF(2d+1) XK(t)
)

=
⋃

t∈GF(2d+1) XY (t) .

Hence, by Lemma 1.11, we have

i(U) = i
(

PG(2d, 2) \
⋃

t∈GF(2d+1) XK(t)
)

= PG(2d, 2) \
⋃

t∈GF(2d+1) XY (t) = U ,
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which means that i maps
{

(0, y) | y ∈ GF(2d+1),Tr(y) = 0
}

onto itself. There-

fore, there exist GF(2)-linear mapping f and g such that the isomorphism i is

expressed as follows:

i((x, y)) = (f(x), g(y)) . (1)

Now, we have i(N) =
{

i(nb) | b ∈ GF(2d+1) \ {0}
}

∼= N as a subgroup

of GY (0) = M : F with the action i(nb)
(

XY (t)
)

= i
(

nb

(

i−1(XY (t))
)

)

for

XY (t) ∈ SY . Then, by (1), the action of i(nb) is

i(nb) : (x, y) 7→
(

f
(

f−1(x) ◦ b′
)

, y
)

.

Hence, by Lemma 3.1, i(N) is a subgroup of M ⊂ GY (0). However, the cardi-

nality |i(N)| = |M | = 2d+1 − 1. Moreover, N is a non-abelian metacyclic group

and M is a cyclic group. This is impossible. Hence, we have a contradiction.

Therefore, we finally have that the dual hyperoval SK is not isomorphic to the

Yoshiara’s dual hyperoval SY . �
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