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Abstract

Projective planes of order n admitting PSL(2, ¢), ¢ > 3, as a collineation
group are investigated for n < ¢2. As a consequence, affine planes of or-
der n admitting PSL(2,q), ¢ > 3, as a collineation group are classified for
n < ¢* and (g,n) # (5, 16). Finally, a complete classification of the transla-
tion planes order n that admitting PSL(2, ¢), ¢ > 3, as a collineation group
is obtained for n < ¢2.
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1 Introduction and main results

A classical problem in finite geometry is classifying finite projective planes II of
order n admitting a collineation group G isomorphic to PSL(2, ¢). The first sig-
nificant result related to this problem dates back to 1964 and is due to Liineburg
[21] and to Yaqub [26]. In their papers, the authors provide a characterization
of the Desarguesian projective planes of order n = ¢q. Some years later, Kantor
[19], Hering [9], Hering and Walker [11, 12], Reifart and Stroth [25] extended
the investigation to planes of more arbitrary order but with additional assump-
tions: G does not fix points, lines or triangles of IT and G contains involutory
perspectivities. In 1989, Moorhouse obtains significant progress along these
lines in two ways: he classifies projective planes of order n admitting PSL(2, q)
as a collineation group for n < ¢ and he investigates the structure of the planes
of order ¢2 for g odd. In the second case, Moorhouse shows that II cannot be
the projective extension of an affine plane admitting PSL(2, ¢) as a collineation
group, except for ¢ = 5 or 9 which remain still unsolved. In particular, Moor-
house provides a new proof for ¢ odd of the characterization, due to Foulser
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and to Johnson [6, 7], of the translation planes of order ¢* admitting PSL(2, q).
In 1991, Dempwolff [3] obtains a complete characterization of the projective
planes of order 16 admitting PSL(2,7) as collineation group. In that paper,
Dempwolff shows that, beside the Desarguesian plane of order 16, the Lorimer-
Rahilly plane of order 16, the Johnson-Walker plane of order 16, and their duals
also occur. A similar result for translation planes of order 16 was obtained by
Johnson [18] in 1984. In 1994, Ho [13] and Ho-Gongalves [15] investigate
the projective planes of order n admitting G isomorphic to PSL(2, ¢) for ¢ odd,
under the assumption that Gp # (1) for each point P of II. The authors prove
that GG does not fix points, lines or triangles of II. In particular, IT cannot be the
projective extension of an affine plane that admits PSL(2,¢) as a collineation
group. They also obtain a characterization of the Desarguesian plane of order
g under the assumption that G contains involutory homologies and that Gp
has a particular order for each point P of II. Recently, Liu and Li [20] proved
that the unique projective plane II of order n admitting PSL(2, ¢) as transitive
collineation group is IT = PG(2, 2) and the group is isomorphic to PSL(2, 7).

This paper focuses on the main problem cited above. In particular, the projec-
tive planes of order n admitting a collineation group G isomorphic to PSL(2, q),
q > 3, for n < ¢, are investigated and the following results are obtained.

Theorem 1.1. Let IT be a projective plane of order n admitting a collineation

group G = PSL(2,q), ¢ > 3. If n < ¢?, then one of the following occurs:

(1) n < g and one of the following occurs:
(@) n=4, 11 =PG(2,4) and G = PSL(2,5);
(b) n=2o0r4, I1 = PG(2,2) or PG(2,4), respectively, and G = PSL(2,7);
() n=4,II1 =PG(2,4) and G = PSL(2,9).

(2) n=gq = PG(2,q) and one of the following occurs:
(a) G fixes a line or a point and q is even;
(b) G is strongly irreducible and q is odd.

(3) ¢ < n < ¢? and one of the following occurs:

(a) G fixes a point or a line, and one of the following occurs:
(i) n =16 and G = PSL(2,5);

(ii) n = 16, II is the Lorimer-Rahilly plane or the Johnson-Walker
plane, or their duals, and G = PSL(2,7);

(b) G fixes a subplane 11, of II, ¢ is odd and one of the following occurs:
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@) n =16, Iy = PG(2,4) and G = PSL(2,5);
(ii) Ty = PG(2,2) or PG(2,4), and G =2 PSL(2,7);
(iii) Iy = PG(2,4) and G = PSL(2,9).
(c) G is strongly irreducible and q is odd;

(4) n = ¢ and one of the following occurs:

(a) G fixes a point or a line, and one of the following occurs:
(i) n=25and G = PSL(2,5);
(ii) n =81 and G = PSL(2,9);
(iii) n = ¢> qeven, and G = PSL(2, q).
(b) G fixes a subplane 11y of 11, ¢ is odd and one of the following occurs:
() n=¢? Iy =2 PG(2,q) and G = PSL(2,q);
(i) n =25, Iy = PG(2,4) and G = PSL(2,5);
(iii) n =81, IIp =2 PG(2,4) and G = PSL(2,9);
(iv) n = 81, Iy is a Hughes plane of order 9 and G = PSL(2,9);
(c) G is strongly irreducible.

The Theorem 1.1 under the additional assumptions n < g, or n = ¢ with ¢
odd yields the cases (1), (2), and (4) for ¢ odd. So, we need to prove that (3)
occurs when ¢ < n < ¢2, and either (4a.iii) or (4c) for n = ¢2 and q even.

Examples corresponding to case (1) or (2) really occur (see [24] and [21,
26], respectively). Examples of the case (3a.i) occur in the Dempwolff plane
of order 16 (see [7]), those of type (3a.ii) really occur (see [3]). Examples of
the case (3b.i) occur in the Hall plane of order 16, those corresponding to the
case (3b.ii) occur in the Desarguesian plane of order 16 when II, 2 PG(2,2)
by [3]. Also, examples of the case (3b.iii) occur in the Desarguesian plane of
order 64 or the Figueroa plane of order 64. See section 8 for a description of
the latter. Furthermore, examples of the case (3c) occurs in the Desarguesian
planes of prime order. In these cases G = PSL(2,¢) with ¢ = 5,7 or 9 and the
involutions in G are a homologies of II. For a description of these examples
see [15] and [13]. While cases (4a.i) and (4a.ii) are open, examples of the case
(4a.iii) typically occurs in the Desarguesian planes, in the Hall planes and in the
Ott-Schaeffer planes (see [7]). The case (4b.i) occurs in the Desarguesian or
Generalized Hughes planes (see [22]). Finally the cases (4b.ii), (4b.iii), (4b.iv)
and (4c) are open. Other examples are obtained in section 8.

A special case of the previous theorem is the following which focuses on the
projective extensions of affine planes of order n that admit G = PSL(2, ¢), ¢ > 3,
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as a collineation group when n < ¢2. It should be stressed that it furnishes a
complete classification of such affine planes, when n < ¢2 and (q,n) # (5,16).

Theorem 1.2. Let II be the projective extension of an affine plane of order n that
admits a collineation group G =2 PSL(2,q), ¢ > 3. If n < ¢? then one of the
followings occurs:

M) n=gq q=2" h>1,1T=2PG(2,q) and G = PSL(2,q);
(2) n =16 or 25, and G = PSL(2,5);

(3) n =16, Il is the Lorimer-Rahilly plane or the Johnson-Walker plane, or their
duals, and G = PSL(2,7);

(4) n=81and G = PSL(2,9);
(5) n=¢% q=2" h>1,and G = PSL(2,q).

Finally, the previous theorem leads to a complete classification of the projec-
tive extensions of translation planes of order n that admit a collineation group
G = PSL(2,q), ¢ > 3, for n < ¢*. In particular, it represents an extension of the
Foulser-Johnson Theorems [6] and [7], when G = PSL(2, ¢) and ¢ is even.

Theorem 1.3. Let II be the projective extension of a translation plane of order n
that admits a collineation group G = PSL(2,q), ¢ > 3. If n < ¢?, then one of the
following occurs:

(1) n=gq,q=2" h>1,G=2PSL(2,q) and Il = PG(2, q);

(2) n =16, G 2 PSL(2,7) and II is the Lorimer-Rahilly plane or the Johnson-
Walker plane;

B)n =4¢*q=2" h>1,G = PSL(2,¢) and II is the Desarguesian or
Hall plane of even order ¢2, or the Ott-Schaeffer plane of order ¢2, or the
Dempwolff plane of order 16 (in this case ¢ = 4).

The paper is structured as follows. In section 2, we fix notation and introduce
some geometrical and group-theoretical background. In section 3, we provide
a reduction for the group-structure of G p, where P is a point of a line [ of IT
fixed by G. A reduction is also provided for types and numbers of G-orbits on I.
The same is also made for G,,,, where m is a line of [Q] and @ is a point of IT
fixed by G. Sections 4, 5, 6 and 7 are devoted to the proof of Theorem 1.1 for
g = 1,3,5,7mod 8, respectively. Finally, in section 8 the proofs of Theorems 1.1,
1.2 and 1.3 are completed and some examples are provided. In particular, in
this section, the case ¢ even is resolved.
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2 The background

In this section, we introduce the background for the problem investigated and
we state the group-theoretical theorems that are used in the proof of our main
result. Furthermore some useful numerical and group-theoretical results are
proved.

For what concerns finite groups and in particular the group PSL(2,q) the
reader is referred to [4] and [17]. The necessary background about finite pro-
jective planes may be found in [16].

Let IT = (P, L) be a finite projective plane of order n. If H is a collineation
group of ITand P € P (I € L), we denote by H(P) (by H(l)) the subgroup of H
consisting of perspectivities with centre P (axis ). Also, H(P,l) = H(P)NH(l).
Furthermore, we denote by H (P, P) (by H(l,l)) the subgroup of H consisting
of elations with centre P (axis [).

Let IT be a finite projective plane of order n admitting a collineation group G
isomorphic to PSL(2, q), and assume that n < ¢2. The following theorems deal
with the case n < ¢, n = g and n = ¢?, respectively.

Theorem 2.1 (Moorhouse). If Il is a projective plane of order n < q admitting a
collineation group G isomorphic to PSL(2, q), then 11 is Desarguesian and (n, q) =
(2,3),(2,7),(4,5),(4,7) or (4,9). Moreover, each of the latter cases indeed occurs.

Proof See [24, Theorem 1.1]. O

Theorem 2.2 (Liineburg-Yaqub). If I1 is a projective plane of order q admitting
a collineation group G isomorphic to PSL(2, q), then 11 is Desarguesian.

Proof. See [21] and [26]. O

Theorem 2.3 (Moorhouse). Suppose that a projective plane I1 of order ¢? admits
a collineation group G isomorphic to PSL(2, q), where q is odd. Then one of the
following must hold:

(1) G acts irreducibly on 11 ;
(2) ¢ = 3 and G fixes a triangle but no point or line of II;

(3) ¢ =5, Fix(QG) consists of an antiflag (X,1) and G has point orbits of length
5,5,6and 10 on [;

(4) ¢ =9 and Fix(Q) consists of a flag.

Proof. See [24, Theorem 1.2]. O
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Theorem 2.4 (Moorhouse). Suppose that a projective plane 11 of order q* admits
a collineation group G isomorphic to PSL(2, q) (where ¢ is odd), and that G leaves
invariant a subplane 1y of I1. If ¢ # 5,9, then Il is a Desarguesian Baer subplane
of 1L

Proof. See [24, Corollary 5.2(i)]. O

As a consequence of the previous theorems, it follows that we may con-
sider projective planes II of order n admitting a collineation group G
isomorphic to PSL(2, q) for ¢ < n < ¢ when q is odd, and for n < ¢*
and n # g when q is even.

Before starting our investigation, we introduce some tools that will be used
throughout the paper. Let PY be an orbit on [, let X be any subgroup of G
and let a be any element of G. Set Fixpc(X) = Fix(X) N PY and Fixpe (o) =
Fix(a) N PE. If r% is an orbit of lines of II, set Fix,¢(X) = Fix(X)Nr% and
Fix,c (a) = Fix(a) NrS.

Proposition 2.5 (Moorhouse). Let G be a collineation group of a finite projective
plane 11 of order n, let P € | and let H be a subgroup of G. Then

Ng(H
|Fixpe (H)| = % -{U < Gp : Uisconjugate to Hin G}| . (1)
P
Proof. See [24, relation (9)]. O

Note that (1) still works if we replace Fixpc(H) with Fix,c(X) and Gp
with G,.

Theorem 2.6 (Ho). Let GG be a collineation group of a finite projective plane 11 of
order n. Suppose that either n is not a square or n = m? with m = 2 or 3 mod 4.
If 4] |G|, then G contains an involutory perspectivity.

Proof. See [14, Theorem A]. O

As we will see, the following lemmas play a central role in section 4.

Lemma 2.7. Let q be an even power of an odd prime, let x be a positive integer;
let u be a positive divisor of % and let h = 2 or 4. Then the following hold:

(I) The quadruple (x, h,u,~/q) = (1,4,1,3) is the unique solution of the Dio-
phantine equation

xﬁ:h\/a_l—l. 2
2u
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(I1) The quadruple (z,h,u,/q) = (1,h,h/2,+/q) for \/g = 3mod h is the
unique solution of the Diophantine equation

z\/a:h@fl. 3
2u

Proof. Consider the Diophantine equation (2). Assume that h = 2. Then (2)
becomes z+/q = @ — 1. Since u > 1, then z+/q < v/q — 2. Nevertheless, this
is impossible, since = > 1. So, no solutions arise for h = 2.

Assume that h = 4. Then (2) becomes

x\/cj:z%—L @

If u > 2, then x/q < \/q—2. Thus, we again obtain a contradiction, since x > 1.
Therefore, © = 1. By substituting this value in (4), we obtain x+/q = 2,/q — 3.
This one has a unique solution (z, /q) = (1, 3). Hence, (z, h, u,/q) = (1,4,1,3)
is the unique solution of the Diophantine equation (2) for h = 4. From this and
bearing in mind that (2) has no solutions for 4 = 2, we obtain the assertion (I).

Now, consider the Diophantine equation (3). Assume that 4 = 2. Then (3)
becomes

zﬁ:@fl. (5

If w > 1, then @ —1 < /q < zv/q. Thus, (5) has no solutions in this case.
So, assume that w = 1. By substituting this value in (5), we obtain z/q = /q
and hence x = 1. Therefore, we have proved that (z, h,u, /q) = (1,2,1,/q) is
the unique solution of (3) for h = 2.

Now, assume that ~ = 4. Then (3) becomes
1
eyg—oYltl 6)
u

If w > 2, then 2@ —1 < /q < z/q. Therefore, (6) has no solutions in
this case. So, there are admissible solutions for (6) only for u < 2. If u = 1,
then (6) becomes x/q = 2,/q + 1. This one has no solutions, since the first
part is divisible by /g, while the second is not. Thus, u = 2. At this point,
it is a straightforward computation to see that (x, h,u,/q) = (1,4,2,/q) for
v/q¢ = 3mod 4 is a solution of (6) and hence of (3). From this and bearing in
mind that (z, h, u, /q) = (1,2,1,/q) is the unique solution of (3) for h = 2, we
obtain the assertion (II). O

Lemma 2.8. Let q be an even power of an odd prime, let = be a positive integer
and let uy and us be two positive divisors of %. Furthermore, let h = 2 or 4.
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Ifur < uy, then (z, h,ur,us, v/q) = (1,2,1, X422 /g, (3,4,1,1,5), (1,4,3,3,7),
or (1,4, 3,5,31) are the unique solutions of the Diophantine equation

m/&:h*/&_uh\/‘_’_l—y (7)
2’&1

2us
Proof. Multiplying by 2u;us each term of (7), we have
2uiuzr/q = hua(vVq — 1) + hui (Vg — 1) — 2uqus .
Now, collecting the terms with respect to /¢, we obtain
[h(u1 + u2) — 2uiuaz] Vg = h(uy + ug) + 2ujus . 8
Since h(uy + uz2) + 2ujus > 0, then

2uiugr < h(ug + u2) . ()]

Assume that h = 2. Then ujusxr < uy + ug by (9). In particular, ujus <
uy + ug, as x > 1. This, in turn, yields wjus < 2us, since u; < wy by our
assumption. Thus, u; < 2. That is u; = 1. Now, by substituting h = 2 and
uy; = 1in (9), we obtain 2usz < 2(1 + u2) and hence # < 14 1/us. Thenz =1,
as up > 1. By substituting the values = 1, h = 2 and »; = 1 in (8), and
then by elementary calculations of this one, we have 2,/¢ = 2 + 4us. Hence,
Uy = \/5271. Consequently, (z, h,u1,us2,+/q) = (1,2,1, @, \/q) is a solution of
.

Assume that h = 4. Then

uruor < 2(uy + ug) (10)

by (9).

If x > 4, then 2ujus < ug + us < 2us by (10), since u; < us by our assump-
tion. This yields u; < 1, which is a contradiction.

If 2 = 3, then 3ujus < 2(u; + uz) by (10). Since uy < ug, we have 3ujug <
4uy and hence u; = 1. Now, by substituting (z,h,u;) = (3,4,1) in (9), we
obtain uy < 2. Actually, us = 1. Finally, by substituting (x, h, u1,u2) = (3,4,1,1)
in (8), we have /q = 5. So, (z, h, u1, u2,v/q) = (3,4,1,1,5) is a solution of (7).

If = 2, then ujus < u; +us9 by (10). By arguing as above, we obtain u; = 1.
By substituting (z, h,u1) = (2,4,1) in (8), we have 4,/¢ = 4 + 6uy and hence
Uy = @. Nevertheless, this contradicts the assumption us | @.

If £ = 1, then ujus < 4(ug + uz) by (9). Thus, u; < 8, since u; < ug. On the
other hand, by substituting » = 4 and x = 1 in (7), we have

\/§+1:\/571+\/571'

2 Uy us

(11)
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If u; = 1, no solutions arise, since

\/5_1<\/c‘1—1 \/21—1:\/21;1

+

Uq U9
and since +/q is odd. So, u; > 2. Assume that u; > 4. Then us > 4 as us > uy.
Hence,

Va+1 :\/5—1+\/§—1 ~Va-1
2 Uy us 2
Therefore, there are also no solutions in this case. Consequently, u; = 2 or 3.
Assume that u; = 2. Then (11) becomes ‘/6;1 = ‘/62_1 + ‘/3;1. This yields uy =
v/q — 1. Nevertheless, this cannot occur, since us | @ by our assumptions.
Hence, u; = 3. Then uy = % from (11). This yields /¢ + 5 | 36, since
(vVq+5,v/q—1) | 6. As a consequence, /g = 7,13 or 31. Then uy = 3,4 or

5, respectively, since us = %. Nevertheless, only the cases us = 3 or 5

are admissible, since wus | ‘/52_1 by our assumption. Actually, (z, h, u1, us, v/q) =
(1,4,3,3,7) or (1,4,3,5,31) are solutions of (7). This completes the proof. [

Lemma 2.9. Let ¢ be an even power of an odd prime, let x be a positive integer
and let u; and uy be two positive divisors ‘/624’1. Furthermore, let h = 2 or 4.
If uy < wg, then (z,h,u1,u2,vq) = (5,4,1,1,3), (3,4,1,3,5), (1,h,h,h,/q)
and /¢ = —1 mod 2h, or (1,4,3,6,1/q) and /g = —1 mod 12 are the unique
solutions of the Diophantine equation

1 1
oG p YO VAt 12)
2’&1 2’&2

Proof. Multiplying by 2u;us each term of (12), we have

2uiuzx/q = hua (Vg + 1) + hur (Vg + 1) — 2uqus .
Now, collecting the terms with respect to /¢, we obtain
[2uiuzz — h(ur + u2)] vVa = h(u1 + uz) — 2ujus . (13)
We treat the cases 2ujusz — h(uy + uz) # 0 and 2ujusx — h(ug + uz) = 0

separately. Assume the former occurs. Then /g = ~{atuz)=2uits Thay g

2uiugz—h(ui+tuz)”

h(u1 + UQ) — 2uqug
h(uy + ug) — 2uquoz

Vi =- (14)

Note that h(u1 +us) < 2ujue implies h(uq +us) < 2ujusx, since z > 1. Then,
by (14), we have that h(u1 + uz) > 2ujusg, h(u1 + u2) < 2ujusz and z > 2. In
particular, since z > 2 and /¢ > 3, from the first part of (13), we have

[2uiusx — h(u1 + u2)] Vq > 3 [4uius — h(ug + ug)] . (15)
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Combining (13) with (15), we obtain
3 [4’LL1’LL2 — h(u1 + UQ)] < h(u1 + UQ) — 2uqusy .

Elementary calculations of the previous inequality yield 14ujus < 4h(uy + uz).
That is
Tuiug < 2h(u1 + UQ) . (16)

Therefore, Tuius < 4huo and hence

1<u; <

ESTITS

h, (17)

since u; < wus.

Assume that h = 2. Then u; = 1 by (17). So, h(uj + u2) — 2ujus = 2. Then
V4 | 2 by (13). Nevertheless, this is impossible, since /q is a power of an odd
prime. Hence, (12) has no solutions for h = 2.

Assume that A = 4. Then either u; = 1 or u; = 2 by (17). Assume the latter
occurs, then 14uy < 8(2+4wu3) by (16). As a consequence, us < %. On the other
hand, ug > 2, since u; = 2 and uy < ug. So, 2 < uy < up < 2. Therefore,
u; = ug = 2. Then h(uj + ug) — 2ujus = 8, since h = 4. Thus, /¢ | 8 by (13).
Again, this is impossible, since +/q is a power of an odd prime. For this reason,
we have u; = 1. Then (13) becomes

[(22 — 4)us — 4)] Vg =4+ 2us. (18)

Note that > 3, otherwise the first part of (18) is negative while the second
one is positive, as ug > u; = 1.

Assume that z > 4. Then 12(uz — 1) < 4 + 2uy by (18), as /g > 3. This
yields us = 1 and 4 + 2uy = 6. Then /¢ = 3 and = = 5 again by (18), since /g
is a power of an odd prime. So, (z, h,u1,u2,v/q) = (5,4,1,1,3) is the unique
solution of (12) for h =4 and = > 4.

Assume that = = 3. Then (us — 2)4/q = uz + 2 by (18). Now, collecting with
respect to uz, we have (/¢ — 1)us = 2(y/g +1). Thatis us =24+ 4/(y/q — 1).
This Diophantine equation has solutions (us2,+/q) = (4,3) or (3,5). Actually,
the former is not admissible, since wus | @ by our assumption. Hence,
(z,h,u1,u2,v/q) = (3,4,1,3,5) is the unique solution of (12) for h = 4 and
r=3.

Assume that 2ujusx — h(ug + u2) = 0. Then

h(u1 + UQ) —2ugus =0 (19)

by (13). As a consequence, x = 1.
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If h = 2, then 2(“1 + UQ) — 2u1u2 =0 by (19) SO, U + Uz = UjUQ.
Now, it is plain to see that u; = uy = 2. Then /¢ = —1 mod 4, since u;
and uy are positive divisors of @ by our assumption. Thus, by substituting
(z,h,u1,uz) = (1,2,2,2)in (13), we have that (z, h, u1,u2,/q) = (1,2,2,2,1/9)
is a solution of (12).

If h = 4, then 4(U1 + UQ) — 2U1U2 =0 by (19) SO, 2(u1 + UQ) = U1U2. As
ug | 2u; and uy < uog, then either us = uy or ug = 2u;. Assume that ug = uy.
Then u; = us = 4 by 2(u; + u2) = ujus. As a consequence, /g = —1 mod 8,
since u; and wy are positive divisors of @ by our assumption. Thus, by
substituting (z, h,u1,us2) = (1,4,4,4) in (13), we have that (z, h,u1,uz2,/q) =
(1,4,4,4,+/q) is a solution of (12). Finally, assume that us = 2u;. Then u; = 3
and uy = 6. Now, since u; = 3 and uy = 6 are two positive divisors of ‘@“ , we
have that /g = —1 mod 12. Moreover, by substituting (z, h, u1,us) = (1,4, 3,6)
in (13), we see that (z, h, u1, u2,/q) = (1,4, 3,6, /q) is a solution of (12). This
completes the proof. O

In Lemmas 2.8 and 2.9 the assumption u; < us can be dropped. Indeed, if
u1 > uo wWe obtain the ’same’ solutions for (7) and (12) but with the values of
uy and us exchanged.

Lemma 2.10. Let D be a dihedral group acting on a projective plane I1. Assume
that D fixes a line | and there exists a dihedral subgroup D of D which fixes two
distinct points on | and contains a non central involutory homology. Then one of
the following occurs:

(1) There exists a subgroup D; of D, such that Dy < Dy and [D : D¢] < 2,
fixing at least one point on I;

(2) Do = E,.

Proof. Suppose that D fixes a line [ of IT and that there exists a subgroup D of
D which fixes two distinct points X and Y on [ and which contains an involutory
homology. Set |D| = 2m and |Dgy| = 2mg, where m,my > 1. Also, set Dy =
(o, B), where ™ = 32 = 1 and o® = a~!. We may assume that 3 is an
involutory homology, since D, contains a non central one by our assumption.
If ag = [ then § € N, where N is the kernel of the action of D on [. Clearly,
it holds that N < D. Thus, N = D if mis odd, and N = D,, or N = D for
m even, since D is dihedral and 3 € N. If we set D; = DyN, we obtain the
assertion (1).

Assume that ag # [. Thus, either Cy = X and agNi = {Y}, or C3 =Y and
agNl = {X}, since Dy fixes two distinct points X and Y on [ and since 5 € D.
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We may assume that C3 = X and {Y} = ag N{. Assume also that m is odd.
Then each involution in D is a homology of center X and axis intersecting [
in Y, since Dy fixes X and Y, with X # Y, and since Dy contains a unique
conjugate class of involutions as m, is odd.

If two distinct involutions in Dy have distinct axes (passing through Y), then
Dy(X, X) # (1) by [16, Theorem 4.25], since each involution in Dy is homology
of center X. In particular, Dy(X, X) < S(Dy), where S(Dy) denotes the unique
maximal (normal) cyclic subgroup of Dy. Therefore, Dy(X,X) < D, since
S(Dy) < S(D) < D and D is dihedral (actually, Do(X, X) = Do(X,r) by [16,
Theorem 4.14]). Thus, D fixes X and we again obtain the assertion (1).

If all involutions in Dy have the same axis ag, then Dy = Dy(X,ag) as mg
is odd. In particular, S(Dg) = S(Do)(X,ag), with S(Dg) # (1), as mg is odd
and mo > 1. Thus, D fixes X, ag and hence Y, where {Y} = ag N, since
S(Dy) < D. Hence, we obtain the assertion (1) also in this case.

Assume that mg is even and mo > 2. Thus, a”°/? is a homology by [19,
Proposition 3.3], since Z(Dy) = (a™/?) (actually, Z(D) = (a™°/?)) and since
§ is a homology. Set § = o/™°/2, If C5 € [, then D fixes Cjs, since (0y =Z(D), D
being a dihedral group. Thus, we still obtain the assertion (1).

Now, recall that ag # [ by our assumption. Set K = (4, 5). Then K is a Klein
group consisting of commuting involutory homologies whose vertices lie in the
triangle {X,Y, Cs}, as Dy fixes X and Y on [ and since ag # [. Let p € Dy and
consider K”. Then K? = (§,3”) as ¢ is central in Dy. Furthermore, K” is still
a Klein group consisting of commuting involutory homologies whose vertices
lying in the triangle {X,Y,Cs}, since Dy fixes X, Y and Cs. Then K? = K
by [19, Lemma 3.1]. Hence, K < Dy. Thus, Dy = Dg as mgy > 2 by our
assumptions. Therefore, § = o and K = (a?,/3). Since § is an involutory
(X, apg)-homology with ag = CsY, since Dy fixes X an Y and C; and since
a € Dy, then 8¢ is still an involutory (X, ag)-homology. This is a contradiction,
since 3 = a?3 and the collineation o3 is a (Y, CsX) homology lying in K,
as K is a Klein group consisting of commuting involutory homologies whose
centres are the vertices of the triangle {X,Y,Cs}. Thus, my = 2. That is,
Dy = E4. So, we have proved the assertion (2). O

3 General reductions

In this section, we provide some reductions for the action of G on II. In partic-
ular, when G fixes a line [ (resp. a point @) of II, we determine the admissible
stabilizer of a point (resp. line) on [ (resp. on [Q)]), the length of the corre-
sponding G-orbit on [ (resp. on [@]). Finally, we provide some upper bounds
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for the number of some G-orbits of points on [ (resp. G-orbits of lines on [Q)]).

Lemma 3.1. If G = PSL(2, q), with q odd and q > 3, does not fix points or lines
of I1, then G is irreducible on II. Furthermore, one of the following occurs:

(1) G fixes a subplane 1y = PG(2, m), where (m,q) = (2,7),(4,7), (4,9);

(2) G is strongly irreducible on II.

Proof Assume that G does not fix lines or points of II. Then G does not fix
triangles of II, since G is non abelian simple as ¢ > 3. So, G is irreducible
on II. Now, assume that G fixes a subplane Il of IT of order m. Then m < ¢
by [16, Theorem 3.7], since n < ¢ by our assumption. Thus, [Ty = PG(2,m),
where (m, q) = (2,7),(4,5),(4,7), (4,9), by Theorem 2.1, as ¢ > 3. Since G acts
irreducibly on II, then it does the same on IIy. Hence, the case (m, q) = (4,5) is
ruled out, since PSL(2, 5) fixes always a point or a line in PG(2,4). So, (m,q) =
(2,7),(4,7), (4,9) and hence we obtain the assertion. O

Lemma 3.2. The following holds:

(1) If G fixes a line I, then G(I) = (1) and hence G acts faithfully on .
(2) If G fixes a point P, then G(P) = (1) and hence G acts faithfully on [P].

Proof. Assume that G fixes I. If G(I,1) # (1), then G = G(,1), since G is simple
as ¢ > 3. Actually, G = G(A4,1) for some point A € [ by [16, Theorem 4.14],
since G is non abelian. So, |G| | n and hence |G| < ¢?, as n < ¢?, which is
a contradiction. Thus, G(I,1) = (1). Now, assume that G contains homologies
of axis [. Each involution in G of axis [ must have the same center, say C,
otherwise G(l,1) # (1) by [16, Theorem 4.25], as G fixes [. Therefore, G fixes
C and hence (1) < G(C,l) <« G. Then G = G(C,!), since G is simple as
q > 3. So, |G| | n — 1 and hence |G| < ¢* as n < ¢°. Hence, we arrive at a
contradiction. As a consequence, G(I) = (1) and hence G acts faithfully on /.
So, we have proved the assertion (1). Now, dualizing the previous proof, we
obtain also the assertion (2). O

Lemma 3.3. If ¢ > 3 and G fixes a line | of I, then the involutions in G are Baer
collineations of II. In particular, \/n = 0,1 mod 4.

Proof. Let o be any involution of G. Assume that o is a (Cy,, a,)-perspectivity
of G. Then C, € [ and a, # | by Lemma 3.2(1), since G fixes [. Clearly, C(0)
fixes C,, the lines | and a, and hence the point [ N a, (note that the points
C, and | N a, might coincide or not according to whether n is even or odd,
respectively). Hence, Cs(0) < G¢,. Furthermore, G, < G by Lemma 3.2(2).
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Then G, = Cg(0), since Cg(o) is maximal in G, being Cq(o) = Dg+1 by
[17, Hauptsatz 11.8.27], according to whether ¢ = 3 mod 4 or ¢ = 1 mod 4,
respectively. Then ¢ fixes exactly either (¢+3)/2 points or (¢+1)/2 points on C¢
by (1) of Proposition 2.5, for either ¢ = 3 mod 4 or ¢ = 1 mod 4, respectively.
Thus, o fixes at least 3 points on [ in each case as ¢ > 3. This is a contradiction,
since o is (C,, a,)-perspectivity of G with C, € [ and a, # l. Thus, o is a
Baer collineation of II. Then each involution of G is a Baer collineation of II,
since G = PSL(2, ¢) contains a unique conjugate class of involutions. This yields
v/n = 0,1 mod 4 by Theorem 2.6. O

Lemma 3.4. Let II be a finite projective plane of order n and let G = PSL(2, q),
q > 3, be a collineation group of 11 fixing a line | of Il. If P € I, then one the
following occurs:

(1) Gp=G;

(2) Gp = Dy_y;

(3) Gp = Dygy1;

4) Gp=Ayand g=5,7,9,11,13,17,19;

(5) Gp = Asand g = 5,9,11,19, 25,29, 31, 41,49, 59, 61, 71, 79, 81, 89, 101, 109;
(6) Gp=S,and q=71,9,17,23,25,31,41;

(7) Gp = PSL(2,V/q);

(8) Gp = PGL(2,v9);

(9) Gp = Eym-c.Zpe_1, where 2e | m;

(10) Gp = F,.Z4.

Proof. Note that n < (¢ — 1), since n < ¢? and n is a square by Lemma 3.3.

Since PY C land n+1 < (¢ — 1) + 1, then |P¢| < (¢ — 1) + 1. That is
W < (¢—1)2+1. Actually, 44— < (¢—1)?+1 and hence L—) < (¢—1)2.

Then 2 |Gp| > % and consequently 2 |Gp| > ¢ + 1. So,

|Gp| > —. (20)

Now, filtering the list of the proper subgroups of G given in [17, Hauptsatz
11.8.27], with respect to (20) and bearing in mind [24, Lemma 2.8], when Gp <
Fym.Z ym -1, we obtain the assertion. O

Let P € l. We say that Gp is of type (i), where 1 < i < 10, if Gp is a group
isomorphic to the i-th group of the list given in the previous lemma. Also, we
say that the orbit P“ is of type (i) if Gp is of type (7). So, for example, P¢ and
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G p are of type (6) if Gp = S,. Finally, we denote by x;, the number of G-orbits
on [ of type ().

The G-orbits on [ are of type (i), with 1 < 7 < 8, ¢ fixed, have the same
length. Hence, they cover exactly z; | P“| points on [, where P¢ is of type (7).
The G-orbits on [ of type (9) or (10) might have different lengths depending on
e and d, respectively. Nevertheless, there exists at most on G-orbit on [ of type
(9), as we will see in the following lemma (that is z9 < 1). So, let us focus on
the G-orbits of type (10) and on the points of | that they cover. Each G- orbit
of type (10) has length %~ L which depends on the particular d1v1sor d of 5=

Therefore, all the G-orbits on [ of type (10) cover exactly > 7' & < L points of l.

=1 2d
Set S = Zj:l ‘127;1. We introduce the following abbreviations for the G-orbits
on [ of type (10): &1 = Zf“’l qd;l and Sy, So/, S4, S2.4 (sum with the same

summands < but over 2 | dj, 2 d;, 4 | d; and d; = 2 mod 4, respectively).

In part1cular, we have the following relations S = nglSl, S = 8 + 8y and
So =81+ 824.

When investigating the admissible orbital decomposition of [ under G, the
following situation might arise (as we will see, in some cases it actually does):
G fixes at least a point ) on [ and the admissible orbital decomposition of G
on set of lines of [Q)] it is easier to be investigated than the admissible one [,
since the first one has some influences on the second one. In order to do so, we
introduce further notation as follows.

If G fixes a point @, clearly, G acts on [Q]. Now, consider IT*, the dual of II.
The group G acts on II* fixing the line [Q]. Then we may apply Lemma 3.4 to
IT*. As a result, we obtain the same list of admissible groups with G,,,, where
m is a point of [Q)]. Then we may extend the notation previously introduced
to the groups G,,. Hence, we say that G,, is of type (i)*, where 1 < ¢ < 10,
if G,, is a group isomorphic to the i-th group of the list given in Lemma 3.4.
Now, going back to II, we obtain the same list of admissible groups with G,,
in the role of Gp, where m is a line of [Q)] and @ is a point of II fixed by G.
So, we are actually applying the dual of Lemma 3.4 referred to G-orbits of lines
through a point @ fixed by G. At this point, continuing with this notation, we
say that the orbit m© is of type (i)* if the respective G,, is of type (i)*. So, for
example, m“ and G,, are of type (6)* if G,, = S;. Finally, we denote by xy,
the number of G-orbits on [Q)] of type (i)*. In particular, since we might have
G-orbits of type (10)*, it makes sense considering S* = Zf“ﬁ q;T* and hence
S5, S5, Si, S5 4 with the same meaning of Sa, Sy, Si, S2.4, respecnvely, but
referred to lines instead of points. As a consequence, we have §* = ;181‘,
S =85+85 and S5 = S5 + Séj}l. It should be stressed that, the notation used
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depends on the particular point @ fixed by G (the same could be made for ).
So, it would be correct using z;(Q) instead of z}. Nevertheless, we shall use
the second notation, since it will be clear from the context which point we are
focusing on.

Lemma 3.5. If ¢ > 9, then the following hold:

(1) z2 <1;

(2) z3<1;

(3) w4 <15

4) x5 <3;

(5) z¢ <1forq#17and xg <2 for q =17;

(6) g <1.

Proof. Assume that [ contains x; orbits of G of type (). Assume also that 2 < i <

6 with ¢ fixed. Clearly, these G-orbits have same length. So, they cover exactly
;| P¢| points on I, where PY is any orbit of type (i). Therefore, z; |[P¢| <

n + 1 and hence z; q;;;;}) < n + 1. Now, arguing as in Lemma 3.4, we have
T qé“];j) < (¢ — 1)? + 1 and consequently
+1
Gp| > ;2 .

Assume that z; > 2. Then |Gp| > ¢ + 1. This is a contradiction by Lemma 3.4.
Thus, we have proved the assertion for i = 2 or 3.

Assume that ¢ = 4. Hence, Gp = A4. Then ¢ < 11, as |Gp| > g + 1. Actually,
we have ¢ < 9, which is a contradiction by our assumption. So, x4 < 1 and we
obtain the assertion also in this case.

Assume that ¢ = 5. Then Gp = A;. If 5 > 4, then |Gp| > 2(¢ + 1).
So 2(¢ + 1) < 60. Hence, ¢ < 29. Actually, ¢ = 11,19 or 25 by Lemma 3.4.
Let o be an involution lying in Gp. By [4], there exists one conjugate class
of involutions in G. If ¢ = 11 or 19, then C(0) = Dy41 again by [4], since
g = 3mod 4. Therefore, using (1) of Proposition 2.5, we obtain that o fixes
exactly %1 points on P“. As a consequence, o fixes at least ¢ + 1 points on [,
since x5 > 4. Hence /n > ¢, since o is a Baer collineation of IT by Lemma 3.3.
So, we arrived at a contradiction, since n < ¢? by our assumptions. Thus,
q = 25. In this case, C (o) = Dy_;. Arguing as above, we see that /n > ¢ — 1.
Actually, v/n = ¢ —1, since /n < ¢. That is \/n = 24. Let T be a Klein subgroup
of G such that 0 € T and T < Gp. Then Ng(T) = Sy by [4]. Furthermore, all
Klein subgroups in Gp = Aj; are conjugate, since they are Sylow 2-subgroups
of it. Then, using (1) of Proposition 2.5, we obtain that T fixes exactly 2 points
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on PY. Hence, Fix(T) N1 C Fix(o) N1l. Since 25 > 4, then T induces a Baer
collineation on Fix(o). This is a contradiction, since \/n = 24. Thus, z5 < 3 and
we obtain the assertion also in this case.

Assume that i = 6. So, Gp = S,;. Then g+ 1 < 24 as |Gp| > ¢+ 1. Therefore
26 = 2 and ¢ = 17 by Lemma 3.4. Hence, we have proved the assertion in this
case.

Assume that i = 9. Let P® be a G-orbit on [ of type (9). Then |P¢| =

p°(¢>—1)
2(pe—1)°

q2;1 and hence 29 < 1,sincen+1 < (¢ —1)? + 1. -

where ¢ is a square p® | /g and e > 1 by Lemma 3.4. Clearly. |P%| >

Clearly, we may consider the dual of Lemma 3.5. In other words, we may
apply the previous lemma to [Q] if @ is a point fixed by G on II. So, we have
xf <1for2<i<b5ori=9,and zf < 1forq # 17 and z§ < 2 for ¢ = 17.
We shall do the same for any lemma or proposition in the sequel whenever it is
needed.

Lemma 3.6. Let g > 9. If 22 + x3 > 0, then the following hold:
1) zo+x3=1;

(2) 24 =0;

(3) x5 < 2and if x5 > 0, then ¢ = 11,19, 25,29, 31,41, 49;

(4) z¢ =0forq# 17and xg < 1for q=17;

(5) zg =0.

Proof. Assume x5 + 23 > 0. Let P¢ be on orbit on I of type (2) or (3). If P¢ is
of type (2), then |PY| = @, and if P9 is of type (3), then |P¢| = %.
Hence, | P¢| > @ in each case. Then |l — PY| < n+1— @. In particular,
I = PO < (¢—1)2+1-92C D as 1 < (¢—1)>+1. So |l — PO| < L(¢>~3¢+4).
Assume there are z; orbits of G of type (i) on ! — P“, where 2 <i < 6ori =9,
i fixed. Let Q¢ be one of these orbits. It is a plain that, z; |Q¢| < |l — P“| and

hence z; |Q“| < 4(¢® — 3¢ + 4). As a consequence, |Gq| > = qqz(i;&. Easy

computation, similar to that used in the first part of the proof of Lemma 3.5,
yield the assertion, unless i = 5 and ¢ = 11.

Assume that i = 5 and ¢ = 11 and assume that x5 > 3. Now, arguing in the
second part of the proof of Lemma 3.5, we have that \/n + 1 > 3%* and ¥/n is
an integer. Then {/n = 3 and hence \/n = 9. So, 3|Q¢| < 3* +1— 1= and
hence |Q€| < 9. Hence, we arrive at a contradiction, since |Q°| = %51) and
g = 11. Thus, we have proved the assertion in any case.
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Now, we recall some known facts about G = PSL(2,¢) which are useful
hereafter. By [4], there exists a unique conjugate class of involutions in G and
there are either one or two conjugate class of Klein subgroups of G according to
whether ¢ = 3,5 mod 8 or ¢ = 1, 7 mod 8, respectively. Let o be a representative
of the involutions in G. Let T} and T5 the representatives of the two conjugate
classes of Klein subgroups of G. We may choose 737 an 75 in order to contain o
(see [4] or [24]). Clearly, T} and T; are conjugate if ¢ = 3,5 mod 8. So, if ¢ =
3,5 mod 8, we shall just denote by T the representative of the unique conjugate
classes of Klein subgroups of G. Hence, by [4], the following admissible cases
arise:

(1) ¢ =1mod 8. Then Cg(0) = Dy—1 and Ng(T;) = Sy, where j =1 or 2;
(2) ¢ =3mod 8. Then Cg(0) = Dyt1 and Ng(T) = Ay
(3) ¢ =5mod 8. Then Ci(0) = Dy—1 and Ng(T') = Ay;

(0) =D (

(4) ¢ =T7mod 8. Then Cg (o q+1 and Ng(T;) = Sy, where j =1 or 2.

We investigate these cases separately.

4 The case ¢ = 1 mod 8

This section is devoted to the cases ¢ = 1 mod 8. By [4], there are two conjugate
classes of subgroups isomorphic to A, (type (4)), to As (type (5)), to Sy (type
(6)), to PSL(2,+/q) (type (7)), to PGL(2,/q) (type (8)). Since there are two
conjugate classes of subgroups of type (4) regarded as stabilizer of a point P on
[, we may extend our preceding notation as follows: we label the subgroups G p
isomorphic to A4 and belonging to the first conjugate class under G to be of type
(4a), while those belonging to the second one to be of type (4b). Moreover, P¢
is a G-orbit of type either (4a) or (4b) if the corresponding Gp is of type (4a)
or (4b), respectively. We denote by x4, and x4, the number of G-orbits on [ of
type (4a) or (4b), respectively. Clearly, x4 = 24, + z45. Extending the previous
notation, when P¢ and G'p are of type (4), for 4 < i < 8, we actually say that
they are of type (ia) or (ib) depending on the particular conjugate class under
G the group Gp lies. Hence, we write x; = x4 + x4 for 4 <i < 8.

The usual argument involving Proposition 2.5 yields the following table con-
taining all the informations we need about the admissible stabilizers in G of any
point P of [. It should also be stressed that the G-orbits of type (7), (8) or (9)
might occur only when ¢ is a square.

For + and 7 read the upper sign if /g = 1 mod 4 and the lower sign if \/qg =
3 mod 4 (for ¢ square). This convention is followed throughout this section.
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Table I
type || Gp [G:Gp] | |[Fixpe(o)| | [Fixpe(Th)| | |Fixpe(T2)]
1 || @ 1 1 1 1
2 || Dy agtl) ol 3 3
3 || Dot - = 0 0
s || Ay U R S 2 0
ab | Ay 2’ —1) ! 0 2
sa | As desl) | el 2 0
sb || As de )| et 0 2
“ |5 4 gee|sl gmus
2_ _ 4 =514 =51
3 O S S e
7a || PSL(2,q) Valg+1) | Vg+1 1+1 1F1
7 || PSL(2,v) | valg+1) | Va£1 1F1 1+1
sa | PGL(2,/q) | Y4t | g 241 2% 1
sb | PGL(2,vq) | el | g 27F1 241
9 | Epm—eZpes P;(gf:f; oL 0 0
—1
10 || F,.Z4 ‘122;1 (?’ ;'(Z 0 0

Recall that the Sylow p-subgroups of GG are elementary abelian. Furthermore,
by [4], there are two conjugate classes of p-elements. Let p; and p2 be the
representatives of these two classes lying in a Sylow p-subgroup S of G which
is normalized by o. Since o acts as the inversion on S, then o normalizes (p;)
and (p2) and hence (p1,0) = (p2,0) = Ds,. Again by [4], there is a unique
conjugate class of elements of order for 4 in G. Let  be a representative of this
class such that 42 = ¢. By using (1) of Proposition 2.5, we obtain the following
table.

The sign + has the same meaning as above. In particular, the non negative
integers k; and ko are such that ky + ko = %, where 2e | m (see [24], Table
IV* and related remarks).

It should be pointed out that Tables I and II, with types and entries in differ-
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Table II
(We use the abbreviation F for Fix p¢ in the top line of this table.)
Type || [F(p1)| | [F(p2)l | [F(p1,0)| | [F(p2,0) [F()l
1|1 1 1 1 1
2 |0 0 0 0 1
3 {0 0 0 0 0
4a || 0 0 0 0 0
4 || 0 0 0 0 0
sa || 0 0 0 0 0
sb || O 0 0 0 0
6a || 0 0 0 0 2t
b || 0 0 0 0 et
7a || 2/ |0 141 0 VaEl, a=l
0, q =169
7 || 0 2va |0 141 VaEl =l
0, q =169
ga || va 0 1 0 SLES
gb || 0 Va 0 1 SLES
o | kpe | kpt | R ks g p=al
0, p¢ =43
o | et g1 Loo2|d| L 2)d | S o4)d
2d 2d 0, 2fd|0, 2+d |0, 4td

ent order, can be extracted from Tables III* and IV* of [24], respectively.

Now, if G acts on [Q], where @ is any point of II, then [Q] consists of G-
orbits of lines of type (i)* for 1 < i < 10, following the notation introduced in
section 3. As G contains two conjugate classes of subgroups isomorphic to A4
(type (9)*), to A5 (type (5)*), to Sy (type (6)*), to PSL(2,/4) (type (7)*), to
PGL(2,+/q) (type (8)*), the distinction made for G-orbits of points of II inside a
fixed type (i) in subtypes (¢a) and (¢a) can be extended in G-orbits of lines of IT
in the following sense. Let m be any line of [@)] and assume that a subgroup G,
of G is isomorphic to A,. We say that G,, is either of type (4a)* or of type (4b)*
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depending on which of the two conjugate classes of subgroups isomorphic to
A, the group G, lies. So, we denote by z}, and z, the number of G-orbits on
[Q] of type (4a)* and (4b)*, respectively. Clearly z} = z}, + «},. Extending the
previous notation, when m@ and G,,, are of type (i)*, for 4 < i < 8, we actually
say that they are of type (1a)* or (¢b)* depending on the particular conjugate
class under G the group G,, lies. Hence, we write z} = x}, + x}; for4 <i <8.

It is a plain that, at this point, we may use Tables I and II referred to G-orbits
of lines of TI. So in this case, the first column containing types (4) is replaced by
types (1)* and Gp is replaced by GG,,,. So, when we use Tables I and II referred
to G-orbits of lines of II through some point fixed by G, we actually use the
duals of Tables I and II, respectively.

The strategy of the proof in this section is the following. Assuming that G
fixes a line [ of II, we show that each T; induces either a Baer collineation or
a perspectivity of axis distinct from [ on Fix(c) (Lemma 4.2). We use this fact
to show that -, where v2? = ¢, induces either the identity or a Baer collineation
on Fix(o) (Lemma 4.4). Then, using Tables I and II, we show that, if the first
case occurs, the group 7 induces a homology on Fix(c) (Lemma 4.10). Nev-
ertheless, this is impossible (Lemma 4.11). Thus v induces a Baer collineation
on Fix(c). Again, Table I and II imply that each T} induces a Baer collineation
on Fix(o) and on Fix(y) by Propositions 4.12 and 4.18, respectively. Thus, G
fixes necessarily a subplane of II of order </n pointwise (Lemma 4.19), which
is a contradiction (Proposition 4.21).

Recall that o is a Baer collineation of IT by Lemma 3.3. Set C' = C¢(o). Then
C acts on Fix(c) with kernel K. Hence, let C = C/K. Clearly, (o) < K < C.
Furthermore, either K < Z a1 Of K = Dq 1 or K = C, since C' = D,_; and
¢ = 1 mod 8. Now, we need to investigate the admissible structure of K in order
to show that 7; cannot induce on Fix(o) either the identity or a perspectivity of
axis Fix(o) N1 for each j = 1, 2.

Lemma 4.1. IfFix(T;) Nl = Fix(c) NI for some j = 1 or 2, then either K = D41
2
or K =C.

Proof. Assume that Fix(Ty )Nl = Fix(¢)N! and that K < Za1. Then Fix(G)Ni =
Fix(o) N1 by Table 1, since ¢ > 9. Set Iy =Fix(c) NI. Then C' = C(lp), since
lo = Fix(G) N L.

Assume that C = C(ly,lp). Then T} induces a perspectivity 3; of center
Cj, and axis [y on Fix(s). Suppose that 3; is an elation. Hence, Cj, € .
Thus, G fixes Cg,. So, Fix(G) N [Cg,] =Fix(c) N [C3, ], by dual of Table I, since
Fix(T1)N[C3,] = Fix(0)N[C3,]. Therefore, C = C(Cj,,lo). Let X € l,—{Cj, }.
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For each line ¢ € [X] N Fix(o), we have that o € G; but G; does not contain
Klein groups. Clearly, Fix(G;) C Fix(c). Actually, Fix(G;) = Fix(o), since
Fix(G) Nl = Fix(o) N1, since Fix(G) N [Cg,| = Fix(c) N [C3, |, and since ¢ €
Fix(G¢)NFix(c) and t ¢ [Cj,]. So, Fix(G;) is a Baer subplane of II. Assume that
p | |G| and let Sy be a Sylow p-subgroup of G:. Then Fix(Sy) = Fix(G:), since
Fix(G,) is a Baer subplane of IT. Furthermore, either ¢ is a square and |Sy| = p
with p¢ | v/q, or |Sp| = ¢ by dual of Table II. Assume the latter occurs. Then
q | n—+/n, since Sy must be semiregular on ! — Fix(Sy), as Fix(Sy) = Fix(c) and
Fix(c) is a Baer subplane of II. This yields that either ¢ | /n —1 or ¢ | v/n, since
q is a prime power. This gives a contradiction, since v/n < ¢ by our assumption.
Thus, ¢ is a square and |Sy| = p® with p¢ | \/¢. In particular, G, is of type
(9)*. Moreover, Fix(Sy) N [X] = Fix(o) N [X], since Fix(Sy) = Fix(c). This
yields Fix;c(So) = Fix;c (o) and hence |Fix;c(So)| = |Fixse(0)], since G fixes
X. Then k1p® = pqeil by duals of Tables I and II, which is a contradiction. As
a consequence, (p,|G¢|) = 1. Therefore, G; = D,4+1 by dual of Table I, since
o € Gy but Gy does not contain Klein groups. Then ¢ + 1 | n — /n, since G
must be semiregular on ! — Fix(G;), as Fix(G;) = Fix(o) and Fix(o) is a Baer
subplane of II. Furthermore, K < G,;. Thus K = ( ), since (o) < K < Z a1
and since Gy = Dg41. So, C' = Do and hence %32 | \/n, since C' = C(C3,, lo)
Actually, either /n = 4= Lor \/ﬁ = g — 1, since \/_ < ¢ by our assumptions.
On the other hand, t¢ C [X] — {i}, as G fixes X. Then n > %1 since

9] = q ale=1) as Gt = Dyyq. Since n > q(q—;) and since @ > (%1)2, the
case \/n = %X cannot occur. Hence, /n = ¢ — 1. Then ¢ +1 | (¢ — 1)(¢ — 2),
since ¢g+1 | n— \/ﬁ, being G; semiregular on ! — Fix(G,). Since (¢+1,¢—1) =2
and (¢+ 1,9 — 2) | 3, then ¢ + 1 | 6. This gives a contradiction, since ¢ > 9 by

our assumptions. Thus, C(lo, o) < C.

Assume that C(ly,ly) # (1). Note that C(Y,ly) # (1) for some point Y €
Fix(o) — lp, since C(lg,lo) < C and C = C(lp). In particular, C'(lo,lp) < Zq;kl,
since C(lg,lp) < C and C' = Dy Actually, C(lo,lp) = C(V,lp) = Za
and C(Y,ly) = Z3 by [16, Theorems 4.14 and 4.25], since C'(lo,ly) = D%,
g = 1mod 8 and k is even. Let u € [V] N Fix(o) — {I,VY}, then u is fixed
by K and by C(V,ly). Therefore, Z,—» < G,, where Z,—1» < Cg(o). Since G
fixes | N Fix(o), since ¢ > 9 and by ‘dual of Lemma 3.4? we have that either
Gy, 2 FyZ41 or G, = Cg(o) or G, = G. The two latter cases cannot occur,
since C,, ZQq 1.80, Gy = FyZos for each u € [V] N Fix(c) — {I,VY}. Note

also that 7 = 1, since G fixes only the line [ through V, and z3 > 1 since
Gyy = C. Actually, 25 = 1 by dual of Lemma 3.5(2). Moreovet, |Fix, ¢ (0)| = 2
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by dual of Table II. Then

+1
Vatl=1+1—4s (21)

by dual of Table I, since 7 = % = 1 and since G,, & FyZos foreachu € [V]N
Fix(o) — {l,VY}. Let W be the Sylow p-subgroup of G normalized by o. Then,
by (21), W fixes exactly 1+ 1S, lines through V, namely [ and the lines lying in
the G-orbits corresponding to stabilizer isomorphic to F,.Z ot Furthermore, if
R €1 — Fix(G), then Gz must have odd order, since |Fix(G) NI| = /n + 1 and
since the involutions in G are Baer involutions of IT by Lemma 3.3. Then G
must be of type (10) by Lemma 3.4. Henceforth, W < G for some point L €
RE. Consequently, W fixes at least \/n + 2 points on [ and at least 1 + 1S, lines
through V. Thus, the p-elements in G cannot be planar. So, if Z € Fix(G) N1,
Z # V, for each line r € [Z] N Fix(o) — {l, ZV}, the group G, contains ¢ but
does not contain Klein groups and (p, |G;|) = 1. This implies that G, = Dy
by dual of Table I. Now, as K < G, and (¢) 94 K < Za_1, then K = (o).
As a consequence, C(V,ly) = Zya, being k = |K|. In particular, C(V,lp)
has even order. Nevertheless, this is a contradiction, since C(Y,ly) = Z, and
Y e FIX(U) — lo. SO, C’(lo,lo) = <1>

Assume that C = C(Z,1) for some Z € Fix(o) — lp. Let Q € ly and m €
[Q] N Fix(o) — {I,YQ}. Then o € G, but G, does not contain Klein groups.
Therefore, by dual of Table I, we have that G,,, = Dy or Gy, = Epm—e.Zpe 1
or Gy, = F,.Zq4, since G fixes (). Thus, 7 > 0 for either i = 3 or 9 or 10, since G
acts on [Q]. The cases i = 3 or 9 cannot occur by dual of Lemma 3.6(1) and (5),
since x5 > 0, as Gz = C = Dy_1. As a consequence, G,,, = F,.Z,. Let S be
Sylow p-subgroup of G which is normalized by . Then |Fix,,c (S)| > 1 for each
Q €lpand m € [Q] NFix(o) — {I, ZQ}. Assume that ‘Fixm? (S)‘ > 2 for some
line m; € [@Q1]NFix(o) —{l, ZQ1} and for some point ); € ly. Then S is planar,
since |Fix,,c (5)| > 1 for each other Q € Iy and each m € [Q]NFix(0) —{l, ZQ}
and since Fix(G) Nl = Fix(oc) Nl. Then S fixes a Baer subplane of II, since
Fix(S)Ni = Fix(o)Nl and |Fix(¢) NI| = /n+1. Now, arguing as above with S in
the role of Sy, we obtain a contradiction. Thus, |Fix,,c(S)| = 1 for each Q € Iy
and m € [Q] N Fix(o) — {l,ZQ}. Nevertheless, we still have a contradiction
if |[Fix(S) N [Q2]| > 2 for some point Q2 € ly. So, |Fix(S) N[Q]| = 1 for each
point ) € lo. Consequently, Gy, = FyZas, where {fo} = Fix(S) N [Q] by the
dual of Table II. Therefore, o fixes exactly two lines in fg for each Q € [y by
Table 1. Actually, o fixes exactly two lines in [Q] — {I, ZQ} for each Q € [y, since
|Fix,,c(S)] > 1 for m € [Q]NFix(0) — {l, ZQ}, while |Fix(S) N [Q]| = 1. So,
v/n—1 =2, Thatis v/n = 9. On the other hand, by dual of Table II, we have
Vn+1>1+ %L 42 since 27 = 1 as G fixes only the I through Z, since 3 > 1
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as Gzq = C and since z}, > 1 as Gy, = Fy.Z,—1. Then \/n > 11 since ¢ > 17
2

being ¢ = 1 mod 8 and ¢ > 9. Hence, we arrive at a contradiction, since it was

proved above that \/n = 9. O

Lemma 4.2. It holds that Fix(T;) Nl C Fix(o) N1 for each j =1, 2.

Proof Assume that K = C. Let P be any point of [y and let r be any line of
[P] — {l}. Then C < G,. Since ¢ > 9, then C is maximal in G and hence
either G, = C or GG, = G. Assume that G, = C. Again by the maximality of
C in G, the line r is the unique one in r“ fixed by C. Furthermore, x5 = 1
dual of Lemma 3.5. Therefore, r is the unique line in [P] fixed by C. So, the
remaining lines are fixed by G. Now, by repeating the previous argument for
each point U of Fix(o) NI, we see that C fixes exactly one line of [U] NFix(o)
and the remaining ones are fixed by G. If \/n > 2, then G is planar. Thus,
Fix(G) = Fix(o), since Fix(G) Nl = Fix(os) N1 and Fix(G) C Fix(c). Then
G fixes r, since r € Fix(o). This is a contradiction, since G, = C by our
assumptions. So, \/n = 2 and n = 4, which is a contradiction, since ¢ < n < ¢2
and ¢ > 9. As a consequence, G, = G. Now, by repeating the previous argument
for each point of Fix(o) NI, we again obtain Fix(G) = Fix(o). Thus, G fixes a
Baer subplane of IT. Then G is semiregular on [ — Fix(G) and hence |G| | n—+/n.
Hence, we arrive at a contradiction, since n < g¢.

Finally, assume that K = D a1 We may also assume that 77 < K and
C = D,_q. Then Fix(Ty) N [B] = Fix(o) N [B] for each point B € ly. As
lo = Fix(G) N1, then Fix(G) N [B] = Fix(o) N [B] for each point B € [y by dual
of Table I. So, Fix(G) = Fix(c) and we have a contradiction as above. Thus,
Fix(Th) Nl C Fix(o) N 1.

Now repeating the above arguments with 75 in the role of 7;, we obtain
Fix(Tz) Nl C Fix(o) N 1. O
Lemma 4.3. If |[Fix(vy) NI| < 2, then the following hold:

(1) [Fix(y)Nl|=a1+x2=10r2;

(2) 26 =0;
(3) z7 >0, if ¢ is a square and ¢ = 9 mod 16;
4) zg=0;

(5) zg >0, if q is a square and p°® = 3 mod 4, where p°® | \/q;
(6) S4=0;

(7) Tj induces a Baer involution on Fix(o) for each j = 1,2.

Proof. Assume that |Fix(v) N{| < 2. Then « induces an involutory perspectivity
% on Fix(c) and hence |Fix(y)NI| = 1 or 2. Clearly, C5 € [ N Fix(s) and



Projective planes admitting PSL(2, g) 59

as # INFix(o). Set {X} = a5 NI. The points C5 and X might coincide or not
according to whether # is either an elation or a homology of Fix (o), respectively.
Let 3; be the involution induced on Fix(c) by the Klein subgroup 7} containing
o (and hence lying in C), j = 1,2. As 7 is central in C, then C fixes C5, a5 and
so X. Thus, C does it. Therefore, C' < G, and C < Gx. Then, by Table II and
since ¢ > 9, we have that

(1) |Fix(y)Ni| =21 +x2 =1o0r2;

(2) z¢ =0;

(3) a7 > 0if g is a square and ¢ = 9 mod 16;

4) 23 =0;

(5) z9 > 0if g is a square and p° = 3 mod 4, where p° | \/q;
(6) S4=0.

It remains to prove the assertion (7). If C < G¢, and C < Gx. Then
Gc, = Gx = G, since C is maximal in G as ¢ > 9. As a consequence, Fix(y) N
I = Fix(G) N l. Assume that (3, is an involutory (Cj, , ag, )-perspectivity. Then
Cp, € land ag, # | by Lemma 4.2. So, Cj, € {C5, X}, since G¢, = Gx =
G. Therefore, G fixes Cj5 . Hence, we arrive at a contradiction by dual of
Lemma 4.2, since Fix(T1)N[Cj,] = Fix(c)N[C3,]. Thus, i is a Baer involution
of Fix(c). The previous argument with 75 in the role of T3, yields that 3, is also
a Baer involution of Fix(o).

Assume there exists Q € {C5, X} such that Go = C. Then §; is a Baer
involution of Fix(c) for each j = 1,2, since |Fixge (T})| = 3 by Table I for each
j = 1,2. Therefore, §; is a Baer involution of Fix(c) for each j = 1 or 2 in any
case. This completes the proof. O

Lemma 4.4. It holds that |Fix(y) Ni| > 3.

Proof. Suppose that |Fix(y) N 1| < 2. Then either |[Fix(y) N{| = 1 or |Fix(y) NI| =
2, as G fixes [ and ~ induces and involution % on Fix(c).

Assume that |[Fix(y) NI| = 1. Then ¥ is an involutory (C5, as)-elation of
Fix(c) with C5 € I N Fix(o) and a5 # [ N Fix(o). Thus, 1 + 22 = 1 by
Lemma 4.3(1). Moreover, by Table II in conjunction with Lemma 4.3(2)-(5),
we have |[Fix(T1) N1l = z1 + 322 + 2244 + 254 + 227, and |Fix(T2) NI| =
x1 + 31y + 2345 + 225 + 227 for /g = 1 mod 4, and |Fix(Ty) NI| = =1 +
3xo + 224 + 255 + 227 and |Fix(T2) N1| = x1 + 3z2 + 2244 + 225, + 227, for
v/q = 3 mod 4. Then

Vn+1 =21+ 32y + 2240 + 2T54 + 2274 (22)
% +1 =21+ 3z + 224 + 225, + 2273, 23)



60 A. Montinaro

in each case, being |Fix(7;) Nl| = /n + 1 for each j = 1,2 by Lemma 4.3(7).
Now, summing up (22) and (23), we have

In4+1l=21+3x0+24+25+ 7.
Bearing in mind that z; + x5 = 1, we actually obtain
Vn=2x0+ x4 + 15 + 27 24

Assume that x4 > 0. Then ¢ = 17 and x5 = 0 by Lemma 3.4, since ¢ = 1 mod 8.
Furthermore, 24, = 1 and x2 = 0 by Lemma 3.5(3) and Lemma 3.6(3), respec-
tively. Then z; = 1, as z1 + x5 = 1 by the above argument. So, z7; = /n — 1 by
(24). On the other hand, v/n + 1 > 1 + x7(y/q £ 1) by Table 1. By substituting
z7 = /n — 1 in the previous inequality and by elementary calculations of the
inequality, we have /n + 1 > /g = 1. Then /n = /¢ — 1 and /¢ = 3 mod 4,
since /n < /q by our assumptions. Nevertheless, this contradicts [16, Theo-
rem 13.18], since 7 acts non trivially on the plane Fix(7};) and since ¢ > 9. So,
Xrg4 = 0.

Assume that z5 > 0. If o = 1, then 5 < 2 and ¢ = 25, 41 or 49 by
Lemma 3.6(4), since ¢ = 1 mod 8. Thenn 41 > Q(qﬂ) + q(120 with n < ¢,
and n a fourth power. This is impossible, since ¢ = 25 41 or 49. Then zo = 0
and hence x; = 1, since z; + zo = 1. Then z7 > ¥/n — 3 by (24), since z5 < 3
by Lemma 3.5(4). If ¢/n > 3, then x7 > 0. This implies that ¢ is a square and
¢ = 9 mod 16 by Lemma 4.3(3). As a consequence, ¢ = 25. Then \‘Vﬁ = 4 since
q < n < ¢% nis a fourth power and ¥/n > 3. Asn +1 > 1+ 52 1)by
Table I, where n = 4* and ¢ = 25, then x5 = 1 and hence z; = 3. Therefore
by Table, n +1 > z; + x5 q(ql2261) + z7 ‘/a(gﬂ), where 1 = x5 =1 and z7 = 3
and ¢ = 25. That is n > 325. Nevertheless, this contradicts the fact that n = 4%,
Then /n < 3 and hence n < 3*. Nevertheless, n > 130, being n > %51) with
q > 25 by Lemma 3.4. So, we again obtain a contradiction. Thus, =5 = 0.

Since x4 = x5 = 0, then /n = 225 + z7 by (24). If 25 = 0, then 27 = V/n
and hence /n + 1 > 1 + /n(y/q + 1) by Table L. Consequently, /n > /q + 1.
Actually, ¢/n = /q — 1, since ¥/n < /q by our assumptions. At this point the
above argument rules out this case. Then zo = 1 and hence z; = ¢/n — 2. If
x7 > 0, then /n > 2 and hence

f+1>%+(f 2)(Vq+1) (25)

by Table I Note that /i +1 < g+ 1. So /n+1> ¥ 4 (Wi —2)(\/g+ 1) by
(25). Collecting with respect to /n + 1, we have \/n+1 > 2(/n — 2)(v/g £ 1).

Since /n > 2, then 2(\%_ 5 < n and therefore /n > (y/q & 1). In particular,
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¥n > \/q — 1 in each case. On the other hand, /n < /g, since n < ¢ by our
assumption. So, v/q — 1 < /n < +/q, where /q is integer by Lemma 4.3(3),
being x7 > 0. Clearly, this is a contradiction. Thus, 27 = 0. Then ¢/n = 2, since
z7 = /n — 2. So, n = 16. Nevertheless, n + 1 > @, as xo = land ¢ > 9,
which is still a contradiction.

Assume that |Fix(y) NI| = 2. Then # is an involutory (C5, a5)-homology
of Fix(o) with C5 € I NFix(o) and a5 # [ NFix(c). Then z; + 22 = 2 by
Lemma 4.3(1). Recall that {X} = a5 N (clearly C5 # X) and each Tj induces
a Baer involution on Fix(c) by Lemma 4.3(7). Then either ;1 = 29 = 1 or
z1 = 2 and x9 = 0, since z2 < 1 by Lemma 3.5(1).

Assume that x; = zo = 1. Arguing as above, we have /n + 1 = x; + 3z +
24 + x5 + x7 by Table I in conjunction with Lemma 4.3(2)-(7). Actually, z, =0
by Lemma 3.5(3), since x5 = 1. Therefore,

In=34+x5+ 7, (26)

as xy = xo = 1. If x5 > 0, then 25 < 2 and ¢ = 25,41,49,81 or 89 by
2

Lemma 3.6(4), since ¢ = 1 mod 8. Thenn +1 > @ + %, with n < ¢?

and n a fourth power, which is a contradiction as above. Thus, 5 = 0. So,

z7 = /n — 3 by (26). On the other hand, \/n +1 > 1 + %L + 27(\/g £ 1) by

Table I, since z1 = 2o = 1. Then

Va2 14 Ty (-3 va =), (27)

since z7 = ¢/n — 3. If &/n > 3, then z7; > 0. Hence, ¢ is a square and ¢ =
9 mod 16 by Lemma 4.3(3). Thus the cases ¢ = 41,49, 81 or 89 are ruled out. As
a consequence, ¢ = 25. This yields /n < 5, since n < ¢* by our assumptions.
Then /n = 4, since \/n > 3. This is a contradiction, since ¥ is an involutory
homology of Fix(c). Therefore ¢/n = 3 and hence n = 3*. Then % < 82,
since @ < n + 1 by (27), being x5 = 1. This is still a contradiction, since
q = 25,41,49, 81 or 89.

Assume that 71 = 2 and 2 = 0. Recall that j3; is a Baer involution of Fix (o).
Hence |Fix(T;) Ni| = ¢/n+ 1 for j = 1,2 by Lemma 4.3(7). Therefore,

Vn=1+z4+ x5+ 27, (28)

arguing as above, as z; = 2 and z2 = 0.

Assume that z4 > 0. Then x4 = 1 by Lemma 3.5(3). Then ¢ = 17 by
Lemma 3.4, since ¢ = 1 mod 8. Moreover, x5 = 0 again by Lemma 3.4, and z7 =
0 since ¢ is a non square. So, /n = 2 by (28). That is n = 16. Nevertheless,
this contradicts the fact that ¢ < n by our assumptions. So, x4 = 0.
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Assume that x5 > 0, then ¢ = 25,41,49,81 or 89 by Lemma 3.4, since ¢ =
1 mod 8. Furthermore, z5 < 3 by Lemma 3.5(4). Thus, x7 > /n — 4 by (28). If
n > 4, then 27 > 0 and hence ¢ is a square and ¢ = 9 mod 16. Therefore, only
the case ¢ = 25 is admissible. Nevertheless, ¥/n < 5, since ¢ < n < ¢* by our
assumptions. This is a contradiction, since +/n > 4. As consequence, /n = 4
and z7 = 0. Then y/n = 16, and we again obtain a contradiction, since ¥ is an
involutory homology of Fix(c¢). So, x5 = 0.

Since z4 = x5 = 0, then z7 = ¥/n — 1 by (28). Now, bearing in mind that
x1=2,32 =x4 =x5 = 0and 7 = ¢/n—1, wehave /n > 1+ (¢/n—1)(y/gx1)
by Table I. Therefore, &/n+1 > (y/g+1). Then /¢ = 3 mod 4 and ¥/n = \/q—2
or /g — 1, since ¢/n < \/q by our assumptions. Actually, only the case /n =
v/q — 2 is admissible, since {/n is odd, as 7 is an involutory homology of Fix(c).
Then xz7 = \/q — 3 by (28). Hence /n = /¢ — 2. Now, by substituting these
values in v/n > 1+ (¥/n —1)(v/q — 1) (obtained by Table I), we actually obtain
an equality. Thus, there are exactly two points on [ fixed by G (z; = 2) and
the stabilizer in G of any of the remaining ones on I N Fix (o) is isomorphic to
PSL(2,1/q). Then S; = z3 = 9 = 0 by Table I. Therefore, S = %182/, being
S =418 and S; = S; + S». By this and by Table I, we have

— 1
n+1:2+w Q‘;’ 82/7

(g+1)+

since 1 = 2, x9 = 0 by our assumption, since z3 = x4 = x5 = x9 = 0 and
x7 = /q — 3 by the above argument, and since xg = xs = 0 by Lemma 4.3(2)
and (4). Since ¢ = 1mod 8, then Sy is even (see its definition) and hence
q+1|n—1.Thatis ¢+1 | (v/g—2)*—1, since \/n = y/q— 2. Easy computations
yield ¢ + 1 | 40/q — 8. As g+ 1 # 40/q — 8, then ¢ + 1 < 804/q — 16 and
s0 /g < 79. Actually, since /g < 41, since (y/q)? + 1 < 40\/q — 8. Now, it is
straightforward computation to show that there are no /g, such that /¢ < 41
and (1/q)*> + 1| 40,/q — 8. Thus, we have proved the assertion. O

Let C = Cg(o) and let K and K* be the kernels of the action of C on Fix(o)
and on Fix(c) N1, respectively. Clearly (¢) < K < K* 4 C. Moreover, either
K*<Zg1 or K* =2 Dy1 or K* = C, since ¢ = 1 mod 8. Actually, the cases
K* =~ qu_l or K¥ =C azlre ruled out by Lemma 4.2. Then (v) < K < K* <
Zg1. Let v € C such that v2 = ¢. The previous lemma shows that either
vy € K* or ~ induces a Baer involution on Fix(c). Now, we investigate these
two configurations separately.

4.1 The collineation v € K*

Lemma 4.5. If Fix(y) N1 = Fix(o) N1, then the following hold:
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(1) 83,4 =0, S2 =S4 and hence S; = Sor + Sa;

(2) ro=23=24 =25 =26 =78 =0;

(3) If x7 > 0 then g is a square and ¢ = 1 mod 16;

(4) If z9 > 0 then q is a square and p® = 1 mod 4, where p° | \/q;

(5) We may assume that |Fix(T1) N 1| = x1 + 227, and |Fix(T2) N 1| = 21 + 227

Proof. Assume that Fix(y)Nl = Fix(o)Nl. Note that [Fix(y) N[ =",
and [Fix(o) NIl =",

Fixpg (7)|
Fixpa (7)‘ for each ad-

Fixpe (o) ‘ Then

Fixpg (7)] =
missible P’ on I, since Fix(7) N1 = Fix(0) N1 and |Fixpo(7)| < |Fixpg (7)]:
Thus, the assertions (1)-(4) follow by a direct inspection of the Tables I and II.
It remains to show the assertion (5). In order to do so, note that |Fix(T}) NI| =
x1 + 2w7, and |Fix(Ts) NI| = z1 + 2x7p fory/qg = 1 mod 4, while |Fix(T}) Ni| =
21 + 2z7, and |Fix(T2) N1| = z1 + 2x7, by Table I, since x5 = 25 = 24 = x5 =
xg = xg = 0 by (2). Therefore, we have proved the assertion (5). O

Lemma 4.6. If Fix(y) Nl = Fix(o) N1 then one of the following occurs:

(1) The group Tj induces a homology on Fix(o) for either j = 1 or j = 2, and
the following occur:

(@) z1=0;

(®) z74, 276 > 0. In particular, either x7, = 1 or 7, = 1.

(2) The group T induces a Baer involution on Fix(o) for each j = 1,2, and the
following occur:

@ Yn+l==x +z7;

(b) =1 > 3;

(c) The collineation  induces the identity on Fix(o);
(d) The group G fixes a subplane of 11 of order x1 — 1.

Proof. Let 3; be the involution induced on Fix(c) by a Klein subgroup 7} con-
taining o (and hence lying in ), j = 1,2. Assume that 3, is a (Cgl,agl)-per-
spectivity. Then O, € Fix(o)Nl and as, # | by Lemma4.2. Set {X} = ag NI. If
/1 is an elation Fix(c), then C5, = X and hence |Fix(71) N{| = 1. Thenz; =1
and z7, = 0, since |Fix(Th) Nl| = z1 + 227, by Lemma 4.5(5). So, G fixes
C3,, which is a contradiction by dual of Lemma 4.2, since Fix(T1) N [C3,] =
Fix(c) N [C3,]. Thus, B is a (Cj,,as,)-homology of Fix(s). Then Cj, # X
and hence |Fix(T1) Ni| = 2. Therefore, either 1 = 2 and 27, = 0 or ;1 = 0
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and z7, = 1, since |Fix(T1) Ni| = z1 + 227, by Lemma 4.5(5). Assume the
former occurs. Then G fixes C3 and X, which is a contradiction by the same
argument as above. Consequently, z; = 0 and z7, = 1. Moreover, z7, > 0, since
|[Fix(T1) Nl| = z1 + 2x7p, being x1 = 0. The previous argument still works with
Ty in the role of T;. Hence, we obtain the assertion (1a) and (1b).

Assume that T; induces a Baer involution on Fix(c¢) for each j = 1,2. Then
|Fix(T;) Nl| = /n+1foreach j = 1,2. Then /n+1 =21 + 227, Or Y/n+1=
x1 + 2x7, by Lemma 4.5(5). As a consequence,

%+1:$1+5L‘7, (29)

since 7 = x74 + x75. Thus, we have proved the assertion (2a).

Now, note that /n + 1 > x1 + x7(y/q £ 1) by Table I. By composing this one
with (29), we obtain

Vn+l>z +(Vn+1—z)(Vg+1). (30)

Assume that 7 > 0. Thus ¢ = 1 mod 16 by Lemma 4.5(3). If z; = 0,
then z7 = /n + 1 by (29) and hence /n + 1 > (¥/n + 1)(v/q £ 1) by (30).
That is v/n — 1 > (Vg £1) > /g — 1. This yields +/n > /q, which is a
contradiction, since n < ¢?. Then x; > 1. If x; = 1, then 27 = /n by (29).
Furthermore, /n + 1 > 1 + ¥/n(v/q £ 1) by (30). That is ¢/n > (v/q £ 1).
As ¢n < \/q by our assumption, then /¢ = 3 mod 4 and ¥/n = /¢ — 1. By
substituting the determined values of z;, 27 and of /n in (30), we see that this
one is satisfied as an equality. So, x9 = 0 and S, = 0 by Table 1. Therefore,
n+1=1+S+(vg-3)(g+1). Asq+1|S, being S = 411 S; and being S; even
by its definition, then ¢ + 1 | n. Consequently, ¢ + 1 | (1/g — 1)*. Elementary
calculations of the previous relation yield ¢ + 1 | 4. Hence, we arrive at a
contradiction, since ¢ is a square as xy > 0. Therefore, z; > 2. Assume that
x1 = 2. Then 27 = {/n—1by (29). Furthermore, /n+1 > 2+ (¥/n—1)(/g*1)
by (30). This yields ¢/n + 1 > /q + 1. As &/n < /q by our assumption, then
vq =3 mod 4 and /n > \/q — 2. Then either /n = /g — 1 or V/n = \/q — 2,
again since /n < \/q. Actually, the case /n = \/q — 1 is ruled out by the above
argument. So, /n = /¢ — 2. This forces /n+1 > 2+ ({/n —1)(vq+ 1)
to be an equality. As a consequence, z9 = 0 and S; = 0 by Table II. Thus
n+1=2+8+(Hq—3)(¢q+1)byTable L Asq+ 1| Sy, theng+1|n—1.
Hence ¢ + 1 | (y/g — 2)* — 1, since /n = /¢ — 2. Easy computations yield a
contradiction. Therefore, x; > 3 for x7 > 0. Actually, x; > 3 also for x7; = 0 by
(29), since /n > 2. Thus z; > 3 in each case, which is the assertion (2b).

Now, GG and hence v acts on [X] for each point X of the x; ones fixed by G
on [. Then ~ fixes at least 3 lines of [X] for each point X of the x; ones fixed by
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G on ! by dual of Lemma 4.4. So, « induces the identity on Fix(o), since 21 > 3
and since Fix(y) Nl = Fix(o) N (. Thus, we have proved the assertion (2c).

Now, we may apply the dual of the above argument to [X] in the role of [ for
each point X of the z; ones fixed by G on [. This yields that G fixes at least
3 lines through each of these x; points on [. Then G is planar, which is the
assertion (2d). O

Proposition 4.7. The group T} induces a homology on Fix(c) for either j = 1 or
j = 2, and the following hold:
(1) x1 =0;

(2) x74,x75 > 0. In particular; either x7, =1 or 7, = 1.

Proof. Assume that T induces a Baer involution on Fix(c) for each j = 1,2.
Then z; > 3 and v induces the identity on Fix(c) by Lemma 4.6(2b) and (2c),
respectively. Then, by Table I and by Lemma 4.6(2b), we have the following
system of Diophantine equations:

\4/54’1:114*1‘7 (3D
Vn+1l=az +ar(Vg+ 1)+x9;€:1 + 8, (32)
eq? — 1 +1
n+1=m1+m7\/c_1(q+1)+x9pq +4 Sy. (33)
2(pc — 1) 2

Suppose that 7 = 0. Then /n + 1 = 27 by (31) and hence o(Fix(G)) = ¥/n
by Lemma 4.6(2d). Thus ,\/n+1 = S+ ;;11 +/n by (32). As a consequence,
Sy + g > 0. Let p;, where t = 1 or 2, be the representatives the two conjugates
of p-elements in G. Then p; is planar for each ¢t = 1, 2 since G is planar. In partic-
ular, p, fixes a Baer subplane of IT by [16, Theorem 3.7], since Fix(G) C Fix(p;)
and o(Fix(G)) = ¥/n. Furthermore, Fix(G) C Fix({p:, o)) C Fix(p;). Then ei-
ther Fix({(ps, o)) = Fix(G) or Fix({p, o)) = Fix(p;) again by [16, Theorem 3.7],
since Fix(G) is a Baer subplane of Fix(p,). Actually, Fix({p;, o)) = Fix(p;), since
Sy + g > 0. This yields xg = 0 and S; = S, again by Table II. In particular,
S1 > 0, since Sy + 9 > 0 and zg = 0. Moreover, Fix(p;) C Fix(o). Actu-
ally, Fix(p;) = Fix(0), since Fix(p;) and Fix(o) are Baer subplanes of II. Then
181 = &4, since o(Fix(p)) = 181 + ¢/n and o(Fix(c)) = Sy + /n by Tables
II and I, respectively. Hence, we arrive at a contradiction, since S; = S; and
Sy > 0. ThUS, x7 > 0.

Let us focus on the group (p:,0), ¢ = 1,2. Then {p;, o) is planar for each
t = 1,2, since Fix(G) C Fix((ps, o). In particular, o(Fix({pt,0))) < V/n+1
by [16, Theorem 3.71, since o(Fix({p:,c))) is a proper subplane of Fix(c) as
x7 > 0, and since Fix(o) is a Baer subplanes of II. Moreover, by Table II,
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o(Fix({ps,0))) + 1 = @1 + x7e + 29k + 1S4, where ¢ = 2 or 0 according to
whether /¢ = 1 mod 4 or \/q = 3 mod 4, respectively. So,

1
T + x7e + X9kt + 584 < x1 + x7, for each t = 1,2, (34)

since o(Fix({ps,0))) < ¥/n+1 and since /n+1 = z;+x7 by (31). It follows from
(34) that e = 0 and hence /g = 3 mod 4, as € = 2 or 0 according to whether
V@ = 1 mod 4 or \/g = 3 mod 4. Then summing up the two inequalities in (34)
(one for ¢t = 1 and the other for ¢ = 2) and then subtracting 2x; to the sum, we
obtain

Sy + x9(ky + ko) < 27 (35)

Assume that Sy + 29 > 0. If zg = 0, then S; > 0. Moreover, S; < 2z7 by (35).
Since Fix(G) is a proper subplane of Fix(7}), then (z; — 1)? < (z; — 1) + 27
by [16, Theorem 3.7], and hence x; — 1 < z7. Then z; — 1 + 84 < 3x7, since
Sy < 2z;7. Now, note that v/n + 1 = x; + z7(y/g — 1) + S4 by (32), being
xg9 = 0 and /¢ = 3 mod 4. This produces /n < 3z7 + z7(v/q — 1) as 84 < 2z7.

Hence, z7 > \/\6/22' On the other hand, n + 1 > x7v/q(q + 1) + 1 by (33), since
NG

x1 > 1 (actually, 1 > 3). Now, by substituting z7 > —X- in the last inequality,

NS
we obtain n > \}fﬂ Valg +1). Since o = /g — 2+ 525, we actually

obtain \/n > (v/g — 1)? and hence /n > (1/q)?, since \/n is a square. This
is impossible, since n < ¢? by our assumptions. Therefore, z9 > 0. Actually,
29 = 1 by Lemma 3.5(6). Then 227 > ki + ko by (35). Hence, x7 >

q9—p
2p;(pe*1)’
%. Recall that ¢ = p?*¢, w > 1. Hence z; > %.
Now, by substituting these value in v/n > z7(y/q — 1) + ;;11 which is obtained
by (32), as z; > 1 and =9 = 1 and /q = 3 mod 4, we have

(2w—1)e __ 1 2we __ 1
\/EZPQW%_D@“*IHP*

Furthermore, since ¢ = p?“¢ and /¢ = 3 mod 4, then w is odd. Assume that
w > 3. Then p::__ll > p%¢ + p°+1 and hence p::__ll > 2p°. Then /n > pZ:E__11 +
(p?»=Ve —1)pc and hence \/n > p?“¢. Thus \/n > ¢, which is contradiction,
since y/n < ¢ by our assumptions. Then w < 3 and hence w = 1, since w is
odd. So, p¢ = /q and hence p°* = 3 mod 4, since /¢ = 3 mod 4. This is a
contradiction, by Lemma 4.5(4).

Finally, assume that Sy = 9 = 0. Then n + 1 > 1 + x7/q(q + 1) by (33). If
we subtract (31) from (32), and then (31) from n + 1 > 1 + x7y/q(¢ + 1), by
bearing in mind that /¢ = 3 mod 4, we obtain

V= n=a:(Vq-2) (36)
nf\%;z:m[\/a(qul)fl]. 37)

since ]{11 + kg =

pe—1
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Now, combining (36) and (37), and bearing in mind that x7 > 0, we obtain

ne Y Valgt1) -1
Vievic T Va2

Since n — ¢/n = (vV/n — ¥/n)(v/n + ¥/n + 1) and since % > ¢, then
Vn+yn+1> qby (38). Then (¥/n+1)? > g and hence V/n > \/g—1,asqisa
square. On the other hand, /n < /g by our assumptions. So, /¢ —1 < V/n <
Vg, with /n and /q integers. This is clearly a contradiction. At this point, the
assertion easily follows by Lemma 4.6. O

(38)

Lemma 4.8. The following hold:

(1) 29 =0;

(2) 84>0;

(3) Let h =2 or 4. Then @ | | K| for v/q = +1 mod 8, respectively.

Proof. The group T; induces a homology on Fix(c) for at least one j = 1 or 2
by Proposition 4.7. Furthermore, x1 = 0, 274,27 > 0 and either x7, = 1 or
27, = 1. We may assume that 7 does and that z7, = 1. Let (3, is a (Cz,a3,)-
homology induced by 73 on Fix(c). Set {X} = ag, Nl. Then, by Table I and by
Lemma 4.5, we have

—1
\/ﬁ+1:S4+l‘7(\/a:|:1)+I9;e_1 (39)
nt1=1 31+z7\/_(q+1)+x9w. (40)
2(pc —1)
Since S; > S4, we compose (39) and (40) obtaining
+1 q2 —
+1>—(\/_+1)+x7 (VgF1)+x9 (41)

In particular, n + 1 > 4t (\/_—i—l)—i—a:g -1 Since ¢ +1 > /n + 1, we
have n +1 > (Z% + 29 QT)(\/_—i— 1). Since \/_—i— 1 does not divide n + 1 or n,
thenn —1 > (‘Z’L1 + z9 ;)(\/_ + 1) being the second part an integer. Hence,
dividing each term by /n + 1, we obtain /n > 1+ 2+ + 29951, If 29 > 1, then
v/n > 1+ g, which is a contradiction. Therefore, z9 = 0 and we have proved

the assertion (1).
Assume that S; = 0. Then 27 = ‘;Ii by (39) and hence n + 1 = 7528, +

Vet Va(q + 1) by (40), as g = 0. Note that /g + 1 | /7 + 1, since 27 is

an integer, otherwise we would have a contradiction. In particular, n + 1 >
%E Vq(qg+1). As /n > 2, we have \/n + 11 n + 1. Furthermore, \/n + 1 { n.
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Hence, n — 1 > Y21 /4(¢q + 1) since the second part is an integer. So, \/n >

NGES
1+ %. If /¢ = 3 mod 4, then v/n > g + 1, which is a contradiction by our
assumptions. As a consequence, /¢ = 1 mod 4. Then /n > 1+ % and

hence /n > (Vg — 1)~

If z7 > 2, then T, must induce a Baer collineation Fix(c) and consequently
/n must be an integer. Since n < ¢2, then ¢/n < \/q. Actually, ¥/n < /g —1,
since /n is an integer. Therefore, \/n < (y/qg — 1)? by squaring. This is a
contradiction, since \/n > (y/q — 1)? by the above argument.

If 27 = 2. Then /n = 2(y/q+1)—1 by (39), since z9 = 0, and since Sy = 0 by
our assumption. Hence /n = 24/q + 1 . On the other hand, n > 2/¢(¢+ 1) —
by (40). By composing these inequalities, we have (2,/g+1)? > 2\/q(¢+1) — 1.
Easy computations yield a contradiction, since ¢ > 9. Thus, S, > 0 which is the
assertion (2).

ASs z74, 27 > 0, it follows that ¢ is a square and ¢ = 1 mod 16 by Lemma 4.5(3).
So, either /¢ = 1 mod 8 and /¢ = 7 mod 8. Since T; fixes exactly two points
on [, by Table I, these ones must lie in either a G-orbit on [ of type (7a) or in a
G-orbit on [ of type (7b) according to whether\/q = 1 mod 8 or /g = 7 mod 8,
respectively.

Assume that /¢ = 1 mod 8. Then Cj , X € Cﬁ where G, = PSL(2, Vq),
since T; fixes exactly two points in G-orbit of type (7a). In partlcular Gey, =
Gx, since Gg, < PGL(2,1/q) < PSL(2,q). Recall that C' = Cg(0) and that
C = C/K, where K is the kernel of C on Fix(c). Clearly, C = D,_; and
6_1 € C. Note that Cx = CNGx = Cg,(G) and hence Cx = D ,;_,, since

= PSL(2,V/q). In particular, Cx = Cx,c, . Set Cy = Cx,c, . Clearly,
K < Cp and B3, € Cy, where Cy = Cy/K. Then X and Cp, are the unique points
on Fix(o) N1 fixed by Co, as 1 € Cy. Set h = |Co|. Then h is even, as 3; € Co.
If \Co‘ > 4, then Cj is dihedral and therefore exists a point Y € [ such that
Cy = C by Lemma 2.10. That is C < Gy. Then Gy = C, where C = Cg(0),
since C' is maximal in G as ¢ > 9, and since x; = 0 by Proposition 4.7(1).
Nevertheless, this is a contradiction, since 2o = 0 by Lemma 4.5(2). Thus,
h = |Co| < 4. Actually, either h = 2 or 4, since h is even. On the other
hand, |Cy| = h|K]|.
C() = CGX (G) and Gx = PSL(2, \/a)

Now, repeating the previous argument for /¢ = 7 mod 8, we find that Cy &
D, /741 and hence @ | |K|, where h = 2,4. So, we have proved the asser-
tion (3). O

, where h = 2,4, since Cy = D 5, as

Lemma 4.9. If the p-elements are not planar, then §; = Sy = 2(\/q + 1).
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Proof. Let p;, t = 1,2, be the representatives the two conjugate classes of p-
elements in G. Since x7,,x7, > 0, the collineation p; fixes at least 2,/q points
on [ for each t = 1,2 by Table II. Then p; must fixes at least 2,/q lines on II
by [16, Theorem 13.3]. Since p; cannot be planar, all these lines must concur
to a unique point X; of II. It is a plain that X; and X5 might coincide. Let S
be the Sylow p-subgroup of G containing p; for each ¢t = 1,2. Clearly, p; fixes
X7 and at least 2,/q lines through each point of X, since S is abelian. Then
|X| = 1, since p; cannot be planar on II by our assumption. Thus S fixes X,
for each ¢t = 1,2. Assume that X; € Il — [ for at least onet = 1 or 2. As Sy > 0
by Lemma 4.8(2), then there exists a point Y on [ fixed by S. Hence S acts
on X;Y — {X;,Y}. Assume that Sp # (1) for some point R € X;Y — {X;,Y}.
Let ¢ € Sg, ¥ # 1. Clearly, ¢ fixes Y and R on II — [. Furthermore, v fixes
at least 2./q points on /. Indeed, ¢» conjugate either to p; or ps and each of
these collineations fixes at least 2./q points on [ as x7,, z7, > 0. So, ¥ is planar.
This is impossible by our assumption. Thus, S is semiregular on X;Y — {X;,Y}.
Hence, ¢ | n — 1. That is n = aq + 1 for some positive integer a. On the other
hand,
q+
2
by (40) of Lemma 4.8, since z9 = 0 by Lemma 4.8(1). Since S; is even, then
g+1|n+1by(42). Theng+1 | a—1,sincen =ag+ 1. Ifa=1,it
follows that n = ¢ + 1. As ¢ = 1 mod 8, we have that n = 2 mod 4. Hence,
we arrive at a contradiction by [16, Theorem 13.18], since ¢ > 3. Thus, a > 1.
Hence, a = 6(q + 1) + 1, with § > 1. Therefore, n = 0g(¢ + 1) + ¢ + 1. This
yields n > ¢2, as > 1, which is a contradiction. So, X; € [ for each t = 1, 2.
Then Gx, = F,.Zy, by Table I, since S fixes X;, |S| = ¢, and since z; = 0 by
Proposition 4.7(1). As a consequence, x1g > 0.

1
n+1= Si+27v/q(g + 1) (42)

Note that o normalizes S and it acts as the inversion on S. Thus, o normalizes
{(py) for each t = 1,2. If d; is odd, then o moves X;. Then p; fixes at least 2./q
lines through X; and at least other 2./q ones though X;o. As a consequence, p;
is planar on II. Nevertheless, this contradicts our assumptions. So, d; must be
even. This implies So: = 0. Therefore, S; = S4 by Lemma 4.5(1). In particular,
by (42), we have n +1 = %184 + x7y/q(q + 1).

Let ¢ be a line of [X;] — {I} fixed by p;. Clearly each line of r{ intersect [ in
a (unique) point of XtG , where Gx, = F,.Z,4, and d; is even. In particular each
element in p¢ fixes at least one line of r&. Since the p-elements in G cannot
be planar, then for each element 7 in p& actually there exists a unique point
Q- in X such that each line of II fixed by 7 lies in [Q,]. As a consequence,
each p-element in G fixes a subset of a pencil of lines concurrent to a point lying
either in X or in X§. If 219 > 2, there exists a G-orbit of type (10), say Q°,
such that S is semiregular on [Q] — {/}. Thus ¢ | n and hence n = bg where
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b>1.Theng+1|b—1,since g+ 1| n+ 1 arguing as above. As n > ¢ by our
assumptions, then b > 1 and hence b = f(q+1)+1. Therefore,n = fq(q+1)+q,
which is a contradiction, since n < ¢? by our assumption. Thus, 0 < z;¢ < 2.
That is 19 = 1 or 2.

Assume that x19 = 1. Then X; = X, and d; = ds, since p; and p; lies in the
same Sylow p-subgroup S of G. Set X = X; = Xs and d = dy = dy. Then S, =
%=1 Now, recall that @ | |1K|, h = 2,4, for v/qg = +1 mod 8, respectively, by
Lemma 4.8(3). Thus, @ | |Cx|, h = 2,4, for \/g = +1 mod 8, respectively,
since K < Cx. This fact, in conjunction with the fact that Gx = F,.Z;, yields

Cx = Z,, where d = ‘/a,flu, h = 2,4, for /g = +1 mod 8, respectively. Here
u is a positive divisor of d. So, Sy = h% for /¢ = +1 mod 8, respectively,
since Sy = %. Now, let P be a point of [ such that Gp = PSL(2,+/q) and let
Sp = SN Gp. Then Sp must be semiregular on [P], since P ¢ XY, since the
lines fixed by any non trivial element in S lie in X ¢ and since S does not contain
planar elements. Hence, \/q | n as |Sp| = v/q. Then /¢ | %84 — 1 by (42). That
is \/q | h\fg—iﬂ — 1 for /g = £1 mod 8, respectively. So, there exists a positive
integer x such that z\/q = h% — 1 for /g = +1 mod 8, respectively. Since
v/q > 3 by our assumption, there are no admissible solutions of the Diophantine
equation z/g = h¥2 — 1 by Lemma 2.7(1). Hence x/q = h¥Zt — 1 and
vq = 1 mod 8. Then (z, h,u,v/q) = (1,2,1,1/q) by Lemma 2.7(2). Therefore,
81 =2(y/q+1). Since §; = S;, we have the assertion.

Assume that z;9 = 2. Then S; = qd_11+ qd_21 and X; # X, for z19 = 2,
since S; = Ss. Now, recall that @ | |K|, h = 2,4, for /g = +1 mod 8,
respectively, by Lemma 4.8(3). Thus, \/§h¢1 | |ICx,|, h = 2,4, for \/g = +1 mod
8, respectively, since K < C¥x, for each ¢t = 1,2. On the other hand, Cx, =
Za,, since Gx, & F,.Z,, for each t = 1,2. So, d; = ‘/E,flut, h = 2,4, for
Vg = +1 mod 8, respectively. Here, u; is a positive divisor of d;. Then S; =
h\/_Z—Tl + h\/_Z—jl, where h = 2 or 4, for \/¢ = +1 mod 8, respectively, since
S, = %—i— %. Arguing as above, we have /q | %&1 — 1 by (42). Thus,

NCB hALEL 4 h\/Q_qTfl — 1, where h = 2 or 4 or /g = +1 mod 8, respectively,

2’11,1

since S; = h‘/Z—Tl + h‘/_Z—jl. Then there exists a positive integer x such that
T\/q = h‘/z_qTTl + h‘/z_qTfl — 1, where h = 2 or 4 or /¢ = +1 mod 8, respectively

(in particular, Sy = 2(z+/q+1)). Then z = 1 in any case by Lemma 2.8 and 2.9,
since /¢ = £1 mod 8. Therefore, Sy = 2(y/q + 1). Since §; = Sy, we have the
assertion. O

Lemma 4.10. The group T induces a homology on Fix (o) for each j =1 or 2.

Proof. The group T} induces a homology on Fix(o) for either j = 1 or j = 2
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by Proposition 4.7. Assume that T; does it. We may also assume that z7, = 1.
Assume also that 75 induces a Baer collineation on Fix(c). Then by Table I in
conjunction with Lemmas 4.5, 4.8 and Proposition 4.7, we have the following
system of Diophantine equations:

%+1:2I7b (43)
Vn+1=8+z7(V/q+1) (44)
n+1:q;181+x7\/§(q+1)- (45)

By substituting x7 = 1 + 7, in (43), we have that z; = %24’3. Now, by sub-
stituting this value of z7 in and (44), we obtain /n + 1 =S4 + (/n + 3)@.

That is
f—9:($4—10)+(%+3)@. (46)

Assume that S; = 10. Then V/n = 3 + % by (46). As x7 > 0, being x7 =
1 + x7p, then ¢ = 1 mod 16 by Lemma 4.5(3). This yields /¢ = 1,7 mod 8.
So, v/n = 3 mod 4, which is a contradiction by Lemma 3.3. Hence, S, # 10.
Nevertheless, \/n + 3 | S4 — 10 again by (46).

Assume that S; < 10, hen ¢/n + 3| 10 — S4. As /n > 2,then ¢Yn+3 > 5
and therefore 10 — S; > 5. Thatis S, < 5. Then S; = 2 or 4, since S, is even
by its definition and since S; > 0 by Lemma 4.8(2). Assume that Sy, = 4. It
follows that /n = 3+z7(y/gx1). As z7 > 0, then /g = =1 mod 8 by the above
argument. Then /n = 3mod 4, as v/n = 3 + z7(y/q £ 1). Nevertheless, this
contradicts Lemma 3.3. Therefore, S, = 2. Hence, /n+3 | 8, as /n+3 | S4—10.
Then /n+ 3 = 8, since /n > 2. As a consequence, +/n = 5. This yields z7 = 4,
as z; — Y233 Thus, 4(y/g+ 1) = 24 by (44), as Sy = 2. So, g+ 1 = 6.
On the other hand, /¢ + 1 = 0 mod 8 by the previous argument, as z; > 0.
Nevertheless, this contradicts/q + 1 = 6.

Assume that Sy > 10. Then S, = 0(/n + 3) + 10 with § > 1. Assume
¢ is odd. Then 6(y/n + 3) = Sy — 10 and hence {/n —3 = 0 + @. Note
that /n = (3 +6) + @ is even, as ¢ is odd. Thus +/n is even, which is
a contradiction, since 77 induces a homology on Fix(c). Then 6 is even and
hence 6 > 2, as § > 1. Since V/n + 1 = 2x7, then Sy > 4x7y.

Let p;, t = 1 or 2, be the representative of the two conjugate classes p-
elements in G. Suppose that p; is planar for either ¢ = 1 or t = 2. Then
o(Fix(pt)) + 1 = 181 + 27,21/ by Table I, where v = a fort = 1 and v = b
for t = 2, since z; = 0 by Proposition 4.7, since g = 0 by Lemma 4.5(2)
and since zg = 0 by Lemma 4.8(1). Clearly, o acts on Fix(p;), since o inverts
pt. Furthermore, it follows from Table II that |Fix({ps, o)) NI| = 384 + @7ee,



72 A. Montinaro

where ¢ is either 2 or 0 according to whether /¢ = 1 mod 4 or /¢ = 3 mod 4,
respectively. Since S; > 10, then |Fix({p:,0)) NI| > 3. On the other hand,
[Fix((ps,0)) N1| < 181 + 27,2\/q. So, (ps, ) induces a Baer collineation on
Fix(p;). Therefore, {p;, o) is planar. In particular, Fix((p;, o)) is a subplane of
Fix(o) of order %84 + 27,6 — 1, wherev =afort =1and v = b for t = 2. Then
%84 + x7pe < /n + 1 by [16, Theorem 3.7], since Fix(o) is a Baer subplane of
IL. This yields 384 + x7,e < 2z7, by (43). In particular, £S; < 227, and hence
Sy < 4x7,. Hence, we arrive at a contradiction, since S; > 4x7; by the above
argument. Thus, G cannot contain p-planar elements. Then §; = Sy = 2(\/g+1)
by Lemma 4.9. This yields z7 = Vil o by (44). By substituting these values

=Y
of S4 and z7 in (45), we have

n+1(q+1)(\/a+1)+<\/ﬁ1 2> Valg+1).

Va-—1
By elementary calculations of this one, we have
Vi = Vg
n—q=-—7=——+q(g+1).
TVl + )

Thus, n++/q > q+1and \/n > ¢—+/q+1. On the other hand, /n < (1/g—1)?
since n < ¢?, q is a square and n is a fourth power, since T, induces a Baer
collineation on Fix(c) by our assumption. So, we obtain a contradiction, since
q¢—+/q+1> (y/g—1)% Hence, T; induces a homology on Fix(c) for each j =1
or 2. O

Proposition 4.11. The collineation ~y induces a Baer collineation on Fix(c) and
hence K < Z4-1.

Proof. The group 7; induces a homology on Fix(o) for each j = 1 or 2 by
Lemma 4.10. Then z7, = 27, = 1 by Table I, since 2o = 3 = 4 = x5 = 2 =
zg = 0 by Lemma 4.5(2), since x; = 0 by Proposition 4.7(1), and since xg = 0
by Lemma 4.8(1). Therefore, 7 = 2. Then we obtain the following system of
Diophantine equations:

Vn+1=38+2(q+1) (47)
n+1:q;151+2\/¢}(q+1). (48)

Since S; > Sy, thenn +1 > %84 + 2v/q(q + 1) by (48). Now, composing
this inequality with (47), we obtain

n+12%1(\/ﬁ+1)+(q+1)(\/§¥1) (49)
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and hence n +1 > [Z2 + /g F1] (v/n+ 1), since /n+1 < ¢+ 1. As y/n > 2,
we \/n+11{n+1. Furthermore, v/n+1{n. So,n—1 > [£2 + /g F 1] (y/n+1).
Dividing each term by /n + 1 in the previous inequality, we obtain \/n — 1 >
@t 4 /g £ 1. This implies v/n — 1 > 4% + /g + 1 and therefore

\/ﬁ+1>(\/§ﬁ:1)(@+1). (50)

Let p;, t = 1 or 2, be the representatives of the two conjugate classes p-el-
ements in G. Suppose that p; is planar. Then o(Fix(p;)) + 1 = 151 + 21/g by
Table II, since 27, = z7, = 1. Clearly, o acts on Fix(p;), since o inverts p;,.
Again by Table II, we have |Fix({p;,0)) Nl| = 384 + ¢, where ¢ is either 2 or 0
according to whether /¢ = 1 mod 4 or v/q = 3 mod 4, respectively.

Assume that @ > 5. Then/n+1>6(y/¢+1)and hence S; > 4(y/qg+ 1)
by (47). In particular, S, > 8. Then |Fix({ps,0)) Nl| > 3. On the other hand,
[Fix((p,0)) N1 < 181 + 2y/q. Hence, (p;, o) induces a Baer collineation on
Fix(p;). Then (38, +¢— 1)2 < 181 + 24/q by [16, Theorem 3.7]. Note that
(384 +e—1)2 > 84, as S > 8. So, Sy < 38 + 2y/qg — 1. Hence, S; <
4/q — 2. On the other hand, we proved Sy > 4(y/¢+1). Combining these
two inequalities involving S, we obtain /¢ = 3 mod 4 and 4\/¢g — 2 > S, >
4 (y/q — 1). Therefore, Sy = 4./q — 3, which is a contradiction, since S, must be
even.

Assume that @ < 4. Recall that the upper sign if v/¢ = 1 mod 4 and the
lower sign if v/qg = 3 mod 4 This yields ¢ = 25 or 49, since ¢ is odd and ¢ > 9. Ac-
tually, only the case ¢ = 49 is admissible, since ¢ = 1 mod 16 by Lemma 4.5(3),
being x7; > 0. Now, by substituting ¢ = 49 in (49), we have /n > 35. Hence
35 < /n < 49, since \/n < \/q by our assumptions. Furthermore, <% | n + 1
by (48). Thatis 25 | n + 1, since ¢ = 49. Now, filtering the list 35 < /n < 49
with respect to the conditions 25 | n + 1, and /n odd, as the 7} induces a
homology on Fix(c) for each j = 1,2, we obtain \/n = 43. Nevertheless, this
contradicts Lemma 3.3. As a consequence, the p-elements in G cannot be pla-
nar. Then S; = 2(y/q + 1) by Lemma 4.9. This is still a contradiction, since
S84 > 4(y/q £ 1) by the above argument, being ¢ > 9. O

4.2 The collineation ~ induces a Baer involution on Fix(o)

Proposition 4.12. The group T induces a Baer collineation on Fix(c) for each
j=12

Proof. Recall that C' = C¢(o) and let K and K* be the kernels of the action
of C on Fix(o) and on Fix(c) N, respectively. In particular, K < Z a1, since
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7 induces a Baer involution 4 on Fix(c) by Proposition 4.11. Let j3; be the
involution induced on Fix(c) by a Klein subgroup T containing ¢ (and hence
lying in C) for j =1, 2.

Suppose that K = 7 ot Assume also that §3; is an involutory (Cp,,a3,)-per-
spectivity. Then Cj, € 1N Fix(c) and ag, # | by Lemma 4.2. Thus, K < Gcg—j-
This implies C' < Gcg , since the collineation ¥ fixes Cg as 7 centralizes 3;
and since K = Za-1. Note that No(T;) N C = Dg, where Ng(T;) = Si.
Then Ng(Tj) < Gcﬁ , since [Fix(7j) Ni| = 1 or 2, since Cp, € Fix(T;) N1
and since C' < Gcﬂj- So, G fixes Gcg—j, since (C, Nq(T;)) < GCBJ- and G =
(C, N¢(T})). Hence, we arrive at a contradiction by dual of Lemma 4.2, since
FmﬂQ)O[GC@}:IHMU)O[Gc@}

Suppose that K < Z4-1. Then C/K = Dy, with m = 0mod 4, as ¢ =
1 mod 8. If nis odd, then each involution induced on Fix(o) by a Klein subgroup
T, containing o is a Baer involution by [19, Proposition 3.3], since 7 is a Baer
involution of Fix (o). Thus, we have proved the assertion for n odd.

Assume that n is even. Assume also that 3, is an involutory (061 , a3, )-elation
of Fix(0). As Fix(T1) Nl = {Cp, }, then Ng(T1) < Gc;, , where Ng(Th) = Sy
as ¢ = 1 mod 8. Clearly, GCB1 < @G, otherwise, we would have a contradiction
by the above argument. Then either G¢,; = S; and ¢ = 9 mod 16 or G, =
PGL(2,+/q) by Table I, since |Fix(71) N l| =1.1If GC, > Sy, then q=25o0r4l

by Lemma 3.4, since ¢ = 9 mod 16. So, ’ .Then 221 < 11 <

q? + 1, since Cg C [. Furthermore, n is a fourth power by Propos1t10n 4.11, and
n is even. This is a contradiction, since ¢ = 25 or 41. Thus, G¢; = PGL(2,/q).
Now, since |Fix(y) N{| = &/n+ 1 and |Fix(71) N = 1, then

J@J_m(fim+&, (51)

where zg, = 1. If zg > 2, then ¥/n +1 > /g + 1. Then /¢ = 3 mod 4 and
hence /n > \/q — 2, since /n < /q. Actually, /n = \/q — 1, since {/n is even
as (3, is an involutory (Cj, , as, )-elation of Fix(c). Therefore, /n = 2 mod 4 as
V¢ = 3 mod 4. Then {/n = 2 by [16, Theorem 13.18], since (3; acts non trivially
on Fix(¥). As a consequence, /g = 3. Nevertheless, this is a contradiction, since
g > 9 by our assumptions. Then zs = x5, = 1 and hence |Fix(72) NI| = 3 by
Table I. Thus, T, induces a Baer collineation on Fix(c). Therefore, /n + 1 = 3.
Now, by substituting zs = 1 and /n = 2 in (51), we obtain £ (\/g+1) +S; = 3.
As a consequence, S, = 0 or S; = 2, since S, is even. If the latter occurs, then
Vg + 1 = 2. Nevertheless, we again obtain a contradiction, since ¢ > 9. So,
Sy = 0and /g +1 = 6. Consequently, /g = 5 or 7 and n = 2%, which is
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a contradiction, since ¢ < n by our assumptions. Hence, we have proved the
assertion when the order n of II is even. This completes the proof. O

Lemma 4.13. The following occur:

€))
(2
3
4

g =x5 =x =0;

if x7 > 0, then ¢ = 9 mod 16;
xg < 1;

if xg > 0, then p¢ = 3 mod 4.

Proof Recall that v induces a Baer collineation of Fix(c) by Proposition 4.11.
Therefore, n is a fourth power. Clearly, /n > 2.

ey

Note that ¢ > 17, since ¢ = 1mod 8 and ¢ > 9. Then ¥/n > 2, since
g < n by our assumption. Assume that ¢/n = 3 or 7. Thus, Fix(o) has
order 9 or 49, respectively. Furthermore, the group induced by C¢ (o) on
Fix(o) has order divisible by 4 and each its involution is Baer collineation of
Fix(o) by Propositions 4.11 and 4.12. Nevertheless, this is a contradiction
by Theorem 2.6, since +/n = 3 mod 4. Thus /n > 4 and /n # 7. Moreover,
the case /n # 6 by [16, Theorem 3.6]. Hence, +/n > 4 and /n # 6,7.
Then ¢ > 17, since ¢ < n < ¢>. Therefore, , = 0 by Lemma 3.4, since
¢ =1 mod 8.

Assume that z¢ > 0. Then ¢ = 25 or 41 by Lemma 3.4(4), since ¢ = 1 mod 8
and g # 17. Then /n = 4, since ¢ < n < ¢, since n is a fourth power with
Vn > 4 and ¥/n # 6. On the other hand, n + 1 > %871) by Table I, as
xg > 0. Thus, either n > 325 or n > 1435 according to whether ¢ = 25 or
41, respectively. This is impossible, since n = 4% So, 2 = 0.

Assume that 25 > 0. Thenn+1 > 22 =1 by Table I. Hence, q( 1>x —-1<
n < ¢°. Furthermore, ¢ = 25,41, 49 81 or 89 by Lemma 3. 4(5) since g =
1 mod 8. In addition, n is a fourth power with /n > 4 and /n # 6,7 by the
above argument. Thus, (¢,n) = (25,4%) or (41,5%) or (89,9*). Moreover,
x5 = 1 in each of these cases.

Assume that (¢,n) = (41,5%). Let S = Z;; which is normalized by o.
Since n = 5%, then n + 1 = 11 mod 41 and n? = 10 mod 41. Hence, S is
planar. In particular, o(Fix(S)) = 10 4 641, where 6 > 0. Actually, 6 = 0
by [16, Theorem 3.7], since n = 5%. Therefore, o(Fix(S)) = 10. Since o
normalizes S, it acts on Fix(S). Note that o must act trivially on Fix(S),
otherwise we would have a contradiction by [16, Theorem 13.18]. Thus,
Fix(S) C Fix(o). So, we arrive at a contradiction by [16, Theorem 3.7],
since o(Fix(S)) = 10, while o(Fix (o)) = 25.

Assume that (¢,n) = (89,9%). Let U < G such that U = Zgg. Since n = 94,
then n + 1 = 65 mod 89 and n? = 64 mod 89. Hence, U is planar. In
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(2)

(3

particular, o(Fix(U)) = 64 + A89, where A > 0. Actually, A = 0 by [16,
Theorem 3.7], since n = 9%. Thus, o(Fix(U)) = 64. Let V < Ng(U)
such that V' = Z;;. Clearly, V acts on Fix(U). Since 65 = 10 mod 11 and
642 = 4 mod 11, then V fixes a subplane of Fix(U) of order 9 at least. Then
Fix(U) C Fix(V'), otherwise we would have a contradiction by [16, Theo-
rem 3.7], since o(Fix(U)) = 64. If Fix(U) C Fix(V), we obtain a contra-
diction by [16, Theorem 3.7], since o(Fix(U)) = 64, while o(Fix(V)) < 81
as n = 9*. Then Fix(U) = Fix(V) and hence o(Fix(V)) = 64. Clearly,
V = Z;1 must be semiregular on ! — Fix(V). So, 11 | |l — Fix(V)|. Thisis a
contradiction, since |l — Fix(V)| = 6497, as n = 9*.

Assume that (¢,n) = (25,4%) and 25 = 1. Let us focus on the action of the
involution o of II. Clearly, o fixes exactly 17 points on [, since it induces
a Baer collineation on IT and n = 4. Let X© the orbit of type (5). Then
|Fixxc ()| = 6 by Table I. Hence, o fixes exactly 11 points on [ — X . If Y&
is a on orbit on [ of type (3), then Y¢ C [ — X“. Furthermore, |Fixyc(0)| =
12 again by Table I. Nevertheless, this is a contradiction. Thus, x3 = 0. Then
each admissible non trivial G-orbit on [ has length divisible by 13. Indeed,
one can compute each length orbit on [ using Table I for ¢ = 25. Therefore,
13 | |l = (INFix(G))|. Thatis 13 | n — 1, since |l N Fix(G)| = z1. Then
x1 > 10, since n = 256 and 257 = 10 mod 13. So, v, where 2 = ¢, fixes at
least 10 points on [. This contradicts the facts that ~ fixes exactly 5 points
on [ by Lemma 4.11, being n = 4%,

Assume that x7 > 0 and ¢ = 1 mod 16. Then, by Table II, the collineation
~ fixes at least x7(1/q £ 1) points on [ N Fix(c) according to whether /¢ =
1mod 4 or /¢ = 3 mod 4, respectively. Then ¥/n +1 > z7(y/¢£1). On
the other hand, ¢/n < /¢ by our assumption. Hence, /n + 1 < /q. By
composing, we have z7(y/q + 1) < v/q. Actually, z7(1/qg = 1) < /g — 1. So,
r7 = 1 and /¢ = 3 mod 4. Therefore, \/n = \/q — 2. Let PY the G-orbit
of type (7). Note that Fix(y) Nl = Fixpa(7), since /n = /¢ — 2. Hence,
x1 = x9 = xg = 0 by Table I, being x4 = x5 = ¢ = 0 by part (1). This
yields ¢/n + 1 = 2z again by Table I, where x; = 1, since T} induces a
Baer collineation on Fix(c). Nevertheless, we again obtain a contradiction,
since /n > 2. Thus, we have proved the assertion (1).

Assume that zg > 2. Then, by Table II, the collineation ~ fixes at least \/qg+1
points on Fix(c) N1 according to whether /¢ = 1 mod 4 or /¢ = 3 mod 4,
respectively. Then /n+1 > /q+1. If /g =1 mod 4, then /n+1 > \/qg+1
and hence /n > \/q. Nevertheless, this contradicts our assumption. Hence,
v/q = 3 mod 4, then /n > \/q—2. Then either /n = /g—1or /n = \/q—2,
since /n < \/q and q is a square.

Assume that ¢/n = /¢ — 1. Then ¢/n = 2mod 4 as /g = 3 mod 4. Let
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C = Cg(0o) and recall that K < Z,-., where K is the kernel of the action

4
of C on Fix(s). Thus, 4 | |C|, where C = C/K. Note also that each
involution in C is a Baer collineation of Fix(c). Indeed, each involution in
C' is induced either by v or by the 7} for each j = 1,2, and all these ones
are Baer collineations of Fix(c) by Propositions 4.11 and 4.12, respectively.
Nevertheless, this is impossible by Theorem 2.6.
Assume that /n = /g — 2. Let PF an P§ be two distinct orbits on [ both

of type (9). Since ¢/n +1 = /¢ — 1, since x9 = 2 and since |Fixpe (7)’ =

Fix po (7)‘ = ‘/6271, then Fixpe(y) U Fixpe (v) = Fix(y) Nl Thus, 21 =
xzo = 0 by Table II. Note that |Fix(71) Nl| = /n + 1. Also, |Fix(T1) NI| =
2274 + 38, + zsp by Table I, since x1 = x5 = 0 by the previous argument,
since 4 = x5 = x¢ = 0 by part (1), and being /¢ = 3 mod 4. Hence
Yn+ 1 = 2x7,4 + 3134 + T8p. Arguing as above with T in the role of 77,
we obtain /n + 1 = 2x7, + w8, + 3xsp (see Table I). Summing up these
two equations and bearing in mind that z7 = z7, + x7, and xg = x4 + Tsp,
we have 2({/n + 1) = 2x7 + 4xs. Hence, &/n+ 1 = x7 + 225. As 25 = 2,
then z7 = ¥/n — 5. Thatis x7; = /g — 7, as /n = /¢ — 2. On the other
hand, we have /q(q + 1)z7 + l‘g% < n + 1 again by Table I. That is
Valg+1D)(Va =7+ Valg+1) < (Vg —2)" + 1, since a7 = /g — 7, 5 = 2
and ¥/n = /q — 2. Easy computations yield a contradiction, since ¢ > 9.
Thus, we have proved the assertion (3).

(4) Suppose that p® = 1 mod 4 and xg > 0, then ~ fixes pqe—_11 points on Fix(o)N

I, where ¢ = p***, w > 1, by Table II and following remark. Then /n +
2we we

1> ppejll and hence ¢n +1 > p¥® + 1, as ppe:ll > p®¢ + 1. That is

VYn+1>/q+1. So, n > ¢*. Therefore, we arrive at a contradiction by

our assumption. Then the assertion (4) follows by Table I. O

Lemma 4.14. It holds that ¥/n + 1 = x1 + 32 + z7 + 2xs.

Proof. Assume that /¢ = 1 mod 4. Then |Fix(Ty) NI| = z1 + 3z2 + 227, +
3xg, + xgp by Table I, since 4 = x5 = 24 = 0 by Lemma 4.13(1). Then
I+ 1 = 21 + 3T + 2274 + 3784 + Ty, since Ty induces a Baer involution
on Fix(o) by Proposition 4.12. Arguing as above with 75 in the role of T3,
we have |Fix(Te) NI| = 21 + 3z2 + 227 + 784 + 3zgp and hence V/n +1 =
21 + 3x2 + 2x7p + x84 + 3285 Summing up, the two relations involving +/n + 1,
we obtain % +1 =1+ 3x9 +x7 + 228, @S 7 = T74 + x7p and T8 = T3y + Tgp-

Assume that /¢ = 3 mod 4. Then, arguing as above, we obtain |Fix(7y) N | =
21 + 3x2 + 2w7 + x84 + 32 and |Fix(Ta) N1 = @1 + 3x2 + 2274 + 3254 + Tsp.
Thus, the role of 77 and T3, in term of fixed points, are exchanged. This yields
n+1 =21+ 322 + x7 + 215 as above. O
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Let H; = (T},~) for each j = 1,2. Clearly, H; = Ds, since v* = o, T} = Ey,
o € T;and H; < Cg(o). By [4], two cases arise:

(1) ¢ = 1 mod 16. In this case, H; and H are the representative of the two
distinct conjugate classes under G. Moreover, Ng(H,;) = D;¢ for each
=12

(2) ¢ = 9mod 16. In this case, the dihedral subgroups of order 8 are Sylow
2-subgroups of G and hence they are conjugate. In particular, H; = Ho.
Set H = H4, then Ng(H) = H = Ds.

Lemma 4.15. One of the following occurs:
(1) ¢ =1 mod 16 and one of the following occurs:

(a) H; induces the identity on Fix(vy) for each j = 1,2, G fixes a subplane
of order ¥/nand 8y = xo = x7 = 23 = 0;

(b) H; induces a perspectivity of axis Fix(y) Nl on Fix(v) for each j = 1, 2.
Furthermore, x1 = ¥/n+ 1 and x5 = 7 = x5 = 0;

(c) H; induces a perspectivity on Fix(v) of axis distinct from Fix(y) N1 for
each j = 1,2. In particular, x1 + xo + x5 = 1, 2;

(d) H, induces a Baer involution on Fix(vy) for each j = 1,2 and hence
X1 +l‘2+l‘g = %+1

(2) ¢ =9 mod 16 and one of the following occurs:

(a) H induces the identity on Fix(vy), G fixes a subplane of order /n and
84:.1‘2:1‘7:338:0;

(b) H induces a perspectivity on Fix(v) of axis Fix(vy) Ni. Furthermore,
€T = %+1andx2:m7:a:8:0;

(c) H induces a perspectivity on Fix(v) of axis distinct from Fix(~) N1 and
T +l‘2+l‘g = 1,2,

(d) H induces a Baer involution on Fix(v) and hence x1+z2+xs = /n+1.

Proof. Assume that ¢ = 1 mod 16. In this case, H; and H, are the represen-
tatives of the two distinct conjugate classes under G of dihedral subgroups of
order 8. Moreover, Ng(H;) = D¢ for each j = 1,2. In particular, the unique
G-orbits on [ on which H fixes points are those of type (1),(2),(8) by Tables I
and II, since 24 = 27 = 0 by Lemma 4.13(1) and (2) as ¢ = 1 mod 16. Clearly,
|Fixge (Hj)| = 1if Q¢ is of type (1). Since H; < C¢(o) for each j = 1,2, and
since two subgroups of GG isomorphic to Dg are conjugate in G if they are conju-
gate C (o) by [4, §246], then, by Proposition 2.5, |Fixge (H,)| = 1if Q€ is of
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type (2). Also, |Fixge (H;)| = 1if Q€ is of type (8) by Proposition 2.5. Indeed,
in this case, Gg = PGL(2, /q) and hence ’H]-GQ’ = |Gg| /16 for each j = 1,2
again by [4, §246]. Thus, |Fix(H;) Nl| = z1 + x2 + x5 for each j = 1, 2. Assume
that Fix(H;) Nl = Fix(y) Nl for each j = 1, 2. Then 21 + x2 + 23 = /n+ 1 since
~ induces a Baer collineation on Fix(c) by Proposition 4.11. On the other hand,
¥n+1 =21 + 329 + 228 by Lemma 4.14 (note that 27 = 0 by Lemma 4.13(2)
as ¢ = 1 mod 16). Hence x1 + x5 + xg = 21 + 3x2 + 2x8. This yields x5 = 25 =0
and ¢n + 1 = z;. Then we obtain the assertion (1a) or (1b) according to
whether H; induces the identity or a perspectivity of axis Fix(y) N on Fix(y),
respectively. At this point, the assertions (1b)—(1c) easily follow.

Assume that ¢ = 9 mod 16. Then H is a Sylow 2-subgroup of G and N¢(H) =
H. In particular, the unique G-orbits on ! on which H fixes points are those of
type (1),(2),(8) by Table I and II. Indeed, x¢ = 0 by Lemma 4.13(1). Also,
r7 = 0. Namely, if P9 is of type (7), we have Gp = PSL(2,/q), where \/q =
3,5mod 8, as ¢ = 9 mod 16. Hence, 8 { |Gp|. Now, by Proposition 2.5, we
obtain that H fixes 1 point for each G-orbit on [ of type (1),(2) or (8), since
H is a Sylow 2-subgroup of G and Ng(H) = H. Therefore, [Fix(H)NlI| =
x1 + x2 + xs. Assume that Fix(H;) Nl = Fix(y)Nl. Then x1 + 22 + 25 = ¢/n+1,
since « induces a Baer collineation on Fix(c) by Proposition 4.11. At this point,
the same argument as ¢ = 1 mod 16 can be applied to obtain the assertions
(2a)-(24d). O

Lemma 4.16. If H; induces a perspectivity on Fix(vy) of axis distinct from Fix(y)N
I for each j = 1,2, then x5 = 23 = 0.

Proof. Assume that H; induces a perspectivity on Fix(y) of axis distinct from
Fix(v) N for each j = 1,2. We treat the cases ¢ = 1 mod 16 and ¢ = 9 mod 16
at the same time, bearing in mind that H; = H when the latter occurs. Hence,
1 + 22 + 23 = 1 or 2 by Lemma 4.15.

x5 = 0. Assume that zo > 0. Then 2, = 1 by Lemma 3.5(1). If x; = 25 = 0,

then
Vn=2+ux7 (52)
\/ﬁ+1z@+(\/§i1)x7 (53)

by Lemma 4.14 and Table I, respectively. So, 27 = +/n — 2 by (52). Now,
by substituting this value in (53) and then elementary computations of
this one, we obtain

(ﬁil)(%—Q)—i—(q;g)g\/ﬁ—zl. (54)
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Asq>9,then(\/§:tl)(\4/ﬁ72)<\/_74.Asz2:1ando:1:zgz(),
then H must induce an elation on Fix(y). Thus /n must be even. So,
the case /n = \/q — 2 is ruled out as ¢ is odd. Therefore, /n = /g — 1.
Nevertheless, this case cannot occur by [16, Theorem 13.18], since ¢/n =
2 mod 4 and /n > 2, as /g = 3 mod 4 with /¢ > 3, and since H induces
a non trivial involutory collineation on Fix(y). Then either z; = 1 and
g =0orx; =0and zg = 1, since x1 + x2 + 23 < 2 and 25 = 1.

If z; =1 and zg = 0, then

Vn=3+uxr (55)
\/ﬁ+121+q(qT“)+(\/ai1)x7 (56)

by Lemma 4.14 and Table I, respectively. If z7 = 0, then ¢/n = 3 by (55).
Consequently, @ < 9 by (56). A contradiction, since ¢ > 9. Thus
x7 > 0 and hence q is a square. In particular, z7 = /n — 3 by (55). Then

Vit wa-3)+ D < a o, 7

combining z7 = /n—3 with (56). As ¢ is an odd square number and g > 9,
then ¢ > 25 and hence w > 0. This yields (v/g+ 1)(¢/n—3) <v/n—9
by (57). If /g = 1mod 4, then ¢/n > /g — 2. Then ¥n = /q — 1,
as n < /q. If /g = 3mod 4, then ¥/n > /¢ — 3 and hence either
Vn=+qg—1or ¢¥n =./g—2. Aszy = 29 = 1 and zg = 0, then
H must induces a homology on Fix(y). Thus, /n must be odd. Then
only /n = \/q — 2 is really admissible as ¢ is odd. Now, by substituting
this value in (57) and bearing in mind that /¢ = 3 mod 4, we obtain a
contradiction, since ¢ > 9.

If z; =0 and zg = 1, then

Vn =4+, (58)
itz MY (e v (59)

by Lemma 4.14 and Table I, respectively. Then x7 = /n — 4. If ¢/n = 4,
then z7 = 0. Now, by substituting theses values in (59), we have @ +
v/q < 17. Nevertheless, this yields contradiction, since ¢ > 25 as ¢ is an
odd square number and ¢ > 9. Then /n > 4 and hence zr > 0. Note also
that ¢ # 25, since ¢ < n < ¢? with ¢ = 25, and since n a fourth power
with /n > 4. So, ¢ > 49. Indeed, ¢ is an odd square number and ¢ > 9.
Now, by substituting z7 = /n — 4 in (59), we obtain

(q;1)+(\/§i1)({‘/_—4)+(\/§_1)§\/ﬁ (60)
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and hence

Va- -4+ S < m e, (61)

As g > 49, then @ > 0. Moreover, by (61), we have (1/g—1)(¢/n—4) <
v/n — 16 and hence /n +4 > /¢ — 1. Thatis ¥/n > /¢ — 5. Then
n=+/q—0,where1 <0 <4,as V/n <+/q. Asza =23 =1and z; =0,
it follows that H must induce a homology on Fix(y). Thus, +/n must be
odd. Therefore, we actually have either ¢/n = /g —2 or /n = /q —4, as
¢ is odd. Nevertheless, these cases cannot occur. Indeed, if we substitute
each of them in (60), we obtain a contradiction.

xg = 0. Assume that xg > 0. Then g = 1 by Lemma 4.13(3). The previous
point implies x5 = 0. Thus, either z;y = 0orz; = 1 as xy + x2 + x5 < 2
and zg = 1. Assume that z; = 0. Then

Vn=1+uzr (62)
V41> (Vg +q (63)

by Lemma 4.14 and Table I, respectively. It follows that 27 = ¥/n — 1
and hence (/g £ 1)(/n — 1) + /g — 2 < /n — 1 by (62) and (63). This
yields /n +1 > /g £ 1. So, v/n > \/g+ 1 — 1. Then /g = 3 mod 4
and v/n > /g — 2, as /n < y/q. Thatis ¢/n = /¢ — 1. Therefore
Vn =2mod 4 and /n > 2, as v/qg = 3 mod 4 and /q > 3. Nevertheless,
this is a contradiction by [16, Theorem 13.18], since H induces a non
trivial involutory collineation on Fix(7).

If z1 = 1, then

Vn =2+, (64)
Vn+12>Ve+1+ (VgE1)ar (65)

by Lemma 4.14 and Table I, respectively. If /n = 2, then z; = 0. By
substituting these vales in (65), we obtain /¢ < 4. Then /¢ = 3, since
\/q is odd. Hence, we arrive at a contradiction, since ¢ > 9 by our assump-
tions. Then /n > 2 and hence z7 = /n — 2 by (64). Again combining the
previous equation with (65), we have

(Va+1)(Vn—-2)+Vqg—-4<vn-4. (66)

This yields v/ + 2 > /g £ 1. So, /i > y/g+ 1 — 2. Then /g = 3 mod 4
and v/n > /¢ — 3 as y/n < /q. Consequently, either /n = /¢ — 1 or
Yn = +q—2. Asz; = 23 = 1 and zo = 0, then H must induce an
involutory homology on Fix(). Thus, /n must be odd. Therefore, the
case /n = /q — 1 is ruled out, as ¢ is odd. Hence, /n = \/q — 2. Now, by
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substituting this value in (66) and bearing in mind that /¢ = 3 mod 4, we
obtain an equality. Then So = Sy =0, since /n+ 1> (v/q £ 1)ar +/q +
1+ S, by Table I It follows that |Fix(y) N | = 1+ Y%L by Table I, since
x1 = xg = 1 and S; = 0 by the previous argument, since ¢ = 9 mod 16
for z7 > 0 by Lemma 4.13(2), and since p* = 3 mod 4 for 9 > 0 by
Lemma 4.13(4) (note that the collineation v does not fix points on the
G-orbits on [ of type (7) for ¢ = 9 mod 16 or (9) for p¢ = 3 mod 4 by Table
D). That is V/n = \/6271, as v induces a Baer collineation on Fix(o). This
is a contradiction, since ¢/n = \/q — 2. O

Lemma 4.17. The group H; induces either the identity or a Baer involution on
Fix(y) for each j =1, 2.

Proof. Assume that H; induces a perspectivity on Fix(y). We treat the cases
¢ = 1mod 16 and ¢ = 9 mod 16 at the same time, bearing in mind that H; = H
when the latter occurs. If the axes of he perspectivities induced on Fix(y) by H,
are distinct from Fix(y) N for each j = 1,2, then

Yn+1=zr+x1 (67)
Vn+1> (Vg 1)z +ay (68)

by Lemma 4.14 and Table I, respectively, since x5 = xg = 0 by Lemma 4.16. In
particular, either z; = 1 or z; = 2, since z1 + 22 + s = 1 or 2 by Lemma 4.15
and being z2 = x5 = 0.

Assume that 21 = 1. Then z7; = /n and hence (/g +1)V/n+1 < n+1
by (67) and (68). By calculations of the previous inequality, we have /n >
V/q £ 1. It follows that /¢ = 3mod 4 and ¥/n = /g — 1, as ¥/n < \/q. Then
q > 49 and hence ¢/n > 6, as v/¢ = 3 mod 4 and /g > 3. Moreover, V/n =
2 mod 4 and /n > 2, as /¢ = 3 mod 4 and /q > 3, respectively. Nevertheless,
this contradicts [16], Theorem 13.18, since H; induces a non trivial involutory
collineation on Fix(y).

Assume that z; = 2. Then z7 = /n — 1 by (67). Now, by substituting this
value in (68), we obtain (/g+1)(¢/n—1)+2 < /n+ 1 and so

Vet 1)(¥Vn—-1)<vn—-1. (69)

This yields /n +1 > /g £ 1 and hence /n > /g + 1 — 1. Then /¢ = 3 mod 4
and y/n > \/q—2, as y/n < \/q. Therefore, either \/n = \/g—1or y/n = \/q—2.
As 21 = 2 and 3 = zg = 0, then H; must induces a homology on Fix(v). Thus,
/n must be odd. Then we actually have ¢/n = /¢ — 2, as ¢ is odd. Now, by
substituting this value in (69) and bearing in mind that /¢ = 3 mod 4, we have
(Va—1)(q—-2)+2 < (vq—2)? + 1. It is a straightforward computation to
see that the previous inequality is impossible.
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Assume that H; induces a perspectivity on Fix() of axis Fix(y) N . Then
x1 = ¥/n + 1 again by Lemma 4.15. Thus Fix(G) Nl = Fix(y) NIl. Now,
dualizing the above argument, we obtain that |Fix(H;) N [P]| > 3 for each point
P € Fix(y) N1 and for each j = 1, 2. Nevertheless, this is impossible, since the
H; induces a perspectivity on Fix(y) of axis Fix(y)N!. At this point, the assertion
follows by Lemma 4.15. O

Proposition 4.18. The group H; induces a Baer involution on Fix(y) for each
j=12

Proof. The group H; induces either the identity or a Baer involution on Fix(y)
for each j = 1,2 by Lemma 4.17. Assume the former occurs. Then G fixes a
subplane of order /n and S = z2 = 7 = zg = 0 by Lemma 4.15. That is
Fix(G) = Fix(y). Then

-1 -1
\/_:{l/ﬁ+q2 $3+§€71$9+32,4 (70)
alg—1)  p(¢®—1) g+1
= S 1
n=/n+ 5 T3+ 200" — 1) T9 + 5 1 71)

by Table I. Assume that z3 > 0. Then z3 = 1 by Lemma 3.5(2). Hence, let P € [
such that Gp = Dy41. Then G p fixes exactly one point PC, since it is maximal
in G. Thus, Fix(Gp) Nl = {P} UFix(Gp) NI. Furthermore, Gp is planar, since
Fix(G) C Fix(Gp) and G is planar. Actually Fix(G) C Fix(Gp) C Fix(o). So,
we arrive at a contradiction by [16, Theorem 3.7], since o(Fix(G)) = /n and
o(Fix(o)) = v/n. Then z3 = 0 and hence 29 + Sz 4 > 0 by (70).

Let p;, where ¢ = 1,2 be the representatives of the two conjugate classes
of p-elements in G. Since zg + Sa4 > 0, then Fix(G) C Fix({p:)) for each
t = 1, 2. It follows that the group (p;) fixes a Baer subplane of IT for each ¢t = 1,2
by [16, Theorem 3.7], since o(Fix(G)) = /n. Clearly, o inverts p; for each
t = 1,2. Furthermore, Fix(G) C Fix({(ps,0)) C Fix((p:)), since zg + Sz4 > 0
(see Table II). This still contradicts [16, Theorem 3.7], since o(Fix(G)) = ¥/n
and o(Fix(p;)) = /n for each t = 1,2. Thus, the group H, induces a Baer
involution on Fix(v) foreach j =1,2. O

Lemma 4.19. The group G fixes a subplane of 11 of order /n pointwise.

Proof. By Proposition 4.18 and by Lemma 4.15, we have /n+1 = x1 + x5 + Ts.
Recall that x5 < 1 by Lemma 3.5(1) and zg < 1 by Lemma 4.13(3). Since
&/n > 2, then z; > 1. Assume that z; < 2. Hence either z; = 1 or 7 = 2.
Then we have the following admissible triples (x1,z2,25) = (1,1,1), (2,0,1),
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(2,1,0), (2,1,1), since &/n > 2. Furthermore, /n + 1 = z1 + 3x2 + x7 + 225 by
Lemma 4.14. Thus,

(x1 + 20 +28 —1)> =21 + 302 + 27 + 205 — 1. (72)

By substituting the values found of (z1, z2, x5) in (72), we see that (x1, 2, 25) =
(1,1,1) is ruled out.

If (21, 22, 28) = (2,0,1), then ¢/n = 2and z7 = 1. So, /n+1 > 24+ YL 4 /g
by Table I. It follows that YL 4 /7 < 15 as \/n = 16. This yields 3,/g < 31.
Thatis /g = 5, 7or 9, as \/q > 3. Therefore, ¢ = 52, 7 or 92. Nevertheless, only
the case ¢ = 52 is admissible, since it must be ¢ = 9 mod 16 by Lemma 4.13(2),
being 7 = 1. If z3 > 0, then n + 1 > @ by Table 1. Nevertheless, this is
impossible, since n = 28, while ¢ = 52. Then the length of any admissible non
trivial G-orbit on [ is divisible by % by Table I, since 4, = x5 = z¢ = 0 by
Lemma 4.13(1). Thus, &} must divide |I — Fix(G)|. Thatis % | n+ 1 — a1,
being |l — Fix(G)| = n + 1 — z1. Hence, we arrive at a contradiction, since
= 13,asg=5% whilen+1—2; =2%—1,asn =2%and z; = 2.

If (z1, 22, 75) = (2,1,0), then ¢/n = 2 and 27 = 1. As a consequence, Lt +
v/q < 15. So, we again obtain a contradiction, since ¢ = 9 mod 16 and ¢ > 9.

Finally, assume that (z1,x2,28) = (2,1,1). Then ¢/n = 3 and x7 = 3. Then
Vn+1>2+ % + 3‘@;1 + /¢, which is a contradiction. Then z; > 3 and
hence G fixes at least 3 points on [. Let Py, P, P5 three distinct points on [ which
are fixed by G. Now, repeating all the arguments with [P;] in the role of I, for
eachi = 1,2, 3, we see that G fixes at least three lines at least 3 lines, including
[, on [P;] for each ¢ = 1,2,3. Thus, G is planar on II. In particular, Fix(G) is a
subplane of Fix(H) of order z; — 1.

Assume that Fix(G) C Fix(H). This yields x5 + 23 > 0, since ¢/n + 1 =
21 + x2 + xg. Then, by [16, Theorem 3.7], either

(1‘171)2 :Z‘1+Z‘2+Z‘871, or (73)

(11 -1+ (21 —1) <a1+z2+as—1, (74)

since o(Fix(G)) = 21 — 1 and o(Fix(H)) = 21 + 22 + s — 1. If 2o = 1, then
either (1 —1)? = o1 +wg or (z1 — 1)?+ (v1 — 1) < 71 + 5. Note that xg < 1 by
Lemma 4.13(2). Assume that xg = 0. Then either (71 —1)? = z; or (z;—1)? < 1.
This yields a contradiction in any case, as x; > 3. Then xzg = 1. Thus, either
(11 —1)2 = 21 + 1 or (z1 — 1)? < 2. Actually, only the former occurs and
hence z; = 3. Therefore, o(Fix(H)) = 4. Then {/n = 4 and hence n = 48.
In particular, xz3 = 0 by Lemma 3.6(1), as z2 = 1. Thus the length of any
admissible non trivial G-orbit on [ is divisible by 9;—1 (see Table I). Therefore,
%1 | n+1— x4, as |l = Fix(G)| = n — x;. That is %1 | 48 — 2, asn = 48
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and z; = 3. Now, it is a plain that 4% — 2 has no divisors of the form %1 with
g an even power of an odd prime. Hence, zo = 0. Then zg = 1, as zg < 1
and x5 + 23 > 0. Now, by substituting the couple (z2,25) = (0,1) in (73) and
(74), we have either (z; — 1)2 = 27 or (x1 — 1)? + (1 — 1) < 2. While the
first equation has no solutions, the second one yields x; < 2. Actually, z; = 2,
as x1 > 2, being /n = x;. Therefore, n = 2%. Now, recall that z3 < 1 by
Lemma 3.5(2). If 23 = 0, then % | n + 1 — x; arguing as above. Then
#1128 — 1, as n = 2% and 21 = 2. Easy computations show that ¢ = 132, since
g is an even power of a prime and ¢ > 11. Recall that zg = 1. Since + fixes a
subplane of II of order {/n, since 13> = 9 mod 16 and by Table I, we see that
Vn+1 > Txg = 7. Nevertheless, this is a contradiction, since /n = 4. So,
x3 = 1. Then the length of any admissible non trivial G-orbit on [ is divisible
by %1, unless this one is of type (3) by Table I, since x4 = 5 = xg = 0 by
Lemma 4.13(1). Thus, L | n+1 — 2y — 921 This yields 2 | n +1 —
and hence % | 28 — 2. Since ¢ = 1 mod 8, then % is odd. Consequently,
@l | 27 — 1. Actually, & = 27 — 1, since 27 — 1 is prime and <% > 1. So,
q = 253. So, we arrive at a contradiction, since ¢ must be a square as g = 1.
Thus, Fix(G) = Fix(H). Therefore, we have proved the assertion. O

Lemma 4.20. If ¢ > 9, then the group G does not fix lines of 1.

Proof. Assume that G fixes a subplane of IT of order /n pointwise. Assume that
x; > 0 for either s = 2 or 3. Then z; = 1 for either : = 2 or 3 by Lemma 3.6(1).
Hence, let P € [ such that Gp = D,y;. Then Gp fixes exactly one point PEG,
since it is maximal in G. Thus, Fix(Gp)Nl = { P}UFix(Gp)NI. Furthermore, G p
is planar, since Fix(G) C Fix(Gp) and G is planar. In particular, o(Fix(Gp)) =
¥/n+1. Moreover, ¥/n < /n+1 by [16, Theorem 3.7], since Fix(G) C Fix(Gp).
Nevertheless, this is a contradiction. Therefore, x» = z3 = 0. In addition,
x4y = x5 = ¢ = 0 by Lemma 4.13(1). So, we have the following system of
Diophantine equations:

Vn = ¥/n+ a7 + 27 (75)
+1
dr= v Y L s, (76)

By subtracting (76) from (75), we obtain

[ﬁil
Ty = D)

— 2:| s +Sy. (77)

Let p; be the representative of the two conjugate classes of p-elements in
G for t = 1,2. We may assume that p;, for each ¢t = 1,2, lie in the Sylow
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p-subgroup S of G normalized by 0. Then p, is planar, since Fix(G) C Fix(p¢)
for each ¢ = 1, 2. In particular, by Table II,

1
O(FiX(pt)) > \S/ﬁ + 1‘72\/5 + 378\/6 + 581 . (78)

Assume that g > 0. So ¢ is a square. Actually, zs = 1 by Lemma 4.13(3).
Then o(Fix(p;)) > ¥/n and hence o(Fix(p;)) > n by [16, Theorem 3.7], since
o(Fix(G@)) = ¥/n and Fix(G) C Fix(p). If o(Fix(p)) = /n, it follows that
vn > \/q, as o(Fix(p;)) > ¥/n + x72\/q + x3y/q with {/n > 2 and zg = 1.
Nevertheless, this contradicts the assumption n < ¢2. Thus, o(Fix(p;)) > /n.
Nevertheless, o(Fix(p;)) < v/n by [16, Theorem 3.7]. Note that x7; > @ -2

by (77), since xg = 1. By substituting z7 > @ — 21in (78), we obtain

NZES!
2

Then 2+ 2/g(YZEL — 2) /g + 1S, < /n, since o(Fix(p;)) < y/n and /n > 2.
By elementary calculations of the previous inequality, we obtain /n > g+ /q —
3v/q + 2+ 8. Assume that /g = 3 mod 4. Hence, \/n > g — 4/ + 2+ S1.
That s, /n > (v/q—2)2. So, /n > \/q—2. Then /n = /q— 1, since ¥/n < \/q,
as n < ¢* by our assumption. Note that /n = 2mod 4 and ¢/n > 2, since
Vg = 3mod 4 and ¢ > 9. Nevertheless, this yields a contradiction by [16,
Theorem 13.18], since H; acts non trivially on Fix(y) by Proposition 4.18 and
since o(Fix(y)) = ¢/n. Hence, /g = 1 mod 4. Then /n > (/g — 1)? + 35; by
(79) as /n > 2. Actually, /n = (y/g — 1)? and S; = 0, since ¢/n < /g being
n < ¢* by our assumption, and being n a fourth power and ¢ as square. That
is ¢/n = /¢ — 1. Now note that S, = 0, since §; > S; > 0 and since S; = 0.

Then z7 = \/6273 by (77), since /¢ = 1 mod 4 and xg = 1. Now, by substituting

w7 = Y2 g — 1and ¢/n = \/g—1in (75), we obtain \/g—1 = ¢/n+¥L=2 12,

2
By elementary calculations of the previous equality, we have $/n = @. Then

2
(@) = +/q — 1, since /n = \/q — 1, which is a contradiction. Thus, zg = 0.
Then 27y = S4 by (77). If S; = 0, then z7; = 0 and we have a contradiction by
(75), since also xg = 0. So 84 > 0. In particular, /n = /n + S; by (76).

Finally, let us consider the subgroup W of G, where W = S (v) and S is the
Sylow p-subgroup of G normalized by o and hence by ~. Then W fixes at least
a point () on [ since S, > 0. Hence, let Q¢ be an orbit of type (10). Clearly,
Gg = F,.Z4, where d = 0 mod 4. In particular, |Fixge(W)| = £ by (1) of
Proposition 2.5. Thus, the number of points coming out from G-orbits on [ of

1

type (10) which are fixed by W are exactly ., o moa 4 %7, - These turn out

tobe 5818581 = 24— mod 4 %. Then |Fix(W)Ni| = ¢/n+ 1 + 84, since

o(Fix(pt)) > V/n +2/q(

—2)+\/§+%$1. 79)
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|Fix(G) Ni| = </n+1 by Lemma 4.19. Furthermore, W is planar, since Fix(G) C
Fix(W). On the other hand, Fix(W) C Fix(y), since o(Fix(W)) = ¢/n + 1S4
and o(Fix(y)) = &/n + S4 being Sy > 0. Therefore, Fix(G) C Fix(W) C Fix(y),
where o(Fix(G)) = /n and o(Fix(G)) = /n. Nevertheless, this contradicts
[16, Theorem 3.7]. Thus, G does not fix lines of II. O

Proposition 4.21. Let II be a projective plane of order n admitting a collineation
group G = PSL(2,q). If ¢ < n < ¢*> and ¢ = 1 mod 8, then G cannot fix lines
of IL.

Proof. Assume that G fixes a line [ of II. Then ¢ < 9 by Lemma 4.20. Actually,
g =9, since ¢ = 1 mod 8. Then n = 16, 25, 36, 49, 64, since ¢ < n < ¢2, withn a
square by Lemma 3.3. The case n = 36 and n = 49 are ruled out by Lemma 3.3.
Thus, n = 16, 25 or 64.

Assume that n = 16. Let P be a non trivial orbit on {. Then |P%| < 17.
Then Gp is isomorphic either to Zg.Z, or to Sy or to As. If Gp = Zg.Z4,
then |P®| = 10. In particular, G acts 2-transitively on P, which contradicts
[23, Theorem 1], since n = 16. If Gp = Aj, then |PY| = 15 and hence
|l — PC| = 11. Let Q € I — PY. Then |Q€| < 11, since |l — PY| = 11. Clearly,
Go 2 Zy.Z, by the previous argument. Furthermore, Go % Si, otherwise
|QY| = 15. Thus, Gg = As. Therefore, |l — (PYUQ%)| = 5. Then G fixes
I—(P%UQ®) pointwise, since the minimal primitive permutation representation
degree of G = PSL(2,9) is 6. So, any involution in G fixes at least 8 points
on /. Hence, we arrive at a contradiction, since each involution in G is a Baer
collineation of II by Lemma 3.3 and since n = 16. Thus, Gp = Sy. Then |PY| =
15 and hence |l — PY| = 2. So, G fixes | — P“ pointwise. Set {X,Y} = — PC.
It follows that G, & S, for some line r € [X] and G, & S, for some line u € [Y]
by dual of the above argument, since G acts on [X] and on [Y] fixing two lines
through each of them (clearly, [ is one of them). Therefore, G fixes a triangle
A = {X,Y,Z}. Let p; and p- are the representatives of the 3-elements in G.
We may assume that the lie in the Sylow 3-subgroup of G normalized by o. As
a consequence, o inverts each of them. Since Gp = Sy, then one of them fixes
exactly 3 points on P“, 3 on X Z and 3 on Y Z by Table IV* of [24], since ¢ = 9.
We may assume that p; does it. Hence, p; fixes a Baer subplane of II, since p;
fixes exactly 3 points on P and the points X and Y. So, o(Fix(p;)) = 4. The
involution ¢ acts on Fix(p;), since it inverts p;. Note that (p;,0) does not fix
point on P by Table IV* of [24], since Gp = S; and ¢ = 9. Therefore, o fixes
exactly 2 points on Fix(p1) N, namely X and Y. So, ¢ induces a homology on
Fix(p1). Nevertheless, this is impossible, since o(Fix(p1)) = 4.

Assume that n = 25 or 64. Assume also that Fix(T;) Nl = Fix(o) N for
some j = 1 or 2. Then Fix(G) Nl = Fix(c) N by Table III* of [24], since
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g = 9. Therefore, for each point A € [ — Fix(G), the group G 4 has odd order.
Then G4 = Ey by Table III* of [24], since G = PSL(2,9). Hence |A%| = 40 for
each point A € | — Fix(G). Then 40 | |l — Fix(G)|. That is 40 | n — y/n, since
Fix(G) Nl = Fix(o) Nl and |Fix(¢) Nl| = y/n + 1. This is a contradiction, since
n = 25 or 64. Thus, |Fix(7;) N | = 2 or 1 for each j = 1, 2, according to whether
n = 25 or 64, respectively. Therefore, T} induces a non trivial perspectivity j3;
on Fix(o) for each j = 1,2. Clearly, 7y and T3 are subgroups of C (o) = Ds.
Furthermore, C(o) acts on Fix(o) inducing a subgroup C isomorphic either
to £, or to Zy. In each case 3; € C and 3, # 1, since f3; is a non trivial
perspectivity of Fix(c). Then C fixes Cj,, since 3, is central in C. So, Cc (o)
fixes Cg,. Thatis Cg(0) < Gc, . Let U < Ng(T1) such that U = Ay. Then U
fixes Fix(71) N ! pointwise, since Ty < U, U = A, and |Fix(Ty)Ni| = 1 or 2.
Then U < G¢, and therefore (Cc(0),U) < Gg, . Note that (Ce(o),U) = Sy,
since (C(0),U) < Ne(T1) as G = PSL(2,9). So, either G¢, = Sy or Go, =
G by Table III* of [24] as ¢ = 9. Actually, the case GCE1 ~ G, cannot occut,

since

Fixcg (Tj)\ = 3 with 0§ C I, while we proved that |Fix(T}) Nl| = 2 or
1 for each j = 1,2. As a consequence, G¢,; = G. This implies that G acts on
[C3,] and Fix(T1) N [C3,] = Fix(c) N [Cg, |, which is a contradiction by dual of
the above argument. Thus, we have proved the assertion. O

Theorem 4.22. Let II be a projective plane of order n admitting G =2 PSL(2, q) as
a collineation group. If n < ¢, ¢ = 1 mod 8, then one of the following occurs:

(1) n<qg T=PG(2,4) and G = PSL(2,9);
(2) n=¢q, T = PG(2,q) and G is strongly irreducible on II;
(3) ¢ < n < ¢ one of the following occurs:

(a) G is strongly irreducible on II;
(b) G = PSL(2,9) fixes a proper subplane Iy = PG(2,4) of II;

(4) n = q¢? and one of the following occurs:

(a) G is strongly irreducible on II;
(b) n =81 and G = PSL(2,9) fixes a point and line of I1;
(c) G fixes a subplane 11y of II. Furthermore, either Iy = PG(2,q) is a

Baer subplane of T1, or n = 81, Il is the Hughes plane of order 9 and
G = PSL(2,9).

Proof. If n < q or n = ¢, the assertions (1) and (2) easily follow by Theorems
2.1 and 2.2, respectively. If ¢ < n < ¢?, the group G does not fix lines or points
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of II by Proposition 4.21 and its dual. At this point, the assertion (3a) and (3b)
easily follow by Lemma 3.1, since ¢ = 1 mod 8. The assertions (4a) and (4b)
follow by Theorem 2.3. Finally, the assertion (4c) follows by Theorem 2.4. [

Clearly, Theorem 1.1 easily follows from Theorem 4.22 when ¢ = 1 mod 8.

5 The case ¢ = 3 mod 8

In this section, we deal with the case ¢ = 3 mod 8. Recall that there exists a
unique conjugate class of in involutions and one of Klein subgroups of G. Let o
be an involution of G and let 7" be a representative of this class containing o. As
pointed out at the end of section 3, we have C¢(0) = Dyyq and Ng(T') = As.

We filter the list given in Lemma 3.4 with respect to the condition ¢ = 3 mod
8. For each of the resulting groups, we find its corresponding index in G. Thus,
we determine the length of the orbit P“, with P a point of I, when Gp is
isomorphic to one of these groups. Next, for each of these groups, using (1) of
Proposition 2.5, we obtain the number of points fixed by o, and by T, in the
orbit P¢. All these informations are displayed in the following table.

Table III
Type | Gp (G :Gp] | |Fixpe(o)| | [Fixpe(T)|
1 G 1 1 1
2 | Dyy | 2th ) afl 0
3 | Dy | Mt | 10 3
0 | F,.Z | €3 0 0

Recall that the G-orbits of type (10) on [ cover exactly S points of [, where
S = Zf;"l ‘12—;]1 Recall also that S; = Zf;"l % and Sz, Sy, Su, Sz,4 (sum
with the same summands %1 but over 2 | d;, 21 d;, 4| d; and d; = 2 mod 4,
respectively). Note that Sy = Sy 4 = S4 = 0, since ¢ = 3 mod 8. Hence, S; = Sy
and S = %82/.

Finally, if G fixes a point ) and acts on [Q], we may focus on the G-orbits
of lines in [@]. So, following the notation introduced in section 4, we obtain a
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table, namely the dual of Table III, where type (i)* replaces (i), the group G,
replaces G p and the orbit m© replaces P®. Here m is any line of [Q]. Remind
that, we denote by z7, the number of G-orbits on [Q)] of type (¢)*. As mentioned
in section 4, we write z} instead of (@), even if the second notation would be
correct. Nevertheless we use the first one, since it will be clear from the context
which point we are focusing on. In particular, since we might have G-orbits
of type (10)*, it makes sense considering S* = Z;i“l % and hence §;, S5,
81,854 with the same meaning of Sy, Sa/, S4, S2 4, respectively, but referred to
lines instead of points. Clearly, S5 = &3 ; = §] = 0, since ¢ = 3 mod 8.

Note that o is a Baer collineation of IT by Lemma 3.3. Set C' = C(c). Then
C acts on Fix(o) with kernel K. Hence, let C = C/K. Clearly, (o) < K < C.
Furthermore, either K < Z# or K = C, since C = Dy4q and ¢ = 3 mod 8.
We need to investigate the admissible structure of K in order to show that T
induces a Baer collineation on Fix(c).

Lemma 5.1. If Fix(T) Nl = Fix(c) NI, then K = C.

Proof. Assume that Fix(T') Nl = Fix(c) N and that K < Zaga. Then Fix(G) N
| =Fix(o) N1 by Table III, since ¢ > 9. Set Iy =Fix(c) Ni. Then C = C(ly), since
lo = Fix(G) N l. In particular, C' & D1, where k = |K], since C = Dyy. On
the other hand, C is the semidirect product of C(ly,ly) with C(Y,ly) for some
point Y € Fix(o) — lp by [16, Theorem 4.25].

Assume that C(lg,lp) # (1). If C(lp,ly) = C, then C = C(V, ), for some
point V' € [y by [16, Theorem 4.14], since C = Dass and ¢ = 3 mod 8. Hence
for each point X € Iy — {V} and for each line ¢t € [X]NFix(c), we have that
o € G but G; does not contain Klein groups. Then, by dual of Table III, we
have that G; = D,_4, since G fixes X. Moreover, K < G,. Thus, K = (o), since
(0) 9 K < Zup1. Therefore, C = Dy and hence | nas C = C(V,l).

Actually, \/n = 41, since \/n < ¢ by our assumptions. Then /n = 2 mod 4,
since ¢ = 3 mod 8. Hence, we arrive at a contradiction by Lemma 3.3. So,
C(lo,1lp) < C. Then C(lo,lo) < Z a1, since C(lo,lp) < C, C = Dy and
¢ = 3mod 8. Actually, C(lg,ly) = C(V,ly) = Zy and C(Y,ly) = Z by [16,
Theorems 4.14 and 4.25]. Let u € [V]NFix(o) — {I, VY'}. Then v is fixed by K
and by C(V,ly). Therefore, ZqTH < G, < Cg(0). Thus either G, = Cg (o) or
G, = G by dual of Lemma 3.4, since G fixes [y and ¢ > 9. We again obtain a
contradiction, since G, < Cg (o). Hence, C(lg,lo) = (1).

Assume that C' = C(Y, 1) for some point Y € Fix(c) — lp. Let Q € Iy and
let m € [Q]NFix(c) — {I,YQ}. Then o € G, but G,, does not contain Klein
groups. Then G,, = D,_; by dual of Table III. Thus, 5 > 1. Furthermore,
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x§ > 1, since Gyg = C and C = Dy, as ¢ = 3 mod 8. So, x5 + x5 > 2. This is
a contradiction by dual of Lemma 3.6(1), as ¢ > 9. O

Lemma 5.2. Fix(T) NI C Fix(o) N L.

Proof. Assume that Fix(T) Nl = Fix(c) Nl. Then K = C by Lemma 5.1. As
a consequence Fix(T') = Fix(o). Let P be any point of Fix(c) N/ and let r be
any line of [P] — {l}. Then C < G,. Since ¢ > 9, then C is maximal in G and
hence either G, = C or G, = G. If the former occurs, then |Fix,c(T)| = 3
and |Fix,c(0)| = 242 by dual of table III. Hence |Fix,c(0)| > |Fix,o(T)| as
g > 9. A contradiction, since Fix(T') = Fix(¢). Hence G, = G for any point
P of Fix(c) N1 and for any line r of [P] — {l}. Thus Fix(G) = Fix(c), since
Fix(G) Nl = Fix(o) Nl and Fix(G) C Fix(o). So, G fixes a Baer subplane of
II. Then G is semiregular on | — Fix(G) and hence |G| | n — y/n, which is a
contradiction. Thus, we have proved the assertion. O

The previous lemma rules the possibility for T' to induce either the identity
or a perspectivity of axis Fix(¢) Nl on Fix(c). Hence, T induces either a per-
spectivity of axis distinct from Fix(c) N or a Baer involution on Fix(c). The
following lemma shows that only the second case is admissible.

Lemma 5.3. The group T induces a Baer collineation on Fix(o).

Proof The group T induces an involution 3 on Fix(c) by Lemma 5.2. Assume
that 3 is an involutory (C,az)-perspectivity on Fix(c). Then C3 € I and
ag # | again by Lemma 5.2, since G fixes . Then |Fix(T') N| = 1 or 2, where
|Fix(T) Nl| = 21 + 3x3 + 24 + x5 by table IIl. Clearly, 23 = 0. Furthermore, by
table III, we have the following system of Diophantine equations:

q+1 q+1 q+1

\/ﬁ+1:131+ 9 T + 4 T4 + 4 I5 (80)
+1 21 21
n+1:zl+q(q2 )Iﬁq(q24 )$4+q(q120 )es 15, @D

Suppose that 3 is an involutory (Cj, az)-elation of Fix(o). Then Fix(T) Nl =
{Cz}, since C5 € l and aj # | by the above argument. Thus, z1 + x4 + x5 = 1,
since |Fix(T) Nl = x1 + x4 + z5. Clearly, G cannot fix C'3, otherwise we have
a contradiction by dual of Lemma 5.2, since Fix(T) N [C3] = Fix(o) N [Cj].
Consequently 1 = 0 and x4 + x5 = 1, since x1 + x4 + x5 = 1. Then either
zg=1land 1 =25 =0,0orzs =1 and 21 = x4 = 0.

Assume that x4 = 1 and z; = 25 = 0. Then z; = 0 by Lemma 3.6(3)

being ¢ # 17. Moreover, /n + 1 = %! by (80). Hence, /n = 2. Since
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V/n > \/q by our assumptions, then 472 > |/g. This yields ¢ > 21. So we obtain
a contradiction, since ¢ = 11 or 19 by Lemma 3.4, as 24, = 1 and ¢ = 3 mod 8.

Assume that z5 = 1 and 1 = x4 = 0. Then ¢ = 11,19, 59 by Lemma 3.4,
since ¢ = 3mod 8. If zo = 1, then /n +1 = %1 + % (80). Therefore,
Vi = 2L Actually, ¢ # 59 by Lemma 3.6(6). If ¢ = 19, then /n = 14.
Nevertheless, this case cannot occur by Lemma 3.3. Hence, ¢ = 11 and /n = 8.
This contradicts the fact that n > 65, since n +1 > % by (81), as x5 = 1.
Thus, zo = 0. Then \/n = ‘%3, by (80), as 1 = w2 = x4 = 0. This is impossible
for ¢ = 11 or 19 by the above argument. As a consequence, ¢ = 59 and /n = 14.
Nevertheless, this case cannot occur by Lemma 3.3.

Suppose that 3 is an involutory (Cj,az)-homology of Fix(c). Again, Cj5 € I
and aj # | by the above argument. Hence, [Fix(T) NI| = 2. Then z; +-x4 425 =
2, since |[Fix(T) N 1| = z1 + 3x3 + x4 + x5 and z2 = 0. It follows that, z; < 1.
Therefore, 24 + 25 > 1, since G cannot fix C5 and since Fix(G) C Fix(T'). Thus,
either 21 = 24 = land z5 = 0, 0or 1 = 5 = 1 and 24 = 0, or ;1 = 0 and
g + Is = 2

Assume that x; = 4 = 1 and 25 = 0. Then 25 = 0 by Lemma 3.6(3). So,
Vn = % by (80). Furthermore, ¢ = 11 or 19 by Lemma 3.4(4), since ¢ =

3 mod 8. We obtain a contradiction as above, since “+* > /g being ! > 43,

Assume that ; = x5 = 1 and x4 = 0. Then ¢ = 11, 19,59 by Lemma 3.4(5),
since ¢ = 3mod 8. If z5 = 1, then \/n = % + % by (80) and hence /n =
3‘14—+3. Furthermore, ¢ # 59 by Lemma 3.6(6). If ¢ = 11, then /n = 9. In
addition, S = 4 by (81), since z1 = z» = x5 = 1. This is impossible, since L+ =
6 must divide S by the definition of this one. Hence, ¢ = 19 and /n = 15, which
is a contradiction by Lemma 3.3. Thus, 5 = 0 and /n = %1. If ¢ = 59, then
v/n = 15 and we have a contradiction by the previous argument. Consequently,
q = 11 or 19. Moreover, \/n = %1 by (80), since x; = 23 = x4 = 0 and z5 = 1.

Nevertheless this cannot occur by the above argument, since ¢ = 11 or 19.
Finally, assume that z; = 0 and x4 + 25 = 2. Then \/n + 1 = 1oy + 221
by (80). If zo > 1, then /n > ¢q. Nevertheless, this cannot occur by our

assumption. So, zo = 0 and hence /n = % — 1. Thatis \/n = q;21_ If x4 >0,
then (Q;Ql)2 +1 > % by (81), where ¢ = 11 or 19 by Lemma 3.4(4),
as ¢ = 3mod 8. Easy computations yield a contradiction. Therefore, x4 = 0
and z5 = 2, since v4 + x5 = 2. Thenn +1 = % + S by (81), where

n = (%52)”. It follows that, 8 = (42)”+1— 22 =1 1n particular, ¢ = 11, 19,59
by Lemma 3.4(5), since ¢ = 3 mod 8. Easy computation yield S = 4 or —32 or
—2580. So the cases ¢ = 19 or 59 are ruled out, since S > 0 by the definition of
this one. Hence ¢ = 11 and S = 4. Nevertheless, this case cannot occur, since

%1 = 6 must divide S again by the definition of this one. Thus, T induces a
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Baer collineation on Fix (o). O

Lemma 5.4. For each point P € l, the group G p cannot be isomorphic either to
Ay orto As.

Proof The group T induces a Baer collineation on Fix(c) by Lemma 5.3. So,
|Fix(T) Nl| = ¥/n+1. By Table III, we have the following system of Diophantine
equations:

%4—1 = x1+3x3+z4+75 (82)
11 +3 11 +1
ﬁ+1=m1+q2 :c2+q2 x3+q4 x4+q4 s (83)
2 2
ql¢+1) qlg=1) ql¢=1)  ql¢d-1)
1= .
n+ x1+ 5 To+ 5 T3+ 2 T4+ 120 r5+S (84)

Assume that x4 > 0. Then x4, = 1 by Lemma 3.5(3). Consequently zs =
z3 = 0 by Lemma 3.6(3). Furthermore, ¢ = 11 or 19 by Lemma 3.4, since
q = 3 mod 8. If ¢ = 11, then either /n = 2 or 3, since n < ¢° by our assumption.
On the other hand, n +1 > Q(q;;“ , since x4 = 1. Thus the case /n = 2 cannot
occur. Hence, /n = 3. Then 21 +25 = 3 and 21 +3xz5 = 7 by (82) and (83), since
2o = x3 = 0 and x4 = 1. Thus, ;1 = 1 and x5 = 2. So, S = 59 by (84), which
is a contradiction, since % = 6 must divide S by the definition of this one. As
a consequence ¢ = 19 and hence /n = 3 or 4, since ¢ < n < ¢2. Nevertheless,

this contradicts the fact thatn +1 > %, being x4 = 1. Therefore x4, = 0.

Assume that 25 > 0. Then ¢ = 11,19 or 59 by Lemma 3.4, since ¢ = 3 mod 8.
If x3 > 0, then 23 = 1 by Lemma 3.5(2). Furthermore, 22 = 0 an ¢ # 59 by
Lemma 3.6(2) and (3). Thus, z; = 0 and x5 = 1 by (82), since x4 = 0 and
x5 > 0. Now, by substituting zy = 2 = 4 = 0 and x3 = x5 = 1 in (83),
we obtain /n = w. Then \/n = 9 for ¢ = 11 and /n = 15 for ¢ = 19.
The latter is ruled out by Lemma)3.3. Hence, /n = 9 and ¢ = 11, which is a

contradiction, since n + 1 > q(q% as x3 = 1. So, 3 = 0.

Now, assume that z2 > 0. Then x5 = 1 by Lemma 3.5(1). Then ¢ # 59 by
Lemma 3.6(3). Then /n + 1 > %L + 2+l by (83), as x2,25 > 0. Therefore
%=1 < \/n < /q. Then \/n = 9 for ¢ = 11 and /n = 16 for ¢ = 19. Assume
the former occurs. Then z; + x5 = 4 and z; + 3x5 = 4 by (82) and (83),
respectively, since x5 = x4 = 0. Consequently, x5 = 0. Hence, we arrive at a
contradiction by our assumptions. Thus, /n = 16 for ¢ = 19. Then 1 + z5 = 5
and z; +5x5 = 7 by (82) and (83), respectively, since x5 = x4 = 0. Since x; and
x5 must be integers, the previous equation have no solutions. As a consequence,
r9 = x3 = 0.

Now, subtracting (82) from (83), we obtain /n — /n = 9;—31:5, since xo =
x3 = x4 = 0. Easy computations for ¢ = 11,19 or 59, being 0 < z5 < 3
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by Lemma 3.5(4), show that the admissible solutions for /n — /n = x5
and 1 = V/n+ 1 — a5 are (¢, ¥n,21,25) = (11,2,2,1),(11,3,1,3),(19,4,2,3)
and (59, 7,5, 3). Now, by substituting these values in (84) and bearing in mind
that xo = x3 = 4 = 0, we obtain § = 4,48,84 or —2736, respectively. The
case (¢, ¥/n,z1,75) = (59,7,5,3) cannot occur, since it must be S > 0. Fur-
thermore, %1 must divide S by the definition of this one. Then also the cases
(g, Yn,z1,25) = (11,2,2,1) and (19, 4, 2, 3) cannot occur. Thus, (¢, V/n, z1,x5) =
(11,3,1,3) and S = 48. Let Y;¢, h = 1,2, 3, the three distinct orbits of type (5)
on . Then |V,¢| = 11 for each h = 1,2,3 and hence |l — Uj_,Y,¢| = 48.
As S = 48, then z19 > 0. Hence, let X € [ such that Gx < Z;1:.Z5. Then
Gx = Z11.7s, since | XC| <48 as X C | — U;_,Y,C. Thus, each orbit of type
(10) has length 12. Therefore, x19 = 3, since S = 48. In particular, G acts
2-transitively on each of the orbits of type (10). Let A be a subgroup of GG such
that A = Z;,. Then A fixes exactly 1 point in each of the three G-orbits of type
(10), since G acts 2-transitively on each of them. Hence, A fixes exactly 4 points
on [ by Table III, since x; = 1 and x5 = x19 = 3. This is impossible, since A
must fix at least 5 points on / and since n + 1 = 5 mod 11, being n = 3. So,
x4 = x5 = 0 and we have proved the assertion. O

Proposition 5.5. Let IT be a projective plane of order n admitting a collineation
group G =2 PSL(2,q), ¢ > 3. If ¢ < n < ¢* and q = 3 mod 8, then G does not fix
lines of 1.

Proof. Assume that G fixes a line [ of II. Note that ¢ > 9, since ¢ = 3 mod 8 and
q > 3. Now, |[Fix(T) NI| = ¥/n + 1 by Lemma 5.3. Furthermore, x4 = z5 = 0 by
Lemma 5.4. Then, by table III, we have

%-1-1:3?14—333‘3 (85)
+1 +3

\/ﬁ+1:r1+q2 $2+q2 x3 (86)
+1 -1

n+1=a:1—|—Q(q2 )$2+q(q2 )acg +S. (87)

Assume that 3 > 0. Then x5 = 1 and 22 = 0 by Lemma 3.6(1). Thus,
Vn=x1+2and /n = 21 + 22 by (85) and (86), respectively. By composing
these equations, we have (z; +2)? = 1 + 2+ and hence 23 + 21 — 5 = 0. If
r; < 2, it is easily seen that, (n,z1,q) = (3%,1,11) or (4*,2,19). Let BY be the
G-orbit on [ of type (3). Then [ — (Fix(G) U BY) # (). Moreover, it consists of
G-orbits of type (10). Then ¢+1 | n+1—x1—|B¢|, since || — (Fix(G) U BY)| =
n+1— 21 — |BY| and since each G-orbit of type (10) has length divisible by
q + 1. Hence, we arrive at a contradiction in any case, since |[BY| = 55 for
(n,21,q) = (3*,1,11) and |B€| = 171 for (n,z1,q) = (4*,2,19). Thus, z; > 3
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for z3 > 0. Actually, z; > 3 also for z3 = 0, since /n > 2. So, 1 > 3 in any
case. Thus, G fixes at least 3 points on I.

Let ) be any of the points fixed by G on [. Clearly, |[Fix(T)N[Q]| = ¥/n+1
by Lemma 5.3. Applying the dual of Lemma 5.4, we obtain that GG, cannot be
isomorphic either to A4 or to A; for each r € [Q] — {!}. Therefore, z} = zf = 0.
Consequently, we obtain the same system of Diophantine equations as (85),
(86) and (87) but referred to [Q)] and hence with the 2} in the role of the z;. At
this point, the above argument yields that G fixes at least 3 lines (including 1)
through any point @ of Fix(G) N . Thus, G fixes a subplane of II pointwise, as
|Fix(G) N 1| > 3. In particular, o(Fix(G)) = 1 — 1.

Assume that Fix(G) C Fix(T). Then either ¢/n = (z1 — 1)? or y/n >
(r1 —1)% + (z1 — 1) by [16, Theorem 3.7], since T induces a Baer collineation
on Fix(c). Furthermore, there must be a G-orbit of type (3) on . So /n = x1+2
by (85). It follows that, either x1 +2 = (x1 —1)2 or 21 +2 > (21 —1)?+ (21 — 1).
Easy computations show that, no one of them occurs, since x; > 3. Hence,
Fix(G) = Fix(T'). Thus, G fixes a subplane of II of order /n. This forces z3 = 0
which yields ¢/n + 1 = z; in (85). Then x5 > 0 by (86). Actually, zo = 1 by
Lemma 3.5(1). So, v/n — ¢/n = %1 by (86). If S = 0, then n — /n = @

by (87). Note that n — /n = (v/i — ¥/n)(vn + /n+1). Asn — ¢/n = 4L
and /n — ¥/n = 1, then @ = L (\/n + ¥/n +1). By elementary calcu-
lations of the previous equality, we obtain /n + /n = ¢ — 1. Thus, V/n | ¢ — 1.
On the other hand, ¥/n | ¢ + 1, since \/n — /n = 2. So, ¥/n = 2. Then
q = 3, since /n — ¢/n = %E!, which is a contradiction by our assumptions.
Therefore, S > 0. Then a Sylow p-subgroup S of G fixes at least one point on
[ — Fix(G). Consequently, Fix(S) is a Baer subplane of II by [16, Theorem 3.71,
since Fix(G) C Fix(S) and since Fix(G) fixes a subplane of II of order ¢/n. It
follows that, S is semiregular on [ — Fix(S) and ¢ | n — /n, since |S| = ¢. This
yields that, either ¢ | v/n — 1 or q | \/n, as g is a prime power. Hence, \/n > ¢
in any case, which is a contradiction by our assumptions. As a consequence, G
does not fix lines of II. O

Theorem 5.6. Let II be a projective plane of order n admitting a collineation
group G = PSL(2,q), with ¢ = 3mod 8 and q > 3. If n < ¢, then one of the
following occurs:

(1) n=¢q I 2PG(2,q) and G is strongly irreducible on II;
(2) ¢ <n < ¢*and G is strongly irreducible on TI;

(3) n = ¢? and one of the following occurs:

(a) G is strongly irreducible on II;
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(b) G fixes a Baer subplane Iy = PG(2, q) of IL

Proof. No cases arise for n < ¢ by Theorem 2.1, as ¢ > 3. If n = ¢, the assertions
(1) easily follows by Theorem 2.2. If ¢ < n < ¢, the group G does not fix lines
or points of Il by Proposition 5.5 and its dual. Now, the assertion (2) follows
in this case by Lemma 3.1, since ¢ = 3mod 8 and ¢ > 3. When n = ¢2, the
assertions (3a) and (3b) follow by Theorem 2.3 and Corollary 2.4, respectively.

O

Finally, when ¢ = 3 mod 8, Theorem 1.1 easily follows from Theorem 5.6.

6 The case ¢ = 5 mod 8

Recall that o and T are the representatives of the unique conjugate class of
involutions and Klein subgroups of G, respectively. Recall also that T" is chosen
such that ¢ € T. Furthermore, C¢(0) = Dy_; and Ng(T) = A4. We filter the
list given in Lemma 3.4 with respect to the condition ¢ = 5 mod 8. Now, arguing
as in the beginning of the previous section, we obtain the following table.

Table IV
Type | Gp [G:Gp] | |Fixpe(o)| | |Fixpe(T)|
1 G 1 1 1
2 Dy @ &21 3
3 | Dgyr | 2D | L 0
10 Fy.Zy % ;TTl ;J{Z 0

By section 3, the G-orbits of type (10) on [ cover exactly S points of I, where
S = Zf;”l ‘12—;]1 Moreover, S; = Zf;”l qd;jl and Ss, Sy, Si, Sz,4 (sum with
the same summands qd;jl but over 2 | d;, 2 t dj, 4 | dj and d; = 2 mod 4,
respectively). In particular, S = %181. Note also that, S, = 0, since ¢ =
5 mod 8.

If G fixes a point ) and acts on [(Q], we may focus on the G-orbits of lines
in [Q]. So, following the notation introduced in section 4, we obtain a table,
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namely the dual of Table IV, where type (i)* replaces (i), the group G,, replaces
G p and m© replaces PY. Here, m is any line of [Q]. Recall that, we denote by z
the number of G-orbits on [Q)] of type (:)*. As mentioned in section 4, we write
xf instead of 27 (@), even if the second notation would be correct. It will be clear
from the context which point we are focusing on. In particular, since we might
have G-orbits of type (10)*, it makes sense considering $* = Z?i“l ‘122—(; and
hence S3, S5/, Si, S5, with the same meaning of Sa, Sa/, Sy, Sz 4, Tespectively,
but referred to lines instead of points. Clearly, S = 0, since ¢ = 5 mod 8.

The collineation o is a Baer collineation of IT by Lemma 3.3. Set C' = C¢ (o).
Then C acts on Fix(c) with kernel K. Hence, let C = C/K. Clearly, (o) < K <
C'. Furthermore, either K < Z4,—1 or K = C, since C = D,_; and ¢ = 5 mod 8.
As we will see, we need to inve;tigate the structure of K in order to show that
T induces a Baer collineation on Fix(o).

Lemma 6.1. IfFix(T) Nl = Fix(c) NI, then K = C.

Proof. Assume that Fix(T') Nl = Fix(o) Nl and that K < Z,-.. Then Fix(G) N
| =Fix(c) N1 by table 1V, since ¢ > 9. Set Iy =Fix(o) N 1. “Then C = C(lp),
since Iy = Fix(G) N!. In particular, C' = Dy, where k = |K]|, since K < Zoa
and C' = D,_;. On the other hand, C is the semidirect product of C'(lo, ly) with

C(Y,lp) for some point Y € Fix(c) — lp by [16, Theorem 4.25].

Assume that C(ly,ly) # (1). Assume that also that C(lg,lp) = C. Then
C = C(V,ly), for some point V € Iy by [16, Theorem 4.14], since C = Dy,
(o) A K <4 Zaa and ¢ = 5 mod 8. Hence, for each point X € Iy — {V'} and for
each line t € [X] N Fix(o), we have that o € G; but G; does not contain Klein
groups. Then, by dual of table IV, we have that either G; = D, or G¢ = F,,.Zy4
with d even, since G fixes X. Clearly, K < G; and (o) < K < ZqTﬂ. Thus,

K = (o), since 2 | |G| but 4 { |G¢| as ¢ = 5mod 8. Therefore, C' = Dy

and %51 | /n. Actually, either /n = % or \/n = ¢ — 1, since y/n < ¢ by
our assumptions. If \/n = 4%, then \/n = 2mod 4 as ¢ = 5mod 8. This is a
contradiction by Lemma 3.3. So /n = ¢ — 1. Note that, either G; = D 4, or
G, & F,.Z4, with d = d(t) even, for each line ¢ € [X]NFix(o) such that ¢ # [.
Moreover, Fix(T) N [V] = Fix(c) N[V], since C = C(V,ly). Then Fix(G)N[V] =
Fix(o) N [V] by dual of table IV, since ¢ > 9. Thus either |G, | is odd, or 2 | |G|
but 4 t |G,| for each r € [X] — Fix(c). Consequently, either G; = Dy, or
G, 2 F,.Z,, with d = d(r), for each r € [X] — Fix(o) by dual of table IV, since
G fixes X. In this case d = d(r) might be also odd. Therefore, [X] consists of
G-orbits of type (1)*, (3)* or (10)*. Then, again by dual of table IV, we have
glg—=1) . a+1

n= 5 T3+ B

ST, (88)



98 A. Montinaro

since 2§ = 1 (G fixes [ ) and since S* = 1S}, Actually,

5 Tty

(g-1)°=1 St (89)

since TT has order (g—1)2. Hence 2! | (g—1)2 — 24=U + where 23 < 1 by dual
of Lemma 3.5(2). If 25 = 0, by elementary calculations of the last divisibility

relation, we obtain % | 4. So, we arrive at a contradiction, since ¢ = 5 mod 8.

Thus, 25 = 1. So, ¢+ 1 | ¢> =3¢+ 1 by L2 | (¢ — 1)2 — 21 This is
impossible, since ¢ + 1 is even while ¢ — 3¢ + 1 is odd. Then C(ly,ly) < C and
C(Y,lp) # (1) for some point Y € Fix(o) — lo. It follows that, C(lg, o) < Zys,
since C' & D1 Actually, C(lo,lo) = C(V,1p) = Zy-1 and C(Y,ly) = Z» by [16,
Theorems 4.14 and 4.25]. Let R € Iy — {V} and set f = RY. Clearly, C(Y, o)
fixes f. Then Dy, < Gy, where k is an even divisor of %1, since (o) < K < Gy.
If k =2, then C(V, 1) = Zy-1 and 4L | \/n, arguing as above. So, /n is even,
as ¢ = 5 mod 8, which is a contradiction, since C (Y, ) consists of an involutory
homology. Therefore, ¥ > 2. Hence, 4 | 2k with £ > 2. As a consequence,
C < Gy by dual of Table IV. Then C fixes f. Hence, we obtain a contradiction,
since C(lp,lp) = C(V,lp) # (1), while f = RY with R € |y — {V}. Thus,
C(lo,lo) = (1).

Assume that C' = C(Y, 1) for some point Y € Fix(c) — lp. Let Q € Iy and
m € [Q] NFix(o) — {l,QY}. Then ¢ € G,, but G,, does not contain Klein
subgroups of G. By dual of table IV, either G,, = D,11 or G, = F,.Z,. So,

NMZQ?@+2;@+$. (90)

Note that, z5 > 0, as Ggy = C. Then z5 = 1 by dual of Lemma 3.5(2).
Hence, 2% = 0 by dual of Lemma 3.6(1). Furthermore, T fixes exactly 3 points
on QYY. Thus, \/n = 2, since 7" must induce either a perspectivity or the
identity on Fix(o) as Fix(T) N1 = Fix(c) Ni. On the other hand, v/n > 4! by
(90) as = = 1. This yields v/n > 5, being q > 9, which is a contradiction, since
we proved that /n = 2. O

Lemma 6.2. Fix(T)N! C Fix(o) N L.

Proof. Assume that Fix(T") NI = Fix(o) Nl. Then K = C by Lemma 6.1. Thus,
Fix(T) = Fix(o). Let P be any point of Fix(¢) N and let » be any line of
[P] — {l}. Then C < G,. Since ¢ > 9, then C is maximal in G and hence
either G, = C or G, = G. If the former occurs, then |Fix,.¢(T1)| = 3 and
[Fix,c(0)| = £+ by dual of Table V. Hence, |Fix,c (0)| > |Fix,c(T})| as ¢ > 9.
This is a contradiction, since Fix(T}) = Fix(c). So, G, = G for any point
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P of Fix(c) N1 and for any line r of [P] — {I}. Thus Fix(G) =Fix(o), since
Fix(G)Nl = Fix(c) Nl and Fix(G) C Fix(c). Therefore, G fixes a Baer subplane
of II. Then G is semiregular on ! — Fix(G) and hence |G| | n — y/n, which is a
contradiction. So, we have proved the assertion. O

Lemma 6.3. The group T induces a Baer collineation on Fix(o).

Proof The group T induces a non trivial involution 3 on Fix(c) by Lemma 6.2.
Assume that j3 is an involutory (Cj,ap)-perspectivity on Fix(c). Then ag # [
again by Lemma 6.2. Thus, |Fix(T') N | = 1 or 2. Therefore, x1 +3z2+ 24+ 25 =
1 or 2, since |Fix(T) Nl| = 1 + 3x2 + x4 + x5 by table IV. Clearly x5 = 0. Hence,
21 + x4 + x5 = 1 or 2. Furthermore, by table IV, we have the following system
of Diophantine equations:

~1 -1 ~1

\/ﬁ+1=m1+q2 x3+q4 x4+q4 75+ S (91)
q(g—1) q(¢®> — 1) q(¢®> — 1)

1= S. 2

n -+ 1+ 5 x3 + 2 T4+ 120 x5 + (92)

Assume |Fix(T) N1 = 1. Then j is an involutory (C3, az)-elation of Fix(c)
with C5 € land a5 # 1. So Fix(T) Nl = {Cz} and #1 + x4 + 25 = 1. Clearly, G
cannot fix C'z, otherwise we obtain a contradiction by dual of Lemma 6.2, since
Fix(T) N [C5] = Fix(0) N [Cj5]. Consequently, 1 = 0 and x4 + 25 = 1.

Assume that 4 = 1 and x5 = 0. Then z3 = 0 by Lemma 3.6(3) and ¢ = 13
by Lemma 3.4. So, either \/n = 10 or 12, since % <mn < ¢®>+1withnan
even square number. The former is ruled out by Lemma 3.3. Hence /n = 12.
Since 1 = 23 = x5 = 0, since %1 | S and since %1 divides the G-orbit of type
(4) as ¢ = 13, then %1 | n 4+ 1 by (92). This cannot occur, since % = 7 while
V=12

Assume that 4 = 0 and 25 = 1. Then ¢ = 29,61,101,109 by Lemma 3.4,
since ¢ = 5 mod 8. If 3 = 1, then ¢ = 29 by Lemma 3.6(4). Let Q¢ be an orbit
of type (3). Clearly, |Q“| = @. Now, let R be an orbit of type (5), then

|RC| = %61). Since QGURC C 1, it follows that, n+1 > 4= 9@ =1 Thep

q‘2
2 120
n > 608, since L) 4 4= _ 609, being ¢ = 29. So, 24 < /i < 29, since
n < ¢® and ¢ = 29. Actually, \/n = 26 cannot occur by Lemma 3.3. Therefore,
\/n = 28, since y/n must be even. Thus, S = 176, since n+ 1 = 608 + S by (92),
since 71 = x4 =0, z3 =25 = 1 and ¢ = 29. Then § = 176, as /n = 28. Hence
%1 | 176, as % | S, which is a contradiction, since ¢ = 29. Consequently,

z3 = 0. Thenn+1:%51)+Sby(92),sincex1:x3:m4:0anda:5:1.

If S = 0, then n = L1 1 with ¢ = 29,61,101,109. We again obtain a
q+

contradiction, since n must be a square. Thus, § > 0. Since 71 | S, then
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e | 41— LD since p 4 1 = 2421 | S, Moreover, ¢ = 29, 61,101, 109,

and 4/ %51) —1 < n < ¢%, with n an even square number. Easy computations
show that, only the case /n = 98 and ¢ = 101 is admissible. Nevertheless, it
cannot occur by Lemma 3.3.

Assume that [Fix(T)N{| = 2. Then J is an involutory (Cj,a;)-homology
of Fix(o) with Cz € [ and a3 # I. Furthermore, z; + 24 + 75 = 2, since
|FiX(T) N ll =11 + 323 + x4 + x5 With zo = 0.

Assume that x4 > 0. Then x4 = 1 by Lemma 3.5(3). Then 2 = z3 = 0 by
Lemma 3.6(3). Moreover, ¢ = 13 by Lemma 3.4, since ¢ = 5 mod 8. So, \/ﬁ =2
or 3, since ¢ < n < ¢* by our assumption. On the other hand, n + 1 > Q(q _1)
with ¢ = 13, since x4 = 1. Hence, we arrive at a contradiction. Thus, x4 = 0
and either z1 = x5 = 1,0orz; = 0and x5 = 2, since z; < 1 and z1 + x4+ x5 = 2.
In order to make easier the analysis of these two cases, we are going to show
that z3 = 0.

Assume that x3 > 0. Then z3 = 1 by Lemma 3.5(3). So, ¢ = 29 by
Lemma 3.6(4), since x5 > 1. Therefore, 24 < /n < 29, arguing as above.
Then /n = 25 or 27, since y/n is odd. Actually, the case \/n = 27 cannot occur
by Lemma 3.3, as v/n = 3 mod 4. Thus, v/n = 25. Let X and X§ be the orbits
on [ of type (3) and (5), respectively, as 3 = 1 and x5 > 1. Then ‘Xﬂ = 406
and | X§'| = 203 as ¢ = 29. Since y/n = 25, we have || — X{ — X§| = 17. As
the minimal primitive permutation representation of G = PSL(2,29) is 30, the
group G fixes | — X& — X pointwise. As a consequence, z; = 17 and 25 = 1,
since |l — X — X§| = 17. This is impossible, since we saw 1 < 1. So, z3 = 0.

Now, assume that z; = x5 = 1. Thus, n = q(ql201) +S8by (92),as x3 = x4 = 0.

Furthermore, ¢ = 29,61,101, 109 by Lemma 3.4, since q = 5 mod 8. Clearly,

01) is not for these
a(q’ —1)
120

n > q(‘1120 ) since n is a square by Lemma 3.3, while alg 5

numerical values of ¢. Therefore, S > 0. Since &+ | S, then &+ | n —

where ¢ = 29,61,101, 109, and 1/ q(qugl) < y/n < q with y/n odd and hence
v/n =1 mod 4 by Lemma 3.3. Easy computations show that no cases arise.

Assume that ;1 = 0 and x5 = 2. Therefore, n +1 > % by (92), as
x3 = x4 = 0. Furthermore, ¢ = 29,61,101,109 by Lemma 3.4, since ¢ =
5 mod 8. Actually, the cases ¢ = 61,101,109 cannot occur, since they do not
satisfy % —1 < n < ¢% Thus, ¢ = 29 and hence 405 < n < 292. Actually,
either n = 212 or 252, since v/n = 1 mod 4 by Lemma 3.3. Then S = 36 or 220
by (92), respectively, since x1 = z3 = 24 = 0, x5 = 2 and ¢ = 29. This leads
to a contradiction, since %1 = 15 must divide S by the definition of this one.
Hence, we have proved the assertion. O
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Lemma 6.4. For each point P € l, the group G p cannot be isomorphic either to
Ay orto As.

Proof. The group T induces a Baer collineation on Fix(c) by Lemma 6.3. Thus,
[Fix(T) Nl = /n + 1. Then, by Table IV, we have the following system of
Diophantine equations:

Vn+1 = 21 +3x0+24+25 (93)
+1 —1 —1 —1
Vil = a1+ L . oo+ 2 > x3+q4 x4+q4 25+Ss (94)
glg+1)  qlg—1)  ql@®-1)  qlg°—1)
1= S. 5
n -+ x1+ 5 To+ 5 T3+ 2 T4+ 120 5+ (95)

Assume that x4 > 0. Then z4 = 1 by Lemma 3.5(3). So, 20 = 23 = 0
by Lemma 3.6(3). Furthermore, ¢ = 13 by Lemma 3.4, since ¢ = 5 mod 8.
Thus, /n = 2 or 3, since ¢ < n < ¢? by our assumption. Hence, we obtain a
contradiction, since n+1 > % for ¢ = 13, being x4 = 1. Therefore, x4 = 0.

Assume that x5 > 0. Then ¢ = 29,61,101,109 by Lemma 3.4, since ¢ =
5mod 8. If zo + x3 > 0, then x5 + 23 = 1, 25 < 2 and ¢ = 29 by Lemma 3.6(2)
and (4). Moreover, /n = 3,4 or 5, since ¢ < n < ¢* and since n is a fourth
power by Lemma 6.3. Let Q€ be an orbit of type either (2) or (3), as xo+x3 = 1.
Then |Q¢| = @, respectively. Now, let R“ be an orbit of type (5) as z5 > 0,
then |R%| > %81). Since Q¢ URY C [, thenn+1 > @ + %81). In
particular, n + 1 = 638 or 609, since @ + %51) = 638 or 609 according
to whether Q€ is of type (2) or (3), respectively. While the cases /n = 3,4 or
5 cannot occur when Q€ is of type (2), only /n = 5 is admissible when Q¢
is of type (3). In this case, since |l — (Q“ U R®)| = 17 and since the minimal
primitive permutation representation of degree of PSL(2,29) is 30, the group G
fixes |— (Q®UR®) pointwise. Hence, 1 = 17 as |l — (Q¥ U RY)| = 17 when Q¢
is of type (3). So ¥/n > 16 as /n + 1 = x1 + 3x2 + x5, which is a contradiction,
being /n = 5 by the above argument. Thus, x5 = x5 = 0.

Since %51) < n+1 < ¢>+1 and since n is a fourth power, it is a
straightforward calculation to show that, (¢,n) = (29,4%),(29,5%), or (61,7%),
or (101,10%). Assume that ¢ # 29. Let u be an odd prime divisor of ¢ + 1. In
particular, v« = 31 when ¢ = 61 and v = 17 when ¢ = 101. Note that, u | S,
since Z£1 | S. Furthermore, u | %. Then u | n + 1 — x1. Indeed, we

haven+1 -2, = q((112261)$5 + S by (95), since 2 = x3 = z4 = 0. Hence,

n+ 1= x1 mod w. This yields 21 = 15 mod 31 for ¢ = 61 and x; = 5 mod 31 for
g =101. Since 0 < 77 < /n+1 and /n + 1 < u in each case, then x; = 15 for
g = 61 and z; = 5 for ¢ = 101. This is a contradiction, since x1 + x5 = ¢n + 1
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with /n < 10. Thus, (¢,n) = (29,4%), (29,5%). Then n + 1 = x1 + 20325 + S by
(95), since 9 = 23 = x4 = 0. Assume that S = 0. Thenn + 1 = z1 + 203xs.
Since ¥/n +1 = 21 + a5 by (93), then n + 1 = ¥n + 1 + 202z5. Therefore,
202 | n — /n, as x5 > 0, which is a contradiction, since /n = 4 or 5. Hence,
S > 0. Actually, S = n — ¥/n — 202z5. If ¢/n = 4, then z5 = 1 and S = 50. If
Yn =5, then x5 < 3. Furthermore, S = 418, 216, or 19, for z5 = 1, 2, or 3,
respectively. On the other hand, 15 | S, since %1 = 15 and since % | S by the
definition of S. in each case. So, we obtain a contradiction in any case. O

Proposition 6.5. Let II be a projective plane of order n that admits a collineation
group G = PSL(2,q) fixing a line l. If ¢ < n < ¢*> and ¢ = 5 mod 8, then II has
order 16 and G = PSL(2,5).

Proof. Suppose that G fixes a line [ of II. Assume that ¢ = 5. Then 5 < n < 52
by our assumptions. Actually, n = 16, since n must be a square and /n =
0,1 mod 4 by Lemma 3.3. Thus, we have proved the assertion (1).

Assume that ¢ > 5. Actually, ¢ > 9, since . Recall that, [Fix(T)Nli| =
¥/n + 1 by Lemma 6.3, and that for each point P € [, the group G p cannot be
isomorphic either to A4 or to A5 by Lemma 6.4. So, ©4 = x5 = 0. Hence, by
table IV, we have

%+1=$1+3.’L‘2 (96)
1 -1
\/ﬁ+1:$1+q; $2+q2 r3 + So 97)
1 -1
7”L+1::z:1+q<q;r )z2+q(q2 )ngrS. (98)

Assume that x5 > 0. Then x5 = 1 by Lemma 3.5(1) and therefore z3 = 0 by
Lemma 3.6(2). It follows that, ¢/n = z; + 2 and \/n = z1 + %1 + S by (96)
and (97), respectively. By elementary calculations of the previous equations, we
obtain (z1 +2)2 + 1 =21 + L + 5. So, 22 + 321 = 52 + S,. If 21 = 0, then
g =9, since S; > 0. This is a contradiction, since ¢ = 5 mod 8. If z; = 1, then
/n = 3 and hence n = 81. Moreover, n+1 > z + @ by (98), being x5 = 1.
This is a contradiction, since % > 91 as ¢ > 13, while n = 81. If z; = 2,
then y/n = 4 and therefore ¢ > 13, since ¢ < n < ¢* by our assumptions. Thus,
q > 29, since ¢ = 5 mod 8. Again, n + 1 > z; + L4 "with 29D > 435 being
q > 29. This is impossible, since n = 4*. Thus, #; > 3 for 2 > 0. Note that,
x1 > 3 also for x5 = 0, since /n + 1 > 3. So, 1 > 3 in any case. Thus, G fixes
always at least 3 points on /.

Let P be any of these points and let  be any line of [P] — {I}. Applying the
dual of Lemma 6.4, we obtain that, G;- cannot be isomorphic either to A4 or to
As for each line r € [P] — {l}. Hence, z; = xf = 0. By dual of Table IV, we
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obtain the same system of Diophantine equations as (96), (97) and (98) but
referred to [P] and with the z} in the role of ;. Now, we may repeat the above
argument showing that, G fixes at least 3 lines (including !) through any point
P of Fix(G) Nl. Thus G fixes a subplane of IT pointwise, as |Fix(G) N{| > 3. In
particular, o(Fix(G)) = 1 — 1.

Assume that Fix(G) C Fix(T). Then either ¢/n = (z1 — 1)? or /n >
(r1 —1)%2 + (z1 — 1) by [16, Theorem 3.7], since T induces a Baer collineation
on Fix(c). Furthermore, there must be a G-orbit on [ of type (2) by (96). So,
\4/54*1 =1 +2. Hence, either T +2= (1’1 — 1)2 or xrp +2 > (131 — 1)2+ (1‘1 — 1)
Easy computations show that no one of them occurs, since z; > 3. Conse-
quently, Fix(G) = Fix(T'). This yields zo = 0 and /n + 1 = z;.

Assume that S = 0. Then xz3 > 0 by (97), as x2 = 0. Actually, z3 = 1 by
Lemma 3.5(2). So (96), (97) and (98), respectively, become

Vn+1l=m (99)
Vidlea + 128 (100)
n+l=m + q(q; b (101)

Then /n—¥/n = % combining (99) with (100), and n—+/n = % combin-
ing (100) with (101). Finally, combining these ones, we have n + /n = q — 1.
Then n + ¢/n = 2(v/n — ¥/n), as vn — /n = 45+, Now, dividing by ¥/n, we
obtain ({/n)? — 2{/n + 3 = 0 which has no integer solutions. Therefore, S > 0.
Let S be a Sylow p-subgroup of G normalized by ¢ and let X € [ such that
S < Gx (such a point does exist, as S > 0). Then either Gx = F;.Z4,,
with dx | %, or Gx = G by Table V. Then S fixes a Baer subplane of II,
since Fix(G) C Fix(9), since o(Fix(G)) = n and since & > 0. Recall that
S = Zf;"l % and that Sy and Sy are the sum with the same summands qd;jl
but over 2 | d; and 2 t d;, respectively. Note that, dx = dj, for some 1 < h < z1¢.
Then |Fixye(S)| = % by Proposition 2.5, since Ng(S) = S.Z%. Thus, the
number of points coming out from G-orbits on [ of type (10) which fixed by S
are exactly 371 ‘12%‘1;. These turn out to be 1S; as S; = PRy qd;jl. Therefore,
o(Fix(S))+1 = z14381. So, \/n+1 = 1+ 18y, since Fix(S) is a Baer subplane
of II. Then z; + %81 =z + %1’3 + S, since \/ﬁ—f— 1=u2+ %1’3 + Sy by
(97). As a consequence
S = (q — 1)x3 + 285 . (102)

Assume that 3 > 0. Then z3 = 1 by Lemma 3.5(2). Then §; > ¢ — 1 and
hence S > q—;l, since S = %181. Now;, by substituting S > q—;l in (98) and

bearing in mind 23 = 1, we obtainn + 1 > @ + #. On the other hand,
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n < (¢ —1)? since n < ¢* and n is a square. Then (¢ — 1)* + 1 > @ + L;l,
which is a contradiction.

Assume that z3 = 0. Then §; = 25, by (102). Note that, S; > 0, as S =
%181 and S > 0. As a consequence, Sy > 0 being §; = 2S5, and S; = S + Sor.
Now, we focus on the points on [ fixed by S (o). If S (o) fixes a point Q) on I,
then G is either of type (1) or of type (10). So, S (o) fixes at least z; points
on [. Furthermore, if Q¢ is of type (10), then |Fixqge (S (0))| = %;—Jl for d; even
and 0 for d; odd by Proposition 2.5. Therefore, the number of points coming
out from G-orbits on [ of type (10) which fixed by 5 () are exactly 3, _ %.
These turn out to be %82 as Sy = ;=20 qd;jl. It follows that, S (o) fixes exactly
$1+%82 on /. Hence, o fixes exactly x1+%82 points on Fix(S)Ni. Then o induces
a Baer collineation on Fix(5), since 21+ 18, > 3, since o(Fix(9))+1 = 21+ 185
with & > Sy > 0. Consequently, v/n +1 = x; + %82, since Fix(S) is a Baer
subplane of II. On the other hand, ¢/n+1 = z; by (99). Hence, 1 + %82 = .
This yields So = 0. Thus, § = 0, since S; = 2582 and § = g;—l&. This is a
contradiction, since S > 0. So, G does not fix lines of II. O

Corollary 6.6. Let II be a projective plane of order n admitting a collineation
group G = PSL(2,5). If n < 25 and G fixes a subplane 11y of II, then Iy &
PG(2,4) and n = 16.

Proof. Let II be a projective plane of order n admitting a collineation group
G = PSL(2,5). Assume that n < 25 and that G fixes a subplane II, of II of order
m. Clearly, m < 5 by [16, Theorem 3.7]. Then IIy = PG(2,4) by Theorem 2.1.
In particular, G fixes a secant [ of II, which is the kernel of the line oval of I,
left invariant by G itself. Then n = 16 by Proposition 6.5. O

Theorem 6.7. Let II be a projective plane of order n admitting a collineation
group G = PSL(2,q) with ¢ = 5mod 8. If n < ¢? then one of the following
occurs:

(1) n<q O=PG(2,4) and G = PSL(2,5);
(2) n=g¢q O =PG(2,q) and G is strongly irreducible on II;
(3) ¢ < n < ¢? and one of the following occurs:

(a) G is strongly irreducible on II;

(b) n = 16 and G = PSL(2,5) fixes a point, or a line of II or subplane
I, = PG(2, 4);

(4) n = ¢? and one of the following occurs:



Projective planes admitting PSL(2, g) 1056

(a) G is strongly irreducible on II;

(b) G fixes a subplane I, of II. In particular; if ¢ # 5, then IIy = PG(2, q)
is a Baer subplane of 1.

Proof. If n < g, the assertions (1) (2) easily follows by Theorems 2.1 and 2.2,
respectively. If ¢ < n < ¢?, then either the assertion (3b) or group G does not
fix lines or points of II by Proposition 6.5 and its dual. If the latter occurs, the
assertion (3a) easily follows by Lemma 3.1, since ¢ = 5 mod 8 and by Corollary
6.6. Finally, if n = ¢, the assertions (4a) and (4b) and follow by Theorems 2.3
and 2.4, respectively. O

At this point, Theorem 1.1 easily follows, when ¢ = 5 mod 8, from Theo-
rem 6.7.

7 The case ¢ = 7 mod 8

Assume that ¢ = 7 mod 8. Recall that ¢ is a representative of the unique con-
jugate class of involution in G, and that 77 and T, are the representatives of
the two conjugate classes of Klein subgroups of G. In particular, 77 and 75 are
chosen in order to contain ¢. Furthermore, Cz(0) & D441 and Ng(Tj) = Sy
for each j = 1 or 2.

We filter the list given in Lemma 3.4 with respect to the condition ¢ = 7 mod
8. Then, for each point P € [, either Gp = G (type (1)), or Gp = D, (type
(2)), or Gp = Dy (type (3)), Gp = As (type (5)), or Gp = Sy (type (6))
or Gp = F,.Z4, where d | % and d odd (type (10)). Note that there are two
conjugate classes of subgroups isomorphic to A5 and two ones of subgroups
isomorphic to Sy by [4]. So, following the notation introduced in section 4,
there are admissible subgroups of type (5a) and (5b), and admissible ones of
type (6a) and (6b). Hence, x; = x;, + x4 for i = 5 or 6. The usual argument,
involving Proposition 2.5, yields the table on the next page containing all the
required informations about the admissible G p.

The numbers S, Si, Sz, Sa/, S2.4 and S have the usual meaning. In par-
ticular, So = Sy 4 = S4 = 0, since ¢ = 7 mod 8. Consequently, S; = S and
S=atlg,

2 ©2-

As in the preceding sections, we may consider the dual of table V, that is the
table referred to the G-orbits of lines through some point @ of II fixed by G.
In particular, we might have G-orbits of lines of type (ia)* and (:b)* fori =5
or 6, and it makes sense considering §*, Sy, S5, S5/, S5, and §;. Similarly to
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Table V
ype | Gp | [G:Gp] | [Fixpe(o)| | [Fixpe(T1)| | |Fixpe(Ty)|
1| G 1 1 1 1
2 | Doy | det)l | atd 0
3 | Dgpr | 4ot | ai 3 3
sa | Ay | feZD | atl 2 0
sb | A5 | LoD | ekl 0 2
6a | S, q(ngl) 3(q8+1) 411, q flS 15 |4, ¢q flG 15
, 4=167 |3, ¢=167
6b | Sy don) | e g ;1 :Z ;5 ‘11 Z :Z‘ ;5
10 | F,.2 | S5t 0 0 0

above, we have &5 = 83, = &) = 0, since ¢ = 7 mod 8, and hence S} = &,
and §* = £S5,

Note that o is a Baer collineation of II by Lemma 3.3. Set C' = C¢(c). Then
C acts on Fix(o) with kernel K. Hence, let C = C/K. Clearly, (o) < K < C.
Furthermore, either X' < Z441 or K = Dgs1 or K = C, since C' = D,y and
g = 7mod 8. As we will see, we need to invzestigate the admissible structure of
K in order to show that 7} induces a Baer collineation on Fix(c) for each j =1
or 2.

Lemma 7.1. If Fix(T;) Nl = Fix(o) Nl for some j = 1 or 2, then either K = D 441
or K=C.

Proof. Assume that Fix(T7 )Nl = Fix(¢)Nl and that K < Zagr. Then Fix(G)Nl =
Fix(o) N1 by table V, since ¢ > 9. Set Iy =Fix(¢) Nl. Then C = C(ly), since
lo = Fix(G) N l. In particular, C' = Do, where k = |K|, k is even and k | 2.
Then the group C is the semidirect product of C(ly,ly) with C(Y,ly) for some
point Y € Fix(o) — lo by [16, Theorem 4.25].

Assume that C(lg,ly) # (1). If C(lo,lo) = C, then either C = F, and K =
Z g1 or C = C(V,lp) for some point V € Iy by [16, Theorem 4.14], since
C = Dgy1 and g = 7 mod 8. Suppose the former occurs. Let R;, i = 1,2 or 3,
be the (unique) points on Iy, such that C(R;,ly) # (1). Actually, C(R;,ly) =
Zy for each i = 1,2,3. So, there are at least two points among the R;, i =
1,2 or 3, say R2 and Rs, such that C}, = Do for each line h € [R;] — {I},
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i = 2,3, since K = Zq+1 and C = Dgy;. As a consequence, Dq+1 < Gy, for
each h € ([Rz] U [R3]) — {I}. Now, since G fixes the R;, i = 2 3, we may
filter the groups listed in the dual of Lemma 3.4 with respect to the condition
D g1 < G},. Easy computation show that either G, = C or G, = G, which
is a contradiction, since Cy = D a1 Therefore, C = C(V,l) for some point
V €y by [16, Theorem 4.14]. Thus, for each point X € Iy — {V'} and for each
line ¢t € [X]NFix(o), we have ¢ € G, but G; does not contain Klein groups.
Then G; = D,_; by dual of table V since G fixes X. Assume there exists
u € [X] N Fix(o) such that G, = D,;_;. Clearly, K < G,. Then K = (o),
since (o) < K < Zas1. 50, C = Ds1 and hence L | /n. Actually, /n = £,
since /n < q by our assumptions. On the other hand, uv“ C [X] — {I} as G fixes
X. Then n > @ since |u%| = @ as G, = D,_;. Then (%)2 > @,
since /n = %EL. This contradicts the fact that ¢ > 9. Thus, C(lo,lo) < C.
Then C(lg, 1) < Z 11, since C = Dy Actually, C(lo,lo) = C(V, 1) = Zy
and C(Y,ly) = Z» by [16, Theorems 4.14 and 4.25]. Let s € [V] — {I,VY},
then s is fixed by K and by C(V,ly). Therefore, Gy;NC = Z 221 It follows that
Zq_;l < Gs. Then either G; = Cg(0) or G4 = G by dual of Lemma 3.4, since
G fixes Iy, since ¢ > 9. This is a contradiction, since G, N C = Z agt. Hence,
C(lo,lo) = (1).

Assume that C' = C(Y, ly) for some point Y € Fix(o) — lg. Let Q € Fix(o) N1
and let m € [Q] N Fix(¢) — {I,YQ}. Then o € G, but G,, does not contain
Klein groups. So, G, = D,_; by dual of table V, since G fixes (). Therefore,
x5 > 1. Furthermore, 2% > 1, since Gyg = C. Thus, 25 + 2§ > 2, which is a
contradiction by dual of Lemma 3.6(1), being ¢ > 9. O

Lemma 7.2. It holds that Fix(T;) Nl C Fix(o) N1 for each j = 1, 2.

Proof. Assume that Fix(77) Nl = Fix(o) NI. Then either K = D1 or K = C
by Lemma 7.1. ’

Assume that K = C'. Then Fix(71) = Fix(o). Let P be any point of Fix(c) N1
and let r be any line of [P] — {i}. So, C < G... Since ¢ > 9, then C is maximal in
G and hence either G, = C or G, = G. If the former occurs, then |Fix,«(T1)| =
3 and |Fix,c(0)| = # by dual of table V. Therefore, |Fix,c ()| > |Fix,e(T1)|
as ¢ > 9. This is impossible, since Fix(T}) = Fix(o). Thus, G, = G for any point
P of Fix(c) N1 and for any line r of [P] — {I}. Consequently, Fix(G) = Fix(o),
since Fix(G)N! = Fix(o)Nl and Fix(G) C Fix(o). Thus, G fixes a Baer subplane
of II. Then G is semiregular on | — Fix(G) and hence |G| | n — /n, which is
impossible.

Assume that K & Dy Then Depr < Gy for each line f of Fix(co) — {I}.
Therefore, either Gy = CorG F=G by dual of Lemma 3.4, being ¢ = 7 mod 8
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and ¢ > 9. Now, the above argument yields Fix(G) = Fix(c) and we again
obtain a contradiction. Thus, Fix(77) Nl C Fix(o) N 1.

Now, repeating the above argument with 75 in the role of T}, we obtain
Fix(T2) Nl C Fix(o) Nl. Hence, we have proved the assertion. O

Lemma 7.3. The group T induces a Baer collineation on Fix(o) for each j =1, 2.

Proof. The group 7T} induces an involution 3; on Fix(c) for each j = 1,2 by
Lemma 7.2. Assume that 3, is a (Cj,, a3, )-elation of Fix(c). Then C, € I and
aj, # | again by Lemma 7.2. Hence Fix(T1) Nl = {Cj, }. Thus Ng(T) < Ge, ,
where N¢(T1) = Sy. Then either Go; = Ng(Th) or Ge,; = G by table V.
Actually Gcﬁ1 = @ cannot occur, otherwise we have a contradiction by dual of
Lemma 6.2, since Fix(T1) N [C5,] = Fix(s) N [Cp,]. Hence G¢, = Ne(Th)
and hence zg > 0. Actually zg, = 1 and ¢ = 7 mod 16 by table V. Moreover,
r1 = x3 = x5 = xep = 0 again by table V. Also, ¢ = 23 and z5 = 0 by
Lemma 3.4(6), and x> = 0 by Lemma 3.6(4). Therefore Fix(0)Nl = Fix(0)NC§

and hence /n+1 = % again by table V, being x4, = 1. That is \/n = 8, as
g = 23. Thus also T, must induce an elation on Fix(c). Nevertheless T5 fixes
exactly 3 points on Cgl by table V, since Gcﬁ1 = S4 and ¢ = 7 mod 16. Then
T, fixes exactly 3 points on Fix(c) N as Fix(c) N1 = Fix(c) N Cgl. This is a
contradiction, since T» induces an elation on Fix(c) and /n = 8.

Assume that 3, is a (C3,,az,)-homology of Fix(c). Again C5, € land ag, # [
by Lemma 7.2. Set {X} = a3, NI. Hence Fix(T1) Nl = {Cj,,X}. Let ¥ be
the collineation induced by v on Fix(c), where v € G and 42 = o (clearly
such a element does exists in G, since ¢ = 7 mod 8). Then either ¥ = 1 or
7 is a Baer involution or a involutory perspectivity. Nevertheless 7 centralizes
B, in each cases. Then 7 fixes Cp,, ag, and hence X. Thus Ng(T1) < Gcﬁ1
and N¢(T1) < Gx. Similar argument to that used above yields GCE1 < G and
hence Gcél = Ng(T1) by table V, since Ng(T1) = S4. Thus zg, > 0. Then
T = Teq = 1 by Lemma 3.5(5) as ¢ = 7 mod 16. Hence Gx = G. Therefore
x1 = 1, since Fix(G) Nl C Fix(Ty) Nl. Furthermore, ¢ = 23 and z5 = 0 by
Lemma 3.4(6), and x5 = 0 by Lemma 3.6(4). Finally, \/n + 1 = @xea + 21

by table \ where z1 = z¢, = 1. Thatis \/n = %. Then n = 81 as ¢ = 23. On

2
the other hand n+1 > %8_1) + 1 again by table V. Hence, {3@;1) > Q(qig_l) ,
which is a contradiction, since ¢ = 23. Thus, 7} induces a Baer involution on
FiX(O‘).
Arguing as above, with 75 in the role of 77, we have that T, induces a Baer
involution on Fix(c). Hence, we have proved the assertion. O
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Lemma 7.4. For each point P € [ the group G p cannot be isomorphic either to
Sy or to As.

Proof. Assume that xg > 0. Then z¢ = 1 by Lemma 3.5(5), being ¢ = 7 mod 8.
We may assume that x4 = 24, = 1 without of loss of generality (see Table V).
2 2
Let Q € I such that Gg = S4. Then |Q%| = q(q4—8_1) and hence n > q(q4—8_1) -1,
as Q¢ C I. Also, ¢ = 23 or 31 by Lemma 3.4. Easy computations show that
_ _ _ _ ; (¢*~1) 2 i
V/n =4 for g =23 and y/n = 5 for ¢ = 31, since L4— —1 < n < ¢ withn a

fourth power by Lemma 7.3. In both cases n + 1 — %8*1) < g+ 1. It follows

that [l — Q%] < ¢+ 1, since [l — QY| =n+1 - %8_1). Then G fixes | — Q€
pointwise, since the minimal primitive permutation representation of G is ¢+ 1,
being ¢ = 23 or 31. That is 21 = |l — Q€|. If ¢ = 23, then o(Fix(7})) = z; and
o(Fix(Ty)) = x1 + 3 by Table V, since g = 1 and ¢ = 7 mod 16. Nevertheless,
o(Fix(T1)) = o(Fix(T>)) by Lemma 7.3. Hence, we arrive at a contradiction. As
a consequence, ¢ = 31. Thus, 1 = 6. Therefore, ¢Yn+1 > 10as Yn+1 >

x1 + 4w6,. This is impossible, since /n = 5. So, zg = 0.

Assume that x5 > 0. Since 7} and 7> fix Baer subplanes of Fix(c), we have
In+1 =z +3x3+ 275, and /n+1 = z1 + 3z3 + 25, by Table V, since z¢ = 0.
Then /n + 1 = z1 + 3z3 + x5 summing up these two equations and by bearing
in mind that x5 = x5, + =5,. Hence, by Table V, we have

Vn+1=x+3z3+ 25 (103)
+1 +3 +1

\/ﬁ+1:z1+q2 x2+q2 z3+q4 x5 (104)
+1 -1 21

n+1:I1+q(q2 )$2+q(q2 )$3+q(q120 )IE5+S (105)

Note that ¢ = 31,71 or 79 by Lemma 3.4. Assume that x5 + x3 > 0. Then
o+ 23 = 1,0 < 5 < 2 and ¢ = 31 by Lemma 3.6(2) and (4). Therefore,
Vn = 3,4 or 5, since ¢ < n < ¢ being n a fourth power by Lemma 7.3. On
the other hand, n +1 > @ + % by (105), since x5 + x3 = 1. That is
n+1 > 713, as ¢ > 31. Nevertheless, this is a contradiction, since n < 5%. Thus,
z9 = x3 = 0. Then %4—1 = 1 + x5 and \/ﬁ—f—l = 1‘14—%1}5 by (103)
and (104). By elementary calculations of the previous equations, we obtain
Vn— ¥n — ‘12—3355 = 0, where x5 < 3 by Lemma 3.5(4), and where ¢ = 31,71
or 79. It is a straightforward computation to see that, no integer solutions arise.
Thus, x5 = ¢ = 0 and we obtain the assertion. O

Proposition 7.5. Let II be a projective plane of order n admitting a collineation
group G = PSL(2,q) fixing a line l. If ¢ < n < ¢ and ¢ = 7mod 8 then II is
the Lorimer-Rahilly plane of order 16 or the Johnson-Walker plane of order 16, or
their duals, and G = PSL(2, 7).
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Proof Suppose that G fixes a line [ of II. Assume that ¢ > 7. Hence, ¢ > 9 as
¢ = 7mod 8. Recall that |[Fix(7;)NI| = ¢/n + 1 by Lemma 7.3, and that for
each point P € [, the group Gp cannot be isomorphic either to A4 or to Aj;
by Lemma 7.4. Then, by table V, we have the following system of Diophantine
equations:

%4—1 =1x1 + 3z3 (106)
+1 +3
\/ﬁ+1=m1+q2 :c2+q2 3 (107)
1 —1
n+1:I1+Q(q; )$2+q(q2 )IL'3+S (108)

If z3 > 0, then 3 = 1 by Lemma 3.5(2). Furthermore, z» = 0 by Lemma 3.6(2).
Then /n =21 +2and /n =121 + %. By composing these equations, we have
(1 +2) =21 + %1 and hence 22 + 21 — %7 = 0. If z; < 2, it is easily seen
that (n,z1,q) = (2,0,7) as ¢ = 7 mod 8. Nevertheless, n + 1 > 21 by (108) as
x3 = 1. So, x1 > 3 for 3 > 0. Actually, x; > 3 also for x3 = 0 by (106), since
it must be /n > 2. Consequently, z; > 3 in each case. Thus, G fixes always at

least 3 points on /.

Let P be any of these points. Applying the dual of Lemma 7.4, we obtain that
the group G, cannot be isomorphic either to A4 or to A; for each r € [P] — {l}.
Thus, z; = zf = 0. By dual of table VI, we obtain the same system of Diophan-
tine equations as (106), (107) and (108) but referred to [P] and with the «} in
the role of z;. At this point, we may repeat the above argument showing that G
fixes at least 3 lines (including /) through any point P of Fix(G) N!. So, G fixes
a subplane of II pointwise, as |Fix(G) NI| > 3. In particular, o(Fix(G)) = =1 —1.
Now, we may use the same argument of Theorem 5.5, with (106), (107) and
(108) in the role of (85), (86) and (87), respectively, in order to obtain that G
fixes a subplane of II of order {/n. Hence, we have a contradiction.

Assume that ¢ < 7. Actually, ¢ = 7, since ¢ = 7 mod 8. Then either n = 16
or 25, since ¢ < n < ¢? and since v/n = 0,1 mod 4 by Lemma 3.3. Assume
that ¢ = 25. Let ¢ be any element in G of order 7. Then ¢ fixes at least 5
points on [ and 2 on II — I, asn +1 = 5mod 7 and n? = 2mod 7. Thus,
o(Fix(¢)) = 4 + 70, where 6 > 0. Actually, § = 0 by [16, Theorem 3.7], since
n = 25. So, o(Fix(p)) = 4. Note that Ng({¢)) = (¢,9), where o(¢)) = 3
and ¢ normalizes (p). Also, Ng((¢)) is the unique maximal subgroup of G
containing ¢. Therefore, for each point @ € Fix(yp) N, either Gg = (p) or
Gg = (p,¥) or Gg = G. Assume that G = (p) for some B € Fix(¢) Nl. Then
|BY| = 24. Thus, I consists of B and of 2 points fixed by G as n + 1 = 26.
Consequently, any involution fixes exactly 2 points on /, namely those fixed by
G, since ‘BG = 24 and |G| = 168. Hence, the involutions are homologies of
I1, which is a contradiction by Lemma 3.3. It follows that either Gg = (p,¢) or
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Gg = G for or each ) € Fix(p)Nl. Nevertheless, Fix(¢)Nl = Fix({y, ¥))Nl. So,
|Fix(Ng({p, %)) N1| = 5. Assume that |Fix({¢, %)) Nl — Fix(G) Nl| > 3. Since
this group is maximal, then there are at least 3 orbits of length 8. Therefore,
[ consists of three G-orbits each of length 8 and of 2 points fixed by G. Thus,
any involution fixes exactly 2 points on [ and we again obtain a contradiction
by Lemma 3.3. It follows that |Fix(Ng({(¢, %))) Nl — Fix(G) N | < 2 and hence
|[Fix(G) Ni] > 3. Now, we may repeat the above argument with [X] in the
role of [ for each point X € Fix(G) N I. This yields |Fix(G) N [X]| > 3 for
each X € Fix(G) Nnl. Then G is planary, since |Fix(G) Ni| > 3. Therefore,
o(Fix(@)) > 2.

Now, let 8 be any involution of G. Then o(Fix(3)) = 5 by Lemma 3.3 as
n = 25. Note that Fix(G) ¢ Fix(3), since ¢ and 3 fix exactly 4 and 6 points
on [, respectively. So, we have a contradiction by [16, Theorem 3.7], since
o(Fix(8)) = 5 while 2 < o(Fix(G)) < 5. Thus, n = 16. Then either II is the
Lorimer-Rahilly plane of order 16 or the Johnson-Walker plane of order 16, or
one of their duals by [3]. Hence, we have proved the assertion. O

Theorem 7.6. Let II be a projective plane of order n admitting a collineation
group G = PSL(2,q), with ¢ = Tmod 8. If n < ¢? then one of the following
occurs:

(1) n<q T=PG(2,2) or PG(2,4) and G = PSL(2,7);
(2) n=gqand I = PG(2,q);
(3) ¢ < n < ¢? and one of the following occurs:

(a) G is strongly irreducible on II;

(b) n =16, Il is the Lorimer-Rahilly plane or the Johnson-Walker plane, or
one of their duals, and G = PSL(2,7);

(c) G = PSL(2,7) fixes a subplane of 11 isomorphic either to PG(2,2) or to
PG(2,4);

(4) n = ¢ and one of the following occurs:

(a) G is strongly irreducible on 1I;
(b) G fixes a Desarguesian Baer subplane 11, of 1L

Proof. If n < ¢, the assertions (1) and (2) easily follow by Theorems 2.1 and
2.2, respectively. If ¢ < n < ¢, then either the assertion (3b) or the group G
fixes lines or points of II by Proposition 5.5 and its dual. If the latter occurs, the
assertions (3a) and (3c) easily follow by Lemma 3.1, since ¢ = 7 mod 8. Finally,
the assertions (4a) and (4b) follow by Theorems 2.3 and 2.4, respectively. [
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Now, Theorem 1.1, when ¢ = 7 mod 8, easily follows from Theorem 7.6.

8 Concluding proofs and other examples

Proof of Theorem 1.1. Let II be a projective plane of order n admitting a col-
lineation group G' = PSL(2,q), ¢ > 3. Assume that n < ¢2. If ¢ is odd, the
assertion of Theorem 1.1 easily follows by Theorems 4.22, 5.6, 6.7 and 7.6 for
g = 1,3,5,7mod 8, respectively. It remains to investigate the case ¢ even in
order to complete the proof of the theorem. Hence, assume that G = PSL(2, ¢q),
with ¢ = 2", h > 1. Since PSL(2,4) = PSL(2, 5) and since we have already dealt
with this case in Theorem 6.7, we may assume that ¢ > 4.

(I) If n < ¢? the involutions in G are perspectivities of II.

Assume that n < ¢2. Assume also that the involutions in G are Baer collin-
eations of II. Let H be an elementary abelian subgroup of G of order ¢q. Then
H fixes a point X of II, since n? + n + 1 is odd. Furthermore, each non trivial
element in H fixes exactly v/n + 1 lines through X, since H — {1} consists of
involutions. Then ¢ | (¢ — 1)(y/n + 1) + (n + 1) by [16, Result 1.14]. Hence,
q | v/n(y/n —1). Thus, either ¢ | /n — 1 or q | /n, since ¢ = 2", h > 1. So,
/1 > q and therefore n > ¢? in any case. This is a contradiction, since n < ¢>
by our assumption. Thus, the involutions in G are perspectivities of II, since
G = PSL(2, ¢) contains a unique conjugate class of involutions by [4].

(I0) If n < ¢® and n # q, then G does not fix lines of II.

Assume that n < ¢2, n # ¢. Assume also that G fixes a line [ of II. Let H be
as above.

Suppose that n is even. Then H = H(C,C) for some point C € [ by (D),
since H is an elementary abelian 2-group fixing ! and since H(l) = (1) by
Lemma 3.2(1). So, H < G¢. Furthermore, G¢ < G by Lemma 3.2(2). Then
G¢ < H.Z4,where d | ¢g—1by [17, Hauptsatz I1.8.27]. Note that H fixes exactly
% points in C“ by (1) of Proposition 2.5. Nevertheless, H fixes exactly 1 point
onl. Then £+ =1 and hence G¢ = H.Z,_,. In particular, |C%| = ¢ + 1. Thus,
n > q. Actually, n > ¢, since n # ¢ by our assumptions. In addition, since H is
a Sylow 2-subgroup of G, then each Sylow 2-subgroup of G fixes exactly 1 point
on [ which lies in C¢. Therefore, G x has odd order for each point X € [ — C€.
Such points do exist as n > ¢. Moreover, | X%| < ¢* — ¢, since X¢ C | — C%,
and since |l — C¢| < ¢* — g as n < ¢°. This yields |Gx| > ¢ + 1 with |G x| odd.
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Hence, we arrive at a contradiction by a direct inspection of the list given in
[17, Hauptsatz 11.8.27].

Suppose that n is odd. Then H consists of homologies of II by (I), since H is
an elementary abelian 2-group. In particular, H = H(C,a), where C € [, a # [
by [19, Lemma (3.1)], since H(I) = (1) by Lemma 3.2(1). Set {Q} = anl.
Clearly, @ # C. Arguing as above, we have G¢ < H.Z4, where d | ¢ — 1.
Consequently, H fixes exactly % points in C¢. Nevertheless, H fixes exactly 2
points on /. Then % =1, as q is even. Therefore, CG] =gq+ 1. Thus, n > g,
since C¢ C I. Actually, n > g, since n # ¢ by our assumptions. In particular,
Q ¢ CY. The above argument, with Q¢ in the role of C¢, yields that either
|QY| = 1 or |QY| = q + 1. It should be stressed that, differently from C, the
possibility QG‘ = 1 might occur. Indeed, Lemma 3.2(2) cannot be applied to @
as H = (C,a), {Q} = anland Q # C. Now, suppose that [ — (C% U Q%) # (.
Then there exists a point Y € [ — (C% U Q%) such that |Gy| is odd. Moreover,
|Gy| > q+1,since Y& C1—(CYUQY), and since || — (CYUQY)| < ¢®—¢q—1
asn < ¢* and |Q“| > 1. This leads to a contradiction by a direct inspection of
the list given in [17, Hauptsatz I11.8.27], since |Gy | is odd. Thus, | = C% U Q¢.
Since |C¢| = ¢ + 1, then either n = ¢ + 1 or n = 2¢ + 1 according to whether
|QY| = 1 or |QY| = q+ 1, respectively. So, we obtain a contradiction in each
case by [23, Theorem 26], since G acts 2-transitively on C“. As a consequence,
G does not fix lines of II.

(III) Either n = q or n = ¢>.

If n < ¢° and n # ¢, then G does not fix points or lines of II by (II) and its
dual. Furthermore, G does not fix triangles of II, since G is simple as ¢ > 3. So,
G is irreducible on II. Moreover, G contains involutory perspectivities by (D).
This is impossible by [12, Lemma 5.1], since ¢ is even and ¢ > 4. Thus, either
n = q and hence IT = PG(2, ¢) by Theorem 2.2, or n = ¢2. That is the assertions
(2a) and (4a.iii) (of Theorem 1.1). This completes the proof. O

Once Theorem 1.1 has been proved, Theorem 1.2 is just a consequence of
this one. Theorem 1.3 follows in turn by a combination of Theorem 1.2, of
Theorems 2.1 and 3.3 of [6] and of Theorem 5.1 of [7].

Finally, we have the following other examples for Theorem 1.1 (these are not
quoted examples in [15, Theorem A] or [13, Theorem 6.1] or [14, Theorem C]):

(1) Let G = PSL(2,7) and let T' 2 PSL(3,m"), with 7 < m" < 49.

Assume that m” is odd. If G < T, then m3" = 1 mod 7 by [1] and this case
really occurs. Actually, m" = 9,11,23,25,29,37 or 43, as 7 < m” < 49.
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(2

€))

Since the other cases are already quoted in [15] or [13] or [14], we may
assume that ¢ = 25 or 43. Hence G = PSL(2,7) acts IT = PG(2,25) or
PG(2,43). In latter, clearly, the involutions are homologies. Furthermore,
by Theorem 1.1, the group G is strongly irreducible (we do not need to
have additional assumptions as in Theorem A of [15]).

Assume that m” = 32 is even. Then G < T by [8]. Hence, G =2 PSL(2,7)
acts on IT = PG(2, 32).

Let G = PSL(2,9) and let I = PSL(3, m"), with 9 < m" < 81.

Assume that m" is odd. If G < T, then either m" = 1,19 mod 30 or
m = 5 and h even by [1] and these cases really occur. Actually, m" =
19,31,25,49,61 or 79, as 9 < m" < 81. Since the other cases are already
quoted in [15] or [13] or [14], we may assume that ¢ = 49 or 79. While
in latter the involutions are clearly homologies, in the former this follows
by Theorem 2.6. Furthermore, it follows by Theorem 1.1 that, the group
G is strongly irreducible (no additional assumptions are required, as in
Theorem A of [15]).

Let G = PSL(2,9). Then G is a subgroup of PSL(3,4) by [2]. Now, the
group PSL(3,4), and hence PSL(2,9), leaves invariant a Desarguesian sub-
plane of order 4 in a Desarguesian plane or a Figueroa plane of order 64
(see [5], [10])(so this is an example for the case (3b.iii) of Theorem 1.1.
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