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Abstract

Projective planes of order n admitting PSL(2, q), q > 3, as a collineation
group are investigated for n ≤ q2. As a consequence, affine planes of or-
der n admitting PSL(2, q), q > 3, as a collineation group are classified for
n < q2 and (q, n) 6= (5, 16). Finally, a complete classification of the transla-
tion planes order n that admitting PSL(2, q), q > 3, as a collineation group
is obtained for n ≤ q2.
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1 Introduction and main results

A classical problem in finite geometry is classifying finite projective planes Π of
order n admitting a collineation group G isomorphic to PSL(2, q). The first sig-
nificant result related to this problem dates back to 1964 and is due to Lüneburg
[21] and to Yaqub [26]. In their papers, the authors provide a characterization
of the Desarguesian projective planes of order n = q. Some years later, Kantor
[19], Hering [9], Hering and Walker [11, 12], Reifart and Stroth [25] extended
the investigation to planes of more arbitrary order but with additional assump-
tions: G does not fix points, lines or triangles of Π and G contains involutory
perspectivities. In 1989, Moorhouse obtains significant progress along these
lines in two ways: he classifies projective planes of order n admitting PSL(2, q)

as a collineation group for n < q and he investigates the structure of the planes
of order q2 for q odd. In the second case, Moorhouse shows that Π cannot be
the projective extension of an affine plane admitting PSL(2, q) as a collineation
group, except for q = 5 or 9 which remain still unsolved. In particular, Moor-
house provides a new proof for q odd of the characterization, due to Foulser
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and to Johnson [6, 7], of the translation planes of order q2 admitting PSL(2, q).
In 1991, Dempwolff [3] obtains a complete characterization of the projective
planes of order 16 admitting PSL(2, 7) as collineation group. In that paper,
Dempwolff shows that, beside the Desarguesian plane of order 16, the Lorimer-
Rahilly plane of order 16, the Johnson-Walker plane of order 16, and their duals
also occur. A similar result for translation planes of order 16 was obtained by
Johnson [18] in 1984. In 1994, Ho [13] and Ho-Gonçalves [15] investigate
the projective planes of order n admitting G isomorphic to PSL(2, q) for q odd,
under the assumption that GP 6= 〈1〉 for each point P of Π. The authors prove
that G does not fix points, lines or triangles of Π. In particular, Π cannot be the
projective extension of an affine plane that admits PSL(2, q) as a collineation
group. They also obtain a characterization of the Desarguesian plane of order
q under the assumption that G contains involutory homologies and that GP
has a particular order for each point P of Π. Recently, Liu and Li [20] proved
that the unique projective plane Π of order n admitting PSL(2, q) as transitive
collineation group is Π ∼= PG(2, 2) and the group is isomorphic to PSL(2, 7).

This paper focuses on the main problem cited above. In particular, the projec-
tive planes of order n admitting a collineation group G isomorphic to PSL(2, q),
q > 3, for n ≤ q2, are investigated and the following results are obtained.

Theorem 1.1. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q), q > 3. If n ≤ q2, then one of the following occurs:

(1) n < q and one of the following occurs:

(a) n = 4, Π ∼= PG(2, 4) and G ∼= PSL(2, 5);

(b) n = 2 or 4, Π ∼= PG(2, 2) or PG(2, 4), respectively, and G ∼= PSL(2, 7);

(c) n = 4, Π ∼= PG(2, 4) and G ∼= PSL(2, 9).

(2) n = q, Π ∼= PG(2, q) and one of the following occurs:

(a) G fixes a line or a point and q is even;

(b) G is strongly irreducible and q is odd.

(3) q < n < q2 and one of the following occurs:

(a) G fixes a point or a line, and one of the following occurs:

(i) n = 16 and G ∼= PSL(2, 5);
(ii) n = 16, Π is the Lorimer-Rahilly plane or the Johnson-Walker

plane, or their duals, and G ∼= PSL(2, 7);

(b) G fixes a subplane Π0 of Π, q is odd and one of the following occurs:
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(i) n = 16, Π0
∼= PG(2, 4) and G ∼= PSL(2, 5);

(ii) Π0
∼= PG(2, 2) or PG(2, 4), and G ∼= PSL(2, 7);

(iii) Π0
∼= PG(2, 4) and G ∼= PSL(2, 9).

(c) G is strongly irreducible and q is odd;

(4) n = q2 and one of the following occurs:

(a) G fixes a point or a line, and one of the following occurs:

(i) n = 25 and G ∼= PSL(2, 5);
(ii) n = 81 and G ∼= PSL(2, 9);

(iii) n = q2, q even, and G ∼= PSL(2, q).

(b) G fixes a subplane Π0 of Π, q is odd and one of the following occurs:

(i) n = q2, Π0
∼= PG(2, q) and G ∼= PSL(2, q);

(ii) n = 25, Π0
∼= PG(2, 4) and G ∼= PSL(2, 5);

(iii) n = 81, Π0
∼= PG(2, 4) and G ∼= PSL(2, 9);

(iv) n = 81, Π0 is a Hughes plane of order 9 and G ∼= PSL(2, 9);

(c) G is strongly irreducible.

The Theorem 1.1 under the additional assumptions n ≤ q, or n = q2 with q
odd yields the cases (1), (2), and (4) for q odd. So, we need to prove that (3)
occurs when q < n < q2, and either (4a.iii) or (4c) for n = q2 and q even.

Examples corresponding to case (1) or (2) really occur (see [24] and [21,
26], respectively). Examples of the case (3a.i) occur in the Dempwolff plane
of order 16 (see [7]), those of type (3a.ii) really occur (see [3]). Examples of
the case (3b.i) occur in the Hall plane of order 16, those corresponding to the
case (3b.ii) occur in the Desarguesian plane of order 16 when Π0

∼= PG(2, 2)

by [3]. Also, examples of the case (3b.iii) occur in the Desarguesian plane of
order 64 or the Figueroa plane of order 64. See section 8 for a description of
the latter. Furthermore, examples of the case (3c) occurs in the Desarguesian
planes of prime order. In these cases G ∼= PSL(2, q) with q = 5, 7 or 9 and the
involutions in G are a homologies of Π. For a description of these examples
see [15] and [13]. While cases (4a.i) and (4a.ii) are open, examples of the case
(4a.iii) typically occurs in the Desarguesian planes, in the Hall planes and in the
Ott-Schaeffer planes (see [7]). The case (4b.i) occurs in the Desarguesian or
Generalized Hughes planes (see [22]). Finally the cases (4b.ii), (4b.iii), (4b.iv)
and (4c) are open. Other examples are obtained in section 8.

A special case of the previous theorem is the following which focuses on the
projective extensions of affine planes of order n that admitG ∼= PSL(2, q), q > 3,
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as a collineation group when n ≤ q2. It should be stressed that it furnishes a
complete classification of such affine planes, when n < q2 and (q, n) 6= (5, 16).

Theorem 1.2. Let Π be the projective extension of an affine plane of order n that
admits a collineation group G ∼= PSL(2, q), q > 3. If n ≤ q2, then one of the
followings occurs:

(1) n = q, q = 2h, h > 1, Π ∼= PG(2, q) and G ∼= PSL(2, q);

(2) n = 16 or 25, and G ∼= PSL(2, 5);

(3) n = 16, Π is the Lorimer-Rahilly plane or the Johnson-Walker plane, or their
duals, and G ∼= PSL(2, 7);

(4) n = 81 and G ∼= PSL(2, 9);

(5) n = q2, q = 2h, h > 1, and G ∼= PSL(2, q).

Finally, the previous theorem leads to a complete classification of the projec-
tive extensions of translation planes of order n that admit a collineation group
G ∼= PSL(2, q), q > 3, for n ≤ q2. In particular, it represents an extension of the
Foulser-Johnson Theorems [6] and [7], when G ∼= PSL(2, q) and q is even.

Theorem 1.3. Let Π be the projective extension of a translation plane of order n
that admits a collineation group G ∼= PSL(2, q), q > 3. If n ≤ q2, then one of the
following occurs:

(1) n = q, q = 2h, h > 1, G ∼= PSL(2, q) and Π ∼= PG(2, q);

(2) n = 16, G ∼= PSL(2, 7) and Π is the Lorimer-Rahilly plane or the Johnson-
Walker plane;

(3) n = q2, q = 2h, h > 1, G ∼= PSL(2, q) and Π is the Desarguesian or
Hall plane of even order q2, or the Ott-Schaeffer plane of order q2, or the
Dempwolff plane of order 16 (in this case q = 4).

The paper is structured as follows. In section 2, we fix notation and introduce
some geometrical and group-theoretical background. In section 3, we provide
a reduction for the group-structure of GP , where P is a point of a line l of Π

fixed by G. A reduction is also provided for types and numbers of G-orbits on l.
The same is also made for Gm, where m is a line of [Q] and Q is a point of Π

fixed by G. Sections 4, 5, 6 and 7 are devoted to the proof of Theorem 1.1 for
q ≡ 1, 3, 5, 7 mod 8, respectively. Finally, in section 8 the proofs of Theorems 1.1,
1.2 and 1.3 are completed and some examples are provided. In particular, in
this section, the case q even is resolved.
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2 The background

In this section, we introduce the background for the problem investigated and
we state the group-theoretical theorems that are used in the proof of our main
result. Furthermore some useful numerical and group-theoretical results are
proved.

For what concerns finite groups and in particular the group PSL(2, q) the
reader is referred to [4] and [17]. The necessary background about finite pro-
jective planes may be found in [16].

Let Π = (P ,L) be a finite projective plane of order n. If H is a collineation
group of Π and P ∈ P (l ∈ L), we denote by H(P ) (by H(l)) the subgroup of H
consisting of perspectivities with centre P (axis l). Also, H(P, l) = H(P )∩H(l).
Furthermore, we denote by H(P, P ) (by H(l, l)) the subgroup of H consisting
of elations with centre P (axis l).

Let Π be a finite projective plane of order n admitting a collineation group G
isomorphic to PSL(2, q), and assume that n ≤ q2. The following theorems deal
with the case n < q, n = q and n = q2, respectively.

Theorem 2.1 (Moorhouse). If Π is a projective plane of order n < q admitting a
collineation group G isomorphic to PSL(2, q), then Π is Desarguesian and (n, q) =

(2, 3), (2, 7), (4, 5), (4, 7) or (4, 9). Moreover, each of the latter cases indeed occurs.

Proof. See [24, Theorem 1.1].

Theorem 2.2 (Lüneburg-Yaqub). If Π is a projective plane of order q admitting
a collineation group G isomorphic to PSL(2, q), then Π is Desarguesian.

Proof. See [21] and [26].

Theorem 2.3 (Moorhouse). Suppose that a projective plane Π of order q2 admits
a collineation group G isomorphic to PSL(2, q), where q is odd. Then one of the
following must hold:

(1) G acts irreducibly on Π ;

(2) q = 3 and G fixes a triangle but no point or line of Π ;

(3) q = 5, Fix(G) consists of an antiflag (X, l) and G has point orbits of length
5, 5, 6 and 10 on l ;

(4) q = 9 and Fix(G) consists of a flag .

Proof. See [24, Theorem 1.2].
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Theorem 2.4 (Moorhouse). Suppose that a projective plane Π of order q2 admits
a collineation group G isomorphic to PSL(2, q) (where q is odd), and that G leaves
invariant a subplane Π0 of Π. If q 6= 5, 9, then Π0 is a Desarguesian Baer subplane
of Π.

Proof. See [24, Corollary 5.2(i)].

As a consequence of the previous theorems, it follows that we may con-
sider projective planes Π of order n admitting a collineation group G
isomorphic to PSL(2, q) for q < n < q2 when q is odd, and for n < q2

and n 6= q when q is even.

Before starting our investigation, we introduce some tools that will be used
throughout the paper. Let PG be an orbit on l, let X be any subgroup of G
and let α be any element of G. Set FixPG(X) = Fix(X) ∩ PG and FixPG(α) =

Fix(α) ∩ PG. If rG is an orbit of lines of Π, set FixrG(X) = Fix(X) ∩ rG and
FixrG(α) = Fix(α) ∩ rG.

Proposition 2.5 (Moorhouse). Let G be a collineation group of a finite projective
plane Π of order n, let P ∈ l and let H be a subgroup of G. Then

|FixPG(H)| = |NG(H)|
|GP |

· |{U ≤ GP : U is conjugate to H in G}| . (1)

Proof. See [24, relation (9)].

Note that (1) still works if we replace FixPG(H) with FixrG(X) and GP
with Gr.

Theorem 2.6 (Ho). Let G be a collineation group of a finite projective plane Π of
order n. Suppose that either n is not a square or n = m2 with m ≡ 2 or 3 mod 4.
If 4 | |G|, then G contains an involutory perspectivity.

Proof. See [14, Theorem A].

As we will see, the following lemmas play a central role in section 4.

Lemma 2.7. Let q be an even power of an odd prime, let x be a positive integer,
let u be a positive divisor of

√
q±1
2 and let h = 2 or 4. Then the following hold:

(I) The quadruple (x, h, u,
√
q) = (1, 4, 1, 3) is the unique solution of the Dio-

phantine equation

x
√
q = h

√
q − 1

2u
− 1 . (2)
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(II) The quadruple (x, h, u,
√
q) = (1, h, h/2,

√
q) for

√
q ≡ 3 mod h is the

unique solution of the Diophantine equation

x
√
q = h

√
q + 1

2u
− 1 . (3)

Proof. Consider the Diophantine equation (2). Assume that h = 2. Then (2)
becomes x

√
q =

√
q−1
u − 1. Since u ≥ 1, then x

√
q ≤ √q − 2. Nevertheless, this

is impossible, since x ≥ 1. So, no solutions arise for h = 2.

Assume that h = 4. Then (2) becomes

x
√
q = 2

√
q − 1

u
− 1 . (4)

If u ≥ 2, then x
√
q ≤ √q−2. Thus, we again obtain a contradiction, since x ≥ 1.

Therefore, u = 1. By substituting this value in (4), we obtain x
√
q = 2

√
q − 3.

This one has a unique solution (x,
√
q) = (1, 3). Hence, (x, h, u,

√
q) = (1, 4, 1, 3)

is the unique solution of the Diophantine equation (2) for h = 4. From this and
bearing in mind that (2) has no solutions for h = 2, we obtain the assertion (I).

Now, consider the Diophantine equation (3). Assume that h = 2. Then (3)
becomes

x
√
q =

√
q + 1

u
− 1 . (5)

If u > 1, then
√
q+1
u − 1 <

√
q ≤ x

√
q. Thus, (5) has no solutions in this case.

So, assume that u = 1. By substituting this value in (5), we obtain x
√
q =
√
q

and hence x = 1. Therefore, we have proved that (x, h, u,
√
q) = (1, 2, 1,

√
q) is

the unique solution of (3) for h = 2.

Now, assume that h = 4. Then (3) becomes

x
√
q = 2

√
q + 1

u
− 1 . (6)

If u > 2, then 2
√
q+1
u − 1 <

√
q ≤ x

√
q. Therefore, (6) has no solutions in

this case. So, there are admissible solutions for (6) only for u ≤ 2. If u = 1,
then (6) becomes x

√
q = 2

√
q + 1. This one has no solutions, since the first

part is divisible by
√
q, while the second is not. Thus, u = 2. At this point,

it is a straightforward computation to see that (x, h, u,
√
q) = (1, 4, 2,

√
q) for√

q ≡ 3 mod 4 is a solution of (6) and hence of (3). From this and bearing in
mind that (x, h, u,

√
q) = (1, 2, 1,

√
q) is the unique solution of (3) for h = 2, we

obtain the assertion (II).

Lemma 2.8. Let q be an even power of an odd prime, let x be a positive integer
and let u1 and u2 be two positive divisors of

√
q−1
2 . Furthermore, let h = 2 or 4.
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If u1 ≤ u2, then (x, h, u1, u2,
√
q) = (1, 2, 1,

√
q−1
2 ,
√
q), (3, 4, 1, 1, 5), (1, 4, 3, 3, 7),

or (1, 4, 3, 5, 31) are the unique solutions of the Diophantine equation

x
√
q = h

√
q − 1

2u1
+ h

√
q − 1

2u2
− 1 . (7)

Proof. Multiplying by 2u1u2 each term of (7), we have

2u1u2x
√
q = hu2(

√
q − 1) + hu1(

√
q − 1)− 2u1u2 .

Now, collecting the terms with respect to
√
q, we obtain

[h(u1 + u2)− 2u1u2x]
√
q = h(u1 + u2) + 2u1u2 . (8)

Since h(u1 + u2) + 2u1u2 > 0, then

2u1u2x < h(u1 + u2) . (9)

Assume that h = 2. Then u1u2x < u1 + u2 by (9). In particular, u1u2 <

u1 + u2, as x ≥ 1. This, in turn, yields u1u2 < 2u2, since u1 ≤ u2 by our
assumption. Thus, u1 < 2. That is u1 = 1. Now, by substituting h = 2 and
u1 = 1 in (9), we obtain 2u2x < 2(1 + u2) and hence x < 1 + 1/u2. Then x = 1,
as u2 ≥ 1. By substituting the values x = 1, h = 2 and u1 = 1 in (8), and
then by elementary calculations of this one, we have 2

√
q = 2 + 4u2. Hence,

u2 =
√
q−1
2 . Consequently, (x, h, u1, u2,

√
q) = (1, 2, 1,

√
q−1
2 ,
√
q) is a solution of

(7).

Assume that h = 4. Then

u1u2x < 2(u1 + u2) (10)

by (9).

If x ≥ 4, then 2u1u2 < u1 + u2 ≤ 2u2 by (10), since u1 ≤ u2 by our assump-
tion. This yields u1 < 1, which is a contradiction.

If x = 3, then 3u1u2 < 2(u1 + u2) by (10). Since u1 ≤ u2, we have 3u1u2 <

4u2 and hence u1 = 1. Now, by substituting (x, h, u1) = (3, 4, 1) in (9), we
obtain u2 < 2. Actually, u2 = 1. Finally, by substituting (x, h, u1, u2) = (3, 4, 1, 1)

in (8), we have
√
q = 5. So, (x, h, u1, u2,

√
q) = (3, 4, 1, 1, 5) is a solution of (7).

If x = 2, then u1u2 < u1 +u2 by (10). By arguing as above, we obtain u1 = 1.
By substituting (x, h, u1) = (2, 4, 1) in (8), we have 4

√
q = 4 + 6u2 and hence

u2 = 2(
√
q−1)
3 . Nevertheless, this contradicts the assumption u2 |

√
q−1
2 .

If x = 1, then u1u2 < 4(u1 + u2) by (9). Thus, u1 < 8, since u1 ≤ u2. On the
other hand, by substituting h = 4 and x = 1 in (7), we have

√
q + 1

2
=

√
q − 1

u1
+

√
q − 1

u2
. (11)
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If u1 = 1, no solutions arise, since

√
q − 1 <

√
q − 1

u1
+

√
q − 1

u2
=

√
q + 1

2

and since
√
q is odd. So, u1 ≥ 2. Assume that u1 ≥ 4. Then u2 ≥ 4 as u2 ≥ u1.

Hence, √
q + 1

2
=

√
q − 1

u1
+

√
q − 1

u2
≤
√
q − 1

2
.

Therefore, there are also no solutions in this case. Consequently, u1 = 2 or 3.
Assume that u1 = 2. Then (11) becomes

√
q+1
2 =

√
q−1
2 +

√
q−1
u2

. This yields u2 =
√
q − 1. Nevertheless, this cannot occur, since u2 |

√
q−1
2 by our assumptions.

Hence, u1 = 3. Then u2 = 6(
√
q−1)√
q+5

from (11). This yields
√
q + 5 | 36, since

(
√
q + 5,

√
q − 1) | 6. As a consequence,

√
q = 7, 13 or 31. Then u2 = 3, 4 or

5, respectively, since u2 = 6(
√
q−1)√
q+5

. Nevertheless, only the cases u2 = 3 or 5

are admissible, since u2 |
√
q−1
2 by our assumption. Actually, (x, h, u1, u2,

√
q) =

(1, 4, 3, 3, 7) or (1, 4, 3, 5, 31) are solutions of (7). This completes the proof.

Lemma 2.9. Let q be an even power of an odd prime, let x be a positive integer
and let u1 and u2 be two positive divisors

√
q+1
2 . Furthermore, let h = 2 or 4.

If u1 ≤ u2, then (x, h, u1, u2,
√
q) = (5, 4, 1, 1, 3), (3, 4, 1, 3, 5), (1, h, h, h,

√
q)

and
√
q ≡ −1 mod 2h, or (1, 4, 3, 6,

√
q) and

√
q ≡ −1 mod 12 are the unique

solutions of the Diophantine equation

x
√
q = h

√
q + 1

2u1
+ h

√
q + 1

2u2
− 1 . (12)

Proof. Multiplying by 2u1u2 each term of (12), we have

2u1u2x
√
q = hu2(

√
q + 1) + hu1(

√
q + 1)− 2u1u2 .

Now, collecting the terms with respect to
√
q, we obtain

[2u1u2x− h(u1 + u2)]
√
q = h(u1 + u2)− 2u1u2 . (13)

We treat the cases 2u1u2x − h(u1 + u2) 6= 0 and 2u1u2x − h(u1 + u2) = 0

separately. Assume the former occurs. Then
√
q = h(u1+u2)−2u1u2

2u1u2x−h(u1+u2) . That is

√
q = − h(u1 + u2)− 2u1u2

h(u1 + u2)− 2u1u2x
. (14)

Note that h(u1+u2) < 2u1u2 implies h(u1+u2) < 2u1u2x, since x ≥ 1. Then,
by (14), we have that h(u1 + u2) > 2u1u2, h(u1 + u2) < 2u1u2x and x ≥ 2. In
particular, since x ≥ 2 and

√
q ≥ 3, from the first part of (13), we have

[2u1u2x− h(u1 + u2)]
√
q ≥ 3 [4u1u2 − h(u1 + u2)] . (15)
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Combining (13) with (15), we obtain

3 [4u1u2 − h(u1 + u2)] ≤ h(u1 + u2)− 2u1u2 .

Elementary calculations of the previous inequality yield 14u1u2 ≤ 4h(u1 + u2).
That is

7u1u2 ≤ 2h(u1 + u2) . (16)

Therefore, 7u1u2 ≤ 4hu2 and hence

1 ≤ u1 ≤
4

7
h , (17)

since u1 ≤ u2.

Assume that h = 2. Then u1 = 1 by (17). So, h(u1 + u2)− 2u1u2 = 2. Then√
q | 2 by (13). Nevertheless, this is impossible, since

√
q is a power of an odd

prime. Hence, (12) has no solutions for h = 2.

Assume that h = 4. Then either u1 = 1 or u1 = 2 by (17). Assume the latter
occurs, then 14u2 ≤ 8(2 +u2) by (16). As a consequence, u2 ≤ 16

6 . On the other
hand, u2 ≥ 2, since u1 = 2 and u1 ≤ u2. So, 2 ≤ u1 ≤ u2 ≤ 16

6 . Therefore,
u1 = u2 = 2. Then h(u1 + u2) − 2u1u2 = 8, since h = 4. Thus,

√
q | 8 by (13).

Again, this is impossible, since
√
q is a power of an odd prime. For this reason,

we have u1 = 1. Then (13) becomes

[(2x− 4)u2 − 4)]
√
q = 4 + 2u2 . (18)

Note that x ≥ 3, otherwise the first part of (18) is negative while the second
one is positive, as u2 ≥ u1 = 1.

Assume that x ≥ 4. Then 12(u2 − 1) ≤ 4 + 2u2 by (18), as
√
q ≥ 3. This

yields u2 = 1 and 4 + 2u2 = 6. Then
√
q = 3 and x = 5 again by (18), since

√
q

is a power of an odd prime. So, (x, h, u1, u2,
√
q) = (5, 4, 1, 1, 3) is the unique

solution of (12) for h = 4 and x ≥ 4.

Assume that x = 3. Then (u2 − 2)
√
q = u2 + 2 by (18). Now, collecting with

respect to u2, we have (
√
q − 1)u2 = 2(

√
q + 1). That is u2 = 2 + 4/(

√
q − 1).

This Diophantine equation has solutions (u2,
√
q) = (4, 3) or (3, 5). Actually,

the former is not admissible, since u2 |
√
q+1
2 by our assumption. Hence,

(x, h, u1, u2,
√
q) = (3, 4, 1, 3, 5) is the unique solution of (12) for h = 4 and

x = 3.

Assume that 2u1u2x− h(u1 + u2) = 0. Then

h(u1 + u2)− 2u1u2 = 0 (19)

by (13). As a consequence, x = 1.
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If h = 2, then 2(u1 + u2) − 2u1u2 = 0 by (19). So, u1 + u2 = u1u2.
Now, it is plain to see that u1 = u2 = 2. Then

√
q ≡ −1 mod 4, since u1

and u2 are positive divisors of
√
q+1
2 by our assumption. Thus, by substituting

(x, h, u1, u2) = (1, 2, 2, 2) in (13), we have that (x, h, u1, u2,
√
q) = (1, 2, 2, 2,

√
q)

is a solution of (12).

If h = 4, then 4(u1 + u2) − 2u1u2 = 0 by (19). So, 2(u1 + u2) = u1u2. As
u2 | 2u1 and u1 ≤ u2, then either u2 = u1 or u2 = 2u1. Assume that u2 = u1.
Then u1 = u2 = 4 by 2(u1 + u2) = u1u2. As a consequence,

√
q ≡ −1 mod 8,

since u1 and u2 are positive divisors of
√
q+1
2 by our assumption. Thus, by

substituting (x, h, u1, u2) = (1, 4, 4, 4) in (13), we have that (x, h, u1, u2,
√
q) =

(1, 4, 4, 4,
√
q) is a solution of (12). Finally, assume that u2 = 2u1. Then u1 = 3

and u2 = 6. Now, since u1 = 3 and u2 = 6 are two positive divisors of
√
q+1
2 , we

have that
√
q ≡ −1 mod 12. Moreover, by substituting (x, h, u1, u2) = (1, 4, 3, 6)

in (13), we see that (x, h, u1, u2,
√
q) = (1, 4, 3, 6,

√
q) is a solution of (12). This

completes the proof.

In Lemmas 2.8 and 2.9 the assumption u1 ≤ u2 can be dropped. Indeed, if
u1 ≥ u2 we obtain the ’same’ solutions for (7) and (12) but with the values of
u1 and u2 exchanged.

Lemma 2.10. Let D be a dihedral group acting on a projective plane Π. Assume
that D fixes a line l and there exists a dihedral subgroup D0 of D which fixes two
distinct points on l and contains a non central involutory homology. Then one of
the following occurs:

(1) There exists a subgroup D1 of D, such that D0 ≤ D1 and [D : D1] ≤ 2,
fixing at least one point on l;

(2) D0
∼= E4.

Proof. Suppose that D fixes a line l of Π and that there exists a subgroup D0 of
D which fixes two distinct pointsX and Y on l and which contains an involutory
homology. Set |D| = 2m and |D0| = 2m0, where m,m0 > 1. Also, set D0 =

〈α, β〉, where αm0 = β2 = 1 and αβ = α−1. We may assume that β is an
involutory homology, since D0 contains a non central one by our assumption.
If aβ = l then β ∈ N , where N is the kernel of the action of D on l. Clearly,
it holds that N E D. Thus, N = D if m is odd, and N ∼= Dm or N = D for
m even, since D is dihedral and β ∈ N . If we set D1 = D0N , we obtain the
assertion (1).

Assume that aβ 6= l. Thus, either Cβ = X and aβ ∩ l = {Y }, or Cβ = Y and
aβ ∩ l = {X}, since D0 fixes two distinct points X and Y on l and since β ∈ D0.
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We may assume that Cβ = X and {Y } = aβ ∩ l. Assume also that m0 is odd.
Then each involution in D0 is a homology of center X and axis intersecting l
in Y , since D0 fixes X and Y , with X 6= Y , and since D0 contains a unique
conjugate class of involutions as m0 is odd.

If two distinct involutions in D0 have distinct axes (passing through Y ), then
D0(X,X) 6= 〈1〉 by [16, Theorem 4.25], since each involution inD0 is homology
of center X . In particular, D0(X,X) ≤ S(D0), where S(D0) denotes the unique
maximal (normal) cyclic subgroup of D0. Therefore, D0(X,X) C D, since
S(D0) E S(D) C D and D is dihedral (actually, D0(X,X) = D0(X, r) by [16,
Theorem 4.14]). Thus, D fixes X and we again obtain the assertion (1).

If all involutions in D0 have the same axis aβ, then D0 = D0(X, aβ) as m0

is odd. In particular, S(D0) = S(D0)(X, aβ), with S(D0) 6= 〈1〉, as m0 is odd
and m0 > 1. Thus, D fixes X , aβ and hence Y , where {Y } = aβ ∩ l, since
S(D0) C D. Hence, we obtain the assertion (1) also in this case.

Assume that m0 is even and m0 > 2. Thus, αm0/2 is a homology by [19,
Proposition 3.3], since Z(D0) =

〈
αm0/2

〉
(actually, Z(D) =

〈
αm0/2

〉
) and since

β is a homology. Set δ = αm0/2. If Cδ ∈ l, then D fixes Cδ , since 〈δ〉 = Z(D), D
being a dihedral group. Thus, we still obtain the assertion (1).

Now, recall that aβ 6= l by our assumption. Set K = 〈δ, β〉. Then K is a Klein
group consisting of commuting involutory homologies whose vertices lie in the
triangle {X,Y,Cδ}, as D0 fixes X and Y on l and since aβ 6= l. Let ρ ∈ D0 and
consider Kρ. Then Kρ = 〈δ, βρ〉 as δ is central in D0. Furthermore, Kρ is still
a Klein group consisting of commuting involutory homologies whose vertices
lying in the triangle {X,Y,Cδ}, since D0 fixes X , Y and Cδ . Then Kρ = K

by [19, Lemma 3.1]. Hence, K E D0. Thus, D0
∼= D8 as m0 > 2 by our

assumptions. Therefore, δ = α2 and K =
〈
α2, β

〉
. Since β is an involutory

(X, aβ)-homology with aβ = CδY , since D0 fixes X an Y and Cδ and since
α ∈ D0, then βα is still an involutory (X, aβ)-homology. This is a contradiction,
since βα = α2β and the collineation α2β is a (Y,CδX) homology lying in K,
as K is a Klein group consisting of commuting involutory homologies whose
centres are the vertices of the triangle {X,Y,Cδ}. Thus, m0 = 2. That is,
D0
∼= E4. So, we have proved the assertion (2).

3 General reductions

In this section, we provide some reductions for the action of G on Π. In partic-
ular, when G fixes a line l (resp. a point Q) of Π, we determine the admissible
stabilizer of a point (resp. line) on l (resp. on [Q]), the length of the corre-
sponding G-orbit on l (resp. on [Q]). Finally, we provide some upper bounds



Projective planes admitting PSL(2, q) 47

for the number of some G-orbits of points on l (resp. G-orbits of lines on [Q]).

Lemma 3.1. If G ∼= PSL(2, q), with q odd and q > 3, does not fix points or lines
of Π, then G is irreducible on Π. Furthermore, one of the following occurs:

(1) G fixes a subplane Π0
∼= PG(2,m), where (m, q) = (2, 7), (4, 7), (4, 9);

(2) G is strongly irreducible on Π.

Proof. Assume that G does not fix lines or points of Π. Then G does not fix
triangles of Π, since G is non abelian simple as q > 3. So, G is irreducible
on Π. Now, assume that G fixes a subplane Π0 of Π of order m. Then m < q

by [16, Theorem 3.7], since n < q2 by our assumption. Thus, Π0
∼= PG(2,m),

where (m, q) = (2, 7), (4, 5), (4, 7), (4, 9), by Theorem 2.1, as q > 3. Since G acts
irreducibly on Π, then it does the same on Π0. Hence, the case (m, q) = (4, 5) is
ruled out, since PSL(2, 5) fixes always a point or a line in PG(2, 4). So, (m, q) =

(2, 7), (4, 7), (4, 9) and hence we obtain the assertion.

Lemma 3.2. The following holds:

(1) If G fixes a line l, then G(l) = 〈1〉 and hence G acts faithfully on l.

(2) If G fixes a point P , then G(P ) = 〈1〉 and hence G acts faithfully on [P ].

Proof. Assume that G fixes l. If G(l, l) 6= 〈1〉, then G = G(l, l), since G is simple
as q > 3. Actually, G = G(A, l) for some point A ∈ l by [16, Theorem 4.14],
since G is non abelian. So, |G| | n and hence |G| < q2, as n < q2, which is
a contradiction. Thus, G(l, l) = 〈1〉. Now, assume that G contains homologies
of axis l. Each involution in G of axis l must have the same center, say C,
otherwise G(l, l) 6= 〈1〉 by [16, Theorem 4.25], as G fixes l. Therefore, G fixes
C and hence 〈1〉 < G(C, l) C G. Then G = G(C, l), since G is simple as
q > 3. So, |G| | n − 1 and hence |G| < q2 as n < q2. Hence, we arrive at a
contradiction. As a consequence, G(l) = 〈1〉 and hence G acts faithfully on l.
So, we have proved the assertion (1). Now, dualizing the previous proof, we
obtain also the assertion (2).

Lemma 3.3. If q > 3 and G fixes a line l of Π, then the involutions in G are Baer
collineations of Π. In particular,

√
n ≡ 0, 1 mod 4.

Proof. Let σ be any involution of G. Assume that σ is a (Cσ , aσ)-perspectivity
of G. Then Cσ ∈ l and aσ 6= l by Lemma 3.2(1), since G fixes l. Clearly, CG(σ)

fixes Cσ , the lines l and aσ and hence the point l ∩ aσ (note that the points
Cσ and l ∩ aσ might coincide or not according to whether n is even or odd,
respectively). Hence, CG(σ) ≤ GCσ . Furthermore, GCσ < G by Lemma 3.2(2).
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Then GCσ = CG(σ), since CG(σ) is maximal in G, being CG(σ) ∼= Dq±1 by
[17, Hauptsatz II.8.27], according to whether q ≡ 3 mod 4 or q ≡ 1 mod 4,
respectively. Then σ fixes exactly either (q+3)/2 points or (q+1)/2 points on CGσ
by (1) of Proposition 2.5, for either q ≡ 3 mod 4 or q ≡ 1 mod 4, respectively.
Thus, σ fixes at least 3 points on l in each case as q > 3. This is a contradiction,
since σ is (Cσ , aσ)-perspectivity of G with Cσ ∈ l and aσ 6= l. Thus, σ is a
Baer collineation of Π. Then each involution of G is a Baer collineation of Π,
since G ∼= PSL(2, q) contains a unique conjugate class of involutions. This yields√
n ≡ 0, 1 mod 4 by Theorem 2.6.

Lemma 3.4. Let Π be a finite projective plane of order n and let G ∼= PSL(2, q),
q > 3, be a collineation group of Π fixing a line l of Π. If P ∈ l, then one the
following occurs:

(1) GP = G;

(2) GP ∼= Dq−1;

(3) GP ∼= Dq+1;

(4) GP ∼= A4 and q = 5, 7, 9, 11, 13, 17, 19;

(5) GP ∼= A5 and q = 5, 9, 11, 19, 25, 29, 31, 41, 49, 59, 61, 71, 79, 81, 89, 101, 109;

(6) GP ∼= S4 and q = 7, 9, 17, 23, 25, 31, 41;

(7) GP ∼= PSL(2,
√
q);

(8) GP ∼= PGL(2,
√
q);

(9) GP ∼= Epm−e .Zpe−1, where 2e | m;

(10) GP ∼= Fq .Zd.

Proof. Note that n ≤ (q − 1)2, since n < q2 and n is a square by Lemma 3.3.
Since PG ⊂ l and n + 1 ≤ (q − 1)2 + 1, then

∣∣PG
∣∣ ≤ (q − 1)2 + 1. That is

q(q2−1)
2|GP | ≤ (q−1)2+1. Actually, q(q

2−1)
2|GP | < (q−1)2+1 and hence q(q2−1)

2|GP | ≤ (q−1)2.

Then 2 |GP | ≥ (q−1+1)(q+1)
(q−1) and consequently 2 |GP | > q + 1. So,

|GP | >
q + 1

2
. (20)

Now, filtering the list of the proper subgroups of G given in [17, Hauptsatz
II.8.27], with respect to (20) and bearing in mind [24, Lemma 2.8], whenGP ≤
Fpm .Z pm−1

2
, we obtain the assertion.

Let P ∈ l. We say that GP is of type (i), where 1 ≤ i ≤ 10, if GP is a group
isomorphic to the i-th group of the list given in the previous lemma. Also, we
say that the orbit PG is of type (i) if GP is of type (i). So, for example, PG and
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GP are of type (6) if GP ∼= S4. Finally, we denote by xi, the number of G-orbits
on l of type (i).

The G-orbits on l are of type (i), with 1 ≤ i ≤ 8, i fixed, have the same
length. Hence, they cover exactly xi

∣∣PG
∣∣ points on l, where PG is of type (i).

The G-orbits on l of type (9) or (10) might have different lengths depending on
e and d, respectively. Nevertheless, there exists at most on G-orbit on l of type
(9), as we will see in the following lemma (that is x9 ≤ 1). So, let us focus on
the G-orbits of type (10) and on the points of l that they cover. Each G-orbit
of type (10) has length q2−1

2d which depends on the particular divisor d of q−1
2 .

Therefore, all the G-orbits on l of type (10) cover exactly
∑x10

j=1
q2−1
2dj

points of l.

Set S =
∑x10

j=1
q2−1
2dj

. We introduce the following abbreviations for the G-orbits

on l of type (10): S1 =
∑x10

j=1
q−1
dj

and S2, S2′ , S4, S2,4 (sum with the same

summands q−1
dj

but over 2 | dj , 2 - dj , 4 | dj and dj ≡ 2 mod 4, respectively).

In particular, we have the following relations S = q+1
2 S1, S1 = S2 + S2′ and

S2 = S4 + S2,4.

When investigating the admissible orbital decomposition of l under G, the
following situation might arise (as we will see, in some cases it actually does):
G fixes at least a point Q on l and the admissible orbital decomposition of G
on set of lines of [Q] it is easier to be investigated than the admissible one l,
since the first one has some influences on the second one. In order to do so, we
introduce further notation as follows.

If G fixes a point Q, clearly, G acts on [Q]. Now, consider Π∗, the dual of Π.
The group G acts on Π∗ fixing the line [Q]. Then we may apply Lemma 3.4 to
Π∗. As a result, we obtain the same list of admissible groups with Gm, where
m is a point of [Q]. Then we may extend the notation previously introduced
to the groups Gm. Hence, we say that Gm is of type (i)∗, where 1 ≤ i ≤ 10,
if Gm is a group isomorphic to the i-th group of the list given in Lemma 3.4.
Now, going back to Π, we obtain the same list of admissible groups with Gm
in the role of GP , where m is a line of [Q] and Q is a point of Π fixed by G.
So, we are actually applying the dual of Lemma 3.4 referred to G-orbits of lines
through a point Q fixed by G. At this point, continuing with this notation, we
say that the orbit mG is of type (i)∗ if the respective Gm is of type (i)∗. So, for
example, mG and Gm are of type (6)∗ if Gm ∼= S4. Finally, we denote by x∗i ,
the number of G-orbits on [Q] of type (i)∗. In particular, since we might have
G-orbits of type (10)∗, it makes sense considering S∗ =

∑x∗10

j=1
q2−1
2dj

and hence
S∗2 , S∗2′ , S∗4 , S∗2,4 with the same meaning of S2, S2′ , S4, S2,4, respectively, but
referred to lines instead of points. As a consequence, we have S∗ = q+1

2 S∗1 ,
S∗1 = S∗2 + S∗2′ and S∗2 = S∗4 + S ′∗2,4. It should be stressed that, the notation used
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depends on the particular point Q fixed by G (the same could be made for l).
So, it would be correct using x∗i (Q) instead of x∗i . Nevertheless, we shall use
the second notation, since it will be clear from the context which point we are
focusing on.

Lemma 3.5. If q > 9, then the following hold:

(1) x2 ≤ 1 ;

(2) x3 ≤ 1 ;

(3) x4 ≤ 1 ;

(4) x5 ≤ 3 ;

(5) x6 ≤ 1 for q 6= 17 and x6 ≤ 2 for q = 17 ;

(6) x9 ≤ 1 .

Proof. Assume that l contains xi orbits ofG of type (i). Assume also that 2 ≤ i ≤
6 with i fixed. Clearly, these G-orbits have same length. So, they cover exactly
xi
∣∣PG

∣∣ points on l, where PG is any orbit of type (i). Therefore, xi
∣∣PG

∣∣ ≤
n + 1 and hence xi

q(q2−1)
2|GP | ≤ n + 1. Now, arguing as in Lemma 3.4, we have

xi
q(q2−1)
2|GP | ≤ (q − 1)2 + 1 and consequently

|GP | > xi
q + 1

2
.

Assume that xi ≥ 2. Then |GP | > q + 1. This is a contradiction by Lemma 3.4.
Thus, we have proved the assertion for i = 2 or 3.

Assume that i = 4. Hence, GP ∼= A4. Then q < 11, as |GP | > q + 1. Actually,
we have q ≤ 9, which is a contradiction by our assumption. So, x4 ≤ 1 and we
obtain the assertion also in this case.

Assume that i = 5. Then GP ∼= A5. If x5 ≥ 4, then |GP | > 2(q + 1).
So 2(q + 1) < 60. Hence, q < 29. Actually, q = 11, 19 or 25 by Lemma 3.4.
Let σ be an involution lying in GP . By [4], there exists one conjugate class
of involutions in G. If q = 11 or 19, then CG(σ) ∼= Dq+1 again by [4], since
q ≡ 3 mod 4. Therefore, using (1) of Proposition 2.5, we obtain that σ fixes
exactly q+1

4 points on PG. As a consequence, σ fixes at least q + 1 points on l,
since x5 ≥ 4. Hence

√
n ≥ q, since σ is a Baer collineation of Π by Lemma 3.3.

So, we arrived at a contradiction, since n < q2 by our assumptions. Thus,
q = 25. In this case, CG(σ) ∼= Dq−1. Arguing as above, we see that

√
n ≥ q − 1.

Actually,
√
n = q− 1, since

√
n < q. That is

√
n = 24. Let T be a Klein subgroup

of G such that σ ∈ T and T ≤ GP . Then NG(T ) ∼= S4 by [4]. Furthermore, all
Klein subgroups in GP ∼= A5 are conjugate, since they are Sylow 2-subgroups
of it. Then, using (1) of Proposition 2.5, we obtain that T fixes exactly 2 points
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on PG. Hence, Fix(T ) ∩ l ⊂ Fix(σ) ∩ l. Since x5 ≥ 4, then T induces a Baer
collineation on Fix(σ). This is a contradiction, since

√
n = 24. Thus, x5 ≤ 3 and

we obtain the assertion also in this case.

Assume that i = 6. So, GP ∼= S4. Then q+ 1 < 24 as |GP | > q+ 1. Therefore
x6 = 2 and q = 17 by Lemma 3.4. Hence, we have proved the assertion in this
case.

Assume that i = 9. Let PG be a G-orbit on l of type (9). Then
∣∣PG

∣∣ =
pe(q2−1)
2(pe−1) , where q is a square pe | √q and e ≥ 1 by Lemma 3.4. Clearly.

∣∣PG
∣∣ >

q2−1
2 and hence x9 ≤ 1, since n+ 1 ≤ (q − 1)2 + 1.

Clearly, we may consider the dual of Lemma 3.5. In other words, we may
apply the previous lemma to [Q] if Q is a point fixed by G on Π. So, we have
x∗i ≤ 1 for 2 ≤ i ≤ 5 or i = 9, and x∗6 ≤ 1 for q 6= 17 and x∗6 ≤ 2 for q = 17.
We shall do the same for any lemma or proposition in the sequel whenever it is
needed.

Lemma 3.6. Let q > 9. If x2 + x3 > 0, then the following hold:

(1) x2 + x3 = 1 ;

(2) x4 = 0 ;

(3) x5 ≤ 2 and if x5 > 0, then q = 11, 19, 25, 29, 31, 41, 49 ;

(4) x6 = 0 for q 6= 17 and x6 ≤ 1 for q = 17 ;

(5) x9 = 0 .

Proof. Assume x2 + x3 > 0. Let PG be on orbit on l of type (2) or (3). If PG is
of type (2), then

∣∣PG
∣∣ = q(q−1)

2 , and if PG is of type (3), then
∣∣PG

∣∣ = q(q+1)
2 .

Hence,
∣∣PG

∣∣ ≥ q(q−1)
2 in each case. Then

∣∣l − PG
∣∣ ≤ n+1− q(q−1)

2 . In particular,∣∣l − PG
∣∣ ≤ (q−1)2+1− q(q−1)

2 as n+1 ≤ (q−1)2+1. So
∣∣l − PG

∣∣ ≤ 1
2 (q2−3q+4).

Assume there are xi orbits of G of type (i) on l− PG, where 2 ≤ i ≤ 6 or i = 9,
i fixed. Let QG be one of these orbits. It is a plain that, xi

∣∣QG
∣∣ ≤

∣∣l − PG
∣∣ and

hence xi
∣∣QG

∣∣ ≤ 1
2 (q2 − 3q + 4). As a consequence, |GQ| ≥ xi

q(q2−1)
q2−3q+4 . Easy

computation, similar to that used in the first part of the proof of Lemma 3.5,
yield the assertion, unless i = 5 and q = 11.

Assume that i = 5 and q = 11 and assume that x5 ≥ 3. Now, arguing in the
second part of the proof of Lemma 3.5, we have that

√
n+ 1 ≥ 3 q−1

4 and 4
√
n is

an integer. Then 4
√
n = 3 and hence

√
n = 9. So, 3

∣∣QG
∣∣ ≤ 34 + 1− 11(11−1)

2 and

hence
∣∣QG

∣∣ ≤ 9. Hence, we arrive at a contradiction, since
∣∣QG

∣∣ = q(q2−1)
120 and

q = 11. Thus, we have proved the assertion in any case.
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Now, we recall some known facts about G ∼= PSL(2, q) which are useful
hereafter. By [4], there exists a unique conjugate class of involutions in G and
there are either one or two conjugate class of Klein subgroups of G according to
whether q ≡ 3, 5 mod 8 or q ≡ 1, 7 mod 8, respectively. Let σ be a representative
of the involutions in G. Let T1 and T2 the representatives of the two conjugate
classes of Klein subgroups of G. We may choose T1 an T2 in order to contain σ
(see [4] or [24]). Clearly, T1 and T2 are conjugate if q ≡ 3, 5 mod 8. So, if q ≡
3, 5 mod 8, we shall just denote by T the representative of the unique conjugate
classes of Klein subgroups of G. Hence, by [4], the following admissible cases
arise:

(1) q ≡ 1 mod 8. Then CG(σ) ∼= Dq−1 and NG(Tj) ∼= S4, where j = 1 or 2 ;

(2) q ≡ 3 mod 8. Then CG(σ) ∼= Dq+1 and NG(T ) ∼= A4 ;

(3) q ≡ 5 mod 8. Then CG(σ) ∼= Dq−1 and NG(T ) ∼= A4 ;

(4) q ≡ 7 mod 8. Then CG(σ) ∼= Dq+1 and NG(Tj) ∼= S4, where j = 1 or 2 .

We investigate these cases separately.

4 The case q ≡ 1 mod 8

This section is devoted to the cases q ≡ 1 mod 8. By [4], there are two conjugate
classes of subgroups isomorphic to A4 (type (4)), to A5 (type (5)), to S4 (type
(6)), to PSL(2,

√
q) (type (7)), to PGL(2,

√
q) (type (8)). Since there are two

conjugate classes of subgroups of type (4) regarded as stabilizer of a point P on
l, we may extend our preceding notation as follows: we label the subgroups GP
isomorphic to A4 and belonging to the first conjugate class underG to be of type
(4a), while those belonging to the second one to be of type (4b). Moreover, PG

is a G-orbit of type either (4a) or (4b) if the corresponding GP is of type (4a)
or (4b), respectively. We denote by x4a and x4b the number of G-orbits on l of
type (4a) or (4b), respectively. Clearly, x4 = x4a + x4b. Extending the previous
notation, when PG and GP are of type (i), for 4 ≤ i ≤ 8, we actually say that
they are of type (ia) or (ib) depending on the particular conjugate class under
G the group GP lies. Hence, we write xi = xia + xib for 4 ≤ i ≤ 8.

The usual argument involving Proposition 2.5 yields the following table con-
taining all the informations we need about the admissible stabilizers in G of any
point P of l. It should also be stressed that the G-orbits of type (7), (8) or (9)
might occur only when q is a square.

For ± and ∓ read the upper sign if
√
q ≡ 1 mod 4 and the lower sign if

√
q ≡

3 mod 4 (for q square). This convention is followed throughout this section.
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Table I

type GP [G : GP ] |FixPG(σ)| |FixPG(T1)| |FixPG(T2)|

1 G 1 1 1 1

2 Dq−1
q(q+1)

2
q+1

2 3 3

3 Dq+1
q(q−1)

2
q−1

2 0 0

4a A4
q(q2−1)

24
q−1

4 2 0

4b A4
q(q2−1)

24
q−1

4 0 2

5a A5
q(q2−1)

120
q−1

4 2 0

5b A5
q(q2−1)

120
q−1

4 0 2

6a S4
q(q2−1)

48
3(q−1)

8

4 , q ≡16 1

1 , q ≡16 9

4 , q ≡16 1

3 , q ≡16 9

6b S4
q(q2−1)

48
3(q−1)

8

4 , q ≡16 1

3 , q ≡16 9

4 , q ≡16 1

1 , q ≡16 9

7a PSL(2,
√
q)

√
q(q + 1)

√
q ± 1 1± 1 1∓ 1

7b PSL(2,
√
q)

√
q(q + 1)

√
q ± 1 1∓ 1 1± 1

8a PGL(2,
√
q)

√
q(q+1)

2

√
q 2± 1 2∓ 1

8b PGL(2,
√
q)

√
q(q+1)

2

√
q 2∓ 1 2± 1

9 Epm−e .Zpe−1
pe(q2−1)
2(pe−1)

q−1
pe−1 0 0

10 Fq .Zd
q2−1

2d

q−1
d , 2 | d

0 , 2 - d
0 0

Recall that the Sylow p-subgroups ofG are elementary abelian. Furthermore,
by [4], there are two conjugate classes of p-elements. Let ρ1 and ρ2 be the
representatives of these two classes lying in a Sylow p-subgroup S of G which
is normalized by σ. Since σ acts as the inversion on S, then σ normalizes 〈ρ1〉
and 〈ρ2〉 and hence 〈ρ1, σ〉 ∼= 〈ρ2, σ〉 ∼= D2p. Again by [4], there is a unique
conjugate class of elements of order for 4 in G. Let γ be a representative of this
class such that γ2 = σ. By using (1) of Proposition 2.5, we obtain the following
table.

The sign ± has the same meaning as above. In particular, the non negative
integers k1 and k2 are such that k1 + k2 = q−pe

pe−1 , where 2e | m (see [24], Table
IV* and related remarks).

It should be pointed out that Tables I and II, with types and entries in differ-
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Table II

(We use the abbreviation F for FixPG in the top line of this table.)

Type |F(ρ1)| |F(ρ2)| |F(ρ1, σ)| |F(ρ2, σ)| |F(γ)|

1 1 1 1 1 1

2 0 0 0 0 1

3 0 0 0 0 0

4a 0 0 0 0 0

4b 0 0 0 0 0

5a 0 0 0 0 0

5b 0 0 0 0 0

6a 0 0 0 0 q−1
8

6b 0 0 0 0 q−1
8

7a 2
√
q 0 1± 1 0

√
q ± 1 , q ≡16 1

0 , q ≡16 9

7b 0 2
√
q 0 1± 1

√
q ± 1 , q ≡16 1

0 , q ≡16 9

8a
√
q 0 1 0

√
q±1
2

8b 0
√
q 0 1

√
q±1
2

9 k1p
e k2p

e k1 k2

q−1
pe−1 , pe ≡4 1

0 , pe ≡4 3

10 q−1
2d

q−1
2d

q−1
2d , 2 | d

0 , 2 - d

q−1
2d , 2 | d

0 , 2 - d

q−1
d , 4 | d

0 , 4 - d

ent order, can be extracted from Tables III* and IV* of [24], respectively.

Now, if G acts on [Q], where Q is any point of Π, then [Q] consists of G-
orbits of lines of type (i)∗ for 1 ≤ i ≤ 10, following the notation introduced in
section 3. As G contains two conjugate classes of subgroups isomorphic to A4

(type (4)∗), to A5 (type (5)∗), to S4 (type (6)∗), to PSL(2,
√
q) (type (7)∗), to

PGL(2,
√
q) (type (8)∗), the distinction made for G-orbits of points of Π inside a

fixed type (i) in subtypes (ia) and (ia) can be extended in G-orbits of lines of Π

in the following sense. Let m be any line of [Q] and assume that a subgroup Gm
of G is isomorphic to A4. We say that Gm is either of type (4a)∗ or of type (4b)∗
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depending on which of the two conjugate classes of subgroups isomorphic to
A4 the group Gm lies. So, we denote by x∗4a and x∗4b the number of G-orbits on
[Q] of type (4a)∗ and (4b)∗, respectively. Clearly x∗4 = x∗4a + x∗4b. Extending the
previous notation, when mG and Gm are of type (i)∗, for 4 ≤ i ≤ 8, we actually
say that they are of type (ia)∗ or (ib)∗ depending on the particular conjugate
class under G the group Gm lies. Hence, we write x∗i = x∗ia + x∗ib for 4 ≤ i ≤ 8.

It is a plain that, at this point, we may use Tables I and II referred to G-orbits
of lines of Π. So in this case, the first column containing types (i) is replaced by
types (i)∗ and GP is replaced by Gm. So, when we use Tables I and II referred
to G-orbits of lines of Π through some point fixed by G, we actually use the
duals of Tables I and II, respectively.

The strategy of the proof in this section is the following. Assuming that G
fixes a line l of Π, we show that each Tj induces either a Baer collineation or
a perspectivity of axis distinct from l on Fix(σ) (Lemma 4.2). We use this fact
to show that γ, where γ2 = σ, induces either the identity or a Baer collineation
on Fix(σ) (Lemma 4.4). Then, using Tables I and II, we show that, if the first
case occurs, the group Tj induces a homology on Fix(σ) (Lemma 4.10). Nev-
ertheless, this is impossible (Lemma 4.11). Thus γ induces a Baer collineation
on Fix(σ). Again, Table I and II imply that each Tj induces a Baer collineation
on Fix(σ) and on Fix(γ) by Propositions 4.12 and 4.18, respectively. Thus, G
fixes necessarily a subplane of Π of order 8

√
n pointwise (Lemma 4.19), which

is a contradiction (Proposition 4.21).

Recall that σ is a Baer collineation of Π by Lemma 3.3. Set C = CG(σ). Then
C acts on Fix(σ) with kernel K. Hence, let C̄ = C/K. Clearly, 〈σ〉 E K E C.
Furthermore, either K E Z q−1

2
or K ∼= D q−1

2
or K = C, since C ∼= Dq−1 and

q ≡ 1 mod 8. Now, we need to investigate the admissible structure ofK in order
to show that Tj cannot induce on Fix(σ) either the identity or a perspectivity of
axis Fix(σ) ∩ l for each j = 1, 2.

Lemma 4.1. If Fix(Tj)∩l = Fix(σ)∩l for some j = 1 or 2, then either K ∼= D q−1
2

or K = C.

Proof. Assume that Fix(T1)∩l = Fix(σ)∩l and thatK E Z q−1
2

. Then Fix(G)∩l =

Fix(σ) ∩ l by Table I, since q > 9. Set l0 =Fix(σ) ∩ l. Then C̄ = C̄(l0), since
l0 = Fix(G) ∩ l.

Assume that C̄ = C̄(l0, l0). Then T1 induces a perspectivity β̄1 of center
Cβ̄1

and axis l0 on Fix(σ). Suppose that β̄1 is an elation. Hence, Cβ̄1
∈ l.

Thus, G fixes Cβ̄1
. So, Fix(G)∩

[
Cβ̄1

]
=Fix(σ)∩

[
Cβ̄1

]
, by dual of Table I, since

Fix(T1)∩
[
Cβ̄1

]
= Fix(σ)∩

[
Cβ̄1

]
. Therefore, C̄ = C̄(Cβ̄1

, l0). LetX ∈ l0−
{
Cβ̄1

}
.
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For each line t ∈ [X ] ∩ Fix(σ), we have that σ ∈ Gt but Gt does not contain
Klein groups. Clearly, Fix(Gt) ⊆ Fix(σ). Actually, Fix(Gt) = Fix(σ), since
Fix(G) ∩ l = Fix(σ) ∩ l, since Fix(G) ∩

[
Cβ̄1

]
= Fix(σ) ∩

[
Cβ̄1

]
, and since t ∈

Fix(Gt)∩Fix(σ) and t /∈
[
Cβ̄1

]
. So, Fix(Gt) is a Baer subplane of Π. Assume that

p | |Gt| and let S0 be a Sylow p-subgroup of Gt. Then Fix(S0) = Fix(Gt), since
Fix(Gt) is a Baer subplane of Π. Furthermore, either q is a square and |S0| = pe

with pe | √q, or |S0| = q by dual of Table II. Assume the latter occurs. Then
q | n−√n, since S0 must be semiregular on l−Fix(S0), as Fix(S0) = Fix(σ) and
Fix(σ) is a Baer subplane of Π. This yields that either q | √n−1 or q | √n, since
q is a prime power. This gives a contradiction, since

√
n < q by our assumption.

Thus, q is a square and |S0| = pe with pe | √q. In particular, Gt is of type
(9)∗. Moreover, Fix(S0) ∩ [X ] = Fix(σ) ∩ [X ], since Fix(S0) = Fix(σ). This
yields FixtG(S0) = FixtG(σ) and hence |FixtG(S0)| = |FixtG(σ)|, since G fixes
X . Then k1p

e = q−1
pe−1 by duals of Tables I and II, which is a contradiction. As

a consequence, (p, |Gt|) = 1. Therefore, Gt ∼= Dq+1 by dual of Table I, since
σ ∈ Gt but Gt does not contain Klein groups. Then q + 1 | n − √n, since Gt
must be semiregular on l − Fix(Gt), as Fix(Gt) = Fix(σ) and Fix(σ) is a Baer
subplane of Π. Furthermore, K ≤ Gt. Thus K = 〈σ〉, since 〈σ〉 E K ≤ Z q−1

2

and since Gt ∼= Dq+1. So, C̄ ∼= D q−1
2

and hence q−1
2 |
√
n, since C̄ = C̄(Cβ̄1

, l0).

Actually, either
√
n = q−1

2 or
√
n = q − 1, since

√
n < q by our assumptions.

On the other hand, tG ⊂ [X ] − {l}, as G fixes X . Then n ≥ q(q−1)
2 , since∣∣tG

∣∣ = q(q−1)
2 as Gt ∼= Dq+1. Since n ≥ q(q−1)

2 and since q(q−1)
2 >

(
q−1

2

)2
, the

case
√
n = q−1

2 cannot occur. Hence,
√
n = q − 1. Then q + 1 | (q − 1)(q − 2),

since q+1 | n−√n, being Gt semiregular on l−Fix(Gt). Since (q+1, q−1) = 2

and (q + 1, q − 2) | 3, then q + 1 | 6. This gives a contradiction, since q > 9 by
our assumptions. Thus, C̄(l0, l0) < C̄ .

Assume that C̄(l0, l0) 6= 〈1〉. Note that C̄(Y, l0) 6= 〈1〉 for some point Y ∈
Fix(σ) − l0, since C̄(l0, l0) < C̄ and C̄ = C̄(l0). In particular, C̄(l0, l0) ≤ Z q−1

k
,

since C̄(l0, l0) < C̄ and C̄ ∼= D q−1
k

. Actually, C̄(l0, l0) = C̄(V, l0) ∼= Z q−1
k

and C̄(Y, l0) ∼= Z2 by [16, Theorems 4.14 and 4.25], since C̄(l0, l0) ∼= D q−1
k

,
q ≡ 1 mod 8 and k is even. Let u ∈ [V ] ∩ Fix(σ) − {l, V Y }, then u is fixed
by K and by C̄(V, l0). Therefore, Z q−1

2
≤ Gu, where Z q−1

2
C CG(σ). Since G

fixes l ∩ Fix(σ), since q > 9 and by dual of Lemma 3.4, we have that either
Gu ∼= Fq .Z q−1

2
or Gu = CG(σ) or Gu = G. The two latter cases cannot occur,

since Cu ∼= Z q−1
2

. So, Gu ∼= Fq .Z q−1
2

for each u ∈ [V ] ∩ Fix(σ) − {l, V Y }. Note
also that x∗1 = 1, since G fixes only the line l through V , and x∗2 ≥ 1 since
GV Y = C. Actually, x∗2 = 1 by dual of Lemma 3.5(2). Moreover, |FixuG(σ)| = 2
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by dual of Table II. Then

√
n+ 1 = 1 +

q + 1

2
+ S2 (21)

by dual of Table I, since x∗1 = x∗2 = 1 and since Gu ∼= Fq .Z q−1
2

for each u ∈ [V ]∩
Fix(σ)− {l, V Y }. Let W be the Sylow p-subgroup of G normalized by σ. Then,
by (21), W fixes exactly 1+ 1

2S2 lines through V , namely l and the lines lying in
the G-orbits corresponding to stabilizer isomorphic to Fq .Z q−1

2
. Furthermore, if

R ∈ l − Fix(G), then GR must have odd order, since |Fix(G) ∩ l| = √n+ 1 and
since the involutions in G are Baer involutions of Π by Lemma 3.3. Then GR
must be of type (10) by Lemma 3.4. Henceforth, W ≤ GL for some point L ∈
RG. Consequently, W fixes at least

√
n+ 2 points on l and at least 1 + 1

2S2 lines
through V . Thus, the p-elements in G cannot be planar. So, if Z ∈ Fix(G) ∩ l,
Z 6= V , for each line r ∈ [Z] ∩ Fix(σ) − {l, ZV }, the group Gr contains σ but
does not contain Klein groups and (p, |Gt|) = 1. This implies that Gr ∼= Dq+1

by dual of Table I. Now, as K ≤ Gr and 〈σ〉 E K ≤ Z q−1
2

, then K = 〈σ〉.
As a consequence, C̄(V, l0) ∼= Z q−1

2
, being k = |K|. In particular, C̄(V, l0)

has even order. Nevertheless, this is a contradiction, since C̄(Y, l0) ∼= Z2 and
Y ∈ Fix(σ)− l0. So, C̄(l0, l0) = 〈1〉.

Assume that C̄ = C̄(Z, l0) for some Z ∈ Fix(σ) − l0. Let Q ∈ l0 and m ∈
[Q] ∩ Fix(σ) − {l, Y Q}. Then σ ∈ Gm but Gm does not contain Klein groups.
Therefore, by dual of Table I, we have that Gm ∼= Dq+1 or Gm ∼= Epm−e .Zpe−1

or Gm ∼= Fq .Zd, since G fixes Q. Thus, x∗i > 0 for either i = 3 or 9 or 10, since G
acts on [Q]. The cases i = 3 or 9 cannot occur by dual of Lemma 3.6(1) and (5),
since x∗2 > 0, as GZQ = C ∼= Dq−1. As a consequence, Gm ∼= Fq .Zd. Let S be
Sylow p-subgroup of G which is normalized by σ. Then |FixmG(S)| ≥ 1 for each

Q ∈ l0 and m ∈ [Q] ∩ Fix(σ) − {l, ZQ}. Assume that
∣∣∣FixmG1 (S)

∣∣∣ ≥ 2 for some
line m1 ∈ [Q1]∩Fix(σ)−{l, ZQ1} and for some point Q1 ∈ l0. Then S is planar,
since |FixmG(S)| ≥ 1 for each other Q ∈ l0 and each m ∈ [Q]∩Fix(σ)−{l, ZQ}
and since Fix(G) ∩ l = Fix(σ) ∩ l. Then S fixes a Baer subplane of Π, since
Fix(S)∩l = Fix(σ)∩l and |Fix(σ) ∩ l| = √n+1. Now, arguing as above with S in
the role of S0, we obtain a contradiction. Thus, |FixmG(S)| = 1 for each Q ∈ l0
and m ∈ [Q] ∩ Fix(σ) − {l, ZQ}. Nevertheless, we still have a contradiction
if |Fix(S) ∩ [Q2]| ≥ 2 for some point Q2 ∈ l0. So, |Fix(S) ∩ [Q]| = 1 for each
point Q ∈ l0. Consequently, GfQ ∼= Fq .Z q−1

2
, where {fQ} = Fix(S) ∩ [Q] by the

dual of Table II. Therefore, σ fixes exactly two lines in fGQ for each Q ∈ l0 by
Table I. Actually, σ fixes exactly two lines in [Q]−{l, ZQ} for each Q ∈ l0, since
|FixmG(S)| ≥ 1 for m ∈ [Q]∩Fix(σ) − {l, ZQ}, while |Fix(S) ∩ [Q]| = 1. So,√
n − 1 = 2. That is

√
n = 9. On the other hand, by dual of Table II, we have√

n+ 1 ≥ 1 + q+1
2 + 2, since x∗1 = 1 as G fixes only the l through Z, since x∗2 ≥ 1
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as GZQ = C and since x∗10 ≥ 1 as GfQ ∼= Fq .Z q−1
2

. Then
√
n ≥ 11 since q ≥ 17

being q ≡ 1 mod 8 and q > 9. Hence, we arrive at a contradiction, since it was
proved above that

√
n = 9.

Lemma 4.2. It holds that Fix(Tj) ∩ l ⊂ Fix(σ) ∩ l for each j = 1, 2.

Proof. Assume that K = C. Let P be any point of l0 and let r be any line of
[P ] − {l}. Then C ≤ Gr. Since q > 9, then C is maximal in G and hence
either Gr = C or Gr = G. Assume that Gr = C. Again by the maximality of
C in G, the line r is the unique one in rG fixed by C. Furthermore, x∗2 = 1

dual of Lemma 3.5. Therefore, r is the unique line in [P ] fixed by C. So, the
remaining lines are fixed by G. Now, by repeating the previous argument for
each point U of Fix(σ) ∩ l, we see that C fixes exactly one line of [U ]∩Fix(σ)

and the remaining ones are fixed by G. If
√
n > 2, then G is planar. Thus,

Fix(G) = Fix(σ), since Fix(G) ∩ l = Fix(σ) ∩ l and Fix(G) ⊆ Fix(σ). Then
G fixes r, since r ∈ Fix(σ). This is a contradiction, since Gr = C by our
assumptions. So,

√
n = 2 and n = 4, which is a contradiction, since q < n < q2

and q > 9. As a consequence,Gr = G. Now, by repeating the previous argument
for each point of Fix(σ) ∩ l, we again obtain Fix(G) = Fix(σ). Thus, G fixes a
Baer subplane of Π. ThenG is semiregular on l−Fix(G) and hence |G| | n−√n.
Hence, we arrive at a contradiction, since n < q2.

Finally, assume that K ∼= D q−1
2

. We may also assume that T1 ≤ K and
C ∼= Dq−1. Then Fix(T1) ∩ [B] = Fix(σ) ∩ [B] for each point B ∈ l0. As
l0 = Fix(G) ∩ l, then Fix(G) ∩ [B] = Fix(σ) ∩ [B] for each point B ∈ l0 by dual
of Table I. So, Fix(G) = Fix(σ) and we have a contradiction as above. Thus,
Fix(T1) ∩ l ⊂ Fix(σ) ∩ l.

Now repeating the above arguments with T2 in the role of T1, we obtain
Fix(T2) ∩ l ⊂ Fix(σ) ∩ l.

Lemma 4.3. If |Fix(γ) ∩ l| ≤ 2, then the following hold:

(1) |Fix(γ) ∩ l| = x1 + x2 = 1 or 2 ;

(2) x6 = 0 ;

(3) x7 > 0, if q is a square and q ≡ 9 mod 16 ;

(4) x8 = 0 ;

(5) x9 > 0, if q is a square and pe ≡ 3 mod 4, where pe | √q ;

(6) S4 = 0 ;

(7) Tj induces a Baer involution on Fix(σ) for each j = 1, 2 .

Proof. Assume that |Fix(γ) ∩ l| ≤ 2. Then γ induces an involutory perspectivity
γ̄ on Fix(σ) and hence |Fix(γ) ∩ l| = 1 or 2. Clearly, Cγ̄ ∈ l ∩ Fix(σ) and
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aγ̄ 6= l ∩ Fix(σ). Set {X} = aγ̄ ∩ l. The points Cγ̄ and X might coincide or not
according to whether γ̄ is either an elation or a homology of Fix(σ), respectively.
Let β̄j be the involution induced on Fix(σ) by the Klein subgroup Tj containing
σ (and hence lying in C), j = 1, 2. As γ̄ is central in C̄, then C̄ fixes Cγ̄ , aγ̄ and
so X . Thus, C does it. Therefore, C ≤ GCγ̄ and C ≤ GX . Then, by Table II and
since q > 9, we have that

(1) |Fix(γ) ∩ l| = x1 + x2 = 1 or 2 ;

(2) x6 = 0 ;

(3) x7 > 0 if q is a square and q ≡ 9 mod 16 ;

(4) x8 = 0 ;

(5) x9 > 0 if q is a square and pe ≡ 3 mod 4, where pe | √q ;

(6) S4 = 0 .

It remains to prove the assertion (7). If C < GCγ̄ and C < GX . Then
GCγ̄ = GX = G, since C is maximal in G as q > 9. As a consequence, Fix(γ) ∩
l = Fix(G) ∩ l. Assume that β̄1 is an involutory (Cβ̄1

, aβ̄1
)-perspectivity. Then

Cβ̄1
∈ l and aβ̄1

6= l by Lemma 4.2. So, Cβ̄1
∈ {Cγ̄ , X}, since GCγ̄ = GX =

G. Therefore, G fixes Cβ̄1
. Hence, we arrive at a contradiction by dual of

Lemma 4.2, since Fix(T1)∩
[
Cβ̄1

]
= Fix(σ)∩

[
Cβ̄1

]
. Thus, β̄1 is a Baer involution

of Fix(σ). The previous argument with T2 in the role of T1, yields that β̄2 is also
a Baer involution of Fix(σ).

Assume there exists Q ∈ {Cγ̄ , X} such that GQ = C. Then β̄j is a Baer
involution of Fix(σ) for each j = 1, 2, since

∣∣FixQG(Tj)
∣∣ = 3 by Table I for each

j = 1, 2. Therefore, β̄j is a Baer involution of Fix(σ) for each j = 1 or 2 in any
case. This completes the proof.

Lemma 4.4. It holds that |Fix(γ) ∩ l| ≥ 3.

Proof. Suppose that |Fix(γ) ∩ l| ≤ 2. Then either |Fix(γ) ∩ l| = 1 or |Fix(γ) ∩ l| =
2, as G fixes l and γ induces and involution γ̄ on Fix(σ).

Assume that |Fix(γ) ∩ l| = 1. Then γ̄ is an involutory (Cγ̄ , aγ̄)-elation of
Fix(σ) with Cγ̄ ∈ l ∩ Fix(σ) and aγ̄ 6= l ∩ Fix(σ). Thus, x1 + x2 = 1 by
Lemma 4.3(1). Moreover, by Table II in conjunction with Lemma 4.3(2)–(5),
we have |Fix(T1) ∩ l| = x1 + 3x2 + 2x4a + 2x5a + 2x7a and |Fix(T2) ∩ l| =

x1 + 3x2 + 2x4b + 2x5b + 2x7b for
√
q ≡ 1 mod 4, and |Fix(T1) ∩ l| = x1 +

3x2 + 2x4b + 2x5b + 2x7b and |Fix(T2) ∩ l| = x1 + 3x2 + 2x4a + 2x5a + 2x7a for√
q ≡ 3 mod 4. Then

4
√
n+ 1 = x1 + 3x2 + 2x4a + 2x5a + 2x7a (22)

4
√
n+ 1 = x1 + 3x2 + 2x4b + 2x5b + 2x7b , (23)
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in each case, being |Fix(Tj) ∩ l| = 4
√
n + 1 for each j = 1, 2 by Lemma 4.3(7).

Now, summing up (22) and (23), we have

4
√
n+ 1 = x1 + 3x2 + x4 + x5 + x7 .

Bearing in mind that x1 + x2 = 1, we actually obtain

4
√
n = 2x2 + x4 + x5 + x7 . (24)

Assume that x4 > 0. Then q = 17 and x5 = 0 by Lemma 3.4, since q ≡ 1 mod 8.
Furthermore, x4 = 1 and x2 = 0 by Lemma 3.5(3) and Lemma 3.6(3), respec-
tively. Then x1 = 1, as x1 + x2 = 1 by the above argument. So, x7 = 4

√
n− 1 by

(24). On the other hand,
√
n + 1 ≥ 1 + x7(

√
q ± 1) by Table I. By substituting

x7 = 4
√
n − 1 in the previous inequality and by elementary calculations of the

inequality, we have 4
√
n + 1 ≥ √q ± 1. Then 4

√
n =

√
q − 1 and

√
q ≡ 3 mod 4,

since 4
√
n <

√
q by our assumptions. Nevertheless, this contradicts [16, Theo-

rem 13.18], since γ̄ acts non trivially on the plane Fix(Tj) and since q > 9. So,
x4 = 0.

Assume that x5 > 0. If x2 = 1, then x5 ≤ 2 and q = 25, 41 or 49 by
Lemma 3.6(4), since q ≡ 1 mod 8. Then n+ 1 ≥ q(q+1)

2 + q(q2−1)
120 , with n < q2,

and n a fourth power. This is impossible, since q = 25, 41 or 49. Then x2 = 0

and hence x1 = 1, since x1 + x2 = 1. Then x7 ≥ 4
√
n− 3 by (24), since x5 ≤ 3

by Lemma 3.5(4). If 4
√
n > 3, then x7 > 0. This implies that q is a square and

q ≡ 9 mod 16 by Lemma 4.3(3). As a consequence, q = 25. Then 4
√
n = 4, since

q < n < q2, n is a fourth power and 4
√
n > 3. As n + 1 ≥ 1 + x5

q(q2−1)
120 by

Table I, where n = 44 and q = 25, then x5 = 1 and hence x7 = 3. Therefore,
by Table I, n+ 1 ≥ x1 + x5

q(q2−1)
120 + x7

√
q(q+1)

2 , where x1 = x5 = 1 and x7 = 3

and q = 25. That is n ≥ 325. Nevertheless, this contradicts the fact that n = 44.
Then 4

√
n ≤ 3 and hence n ≤ 34. Nevertheless, n ≥ 130, being n ≥ q(q2−1)

120 with
q ≥ 25 by Lemma 3.4. So, we again obtain a contradiction. Thus, x5 = 0.

Since x4 = x5 = 0, then 4
√
n = 2x2 + x7 by (24). If x2 = 0, then x7 = 4

√
n

and hence
√
n + 1 ≥ 1 + 4

√
n(
√
q ± 1) by Table I. Consequently, 4

√
n ≥ √q ± 1.

Actually, 4
√
n =

√
q − 1, since 4

√
n <

√
q by our assumptions. At this point the

above argument rules out this case. Then x2 = 1 and hence x7 = 4
√
n − 2. If

x7 > 0, then 4
√
n > 2 and hence

√
n+ 1 ≥ q + 1

2
+ ( 4
√
n− 2)(

√
q ± 1) (25)

by Table I. Note that
√
n+ 1 < q+ 1. So

√
n+ 1 >

√
n+1
2 + ( 4

√
n− 2)(

√
q± 1) by

(25). Collecting with respect to
√
n+ 1, we have

√
n+ 1 > 2( 4

√
n− 2)(

√
q ± 1).

Since 4
√
n > 2, then

√
n

2( 4
√
n−2)

< 4
√
n and therefore 4

√
n > (

√
q ± 1). In particular,
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4
√
n >

√
q − 1 in each case. On the other hand, 4

√
n <

√
q, since n < q2 by our

assumption. So,
√
q − 1 < 4

√
n <

√
q, where

√
q is integer by Lemma 4.3(3),

being x7 > 0. Clearly, this is a contradiction. Thus, x7 = 0. Then 4
√
n = 2, since

x7 = 4
√
n − 2. So, n = 16. Nevertheless, n + 1 ≥ q(q+1)

2 , as x2 = 1 and q > 9,
which is still a contradiction.

Assume that |Fix(γ) ∩ l| = 2. Then γ̄ is an involutory (Cγ̄ , aγ̄)-homology
of Fix(σ) with Cγ̄ ∈ l ∩ Fix(σ) and aγ̄ 6= l ∩ Fix(σ). Then x1 + x2 = 2 by
Lemma 4.3(1). Recall that {X} = aγ̄ ∩ l (clearly Cγ̄ 6= X) and each Tj induces
a Baer involution on Fix(σ) by Lemma 4.3(7). Then either x1 = x2 = 1 or
x1 = 2 and x2 = 0, since x2 ≤ 1 by Lemma 3.5(1).

Assume that x1 = x2 = 1. Arguing as above, we have 4
√
n + 1 = x1 + 3x2 +

x4 + x5 + x7 by Table I in conjunction with Lemma 4.3(2)–(7). Actually, x4 = 0

by Lemma 3.5(3), since x2 = 1. Therefore,

4
√
n = 3 + x5 + x7 , (26)

as x1 = x2 = 1. If x5 > 0, then x5 ≤ 2 and q = 25, 41, 49, 81 or 89 by
Lemma 3.6(4), since q ≡ 1 mod 8. Then n + 1 ≥ q(q+1)

2 + q(q2−1)
120 , with n < q2

and n a fourth power, which is a contradiction as above. Thus, x5 = 0. So,
x7 = 4

√
n − 3 by (26). On the other hand,

√
n + 1 ≥ 1 + q+1

2 + x7(
√
q ± 1) by

Table I, since x1 = x2 = 1. Then

√
n+ 1 ≥ 1 +

q + 1

2
+ ( 4
√
n− 3)(

√
q ± 1) , (27)

since x7 = 4
√
n − 3. If 4

√
n > 3, then x7 > 0. Hence, q is a square and q ≡

9 mod 16 by Lemma 4.3(3). Thus the cases q = 41, 49, 81 or 89 are ruled out. As
a consequence, q = 25. This yields 4

√
n < 5, since n < q2 by our assumptions.

Then 4
√
n = 4, since 4

√
n > 3. This is a contradiction, since γ̄ is an involutory

homology of Fix(σ). Therefore 4
√
n = 3 and hence n = 34. Then q(q+1)

2 ≤ 82,
since q(q+1)

2 ≤ n + 1 by (27), being x2 = 1. This is still a contradiction, since
q = 25, 41, 49, 81 or 89.

Assume that x1 = 2 and x2 = 0. Recall that β̄j is a Baer involution of Fix(σ).
Hence |Fix(Tj) ∩ l| = 4

√
n+ 1 for j = 1, 2 by Lemma 4.3(7). Therefore,

4
√
n = 1 + x4 + x5 + x7 , (28)

arguing as above, as x1 = 2 and x2 = 0.

Assume that x4 > 0. Then x4 = 1 by Lemma 3.5(3). Then q = 17 by
Lemma 3.4, since q ≡ 1 mod 8. Moreover, x5 = 0 again by Lemma 3.4, and x7 =

0 since q is a non square. So, 4
√
n = 2 by (28). That is n = 16. Nevertheless,

this contradicts the fact that q < n by our assumptions. So, x4 = 0.
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Assume that x5 > 0, then q = 25, 41, 49, 81 or 89 by Lemma 3.4, since q ≡
1 mod 8. Furthermore, x5 ≤ 3 by Lemma 3.5(4). Thus, x7 ≥ 4

√
n− 4 by (28). If

4
√
n > 4, then x7 > 0 and hence q is a square and q ≡ 9 mod 16. Therefore, only

the case q = 25 is admissible. Nevertheless, 4
√
n < 5, since q < n < q2 by our

assumptions. This is a contradiction, since 4
√
n > 4. As consequence, 4

√
n = 4

and x7 = 0. Then
√
n = 16, and we again obtain a contradiction, since γ̄ is an

involutory homology of Fix(σ). So, x5 = 0.

Since x4 = x5 = 0, then x7 = 4
√
n − 1 by (28). Now, bearing in mind that

x1 = 2, x2 = x4 = x5 = 0 and x7 = 4
√
n−1, we have

√
n ≥ 1+( 4

√
n−1)(

√
q±1)

by Table I. Therefore, 4
√
n+1 ≥ (

√
q±1). Then

√
q ≡ 3 mod 4 and 4

√
n =
√
q−2

or
√
q − 1, since 4

√
n <

√
q by our assumptions. Actually, only the case 4

√
n =√

q− 2 is admissible, since 4
√
n is odd, as γ̄ is an involutory homology of Fix(σ).

Then x7 =
√
q − 3 by (28). Hence 4

√
n =

√
q − 2. Now, by substituting these

values in
√
n ≥ 1 + ( 4

√
n− 1)(

√
q − 1) (obtained by Table I), we actually obtain

an equality. Thus, there are exactly two points on l fixed by G (x1 = 2) and
the stabilizer in G of any of the remaining ones on l ∩ Fix(σ) is isomorphic to
PSL(2,

√
q). Then S2 = x3 = x9 = 0 by Table I. Therefore, S = q+1

2 S2′ , being
S = q+1

2 S1 and S1 = S2 + S2′ . By this and by Table I, we have

n+ 1 = 2 +

√
q(
√
q − 3)

2
(q + 1) +

q + 1

2
S2′ ,

since x1 = 2, x2 = 0 by our assumption, since x3 = x4 = x5 = x9 = 0 and
x7 =

√
q − 3 by the above argument, and since x6 = x8 = 0 by Lemma 4.3(2)

and (4). Since q ≡ 1 mod 8, then S2′ is even (see its definition) and hence
q+1 | n−1. That is q+1 | (√q−2)4−1, since 4

√
n =
√
q−2. Easy computations

yield q + 1 | 40
√
q − 8. As q + 1 6= 40

√
q − 8, then q + 1 ≤ 80

√
q − 16 and

so
√
q ≤ 79. Actually, since

√
q ≤ 41, since (

√
q)2 + 1 ≤ 40

√
q − 8. Now, it is

straightforward computation to show that there are no
√
q, such that

√
q ≤ 41

and (
√
q)2 + 1 | 40

√
q − 8. Thus, we have proved the assertion.

Let C = CG(σ) and let K and K∗ be the kernels of the action of C on Fix(σ)

and on Fix(σ) ∩ l, respectively. Clearly 〈σ〉 E K E K∗ E C. Moreover, either
K∗ E Z q−1

2
or K∗ ∼= D q−1

2
or K∗ = C, since q ≡ 1 mod 8. Actually, the cases

K∗ ∼= D q−1
2

or K∗ = C are ruled out by Lemma 4.2. Then 〈σ〉 E K E K∗ E
Z q−1

2
. Let γ ∈ C such that γ2 = σ. The previous lemma shows that either

γ ∈ K∗ or γ induces a Baer involution on Fix(σ). Now, we investigate these
two configurations separately.

4.1 The collineation γ ∈ K∗

Lemma 4.5. If Fix(γ) ∩ l = Fix(σ) ∩ l, then the following hold:
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(1) S2,4 = 0, S2 = S4 and hence S1 = S2′ + S4 ;

(2) x2 = x3 = x4 = x5 = x6 = x8 = 0 ;

(3) If x7 > 0 then q is a square and q ≡ 1 mod 16 ;

(4) If x9 > 0 then q is a square and pe ≡ 1 mod 4, where pe | √q ;

(5) We may assume that |Fix(T1) ∩ l| = x1 + 2x7a and |Fix(T2) ∩ l| = x1 + 2x7b .

Proof. Assume that Fix(γ)∩l = Fix(σ)∩l. Note that |Fix(γ) ∩ l| = ∑
h

∣∣∣FixPGh (γ)
∣∣∣

and |Fix(σ) ∩ l| =
∑
h

∣∣∣FixPG
h

(σ)
∣∣∣. Then

∣∣∣FixPG
h

(γ)
∣∣∣ =

∣∣∣FixPG
h

(γ)
∣∣∣ for each ad-

missible PGh on l, since Fix(γ) ∩ l = Fix(σ) ∩ l and
∣∣∣FixPGh (γ)

∣∣∣ ≤
∣∣∣FixPGh (γ)

∣∣∣.
Thus, the assertions (1)–(4) follow by a direct inspection of the Tables I and II.

It remains to show the assertion (5). In order to do so, note that |Fix(T1) ∩ l| =
x1 + 2x7a and |Fix(T2) ∩ l| = x1 + 2x7b for

√
q ≡ 1 mod 4, while |Fix(T1) ∩ l| =

x1 + 2x7b and |Fix(T2) ∩ l| = x1 + 2x7a by Table I, since x2 = x3 = x4 = x5 =

x6 = x8 = 0 by (2). Therefore, we have proved the assertion (5).

Lemma 4.6. If Fix(γ) ∩ l = Fix(σ) ∩ l then one of the following occurs:

(1) The group Tj induces a homology on Fix(σ) for either j = 1 or j = 2, and
the following occur:

(a) x1 = 0 ;

(b) x7a, x7b > 0. In particular, either x7a = 1 or x7b = 1 .

(2) The group Tj induces a Baer involution on Fix(σ) for each j = 1, 2, and the
following occur:

(a) 4
√
n+ 1 = x1 + x7 ;

(b) x1 ≥ 3 ;

(c) The collineation γ induces the identity on Fix(σ) ;

(d) The group G fixes a subplane of Π of order x1 − 1 .

Proof. Let β̄j be the involution induced on Fix(σ) by a Klein subgroup Tj con-
taining σ (and hence lying in C), j = 1, 2. Assume that β̄1 is a (Cβ̄1

, aβ̄1
)-per-

spectivity. Then Cβ̄1
∈ Fix(σ)∩l and aβ̄1

6= l by Lemma 4.2. Set {X} = aβ̄1
∩l. If

β̄1 is an elation Fix(σ), then Cβ̄1
= X and hence |Fix(T1) ∩ l| = 1. Then x1 = 1

and x7a = 0, since |Fix(T1) ∩ l| = x1 + 2x7a by Lemma 4.5(5). So, G fixes
Cβ̄1

, which is a contradiction by dual of Lemma 4.2, since Fix(T1) ∩
[
Cβ̄1

]
=

Fix(σ) ∩
[
Cβ̄1

]
. Thus, β̄1 is a (Cβ̄1

, aβ̄1
)-homology of Fix(σ). Then Cβ̄1

6= X

and hence |Fix(T1) ∩ l| = 2. Therefore, either x1 = 2 and x7a = 0 or x1 = 0
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and x7a = 1, since |Fix(T1) ∩ l| = x1 + 2x7a by Lemma 4.5(5). Assume the
former occurs. Then G fixes Cβ̄1

and X , which is a contradiction by the same
argument as above. Consequently, x1 = 0 and x7a = 1. Moreover, x7b > 0, since
|Fix(T1) ∩ l| = x1 + 2x7b, being x1 = 0. The previous argument still works with
T2 in the role of T1. Hence, we obtain the assertion (1a) and (1b).

Assume that Tj induces a Baer involution on Fix(σ) for each j = 1, 2. Then
|Fix(Tj) ∩ l| = 4

√
n+ 1 for each j = 1, 2. Then 4

√
n+ 1 = x1 + 2x7a or 4

√
n+ 1 =

x1 + 2x7b by Lemma 4.5(5). As a consequence,

4
√
n+ 1 = x1 + x7 , (29)

since x7 = x7a + x7b. Thus, we have proved the assertion (2a).

Now, note that
√
n+ 1 ≥ x1 + x7(

√
q ± 1) by Table I. By composing this one

with (29), we obtain
√
n+ 1 ≥ x1 + ( 4

√
n+ 1− x1)(

√
q ± 1) . (30)

Assume that x7 > 0. Thus q ≡ 1 mod 16 by Lemma 4.5(3). If x1 = 0,
then x7 = 4

√
n + 1 by (29) and hence

√
n + 1 ≥ ( 4

√
n + 1)(

√
q ± 1) by (30).

That is 4
√
n − 1 ≥ (

√
q ± 1) ≥ √q − 1. This yields 4

√
n ≥ √q, which is a

contradiction, since n < q2. Then x1 ≥ 1. If x1 = 1, then x7 = 4
√
n by (29).

Furthermore,
√
n + 1 ≥ 1 + 4

√
n(
√
q ± 1) by (30). That is 4

√
n ≥ (

√
q ± 1).

As 4
√
n <

√
q by our assumption, then

√
q ≡ 3 mod 4 and 4

√
n =

√
q − 1. By

substituting the determined values of x1, x7 and of 4
√
n in (30), we see that this

one is satisfied as an equality. So, x9 = 0 and S4 = 0 by Table I. Therefore,
n+1 = 1+S+(

√
q−3)(q+1). As q+1 | S, being S = q+1

2 S1 and being S1 even
by its definition, then q + 1 | n. Consequently, q + 1 | (

√
q − 1)4. Elementary

calculations of the previous relation yield q + 1 | 4. Hence, we arrive at a
contradiction, since q is a square as x7 > 0. Therefore, x1 ≥ 2. Assume that
x1 = 2. Then x7 = 4

√
n−1 by (29). Furthermore,

√
n+1 ≥ 2+( 4

√
n−1)(

√
q±1)

by (30). This yields 4
√
n + 1 ≥ √q ± 1. As 4

√
n <

√
q by our assumption, then√

q ≡ 3 mod 4 and 4
√
n ≥ √q − 2. Then either 4

√
n =

√
q − 1 or 4

√
n =

√
q − 2,

again since 4
√
n <
√
q. Actually, the case 4

√
n =
√
q − 1 is ruled out by the above

argument. So, 4
√
n =

√
q − 2. This forces

√
n + 1 ≥ 2 + ( 4

√
n − 1)(

√
q ± 1)

to be an equality. As a consequence, x9 = 0 and S4 = 0 by Table II. Thus
n + 1 = 2 + S1 + (

√
q − 3)(q + 1) by Table I. As q + 1 | S1, then q + 1 | n − 1.

Hence q + 1 | (
√
q − 2)4 − 1, since 4

√
n =

√
q − 2. Easy computations yield a

contradiction. Therefore, x1 ≥ 3 for x7 > 0. Actually, x1 ≥ 3 also for x7 = 0 by
(29), since 4

√
n ≥ 2. Thus x1 ≥ 3 in each case, which is the assertion (2b).

Now, G and hence γ acts on [X ] for each point X of the x1 ones fixed by G
on l. Then γ fixes at least 3 lines of [X ] for each point X of the x1 ones fixed by
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G on l by dual of Lemma 4.4. So, γ induces the identity on Fix(σ), since x1 ≥ 3

and since Fix(γ) ∩ l = Fix(σ) ∩ l. Thus, we have proved the assertion (2c).

Now, we may apply the dual of the above argument to [X ] in the role of l for
each point X of the x1 ones fixed by G on l. This yields that G fixes at least
3 lines through each of these x1 points on l. Then G is planar, which is the
assertion (2d).

Proposition 4.7. The group Tj induces a homology on Fix(σ) for either j = 1 or
j = 2, and the following hold:

(1) x1 = 0 ;

(2) x7a, x7b > 0. In particular, either x7a = 1 or x7b = 1 .

Proof. Assume that Tj induces a Baer involution on Fix(σ) for each j = 1, 2.
Then x1 ≥ 3 and γ induces the identity on Fix(σ) by Lemma 4.6(2b) and (2c),
respectively. Then, by Table I and by Lemma 4.6(2b), we have the following
system of Diophantine equations:

4
√
n+ 1 = x1 + x7 (31)
√
n+ 1 = x1 + x7(

√
q ± 1) + x9

q − 1

pe − 1
+ S4 (32)

n+ 1 = x1 + x7

√
q(q + 1) + x9

peq2 − 1

2(pe − 1)
+
q + 1

2
S1 . (33)

Suppose that x7 = 0. Then 4
√
n+ 1 = x1 by (31) and hence o(Fix(G)) = 4

√
n

by Lemma 4.6(2d). Thus ,
√
n+1 = S4+x9

q−1
pe−1 + 4

√
n by (32). As a consequence,

S4 + x9 > 0. Let ρt, where t = 1 or 2, be the representatives the two conjugates
of p-elements inG. Then ρt is planar for each t = 1, 2 sinceG is planar. In partic-
ular, ρt fixes a Baer subplane of Π by [16, Theorem 3.7], since Fix(G) ⊂ Fix(ρt)

and o(Fix(G)) = 4
√
n. Furthermore, Fix(G) ⊆ Fix(〈ρt, σ〉) ⊆ Fix(ρt). Then ei-

ther Fix(〈ρt, σ〉) = Fix(G) or Fix(〈ρt, σ〉) = Fix(ρt) again by [16, Theorem 3.7],
since Fix(G) is a Baer subplane of Fix(ρt). Actually, Fix(〈ρt, σ〉) = Fix(ρt), since
S4 + x9 > 0. This yields x9 = 0 and S1 = S4 again by Table II. In particular,
S1 > 0, since S4 + x9 > 0 and x9 = 0. Moreover, Fix(ρt) ⊆ Fix(σ). Actu-
ally, Fix(ρt) = Fix(σ), since Fix(ρt) and Fix(σ) are Baer subplanes of Π. Then
1
2S1 = S4, since o(Fix(ρt)) = 1

2S1 + 4
√
n and o(Fix(σ)) = S4 + 4

√
n by Tables

II and I, respectively. Hence, we arrive at a contradiction, since S1 = S4 and
S1 > 0. Thus, x7 > 0.

Let us focus on the group 〈ρt, σ〉, t = 1, 2. Then 〈ρt, σ〉 is planar for each
t = 1, 2, since Fix(G) ⊆ Fix(〈ρt, σ〉. In particular, o(Fix(〈ρt, σ〉)) ≤ 4

√
n + 1

by [16, Theorem 3.7], since o(Fix(〈ρt, σ〉)) is a proper subplane of Fix(σ) as
x7 > 0, and since Fix(σ) is a Baer subplanes of Π. Moreover, by Table II,
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o(Fix(〈ρt, σ〉)) + 1 = x1 + x7ε + x9kt + 1
2S4, where ε = 2 or 0 according to

whether
√
q ≡ 1 mod 4 or

√
q ≡ 3 mod 4, respectively. So,

x1 + x7ε+ x9kt +
1

2
S4 ≤ x1 + x7, for each t = 1, 2 , (34)

since o(Fix(〈ρt, σ〉)) ≤ 4
√
n+1 and since 4

√
n+1 = x1+x7 by (31). It follows from

(34) that ε = 0 and hence
√
q ≡ 3 mod 4, as ε = 2 or 0 according to whether√

q ≡ 1 mod 4 or
√
q ≡ 3 mod 4. Then summing up the two inequalities in (34)

(one for t = 1 and the other for t = 2) and then subtracting 2x1 to the sum, we
obtain

S4 + x9(k1 + k2) ≤ 2x7 . (35)

Assume that S4 + x9 > 0. If x9 = 0, then S4 > 0. Moreover, S4 ≤ 2x7 by (35).
Since Fix(G) is a proper subplane of Fix(Tj), then (x1 − 1)2 ≤ (x1 − 1) + x7

by [16, Theorem 3.7], and hence x1 − 1 ≤ x7. Then x1 − 1 + S4 ≤ 3x7, since
S4 ≤ 2x7. Now, note that

√
n + 1 = x1 + x7(

√
q − 1) + S4 by (32), being

x9 = 0 and
√
q ≡ 3 mod 4. This produces

√
n ≤ 3x7 + x7(

√
q − 1) as S4 ≤ 2x7.

Hence, x7 ≥
√
n√
q+2

. On the other hand, n+ 1 ≥ x7
√
q(q + 1) + 1 by (33), since

x1 ≥ 1 (actually, x1 ≥ 3). Now, by substituting x7 ≥
√
n√
q+2

in the last inequality,

we obtain n ≥
√
n√
q+2

√
q(q + 1). Since q+1√

q+2
=
√
q − 2 + 5√

q+2
, we actually

obtain
√
n > (

√
q − 1)2 and hence

√
n ≥ (

√
q)2, since

√
n is a square. This

is impossible, since n < q2 by our assumptions. Therefore, x9 > 0. Actually,
x9 = 1 by Lemma 3.5(6). Then 2x7 ≥ k1 + k2 by (35). Hence, x7 ≥ q−pe

2pe(pe−1) ,

since k1 + k2 = q−pe
pe(pe−1) . Recall that q = p2we, w ≥ 1. Hence x7 ≥ p2we−pe

2pe(pe−1) .

Now, by substituting these value in
√
n ≥ x7(

√
q − 1) + q−1

pe−1 which is obtained
by (32), as x1 ≥ 1 and x9 = 1 and

√
q ≡ 3 mod 4, we have

√
n ≥ p(2w−1)e − 1

2(pe − 1)
(pwe − 1) +

p2we − 1

pe − 1
.

Furthermore, since q = p2we and
√
q ≡ 3 mod 4, then w is odd. Assume that

w ≥ 3. Then pwe−1
pe−1 ≥ p2e +pe+ 1 and hence pwe−1

pe−1 > 2pe. Then
√
n > p2we−1

pe−1 +

(p(2w−1)e − 1)pe and hence
√
n > p2we. Thus

√
n > q, which is contradiction,

since
√
n < q by our assumptions. Then w < 3 and hence w = 1, since w is

odd. So, pe =
√
q and hence pe ≡ 3 mod 4, since

√
q ≡ 3 mod 4. This is a

contradiction, by Lemma 4.5(4).

Finally, assume that S4 = x9 = 0. Then n+ 1 ≥ x1 + x7
√
q(q + 1) by (33). If

we subtract (31) from (32), and then (31) from n + 1 ≥ x1 + x7
√
q(q + 1), by

bearing in mind that
√
q ≡ 3 mod 4, we obtain
√
n− 4
√
n = x7(

√
q − 2) (36)

n− 4
√
n ≥ x7

[√
q(q + 1)− 1

]
. (37)
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Now, combining (36) and (37), and bearing in mind that x7 > 0, we obtain

n− 4
√
n√

n− 4
√
n
≥
√
q(q + 1)− 1√

q − 2
. (38)

Since n − 4
√
n = (

√
n − 4

√
n)(
√
n + 4

√
n + 1) and since

√
q(q+1)−1√
q−2

> q, then√
n+ 4
√
n+1 > q by (38). Then ( 4

√
n+1)2 > q and hence 4

√
n >
√
q−1, as q is a

square. On the other hand, 4
√
n <
√
q by our assumptions. So,

√
q − 1 < 4

√
n <√

q, with 4
√
n and

√
q integers. This is clearly a contradiction. At this point, the

assertion easily follows by Lemma 4.6.

Lemma 4.8. The following hold:

(1) x9 = 0 ;

(2) S4 > 0 ;

(3) Let h = 2 or 4. Then
√
q∓1
h | |K| for

√
q ≡ ±1 mod 8, respectively.

Proof. The group Tj induces a homology on Fix(σ) for at least one j = 1 or 2

by Proposition 4.7. Furthermore, x1 = 0, x7a, x7b > 0 and either x7a = 1 or
x7b = 1. We may assume that T1 does and that x7a = 1. Let β̄1 is a (Cβ̄1

, aβ̄1
)-

homology induced by T1 on Fix(σ). Set {X} = aβ̄1
∩ l. Then, by Table I and by

Lemma 4.5, we have

√
n+ 1 = S4 + x7(

√
q ± 1) + x9

q − 1

pe − 1
(39)

n+ 1 =
q + 1

2
S1 + x7

√
q(q + 1) + x9

peq2 − 1

2(pe − 1)
. (40)

Since S1 ≥ S4, we compose (39) and (40) obtaining

n+ 1 ≥ q + 1

2
(
√
n+ 1) + x7

q + 1

2
(
√
q ∓ 1) + x9

q2 − 1

2
. (41)

In particular, n + 1 ≥ q+1
2 (
√
n + 1) + x9

q2−1
2 . Since q + 1 >

√
n + 1, we

have n+ 1 > ( q+1
2 + x9

q−1
2 )(
√
n+ 1). Since

√
n+ 1 does not divide n+ 1 or n,

then n − 1 ≥ ( q+1
2 + x9

q−1
2 )(
√
n+ 1) being the second part an integer. Hence,

dividing each term by
√
n+ 1, we obtain

√
n ≥ 1+ q+1

2 +x9
q−1

2 . If x9 ≥ 1, then√
n ≥ 1 + q, which is a contradiction. Therefore, x9 = 0 and we have proved

the assertion (1).

Assume that S4 = 0. Then x7 =
√
n+1√
q±1

by (39) and hence n + 1 = q+1
2 S1 +

√
n+1√
q±1

√
q(q + 1) by (40), as x9 = 0. Note that

√
q ± 1 | √n + 1, since x7 is

an integer, otherwise we would have a contradiction. In particular, n + 1 ≥√
n+1√
q±1

√
q(q + 1). As

√
n ≥ 2, we have

√
n+ 1 - n+ 1. Furthermore,

√
n+ 1 - n.
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Hence, n − 1 ≥
√
n+1√
q±1

√
q(q + 1) since the second part is an integer. So,

√
n ≥

1 +
√
q(q+1)√
q±1

. If
√
q ≡ 3 mod 4, then

√
n > q + 1, which is a contradiction by our

assumptions. As a consequence,
√
q ≡ 1 mod 4. Then

√
n ≥ 1 +

√
q(q+1)√
q+1

and
hence

√
n > (

√
q − 1)2.

If x7 > 2, then T2 must induce a Baer collineation Fix(σ) and consequently
4
√
n must be an integer. Since n < q2, then 4

√
n <

√
q. Actually, 4

√
n ≤ √q − 1,

since 4
√
n is an integer. Therefore,

√
n ≤ (

√
q − 1)2 by squaring. This is a

contradiction, since
√
n > (

√
q − 1)2 by the above argument.

If x7 = 2. Then
√
n = 2(

√
q+1)−1 by (39), since x9 = 0, and since S4 = 0 by

our assumption. Hence
√
n = 2

√
q + 1 . On the other hand, n ≥ 2

√
q(q + 1)− 1

by (40). By composing these inequalities, we have (2
√
q+ 1)2 ≥ 2

√
q(q+ 1)−1.

Easy computations yield a contradiction, since q > 9. Thus, S4 > 0 which is the
assertion (2).

As x7a, x7b > 0, it follows that q is a square and q ≡ 1 mod 16 by Lemma 4.5(3).
So, either

√
q ≡ 1 mod 8 and

√
q ≡ 7 mod 8. Since T1 fixes exactly two points

on l, by Table I, these ones must lie in either a G-orbit on l of type (7a) or in a
G-orbit on l of type (7b) according to whether

√
q ≡ 1 mod 8 or

√
q ≡ 7 mod 8,

respectively.

Assume that
√
q ≡ 1 mod 8. Then Cβ̄1

, X ∈ CG
β̄1

, where GCβ̄1

∼= PSL(2,
√
q),

since T1 fixes exactly two points in G-orbit of type (7a). In particular, GCβ̄1
=

GX , since GCβ̄1
C PGL(2,

√
q) < PSL(2, q). Recall that C = CG(σ) and that

C̄ = C/K, where K is the kernel of C on Fix(σ). Clearly, C ∼= Dq−1 and
β̄1 ∈ C̄. Note that CX = C ∩ GX = CGX (G) and hence CX ∼= D√q−1, since
GX ∼= PSL(2,

√
q). In particular, CX = CX,Cβ̄1

. Set C0 = CX,Cβ̄1
. Clearly,

K E C0 and β̄1 ∈ C̄0, where C̄0 = C0/K. ThenX and Cβ̄1
are the unique points

on Fix(σ) ∩ l fixed by C̄0, as β̄1 ∈ C̄0. Set h =
∣∣C̄0

∣∣. Then h is even, as β̄1 ∈ C̄0.
If
∣∣C̄0

∣∣ > 4, then C̄0 is dihedral and therefore exists a point Y ∈ l such that
C̄Y = C̄ by Lemma 2.10. That is C ≤ GY . Then GY = C, where C = CG(σ),
since C is maximal in G as q > 9, and since x1 = 0 by Proposition 4.7(1).
Nevertheless, this is a contradiction, since x2 = 0 by Lemma 4.5(2). Thus,
h =

∣∣C̄0

∣∣ ≤ 4. Actually, either h = 2 or 4, since h is even. On the other

hand, |C0| = h |K|. Hence,
√
q−1
h | |K|, where h = 2, 4, since C0

∼= D√q−1 as
C0 = CGX (G) and GX ∼= PSL(2,

√
q).

Now, repeating the previous argument for
√
q ≡ 7 mod 8, we find that C0

∼=
D√q+1 and hence

√
q+1
h | |K|, where h = 2, 4. So, we have proved the asser-

tion (3).

Lemma 4.9. If the p-elements are not planar, then S1 = S4 = 2(
√
q + 1).
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Proof. Let ρt, t = 1, 2, be the representatives the two conjugate classes of p-
elements in G. Since x7a, x7b > 0, the collineation ρt fixes at least 2

√
q points

on l for each t = 1, 2 by Table II. Then ρt must fixes at least 2
√
q lines on Π

by [16, Theorem 13.3]. Since ρt cannot be planar, all these lines must concur
to a unique point Xt of Π. It is a plain that X1 and X2 might coincide. Let S
be the Sylow p-subgroup of G containing ρt for each t = 1, 2. Clearly, ρt fixes
XS
t and at least 2

√
q lines through each point of XS

t , since S is abelian. Then∣∣XS
t

∣∣ = 1, since ρt cannot be planar on Π by our assumption. Thus S fixes Xt

for each t = 1, 2. Assume that Xt ∈ Π − l for at least one t = 1 or 2. As S4 > 0

by Lemma 4.8(2), then there exists a point Y on l fixed by S. Hence S acts
on XtY − {Xt, Y }. Assume that SR 6= 〈1〉 for some point R ∈ XtY − {Xt, Y }.
Let ψ ∈ SR, ψ 6= 1. Clearly, ψ fixes Y and R on Π − l. Furthermore, ψ fixes
at least 2

√
q points on l. Indeed, ψ conjugate either to ρ1 or ρ2 and each of

these collineations fixes at least 2
√
q points on l as x7a, x7b > 0. So, ψ is planar.

This is impossible by our assumption. Thus, S is semiregular on XtY −{Xt, Y }.
Hence, q | n − 1. That is n = aq + 1 for some positive integer a. On the other
hand,

n+ 1 =
q + 1

2
S4 + x7

√
q(q + 1) (42)

by (40) of Lemma 4.8, since x9 = 0 by Lemma 4.8(1). Since S1 is even, then
q + 1 | n + 1 by (42). Then q + 1 | a − 1, since n = aq + 1. If a = 1, it
follows that n = q + 1. As q ≡ 1 mod 8, we have that n ≡ 2 mod 4. Hence,
we arrive at a contradiction by [16, Theorem 13.18], since q > 3. Thus, a > 1.
Hence, a = θ(q + 1) + 1, with θ ≥ 1. Therefore, n = θq(q + 1) + q + 1. This
yields n > q2, as θ ≥ 1, which is a contradiction. So, Xt ∈ l for each t = 1, 2.
Then GXt

∼= Fq .Zdt by Table I, since S fixes Xt, |S| = q, and since x1 = 0 by
Proposition 4.7(1). As a consequence, x10 > 0.

Note that σ normalizes S and it acts as the inversion on S. Thus, σ normalizes
〈ρt〉 for each t = 1, 2. If dt is odd, then σ moves Xt. Then ρt fixes at least 2

√
q

lines through Xt and at least other 2
√
q ones though Xtσ. As a consequence, ρt

is planar on Π. Nevertheless, this contradicts our assumptions. So, dt must be
even. This implies S2′ = 0. Therefore, S1 = S4 by Lemma 4.5(1). In particular,
by (42), we have n+ 1 = q+1

2 S4 + x7
√
q(q + 1).

Let rt be a line of [Xt]− {l} fixed by ρt. Clearly each line of rGt intersect l in
a (unique) point of XG

t , where GXt ∼= Fq .Zdt and dt is even. In particular each
element in ρGt fixes at least one line of rGt . Since the p-elements in G cannot
be planar, then for each element τ in ρGt actually there exists a unique point
Qτ in XG

t such that each line of Π fixed by τ lies in [Qτ ]. As a consequence,
each p-element in G fixes a subset of a pencil of lines concurrent to a point lying
either in XG

1 or in XG
2 . If x10 > 2, there exists a G-orbit of type (10), say QG,

such that S is semiregular on [Q] − {l}. Thus q | n and hence n = bq where
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b ≥ 1. Then q + 1 | b− 1, since q + 1 | n+ 1 arguing as above. As n > q by our
assumptions, then b > 1 and hence b = f(q+1)+1. Therefore, n = fq(q+1)+q,
which is a contradiction, since n < q2 by our assumption. Thus, 0 < x10 ≤ 2.
That is x10 = 1 or 2.

Assume that x10 = 1. Then X1 = X2 and d1 = d2, since ρ1 and ρ2 lies in the
same Sylow p-subgroup S of G. Set X = X1 = X2 and d = d1 = d2. Then S4 =
q−1
d . Now, recall that

√
q∓1
h | |K|, h = 2, 4, for

√
q ≡ ±1 mod 8, respectively, by

Lemma 4.8(3). Thus,
√
q∓1
h | |CX |, h = 2, 4, for

√
q ≡ ±1 mod 8, respectively,

since K ≤ CX . This fact, in conjunction with the fact that GX ∼= Fq .Zd, yields
CX ∼= Zd, where d =

√
q∓1
h u, h = 2, 4, for

√
q ≡ ±1 mod 8, respectively. Here

u is a positive divisor of d. So, S4 = h
√
q±1
u for

√
q ≡ ±1 mod 8, respectively,

since S4 = q−1
d . Now, let P be a point of l such that GP ∼= PSL(2,

√
q) and let

SP = S ∩ GP . Then SP must be semiregular on [P ], since P /∈ XG, since the
lines fixed by any non trivial element in S lie inXG and since S does not contain
planar elements. Hence,

√
q | n as |SP | =

√
q. Then

√
q | 1

2S4 − 1 by (42). That
is
√
q | h

√
q±1
2u − 1 for

√
q ≡ ±1 mod 8, respectively. So, there exists a positive

integer x such that x
√
q = h

√
q±1
2u − 1 for

√
q ≡ ±1 mod 8, respectively. Since√

q > 3 by our assumption, there are no admissible solutions of the Diophantine
equation x

√
q = h

√
q−1
2u − 1 by Lemma 2.7(1). Hence x

√
q = h

√
q+1
2u − 1 and√

q ≡ 1 mod 8. Then (x, h, u,
√
q) = (1, 2, 1,

√
q) by Lemma 2.7(2). Therefore,

S4 = 2(
√
q + 1). Since S1 = S4, we have the assertion.

Assume that x10 = 2. Then S4 = q−1
d1

+ q−1
d2

and X1 6= X2 for x10 = 2,

since S1 = S4. Now, recall that
√
q∓1
h | |K|, h = 2, 4, for

√
q ≡ ±1 mod 8,

respectively, by Lemma 4.8(3). Thus,
√
q∓1
h | |CXt |, h = 2, 4, for

√
q ≡ ±1 mod

8, respectively, since K ≤ CXt for each t = 1, 2. On the other hand, CXt ∼=
Zdt , since GXt

∼= Fq .Zdt for each t = 1, 2. So, dt =
√
q∓1
h ut, h = 2, 4, for√

q ≡ ±1 mod 8, respectively. Here, ut is a positive divisor of dt. Then S4 =

h
√
q∓1
u1

+ h
√
q∓1
u2

, where h = 2 or 4, for
√
q ≡ ±1 mod 8, respectively, since

S4 = q−1
d1

+ q−1
d2

. Arguing as above, we have
√
q | 1

2S4 − 1 by (42). Thus,
√
q | h

√
q∓1

2u1
+ h

√
q∓1

2u2
− 1, where h = 2 or 4 or

√
q ≡ ±1 mod 8, respectively,

since S4 = h
√
q∓1
u1

+ h
√
q∓1
u2

. Then there exists a positive integer x such that

x
√
q = h

√
q∓1

2u1
+ h

√
q∓1

2u2
− 1, where h = 2 or 4 or

√
q ≡ ±1 mod 8, respectively

(in particular, S4 = 2(x
√
q+ 1)). Then x = 1 in any case by Lemma 2.8 and 2.9,

since
√
q ≡ ±1 mod 8. Therefore, S4 = 2(

√
q + 1). Since S1 = S4, we have the

assertion.

Lemma 4.10. The group Tj induces a homology on Fix(σ) for each j = 1 or 2.

Proof. The group Tj induces a homology on Fix(σ) for either j = 1 or j = 2
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by Proposition 4.7. Assume that T1 does it. We may also assume that x7a = 1.
Assume also that T2 induces a Baer collineation on Fix(σ). Then by Table I in
conjunction with Lemmas 4.5, 4.8 and Proposition 4.7, we have the following
system of Diophantine equations:

4
√
n+ 1 = 2x7b (43)
√
n+ 1 = S4 + x7(

√
q ± 1) (44)

n+ 1 =
q + 1

2
S1 + x7

√
q(q + 1) . (45)

By substituting x7 = 1 + x7b in (43), we have that x7 =
4
√
n+3
2 . Now, by sub-

stituting this value of x7 in and (44), we obtain
√
n+ 1 = S4 + ( 4

√
n+ 3)

√
q±1
2 .

That is
√
n− 9 = (S4 − 10) + ( 4

√
n+ 3)

√
q ± 1

2
. (46)

Assume that S4 = 10. Then 4
√
n = 3 +

√
q±1
2 by (46). As x7 > 0, being x7 =

1 + x7b, then q ≡ 1 mod 16 by Lemma 4.5(3). This yields
√
q ≡ 1, 7 mod 8.

So,
√
n ≡ 3 mod 4, which is a contradiction by Lemma 3.3. Hence, S4 6= 10.

Nevertheless, 4
√
n+ 3 | S4 − 10 again by (46).

Assume that S4 < 10, hen 4
√
n + 3 | 10 − S4. As 4

√
n ≥ 2, then 4

√
n + 3 ≥ 5

and therefore 10 − S4 ≥ 5. That is S4 ≤ 5. Then S4 = 2 or 4, since S4 is even
by its definition and since S4 > 0 by Lemma 4.8(2). Assume that S4 = 4. It
follows that

√
n = 3+x7(

√
q±1). As x7 > 0, then

√
q ≡ ±1 mod 8 by the above

argument. Then
√
n ≡ 3 mod 4, as

√
n = 3 + x7(

√
q ± 1). Nevertheless, this

contradicts Lemma 3.3. Therefore, S4 = 2. Hence, 4
√
n+3 | 8, as 4

√
n+3 | S4−10.

Then 4
√
n+ 3 = 8, since 4

√
n ≥ 2. As a consequence, 4

√
n = 5. This yields x7 = 4,

as x7 =
4
√
n+3
2 . Thus, 4(

√
q ± 1) = 24 by (44), as S4 = 2. So,

√
q ± 1 = 6.

On the other hand,
√
q ± 1 ≡ 0 mod 8 by the previous argument, as x7 > 0.

Nevertheless, this contradicts
√
q ± 1 = 6.

Assume that S4 > 10. Then S4 = θ( 4
√
n + 3) + 10 with θ ≥ 1. Assume

θ is odd. Then θ( 4
√
n + 3) = S4 − 10 and hence 4

√
n − 3 = θ +

√
q±1
2 . Note

that 4
√
n = (3 + θ) +

√
q±1
2 is even, as θ is odd. Thus

√
n is even, which is

a contradiction, since T1 induces a homology on Fix(σ). Then θ is even and
hence θ ≥ 2, as θ ≥ 1. Since 4

√
n+ 1 = 2x7b, then S4 > 4x7b.

Let ρt, t = 1 or 2, be the representative of the two conjugate classes p-
elements in G. Suppose that ρt is planar for either t = 1 or t = 2. Then
o(Fix(ρt)) + 1 = 1

2S1 + x7v2
√
q by Table II, where v = a for t = 1 and v = b

for t = 2, since x1 = 0 by Proposition 4.7, since x8 = 0 by Lemma 4.5(2)
and since x9 = 0 by Lemma 4.8(1). Clearly, σ acts on Fix(ρt), since σ inverts
ρt. Furthermore, it follows from Table II that |Fix(〈ρt, σ〉) ∩ l| = 1

2S4 + x7vε,
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where ε is either 2 or 0 according to whether
√
q ≡ 1 mod 4 or

√
q ≡ 3 mod 4,

respectively. Since S4 > 10, then |Fix(〈ρt, σ〉) ∩ l| > 3. On the other hand,
|Fix(〈ρt, σ〉) ∩ l| < 1

2S1 + x7v2
√
q. So, 〈ρt, σ〉 induces a Baer collineation on

Fix(ρt). Therefore, 〈ρt, σ〉 is planar. In particular, Fix(〈ρt, σ〉) is a subplane of
Fix(σ) of order 1

2S4 + x7vε− 1, where v = a for t = 1 and v = b for t = 2. Then
1
2S4 + x7vε ≤ 4

√
n+ 1 by [16, Theorem 3.7], since Fix(σ) is a Baer subplane of

Π. This yields 1
2S4 + x7vε ≤ 2x7b by (43). In particular, 1

2S4 ≤ 2x7b and hence
S4 ≤ 4x7b. Hence, we arrive at a contradiction, since S4 > 4x7b by the above
argument. Thus,G cannot contain p-planar elements. Then S1 = S4 = 2(

√
q+1)

by Lemma 4.9. This yields x7 =
√
n−1√
q−1
− 2 by (44). By substituting these values

of S4 and x7 in (45), we have

n+ 1 = (q + 1)(
√
q + 1) +

(√
n− 1√
q − 1

− 2

)√
q(q + 1) .

By elementary calculations of this one, we have

n− q =

√
n−√q√
q − 1

√
q(q + 1) .

Thus,
√
n+
√
q ≥ q+1 and

√
n ≥ q−√q+1. On the other hand,

√
n ≤ (

√
q−1)2

since n < q2, q is a square and n is a fourth power, since T2 induces a Baer
collineation on Fix(σ) by our assumption. So, we obtain a contradiction, since
q−√q+ 1 > (

√
q−1)2. Hence, Tj induces a homology on Fix(σ) for each j = 1

or 2.

Proposition 4.11. The collineation γ induces a Baer collineation on Fix(σ) and
hence K E Z q−1

4
.

Proof. The group Tj induces a homology on Fix(σ) for each j = 1 or 2 by
Lemma 4.10. Then x7a = x7b = 1 by Table I, since x2 = x3 = x4 = x5 = x6 =

x8 = 0 by Lemma 4.5(2), since x1 = 0 by Proposition 4.7(1), and since x9 = 0

by Lemma 4.8(1). Therefore, x7 = 2. Then we obtain the following system of
Diophantine equations:

√
n+ 1 = S4 + 2(

√
q ± 1) (47)

n+ 1 =
q + 1

2
S1 + 2

√
q(q + 1) . (48)

Since S1 ≥ S4, then n + 1 ≥ q+1
2 S4 + 2

√
q(q + 1) by (48). Now, composing

this inequality with (47), we obtain

n+ 1 ≥ q + 1

2
(
√
n+ 1) + (q + 1)(

√
q ∓ 1) (49)
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and hence n+ 1 >
[
q+1

2 +
√
q ∓ 1

]
(
√
n+ 1), since

√
n+ 1 < q + 1. As

√
n ≥ 2,

we
√
n+1 - n+1. Furthermore,

√
n+1 - n. So, n−1 ≥

[
q+1

2 +
√
q ∓ 1

]
(
√
n+1).

Dividing each term by
√
n + 1 in the previous inequality, we obtain

√
n − 1 >

q+1
2 +

√
q ± 1. This implies

√
n− 1 > q−1

2 +
√
q ± 1 and therefore

√
n+ 1 >

(√
q ± 1

)
(

√
q ∓ 1

2
+ 1) . (50)

Let ρt, t = 1 or 2, be the representatives of the two conjugate classes p-el-
ements in G. Suppose that ρt is planar. Then o(Fix(ρt)) + 1 = 1

2S1 + 2
√
q by

Table II, since x7a = x7b = 1. Clearly, σ acts on Fix(ρt), since σ inverts ρt.
Again by Table II, we have |Fix(〈ρt, σ〉) ∩ l| = 1

2S4 + ε, where ε is either 2 or 0

according to whether
√
q ≡ 1 mod 4 or

√
q ≡ 3 mod 4, respectively.

Assume that
√
q∓1
2 ≥ 5. Then

√
n+1 > 6 (

√
q ± 1) and hence S4 > 4 (

√
q ± 1)

by (47). In particular, S4 > 8. Then |Fix(〈ρt, σ〉) ∩ l| > 3. On the other hand,
|Fix(〈ρt, σ〉) ∩ l| < 1

2S1 + 2
√
q. Hence, 〈ρt, σ〉 induces a Baer collineation on

Fix(ρt). Then
(

1
2S4 + ε− 1

)2 ≤ 1
2S1 + 2

√
q by [16, Theorem 3.7]. Note that

( 1
2S4 + ε − 1)2 > S4, as S4 > 8. So, S4 < 1

2S4 + 2
√
q − 1. Hence, S4 <

4
√
q − 2. On the other hand, we proved S4 > 4 (

√
q ± 1). Combining these

two inequalities involving S4, we obtain
√
q ≡ 3 mod 4 and 4

√
q − 2 > S4 >

4 (
√
q − 1). Therefore, S4 = 4

√
q− 3, which is a contradiction, since S4 must be

even.

Assume that
√
q∓1
2 ≤ 4. Recall that the upper sign if

√
q ≡ 1 mod 4 and the

lower sign if
√
q ≡ 3 mod 4 This yields q = 25 or 49, since q is odd and q > 9. Ac-

tually, only the case q = 49 is admissible, since q ≡ 1 mod 16 by Lemma 4.5(3),
being x7 > 0. Now, by substituting q = 49 in (49), we have

√
n ≥ 35. Hence

35 ≤ √n < 49, since
√
n <

√
q by our assumptions. Furthermore, q+1

2 | n + 1

by (48). That is 25 | n + 1, since q = 49. Now, filtering the list 35 ≤ √n < 49

with respect to the conditions 25 | n + 1, and
√
n odd, as the Tj induces a

homology on Fix(σ) for each j = 1, 2, we obtain
√
n = 43. Nevertheless, this

contradicts Lemma 3.3. As a consequence, the p-elements in G cannot be pla-
nar. Then S4 = 2(

√
q + 1) by Lemma 4.9. This is still a contradiction, since

S4 > 4 (
√
q ± 1) by the above argument, being q > 9.

4.2 The collineation γ induces a Baer involution on Fix(σ)

Proposition 4.12. The group Tj induces a Baer collineation on Fix(σ) for each
j = 1, 2.

Proof. Recall that C = CG(σ) and let K and K∗ be the kernels of the action
of C on Fix(σ) and on Fix(σ) ∩ l, respectively. In particular, K E Z q−1

4
, since
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γ induces a Baer involution γ̄ on Fix(σ) by Proposition 4.11. Let β̄j be the
involution induced on Fix(σ) by a Klein subgroup Tj containing σ (and hence
lying in C) for j = 1, 2.

Suppose that K ∼= Z q−1
4

. Assume also that β̄j is an involutory (Cβ̄j , aβ̄j )-per-
spectivity. Then Cβ̄j ∈ l ∩ Fix(σ) and aβ̄j 6= l by Lemma 4.2. Thus, K ≤ GCβ̄j .

This implies C ≤ GCβ̄j , since the collineation γ̄ fixes Cβ̄j as γ̄ centralizes β̄j
and since K ∼= Z q−1

4
. Note that NG(Tj) ∩ C ∼= D8, where NG(Tj) ∼= S4.

Then NG(Tj) ≤ GCβ̄j , since |Fix(Tj) ∩ l| = 1 or 2, since Cβ̄j ∈ Fix(Tj) ∩ l
and since C ≤ GCβ̄j . So, G fixes GCβ̄j , since 〈C,NG(Tj)〉 ≤ GCβ̄j and G =

〈C,NG(Tj)〉. Hence, we arrive at a contradiction by dual of Lemma 4.2, since

Fix(Tj) ∩
[
GCβ̄j

]
= Fix(σ) ∩

[
GCβ̄j

]
.

Suppose that K < Z q−1
4

. Then C/K ∼= D2m with m ≡ 0 mod 4, as q ≡
1 mod 8. If n is odd, then each involution induced on Fix(σ) by a Klein subgroup
Tj containing σ is a Baer involution by [19, Proposition 3.3], since γ̄ is a Baer
involution of Fix(σ). Thus, we have proved the assertion for n odd.

Assume that n is even. Assume also that β̄1 is an involutory (Cβ̄1
, aβ̄1

)-elation
of Fix(σ). As Fix(T1) ∩ l =

{
Cβ̄1

}
, then NG(T1) ≤ GCβ̄1

, where NG(T1) ∼= S4

as q ≡ 1 mod 8. Clearly, GCβ̄1
< G, otherwise, we would have a contradiction

by the above argument. Then either GCβ̄1

∼= S4 and q ≡ 9 mod 16 or GCβ̄1

∼=
PGL(2,

√
q) by Table I, since |Fix(T1) ∩ l| = 1. If GCβ̄1

∼= S4, then q = 25 or 41

by Lemma 3.4, since q ≡ 9 mod 16. So,
∣∣∣CGβ̄1

∣∣∣ = q(q2−1)
48 . Then q(q2−1)

48 ≤ n+1 <

q2 + 1, since CG
β̄
⊆ l. Furthermore, n is a fourth power by Proposition 4.11, and

n is even. This is a contradiction, since q = 25 or 41. Thus, GCβ̄ ∼= PGL(2,
√
q).

Now, since |Fix(γ) ∩ l| = 4
√
n+ 1 and |Fix(T1) ∩ l| = 1, then

4
√
n+ 1 = x8

1

2
(
√
q ± 1) + S4 , (51)

where x8a = 1. If x8 ≥ 2, then 4
√
n + 1 ≥ √q ± 1. Then

√
q ≡ 3 mod 4 and

hence 4
√
n ≥ √q − 2, since 4

√
n <
√
q. Actually, 4

√
n =
√
q − 1, since 4

√
n is even

as β̄1 is an involutory (Cβ̄1
, aβ̄1

)-elation of Fix(σ). Therefore, 4
√
n ≡ 2 mod 4 as√

q ≡ 3 mod 4. Then 4
√
n = 2 by [16, Theorem 13.18], since β̄1 acts non trivially

on Fix(γ̄). As a consequence,
√
q = 3. Nevertheless, this is a contradiction, since

q > 9 by our assumptions. Then x8 = x8a = 1 and hence |Fix(T2) ∩ l| = 3 by
Table I. Thus, T2 induces a Baer collineation on Fix(σ). Therefore, 4

√
n+ 1 = 3.

Now, by substituting x8 = 1 and 4
√
n = 2 in (51), we obtain 1

2 (
√
q± 1) +S4 = 3.

As a consequence, S4 = 0 or S4 = 2, since S4 is even. If the latter occurs, then√
q ± 1 = 2. Nevertheless, we again obtain a contradiction, since q > 9. So,
S4 = 0 and

√
q ± 1 = 6. Consequently,

√
q = 5 or 7 and n = 24, which is
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a contradiction, since q < n by our assumptions. Hence, we have proved the
assertion when the order n of Π is even. This completes the proof.

Lemma 4.13. The following occur:

(1) x4 = x5 = x6 = 0 ;

(2) if x7 > 0, then q ≡ 9 mod 16 ;

(3) x8 ≤ 1 ;

(4) if x9 > 0, then pe ≡ 3 mod 4 .

Proof. Recall that γ induces a Baer collineation of Fix(σ) by Proposition 4.11.
Therefore, n is a fourth power. Clearly, 4

√
n ≥ 2.

(1) Note that q ≥ 17, since q ≡ 1 mod 8 and q > 9. Then 4
√
n > 2, since

q < n by our assumption. Assume that 4
√
n = 3 or 7. Thus, Fix(σ) has

order 9 or 49, respectively. Furthermore, the group induced by CG(σ) on
Fix(σ) has order divisible by 4 and each its involution is Baer collineation of
Fix(σ) by Propositions 4.11 and 4.12. Nevertheless, this is a contradiction
by Theorem 2.6, since 4

√
n ≡ 3 mod 4. Thus 4

√
n ≥ 4 and 4

√
n 6= 7. Moreover,

the case 4
√
n 6= 6 by [16, Theorem 3.6]. Hence, 4

√
n ≥ 4 and 4

√
n 6= 6, 7.

Then q > 17, since q < n < q2. Therefore, x4 = 0 by Lemma 3.4, since
q ≡ 1 mod 8.
Assume that x6 > 0. Then q = 25 or 41 by Lemma 3.4(4), since q ≡ 1 mod 8

and q 6= 17. Then 4
√
n = 4, since q < n < q2, since n is a fourth power with

4
√
n ≥ 4 and 4

√
n 6= 6. On the other hand, n + 1 ≥ q(q2−1)

48 by Table I, as
x6 > 0. Thus, either n ≥ 325 or n ≥ 1435 according to whether q = 25 or
41, respectively. This is impossible, since n = 44. So, x6 = 0.
Assume that x5 > 0. Then n+1 ≥ q(q2−1)

120 by Table I. Hence, q(q
2−1)

120 x5−1 ≤
n < q2. Furthermore, q = 25, 41, 49, 81 or 89 by Lemma 3.4(5), since q ≡
1 mod 8. In addition, n is a fourth power with 4

√
n ≥ 4 and 4

√
n 6= 6, 7 by the

above argument. Thus, (q, n) = (25, 44) or (41, 54) or (89, 94). Moreover,
x5 = 1 in each of these cases.
Assume that (q, n) = (41, 54). Let S ∼= Z41 which is normalized by σ.
Since n = 54, then n + 1 ≡ 11 mod 41 and n2 ≡ 10 mod 41. Hence, S is
planar. In particular, o(Fix(S)) = 10 + θ41, where θ ≥ 0. Actually, θ = 0

by [16, Theorem 3.7], since n = 54. Therefore, o(Fix(S)) = 10. Since σ
normalizes S, it acts on Fix(S). Note that σ must act trivially on Fix(S),
otherwise we would have a contradiction by [16, Theorem 13.18]. Thus,
Fix(S) ⊂ Fix(σ). So, we arrive at a contradiction by [16, Theorem 3.7],
since o(Fix(S)) = 10, while o(Fix(σ)) = 25.
Assume that (q, n) = (89, 94). Let U ≤ G such that U ∼= Z89. Since n = 94,
then n + 1 ≡ 65 mod 89 and n2 ≡ 64 mod 89. Hence, U is planar. In
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particular, o(Fix(U)) = 64 + λ89, where λ ≥ 0. Actually, λ = 0 by [16,
Theorem 3.7], since n = 94. Thus, o(Fix(U)) = 64. Let V ≤ NG(U)

such that V ∼= Z11. Clearly, V acts on Fix(U). Since 65 ≡ 10 mod 11 and
642 ≡ 4 mod 11, then V fixes a subplane of Fix(U) of order 9 at least. Then
Fix(U) ⊆ Fix(V ), otherwise we would have a contradiction by [16, Theo-
rem 3.7], since o(Fix(U)) = 64. If Fix(U) ⊂ Fix(V ), we obtain a contra-
diction by [16, Theorem 3.7], since o(Fix(U)) = 64, while o(Fix(V )) ≤ 81

as n = 94. Then Fix(U) = Fix(V ) and hence o(Fix(V )) = 64. Clearly,
V ∼= Z11 must be semiregular on l − Fix(V ). So, 11 | |l − Fix(V )|. This is a
contradiction, since |l − Fix(V )| = 6497, as n = 94.
Assume that (q, n) = (25, 44) and x5 = 1. Let us focus on the action of the
involution σ of Π. Clearly, σ fixes exactly 17 points on l, since it induces
a Baer collineation on Π and n = 44. Let XG the orbit of type (5). Then
|FixXG(σ)| = 6 by Table I. Hence, σ fixes exactly 11 points on l−XG. If Y G

is a on orbit on l of type (3), then Y G ⊆ l−XG. Furthermore, |FixY G(σ)| =
12 again by Table I. Nevertheless, this is a contradiction. Thus, x3 = 0. Then
each admissible non trivial G-orbit on l has length divisible by 13. Indeed,
one can compute each length orbit on l using Table I for q = 25. Therefore,
13 | |l − (l ∩ Fix(G))|. That is 13 | n − x1, since |l ∩ Fix(G)| = x1. Then
x1 ≥ 10, since n = 256 and 257 ≡ 10 mod 13. So, γ, where γ2 = σ, fixes at
least 10 points on l. This contradicts the facts that γ fixes exactly 5 points
on l by Lemma 4.11, being n = 44.

(2) Assume that x7 > 0 and q ≡ 1 mod 16. Then, by Table II, the collineation
γ fixes at least x7(

√
q ± 1) points on l ∩ Fix(σ) according to whether

√
q ≡

1 mod 4 or
√
q ≡ 3 mod 4, respectively. Then 4

√
n + 1 ≥ x7(

√
q ± 1). On

the other hand, 4
√
n <

√
q by our assumption. Hence, 4

√
n + 1 ≤ √q. By

composing, we have x7(
√
q ± 1) ≤ √q. Actually, x7(

√
q ± 1) ≤ √q − 1. So,

x7 = 1 and
√
q ≡ 3 mod 4. Therefore, 4

√
n =

√
q − 2. Let PG the G-orbit

of type (7). Note that Fix(γ) ∩ l = FixPG(γ), since 4
√
n =

√
q − 2. Hence,

x1 = x2 = x8 = 0 by Table I, being x4 = x5 = x6 = 0 by part (1). This
yields 4

√
n + 1 = 2x7 again by Table I, where x7 = 1, since T1 induces a

Baer collineation on Fix(σ). Nevertheless, we again obtain a contradiction,
since 4

√
n ≥ 2. Thus, we have proved the assertion (1).

(3) Assume that x8 ≥ 2. Then, by Table II, the collineation γ fixes at least
√
q±1

points on Fix(σ) ∩ l according to whether
√
q ≡ 1 mod 4 or

√
q ≡ 3 mod 4,

respectively. Then 4
√
n+1 ≥ √q±1. If

√
q ≡ 1 mod 4, then 4

√
n+1 ≥ √q+1

and hence 4
√
n ≥ √q. Nevertheless, this contradicts our assumption. Hence,√

q ≡ 3 mod 4, then 4
√
n ≥ √q−2. Then either 4

√
n =
√
q−1 or 4

√
n =
√
q−2,

since 4
√
n <
√
q and q is a square.

Assume that 4
√
n =

√
q − 1. Then 4

√
n ≡ 2 mod 4 as

√
q ≡ 3 mod 4. Let
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C = CG(σ) and recall that K E Z q−1
4

, where K is the kernel of the action

of C on Fix(σ). Thus, 4 |
∣∣C̄
∣∣, where C̄ = C/K. Note also that each

involution in C̄ is a Baer collineation of Fix(σ). Indeed, each involution in
C̄ is induced either by γ or by the Tj for each j = 1, 2, and all these ones
are Baer collineations of Fix(σ) by Propositions 4.11 and 4.12, respectively.
Nevertheless, this is impossible by Theorem 2.6.
Assume that 4

√
n =

√
q − 2. Let PG1 an PG2 be two distinct orbits on l both

of type (9). Since 4
√
n + 1 =

√
q − 1, since x9 = 2 and since

∣∣∣FixPG1 (γ)
∣∣∣ =∣∣∣FixPG2 (γ)

∣∣∣ =
√
q−1
2 , then FixPG1 (γ) ∪ FixPG2 (γ) = Fix(γ) ∩ l. Thus, x1 =

x2 = 0 by Table II. Note that |Fix(T1) ∩ l| = 4
√
n + 1. Also, |Fix(T1) ∩ l| =

2x7a + 3x8a + x8b by Table I, since x1 = x2 = 0 by the previous argument,
since x4 = x5 = x6 = 0 by part (1), and being

√
q ≡ 3 mod 4. Hence

4
√
n + 1 = 2x7a + 3x8a + x8b. Arguing as above with T2 in the role of T1,

we obtain 4
√
n + 1 = 2x7b + x8a + 3x8b (see Table I). Summing up these

two equations and bearing in mind that x7 = x7a + x7b and x8 = x8a + x8b,
we have 2( 4

√
n + 1) = 2x7 + 4x8. Hence, 4

√
n + 1 = x7 + 2x8. As x8 = 2,

then x7 = 4
√
n − 5. That is x7 =

√
q − 7, as 4

√
n =

√
q − 2. On the other

hand, we have
√
q(q + 1)x7 + x8

√
q(q+1)

2 ≤ n + 1 again by Table I. That is√
q(q + 1)(

√
q − 7) +

√
q(q + 1) ≤ (

√
q − 2)4 + 1, since x7 =

√
q − 7, x8 = 2

and 4
√
n =

√
q − 2. Easy computations yield a contradiction, since q > 9.

Thus, we have proved the assertion (3).

(4) Suppose that pe ≡ 1 mod 4 and x9 > 0, then γ fixes q−1
pe−1 points on Fix(σ)∩

l, where q = p2ew, w ≥ 1, by Table II and following remark. Then 4
√
n +

1 ≥ p2we−1
pe−1 and hence 4

√
n + 1 ≥ pwe + 1, as p2we−1

pe−1 ≥ pwe + 1. That is
4
√
n + 1 ≥ √q + 1. So, n ≥ q2. Therefore, we arrive at a contradiction by

our assumption. Then the assertion (4) follows by Table I.

Lemma 4.14. It holds that 4
√
n+ 1 = x1 + 3x2 + x7 + 2x8.

Proof. Assume that
√
q ≡ 1 mod 4. Then |Fix(T1) ∩ l| = x1 + 3x2 + 2x7a +

3x8a + x8b by Table I, since x4 = x5 = x6 = 0 by Lemma 4.13(1). Then
4
√
n + 1 = x1 + 3x2 + 2x7a + 3x8a + x8b, since T1 induces a Baer involution

on Fix(σ) by Proposition 4.12. Arguing as above with T2 in the role of T1,
we have |Fix(T2) ∩ l| = x1 + 3x2 + 2x7b + x8a + 3x8b and hence 4

√
n + 1 =

x1 + 3x2 + 2x7b + x8a + 3x8b. Summing up, the two relations involving 4
√
n+ 1,

we obtain 4
√
n+ 1 = x1 + 3x2 + x7 + 2x8, as x7 = x7a + x7b and x8 = x8a + x8b.

Assume that
√
q ≡ 3 mod 4. Then, arguing as above, we obtain |Fix(T1) ∩ l| =

x1 + 3x2 + 2x7b + x8a + 3xb and |Fix(T2) ∩ l| = x1 + 3x2 + 2x7a + 3x8a + x8b.
Thus, the role of T1 and T2, in term of fixed points, are exchanged. This yields
4
√
n+ 1 = x1 + 3x2 + x7 + 2x8 as above.
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Let Hj = 〈Tj , γ〉 for each j = 1, 2. Clearly, Hj
∼= D8, since γ2 = σ, Tj ∼= E4,

σ ∈ Tj and Hj ≤ CG(σ). By [4], two cases arise:

(1) q ≡ 1 mod 16. In this case, H1 and H2 are the representative of the two
distinct conjugate classes under G. Moreover, NG(Hj) ∼= D16 for each
j = 1, 2;

(2) q ≡ 9 mod 16. In this case, the dihedral subgroups of order 8 are Sylow
2-subgroups of G and hence they are conjugate. In particular, H1 = H2.
Set H = H1, then NG(H) = H ∼= D8.

Lemma 4.15. One of the following occurs:

(1) q ≡ 1 mod 16 and one of the following occurs:

(a) Hj induces the identity on Fix(γ) for each j = 1, 2, G fixes a subplane
of order 4

√
n and S4 = x2 = x7 = x8 = 0;

(b) Hj induces a perspectivity of axis Fix(γ)∩ l on Fix(γ) for each j = 1, 2.
Furthermore, x1 = 4

√
n+ 1 and x2 = x7 = x8 = 0;

(c) Hj induces a perspectivity on Fix(γ) of axis distinct from Fix(γ)∩ l for
each j = 1, 2. In particular, x1 + x2 + x8 = 1, 2;

(d) Hj induces a Baer involution on Fix(γ) for each j = 1, 2 and hence
x1 + x2 + x8 = 8

√
n+ 1.

(2) q ≡ 9 mod 16 and one of the following occurs:

(a) H induces the identity on Fix(γ), G fixes a subplane of order 4
√
n and

S4 = x2 = x7 = x8 = 0;

(b) H induces a perspectivity on Fix(γ) of axis Fix(γ) ∩ l. Furthermore,
x1 = 4

√
n+ 1 and x2 = x7 = x8 = 0;

(c) H induces a perspectivity on Fix(γ) of axis distinct from Fix(γ)∩ l and
x1 + x2 + x8 = 1, 2;

(d) H induces a Baer involution on Fix(γ) and hence x1+x2+x8 = 8
√
n+1.

Proof. Assume that q ≡ 1 mod 16. In this case, H1 and H2 are the represen-
tatives of the two distinct conjugate classes under G of dihedral subgroups of
order 8. Moreover, NG(Hj) ∼= D16 for each j = 1, 2. In particular, the unique
G-orbits on l on which H fixes points are those of type (1),(2),(8) by Tables I
and II, since x6 = x7 = 0 by Lemma 4.13(1) and (2) as q ≡ 1 mod 16. Clearly,∣∣FixQG(Hj)

∣∣ = 1 if QG is of type (1). Since Hj ≤ CG(σ) for each j = 1, 2, and
since two subgroups of G isomorphic to D8 are conjugate in G if they are conju-
gate CG(σ) by [4, §246], then, by Proposition 2.5,

∣∣FixQG(Hj)
∣∣ = 1 if QG is of
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type (2). Also,
∣∣FixQG(Hj)

∣∣ = 1 if QG is of type (8) by Proposition 2.5. Indeed,

in this case, GQ ∼= PGL(2,
√
q) and hence

∣∣∣HGQ
j

∣∣∣ = |GQ| /16 for each j = 1, 2

again by [4, §246]. Thus, |Fix(Hj) ∩ l| = x1 +x2 +x8 for each j = 1, 2. Assume
that Fix(Hj)∩ l = Fix(γ)∩ l for each j = 1, 2. Then x1 +x2 +x8 = 4

√
n+ 1 since

γ induces a Baer collineation on Fix(σ) by Proposition 4.11. On the other hand,
4
√
n+ 1 = x1 + 3x2 + 2x8 by Lemma 4.14 (note that x7 = 0 by Lemma 4.13(2)

as q ≡ 1 mod 16). Hence x1 +x2 +x8 = x1 + 3x2 + 2x8. This yields x2 = x8 = 0

and 4
√
n + 1 = x1. Then we obtain the assertion (1a) or (1b) according to

whether Hj induces the identity or a perspectivity of axis Fix(γ) ∩ l on Fix(γ),
respectively. At this point, the assertions (1b)–(1c) easily follow.

Assume that q ≡ 9 mod 16. ThenH is a Sylow 2-subgroup ofG andNG(H) =

H . In particular, the unique G-orbits on l on which H fixes points are those of
type (1),(2),(8) by Table I and II. Indeed, x6 = 0 by Lemma 4.13(1). Also,
x7 = 0. Namely, if PG is of type (7), we have GP ∼= PSL(2,

√
q), where

√
q ≡

3, 5 mod 8, as q ≡ 9 mod 16. Hence, 8 - |GP |. Now, by Proposition 2.5, we
obtain that H fixes 1 point for each G-orbit on l of type (1),(2) or (8), since
H is a Sylow 2-subgroup of G and NG(H) = H . Therefore, |Fix(H) ∩ l| =

x1 +x2 +x8. Assume that Fix(Hj)∩ l = Fix(γ)∩ l. Then x1 +x2 +x8 = 4
√
n+ 1,

since γ induces a Baer collineation on Fix(σ) by Proposition 4.11. At this point,
the same argument as q ≡ 1 mod 16 can be applied to obtain the assertions
(2a)–(2d).

Lemma 4.16. IfHj induces a perspectivity on Fix(γ) of axis distinct from Fix(γ)∩
l for each j = 1, 2, then x2 = x8 = 0.

Proof. Assume that Hj induces a perspectivity on Fix(γ) of axis distinct from
Fix(γ) ∩ l for each j = 1, 2. We treat the cases q ≡ 1 mod 16 and q ≡ 9 mod 16

at the same time, bearing in mind that Hj = H when the latter occurs. Hence,
x1 + x2 + x8 = 1 or 2 by Lemma 4.15.

x2 = 0. Assume that x2 > 0. Then x2 = 1 by Lemma 3.5(1). If x1 = x8 = 0,
then

4
√
n = 2 + x7 (52)

√
n+ 1 ≥ q(q + 1)

2
+ (
√
q ± 1)x7 (53)

by Lemma 4.14 and Table I, respectively. So, x7 = 4
√
n− 2 by (52). Now,

by substituting this value in (53) and then elementary computations of
this one, we obtain

(
√
q ± 1)( 4

√
n− 2) +

(q − 9)

2
≤ √n− 4 . (54)
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As q > 9, then (
√
q ± 1)( 4

√
n − 2) <

√
n − 4. As x2 = 1 and x1 = x8 = 0,

then H must induce an elation on Fix(γ). Thus 4
√
n must be even. So,

the case 4
√
n =

√
q − 2 is ruled out as q is odd. Therefore, 4

√
n =

√
q − 1.

Nevertheless, this case cannot occur by [16, Theorem 13.18], since 4
√
n ≡

2 mod 4 and 4
√
n > 2, as

√
q ≡ 3 mod 4 with

√
q > 3, and since H induces

a non trivial involutory collineation on Fix(γ). Then either x1 = 1 and
x8 = 0 or x1 = 0 and x8 = 1, since x1 + x2 + x8 ≤ 2 and x2 = 1.
If x1 = 1 and x8 = 0, then

4
√
n = 3 + x7 (55)

√
n+ 1 ≥ 1 +

q(q + 1)

2
+ (
√
q ± 1)x7 (56)

by Lemma 4.14 and Table I, respectively. If x7 = 0, then 4
√
n = 3 by (55).

Consequently, q(q+1)
2 ≤ 9 by (56). A contradiction, since q > 9. Thus

x7 > 0 and hence q is a square. In particular, x7 = 4
√
n− 3 by (55). Then

(
√
q ± 1)( 4

√
n− 3) +

(q − 17)

2
≤ √n− 9 , (57)

combining x7 = 4
√
n−3 with (56). As q is an odd square number and q > 9,

then q ≥ 25 and hence (q−17)
2 > 0. This yields (

√
q± 1)( 4

√
n− 3) <

√
n− 9

by (57). If
√
q ≡ 1 mod 4, then 4

√
n >

√
q − 2. Then 4

√
n =

√
q − 1,

as 4
√
n <

√
q. If

√
q ≡ 3 mod 4, then 4

√
n >

√
q − 3 and hence either

4
√
n =

√
q − 1 or 4

√
n =

√
q − 2. As x1 = x2 = 1 and x8 = 0, then

H must induces a homology on Fix(γ). Thus, 4
√
n must be odd. Then

only 4
√
n =

√
q − 2 is really admissible as q is odd. Now, by substituting

this value in (57) and bearing in mind that
√
q ≡ 3 mod 4, we obtain a

contradiction, since q > 9.
If x1 = 0 and x8 = 1, then

4
√
n = 4 + x7 (58)

√
n+ 1 ≥ q(q + 1)

2
+ (
√
q ± 1)x7 +

√
q (59)

by Lemma 4.14 and Table I, respectively. Then x7 = 4
√
n − 4. If 4

√
n = 4,

then x7 = 0. Now, by substituting theses values in (59), we have q(q+1)
2 +√

q ≤ 17. Nevertheless, this yields contradiction, since q ≥ 25 as q is an
odd square number and q > 9. Then 4

√
n > 4 and hence x7 > 0. Note also

that q 6= 25, since q < n < q2 with q = 25, and since n a fourth power
with 4

√
n > 4. So, q ≥ 49. Indeed, q is an odd square number and q > 9.

Now, by substituting x7 = 4
√
n− 4 in (59), we obtain

(q + 1)

2
+ (
√
q ± 1)( 4

√
n− 4) + (

√
q − 1) ≤ √n (60)
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and hence

(
√
q − 1)( 4

√
n− 4) +

(q − 31)

2
≤ √n− 16 . (61)

As q ≥ 49, then (q−31)
2 > 0. Moreover, by (61), we have (

√
q−1)( 4

√
n−4) <√

n − 16 and hence 4
√
n + 4 >

√
q − 1. That is 4

√
n >

√
q − 5. Then

4
√
n =
√
q − θ, where 1 ≤ θ ≤ 4, as 4

√
n <
√
q. As x2 = x8 = 1 and x1 = 0,

it follows that H must induce a homology on Fix(γ). Thus, 4
√
n must be

odd. Therefore, we actually have either 4
√
n =
√
q − 2 or 4

√
n =
√
q − 4, as

q is odd. Nevertheless, these cases cannot occur. Indeed, if we substitute
each of them in (60), we obtain a contradiction.

x8 = 0. Assume that x8 > 0. Then x8 = 1 by Lemma 4.13(3). The previous
point implies x2 = 0. Thus, either x1 = 0 or x1 = 1 as x1 + x2 + x8 ≤ 2

and x8 = 1. Assume that x1 = 0. Then

4
√
n = 1 + x7 (62)

√
n+ 1 ≥ (

√
q ± 1)x7 +

√
q (63)

by Lemma 4.14 and Table I, respectively. It follows that x7 = 4
√
n − 1

and hence (
√
q ± 1)( 4

√
n − 1) +

√
q − 2 ≤ √n − 1 by (62) and (63). This

yields
√
n + 1 >

√
q ± 1. So,

√
n >

√
q ± 1 − 1. Then

√
q ≡ 3 mod 4

and
√
n >

√
q − 2, as

√
n <

√
q. That is 4

√
n =

√
q − 1. Therefore

4
√
n ≡ 2 mod 4 and 4

√
n > 2, as

√
q ≡ 3 mod 4 and

√
q > 3. Nevertheless,

this is a contradiction by [16, Theorem 13.18], since H induces a non
trivial involutory collineation on Fix(γ).
If x1 = 1, then

4
√
n = 2 + x7 (64)

√
n+ 1 ≥ √q + 1 + (

√
q ± 1)x7 (65)

by Lemma 4.14 and Table I, respectively. If 4
√
n = 2, then x7 = 0. By

substituting these vales in (65), we obtain
√
q ≤ 4. Then

√
q = 3, since√

q is odd. Hence, we arrive at a contradiction, since q > 9 by our assump-
tions. Then 4

√
n > 2 and hence x7 = 4

√
n−2 by (64). Again combining the

previous equation with (65), we have

(
√
q ± 1)( 4

√
n− 2) +

√
q − 4 ≤ √n− 4 . (66)

This yields
√
n + 2 >

√
q ± 1. So,

√
n >
√
q ± 1− 2. Then

√
q ≡ 3 mod 4

and
√
n >

√
q − 3 as

√
n <

√
q. Consequently, either 4

√
n =

√
q − 1 or

4
√
n =

√
q − 2. As x1 = x8 = 1 and x2 = 0, then H must induce an

involutory homology on Fix(γ). Thus, 4
√
n must be odd. Therefore, the

case 4
√
n =
√
q− 1 is ruled out, as q is odd. Hence, 4

√
n =
√
q− 2. Now, by
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substituting this value in (66) and bearing in mind that
√
q ≡ 3 mod 4, we

obtain an equality. Then S2 = S4 = 0, since
√
n+ 1 ≥ (

√
q ± 1)x7 +

√
q +

1 + S2 by Table I. It follows that |Fix(γ) ∩ l| = 1 +
√
q−1
2 by Table II, since

x1 = x8 = 1 and S4 = 0 by the previous argument, since q ≡ 9 mod 16

for x7 > 0 by Lemma 4.13(2), and since pe ≡ 3 mod 4 for x9 > 0 by
Lemma 4.13(4) (note that the collineation γ does not fix points on the
G-orbits on l of type (7) for q ≡ 9 mod 16 or (9) for pe ≡ 3 mod 4 by Table
II). That is 4

√
n =

√
q−1
2 , as γ induces a Baer collineation on Fix(σ). This

is a contradiction, since 4
√
n =
√
q − 2.

Lemma 4.17. The group Hj induces either the identity or a Baer involution on
Fix(γ) for each j = 1, 2.

Proof. Assume that Hj induces a perspectivity on Fix(γ). We treat the cases
q ≡ 1 mod 16 and q ≡ 9 mod 16 at the same time, bearing in mind that Hj = H

when the latter occurs. If the axes of he perspectivities induced on Fix(γ) by Hj

are distinct from Fix(γ) ∩ l for each j = 1, 2, then

4
√
n+ 1 = x7 + x1 (67)
√
n+ 1 ≥ (

√
q ± 1)x7 + x1 (68)

by Lemma 4.14 and Table I, respectively, since x2 = x8 = 0 by Lemma 4.16. In
particular, either x1 = 1 or x1 = 2, since x1 + x2 + x8 = 1 or 2 by Lemma 4.15
and being x2 = x8 = 0.

Assume that x1 = 1. Then x7 = 4
√
n and hence (

√
q ± 1) 4

√
n + 1 ≤ √n + 1

by (67) and (68). By calculations of the previous inequality, we have 4
√
n ≥√

q ± 1. It follows that
√
q ≡ 3 mod 4 and 4

√
n =

√
q − 1, as 4

√
n <

√
q. Then

q ≥ 49 and hence 4
√
n ≥ 6, as

√
q ≡ 3 mod 4 and

√
q > 3. Moreover, 4

√
n ≡

2 mod 4 and 4
√
n > 2, as

√
q ≡ 3 mod 4 and

√
q > 3, respectively. Nevertheless,

this contradicts [16], Theorem 13.18, since Hj induces a non trivial involutory
collineation on Fix(γ).

Assume that x1 = 2. Then x7 = 4
√
n − 1 by (67). Now, by substituting this

value in (68), we obtain (
√
q ± 1)( 4

√
n− 1) + 2 ≤ √n+ 1 and so

(
√
q ± 1)( 4

√
n− 1) ≤ √n− 1 . (69)

This yields 4
√
n+ 1 ≥ √q ± 1 and hence 4

√
n ≥ √q ± 1− 1. Then

√
q ≡ 3 mod 4

and 4
√
n ≥ √q−2, as 4

√
n <
√
q. Therefore, either 4

√
n =
√
q−1 or 4

√
n =
√
q−2.

As x1 = 2 and x2 = x8 = 0, then Hj must induces a homology on Fix(γ). Thus,
4
√
n must be odd. Then we actually have 4

√
n =

√
q − 2, as q is odd. Now, by

substituting this value in (69) and bearing in mind that
√
q ≡ 3 mod 4, we have

(
√
q − 1)(

√
q − 2) + 2 ≤ (

√
q − 2)2 + 1. It is a straightforward computation to

see that the previous inequality is impossible.
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Assume that Hj induces a perspectivity on Fix(γ) of axis Fix(γ) ∩ l. Then
x1 = 4

√
n + 1 again by Lemma 4.15. Thus Fix(G) ∩ l = Fix(γ) ∩ l. Now,

dualizing the above argument, we obtain that |Fix(Hj) ∩ [P ]| ≥ 3 for each point
P ∈ Fix(γ) ∩ l and for each j = 1, 2. Nevertheless, this is impossible, since the
Hj induces a perspectivity on Fix(γ) of axis Fix(γ)∩l. At this point, the assertion
follows by Lemma 4.15.

Proposition 4.18. The group Hj induces a Baer involution on Fix(γ) for each
j = 1, 2.

Proof. The group Hj induces either the identity or a Baer involution on Fix(γ)

for each j = 1, 2 by Lemma 4.17. Assume the former occurs. Then G fixes a
subplane of order 4

√
n and S4 = x2 = x7 = x8 = 0 by Lemma 4.15. That is

Fix(G) = Fix(γ). Then

√
n = 4
√
n+

q − 1

2
x3 +

q − 1

pe − 1
x9 + S2,4 (70)

n = 4
√
n+

q(q − 1)

2
x3 +

pe(q2 − 1)

2(pe − 1)
x9 +

q + 1

2
S1 (71)

by Table I. Assume that x3 > 0. Then x3 = 1 by Lemma 3.5(2). Hence, let P ∈ l
such that GP ∼= Dq+1. Then GP fixes exactly one point PG, since it is maximal
in G. Thus, Fix(GP ) ∩ l = {P} ∪ Fix(GP ) ∩ l. Furthermore, GP is planar, since
Fix(G) ⊂ Fix(GP ) and G is planar. Actually Fix(G) ⊂ Fix(GP ) ⊂ Fix(σ). So,
we arrive at a contradiction by [16, Theorem 3.7], since o(Fix(G)) = 4

√
n and

o(Fix(σ)) =
√
n. Then x3 = 0 and hence x9 + S2,4 > 0 by (70).

Let ρt, where t = 1, 2 be the representatives of the two conjugate classes
of p-elements in G. Since x9 + S2,4 > 0, then Fix(G) ⊂ Fix(〈ρt〉) for each
t = 1, 2. It follows that the group 〈ρt〉 fixes a Baer subplane of Π for each t = 1, 2

by [16, Theorem 3.7], since o(Fix(G)) = 4
√
n. Clearly, σ inverts ρt for each

t = 1, 2. Furthermore, Fix(G) ⊂ Fix(〈ρt, σ〉) ⊂ Fix(〈ρt〉), since x9 + S2,4 > 0

(see Table II). This still contradicts [16, Theorem 3.7], since o(Fix(G)) = 4
√
n

and o(Fix(ρt)) =
√
n for each t = 1, 2. Thus, the group Hj induces a Baer

involution on Fix(γ) for each j = 1, 2 .

Lemma 4.19. The group G fixes a subplane of Π of order 8
√
n pointwise.

Proof. By Proposition 4.18 and by Lemma 4.15, we have 8
√
n+ 1 = x1 +x2 +x8.

Recall that x2 ≤ 1 by Lemma 3.5(1) and x8 ≤ 1 by Lemma 4.13(3). Since
8
√
n ≥ 2, then x1 ≥ 1. Assume that x1 ≤ 2. Hence either x1 = 1 or x1 = 2.

Then we have the following admissible triples (x1, x2, x8) = (1, 1, 1), (2, 0, 1),
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(2, 1, 0), (2, 1, 1), since 8
√
n ≥ 2. Furthermore, 4

√
n+ 1 = x1 + 3x2 + x7 + 2x8 by

Lemma 4.14. Thus,

(x1 + x2 + x8 − 1)2 = x1 + 3x2 + x7 + 2x8 − 1 . (72)

By substituting the values found of (x1, x2, x8) in (72), we see that (x1, x2, x8) =

(1, 1, 1) is ruled out.

If (x1, x2, x8) = (2, 0, 1), then 8
√
n = 2 and x7 = 1. So,

√
n+1 ≥ 2+

√
q±1
2 +

√
q

by Table I. It follows that
√
q±1
2 +

√
q ≤ 15 as

√
n = 16. This yields 3

√
q ≤ 31.

That is
√
q = 5, 7 or 9, as

√
q > 3. Therefore, q = 52, 72 or 92. Nevertheless, only

the case q = 52 is admissible, since it must be q ≡ 9 mod 16 by Lemma 4.13(2),
being x7 = 1. If x3 > 0, then n + 1 ≥ q(q−1)

2 by Table I. Nevertheless, this is
impossible, since n = 28, while q = 52. Then the length of any admissible non
trivial G-orbit on l is divisible by q+1

2 by Table I, since x4 = x5 = x6 = 0 by
Lemma 4.13(1). Thus, q+1

2 must divide |l − Fix(G)|. That is q+1
2 | n + 1 − x1,

being |l − Fix(G)| = n + 1 − x1. Hence, we arrive at a contradiction, since
q+1

2 = 13, as q = 52, while n+ 1− x1 = 28 − 1, as n = 28 and x1 = 2.

If (x1, x2, x8) = (2, 1, 0), then 8
√
n = 2 and x7 = 1. As a consequence, q+1

2 +√
q ≤ 15. So, we again obtain a contradiction, since q ≡ 9 mod 16 and q > 9.

Finally, assume that (x1, x2, x8) = (2, 1, 1). Then 8
√
n = 3 and x7 = 3. Then√

n + 1 ≥ 2 + q+1
2 + 3

√
q±1
2 +

√
q, which is a contradiction. Then x1 ≥ 3 and

henceG fixes at least 3 points on l. Let P1, P2, P3 three distinct points on l which
are fixed by G. Now, repeating all the arguments with [Pi] in the role of l, for
each i = 1, 2, 3, we see that G fixes at least three lines at least 3 lines, including
l, on [Pi] for each i = 1, 2, 3. Thus, G is planar on Π. In particular, Fix(G) is a
subplane of Fix(H) of order x1 − 1.

Assume that Fix(G) ⊂ Fix(H). This yields x2 + x8 > 0, since 8
√
n + 1 =

x1 + x2 + x8. Then, by [16, Theorem 3.7], either

(x1 − 1)2 = x1 + x2 + x8 − 1, or (73)

(x1 − 1)2 + (x1 − 1) ≤ x1 + x2 + x8 − 1 , (74)

since o(Fix(G)) = x1 − 1 and o(Fix(H)) = x1 + x2 + x8 − 1. If x2 = 1, then
either (x1− 1)2 = x1 +x8 or (x1− 1)2 + (x1− 1) ≤ x1 +x8. Note that x8 ≤ 1 by
Lemma 4.13(2). Assume that x8 = 0. Then either (x1−1)2 = x1 or (x1−1)2 ≤ 1.
This yields a contradiction in any case, as x1 ≥ 3. Then x8 = 1. Thus, either
(x1 − 1)2 = x1 + 1 or (x1 − 1)2 ≤ 2. Actually, only the former occurs and
hence x1 = 3. Therefore, o(Fix(H)) = 4. Then 8

√
n = 4 and hence n = 48.

In particular, x3 = 0 by Lemma 3.6(1), as x2 = 1. Thus the length of any
admissible non trivial G-orbit on l is divisible by q+1

2 (see Table I). Therefore,
q+1

2 | n + 1 − x1, as |l − Fix(G)| = n − x1. That is q+1
2 | 48 − 2, as n = 48



Projective planes admitting PSL(2, q) 85

and x1 = 3. Now, it is a plain that 48 − 2 has no divisors of the form q+1
2 with

q an even power of an odd prime. Hence, x2 = 0. Then x8 = 1, as x8 ≤ 1

and x2 + x8 > 0. Now, by substituting the couple (x2, x8) = (0, 1) in (73) and
(74), we have either (x1 − 1)2 = x1 or (x1 − 1)2 + (x1 − 1) ≤ x1. While the
first equation has no solutions, the second one yields x1 ≤ 2. Actually, x1 = 2,
as x1 ≥ 2, being 8

√
n = x1. Therefore, n = 28. Now, recall that x3 ≤ 1 by

Lemma 3.5(2). If x3 = 0, then q+1
2 | n + 1 − x1 arguing as above. Then

q+1
2 | 28 − 1, as n = 28 and x1 = 2. Easy computations show that q = 132, since
q is an even power of a prime and q ≥ 11. Recall that x8 = 1. Since γ fixes a
subplane of Π of order 4

√
n, since 132 ≡ 9 mod 16 and by Table I, we see that

4
√
n + 1 ≥ 7x8 = 7. Nevertheless, this is a contradiction, since 4

√
n = 4. So,

x3 = 1. Then the length of any admissible non trivial G-orbit on l is divisible
by q+1

2 , unless this one is of type (3) by Table I, since x4 = x5 = x6 = 0 by
Lemma 4.13(1). Thus, q+1

2 | n + 1 − x1 − q(q−1)
2 . This yields q+1

2 | n + 1 − x1

and hence q+1
2 | 28 − 2. Since q ≡ 1 mod 8, then q+1

2 is odd. Consequently,
q+1

2 | 27 − 1. Actually, q+1
2 = 27 − 1, since 27 − 1 is prime and q+1

2 > 1. So,
q = 253. So, we arrive at a contradiction, since q must be a square as x8 = 1.
Thus, Fix(G) = Fix(H). Therefore, we have proved the assertion.

Lemma 4.20. If q > 9, then the group G does not fix lines of Π.

Proof. Assume that G fixes a subplane of Π of order 8
√
n pointwise. Assume that

xi > 0 for either i = 2 or 3. Then xi = 1 for either i = 2 or 3 by Lemma 3.6(1).
Hence, let P ∈ l such that GP ∼= Dq±1. Then GP fixes exactly one point PG,
since it is maximal inG. Thus, Fix(GP )∩l = {P}∪Fix(GP )∩l. Furthermore,GP
is planar, since Fix(G) ⊂ Fix(GP ) and G is planar. In particular, o(Fix(GP )) =
8
√
n+1. Moreover, 4

√
n ≤ 8
√
n+1 by [16, Theorem 3.7], since Fix(G) ⊂ Fix(GP ).

Nevertheless, this is a contradiction. Therefore, x2 = x3 = 0. In addition,
x4 = x5 = x6 = 0 by Lemma 4.13(1). So, we have the following system of
Diophantine equations:

4
√
n = 8
√
n+ x7 + 2x8 (75)

4
√
n = 8
√
n+

√
q ± 1

2
x8 + S4 . (76)

By subtracting (76) from (75), we obtain

x7 =

[√
q ± 1

2
− 2

]
x8 + S4 . (77)

Let ρt be the representative of the two conjugate classes of p-elements in
G for t = 1, 2. We may assume that ρt, for each t = 1, 2, lie in the Sylow
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p-subgroup S of G normalized by σ. Then ρt is planar, since Fix(G) ⊂ Fix(ρt)

for each t = 1, 2. In particular, by Table II,

o(Fix(ρt)) ≥ 8
√
n+ x72

√
q + x8

√
q +

1

2
S1 . (78)

Assume that x8 > 0. So q is a square. Actually, x8 = 1 by Lemma 4.13(3).
Then o(Fix(ρt)) > 8

√
n and hence o(Fix(ρt)) ≥ 4

√
n by [16, Theorem 3.7], since

o(Fix(G)) = 8
√
n and Fix(G) ⊂ Fix(ρt). If o(Fix(ρ)) = 4

√
n, it follows that

4
√
n >

√
q, as o(Fix(ρt)) ≥ 8

√
n + x72

√
q + x8

√
q with 8

√
n ≥ 2 and x8 = 1.

Nevertheless, this contradicts the assumption n < q2. Thus, o(Fix(ρt)) > 4
√
n.

Nevertheless, o(Fix(ρt)) ≤
√
n by [16, Theorem 3.7]. Note that x7 ≥

√
q±1
2 − 2

by (77), since x8 = 1. By substituting x7 ≥
√
q±1
2 − 2 in (78), we obtain

o(Fix(ρt)) ≥ 8
√
n+ 2

√
q(

√
q ± 1

2
− 2) +

√
q +

1

2
S1 . (79)

Then 2 + 2
√
q(
√
q±1
2 − 2) +

√
q+ 1

2S1 ≤
√
n, since o(Fix(ρt)) ≤

√
n and 8

√
n ≥ 2.

By elementary calculations of the previous inequality, we obtain
√
n ≥ q±√q−

3
√
q + 2 + 1

2S1. Assume that
√
q ≡ 3 mod 4. Hence,

√
n ≥ q − 4

√
q + 2 + 1

2S1.
That is,

√
n > (

√
q−2)2. So, 4

√
n >
√
q−2. Then 4

√
n =
√
q−1, since 4

√
n <
√
q,

as n < q2 by our assumption. Note that 4
√
n ≡ 2 mod 4 and 4

√
n > 2, since√

q ≡ 3 mod 4 and q > 9. Nevertheless, this yields a contradiction by [16,
Theorem 13.18], since Hj acts non trivially on Fix(γ) by Proposition 4.18 and
since o(Fix(γ)) = 4

√
n. Hence,

√
q ≡ 1 mod 4. Then

√
n ≥ (

√
q − 1)2 + 1

2S1 by
(79) as 8

√
n ≥ 2. Actually,

√
n = (

√
q − 1)2 and S1 = 0, since 4

√
n <

√
q being

n < q2 by our assumption, and being n a fourth power and q as square. That
is 4
√
n =

√
q − 1. Now note that S4 = 0, since S1 ≥ S4 ≥ 0 and since S1 = 0.

Then x7 =
√
q−3
2 by (77), since

√
q ≡ 1 mod 4 and x8 = 1. Now, by substituting

x7 =
√
q−3
2 , x8 = 1 and 4

√
n =
√
q−1 in (75), we obtain

√
q−1 = 8

√
n+

√
q−3
2 +2.

By elementary calculations of the previous equality, we have 8
√
n =

√
q−3
2 . Then(√

q−3
2

)2

=
√
q − 1, since 4

√
n =
√
q− 1, which is a contradiction. Thus, x8 = 0.

Then x7 = S4 by (77). If S4 = 0, then x7 = 0 and we have a contradiction by
(75), since also x8 = 0. So S4 > 0. In particular, 4

√
n = 8
√
n+ S4 by (76).

Finally, let us consider the subgroup W of G, where W = S 〈γ〉 and S is the
Sylow p-subgroup of G normalized by σ and hence by γ. Then W fixes at least
a point Q on l since S4 > 0. Hence, let QG be an orbit of type (10). Clearly,
GQ ∼= Fq .Zd, where d ≡ 0 mod 4. In particular,

∣∣FixQG(W )
∣∣ = q−1

2d by (1) of
Proposition 2.5. Thus, the number of points coming out from G-orbits on l of
type (10) which are fixed by W are exactly

∑
dj≡0 mod 4

q−1
2dj

. These turn out

to be 1
2S4 as S4 =

∑
dj≡0 mod 4

q−1
dj

. Then |Fix(W ) ∩ l| = 8
√
n + 1 + 1

2S4, since



Projective planes admitting PSL(2, q) 87

|Fix(G) ∩ l| = 8
√
n+1 by Lemma 4.19. Furthermore,W is planar, since Fix(G) ⊂

Fix(W ). On the other hand, Fix(W ) ⊂ Fix(γ), since o(Fix(W )) = 8
√
n + 1

2S4

and o(Fix(γ)) = 8
√
n+ S4 being S4 > 0. Therefore, Fix(G) ⊂ Fix(W ) ⊂ Fix(γ),

where o(Fix(G)) = 8
√
n and o(Fix(G)) = 4

√
n. Nevertheless, this contradicts

[16, Theorem 3.7]. Thus, G does not fix lines of Π.

Proposition 4.21. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q). If q < n < q2 and q ≡ 1 mod 8, then G cannot fix lines
of Π.

Proof. Assume that G fixes a line l of Π. Then q ≤ 9 by Lemma 4.20. Actually,
q = 9, since q ≡ 1 mod 8. Then n = 16, 25, 36, 49, 64, since q < n < q2, with n a
square by Lemma 3.3. The case n = 36 and n = 49 are ruled out by Lemma 3.3.
Thus, n = 16, 25 or 64.

Assume that n = 16. Let PG be a non trivial orbit on l. Then
∣∣PG

∣∣ ≤ 17.
Then GP is isomorphic either to Z9.Z4 or to S4 or to A5. If GP ∼= Z9.Z4,
then

∣∣PG
∣∣ = 10. In particular, G acts 2-transitively on PG, which contradicts

[23, Theorem 1], since n = 16. If GP ∼= A5, then
∣∣PG

∣∣ = 15 and hence∣∣l − PG
∣∣ = 11. Let Q ∈ l − PG. Then

∣∣QG
∣∣ ≤ 11, since

∣∣l − PG
∣∣ = 11. Clearly,

GQ � Z9.Z4 by the previous argument. Furthermore, GQ � S4, otherwise∣∣QG
∣∣ = 15. Thus, GQ ∼= A5. Therefore,

∣∣l− (PG ∪QG)
∣∣ = 5. Then G fixes

l−(PG∪QG) pointwise, since the minimal primitive permutation representation
degree of G ∼= PSL(2, 9) is 6. So, any involution in G fixes at least 8 points
on l. Hence, we arrive at a contradiction, since each involution in G is a Baer
collineation of Π by Lemma 3.3 and since n = 16. Thus, GP ∼= S4. Then

∣∣PG
∣∣ =

15 and hence
∣∣l − PG

∣∣ = 2. So, G fixes l− PG pointwise. Set {X,Y } = l− PG.
It follows that Gr ∼= S4 for some line r ∈ [X ] and Gu ∼= S4 for some line u ∈ [Y ]

by dual of the above argument, since G acts on [X ] and on [Y ] fixing two lines
through each of them (clearly, l is one of them). Therefore, G fixes a triangle
∆ = {X,Y, Z}. Let ρ1 and ρ2 are the representatives of the 3-elements in G.
We may assume that the lie in the Sylow 3-subgroup of G normalized by σ. As
a consequence, σ inverts each of them. Since GP ∼= S4, then one of them fixes
exactly 3 points on PG, 3 on XZ and 3 on Y Z by Table IV* of [24], since q = 9.
We may assume that ρ1 does it. Hence, ρ1 fixes a Baer subplane of Π, since ρ1

fixes exactly 3 points on PG and the points X and Y . So, o(Fix(ρ1)) = 4. The
involution σ acts on Fix(ρ1), since it inverts ρ1. Note that 〈ρ1, σ〉 does not fix
point on PG by Table IV* of [24], since GP ∼= S4 and q = 9. Therefore, σ fixes
exactly 2 points on Fix(ρ1) ∩ l, namely X and Y . So, σ induces a homology on
Fix(ρ1). Nevertheless, this is impossible, since o(Fix(ρ1)) = 4.

Assume that n = 25 or 64. Assume also that Fix(Tj) ∩ l = Fix(σ) ∩ l for
some j = 1 or 2. Then Fix(G) ∩ l = Fix(σ) ∩ l by Table III* of [24], since
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q = 9. Therefore, for each point A ∈ l − Fix(G), the group GA has odd order.
Then GA ∼= E9 by Table III* of [24], since G ∼= PSL(2, 9). Hence

∣∣AG
∣∣ = 40 for

each point A ∈ l − Fix(G). Then 40 | |l − Fix(G)|. That is 40 | n − √n, since
Fix(G) ∩ l = Fix(σ) ∩ l and |Fix(σ) ∩ l| = √n+ 1. This is a contradiction, since
n = 25 or 64. Thus, |Fix(Tj) ∩ l| = 2 or 1 for each j = 1, 2, according to whether
n = 25 or 64, respectively. Therefore, Tj induces a non trivial perspectivity β̄j
on Fix(σ) for each j = 1, 2. Clearly, T1 and T2 are subgroups of CG(σ) ∼= D8.
Furthermore, CG(σ) acts on Fix(σ) inducing a subgroup C̄ isomorphic either
to E4 or to Z2. In each case β̄1 ∈ C̄ and β̄1 6= 1, since β̄1 is a non trivial
perspectivity of Fix(σ). Then C̄ fixes Cβ̄1

, since β̄1 is central in C̄. So, CG(σ)

fixes Cβ̄1
. That is CG(σ) ≤ GCβ̄1

. Let U ≤ NG(T1) such that U ∼= A4. Then U
fixes Fix(T1) ∩ l pointwise, since T1 C U , U ∼= A4 and |Fix(T1) ∩ l| = 1 or 2.
Then U ≤ GCβ̄1

and therefore 〈CG(σ), U〉 ≤ GCβ̄1
. Note that 〈CG(σ), U〉 ∼= S4,

since 〈CG(σ), U〉 ≤ NG(T1) as G ∼= PSL(2, 9). So, either GCβ̄1

∼= S4 or GCβ̄1
=

G by Table III* of [24] as q = 9. Actually, the case GCβ̄1

∼= S4 cannot occur,

since
∣∣∣FixCG

β̄1

(Tj)
∣∣∣ = 3 with CG

β̄1
⊂ l, while we proved that |Fix(Tj) ∩ l| = 2 or

1 for each j = 1, 2. As a consequence, GCβ̄1
= G. This implies that G acts on[

Cβ̄1

]
and Fix(T1)∩

[
Cβ̄1

]
= Fix(σ)∩

[
Cβ̄1

]
, which is a contradiction by dual of

the above argument. Thus, we have proved the assertion.

Theorem 4.22. Let Π be a projective plane of order n admittingG ∼= PSL(2, q) as
a collineation group. If n ≤ q2, q ≡ 1 mod 8, then one of the following occurs:

(1) n < q, Π ∼= PG(2, 4) and G ∼= PSL(2, 9);

(2) n = q, Π ∼= PG(2, q) and G is strongly irreducible on Π;

(3) q < n < q2, one of the following occurs:

(a) G is strongly irreducible on Π;

(b) G ∼= PSL(2, 9) fixes a proper subplane Π0
∼= PG(2, 4) of Π;

(4) n = q2 and one of the following occurs:

(a) G is strongly irreducible on Π;

(b) n = 81 and G ∼= PSL(2, 9) fixes a point and line of Π;

(c) G fixes a subplane Π0 of Π. Furthermore, either Π0
∼= PG(2, q) is a

Baer subplane of Π, or n = 81, Π0 is the Hughes plane of order 9 and
G ∼= PSL(2, 9).

Proof. If n < q or n = q, the assertions (1) and (2) easily follow by Theorems
2.1 and 2.2, respectively. If q < n < q2, the group G does not fix lines or points
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of Π by Proposition 4.21 and its dual. At this point, the assertion (3a) and (3b)
easily follow by Lemma 3.1, since q ≡ 1 mod 8. The assertions (4a) and (4b)
follow by Theorem 2.3. Finally, the assertion (4c) follows by Theorem 2.4.

Clearly, Theorem 1.1 easily follows from Theorem 4.22 when q ≡ 1 mod 8.

5 The case q ≡ 3 mod 8

In this section, we deal with the case q ≡ 3 mod 8. Recall that there exists a
unique conjugate class of in involutions and one of Klein subgroups of G. Let σ
be an involution of G and let T be a representative of this class containing σ. As
pointed out at the end of section 3, we have CG(σ) ∼= Dq+1 and NG(T ) ∼= A4.

We filter the list given in Lemma 3.4 with respect to the condition q ≡ 3 mod

8. For each of the resulting groups, we find its corresponding index in G. Thus,
we determine the length of the orbit PG, with P a point of l, when GP is
isomorphic to one of these groups. Next, for each of these groups, using (1) of
Proposition 2.5, we obtain the number of points fixed by σ, and by T , in the
orbit PG. All these informations are displayed in the following table.

Table III

Type GP [G : GP ] |FixPG(σ)| |FixPG(T )|
1 G 1 1 1

2 Dq−1
q(q+1)

2
q+1

2 0

3 Dq+1
q(q−1)

2
q+3

2 3

4 A4
q(q2−1)

24
q+1

4 1

5 A5
q(q2−1)

120
q+1

4 1

10 Fq .Zd
q2−1

2d 0 0

Recall that the G-orbits of type (10) on l cover exactly S points of l, where
S =

∑x10

j=1
q2−1
2dj

. Recall also that S1 =
∑x10

j=1
q−1
dj

and S2, S2′ , S4, S2,4 (sum

with the same summands q−1
dj

but over 2 | dj , 2 - dj , 4 | dj and dj ≡ 2 mod 4,
respectively). Note that S2 = S2,4 = S4 = 0, since q ≡ 3 mod 8. Hence, S1 = S2′

and S = q+1
2 S2′ .

Finally, if G fixes a point Q and acts on [Q], we may focus on the G-orbits
of lines in [Q]. So, following the notation introduced in section 4, we obtain a
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table, namely the dual of Table III, where type (i)∗ replaces (i), the group Gm
replaces GP and the orbit mG replaces PG. Here m is any line of [Q]. Remind
that, we denote by x∗i , the number of G-orbits on [Q] of type (i)∗. As mentioned
in section 4, we write x∗i instead of x∗i (Q), even if the second notation would be
correct. Nevertheless we use the first one, since it will be clear from the context
which point we are focusing on. In particular, since we might have G-orbits
of type (10)∗, it makes sense considering S∗ =

∑x∗10

j=1
q2−1
2dj

and hence S∗2 , S∗2′ ,
S∗4 , S∗2,4 with the same meaning of S2, S2′ , S4, S2,4, respectively, but referred to
lines instead of points. Clearly, S∗2 = S∗2,4 = S∗4 = 0, since q ≡ 3 mod 8.

Note that σ is a Baer collineation of Π by Lemma 3.3. Set C = CG(σ). Then
C acts on Fix(σ) with kernel K. Hence, let C̄ = C/K. Clearly, 〈σ〉 E K E C.
Furthermore, either K E Z q+1

2
or K = C, since C ∼= Dq+1 and q ≡ 3 mod 8.

We need to investigate the admissible structure of K in order to show that T
induces a Baer collineation on Fix(σ).

Lemma 5.1. If Fix(T ) ∩ l = Fix(σ) ∩ l, then K = C.

Proof. Assume that Fix(T ) ∩ l = Fix(σ) ∩ l and that K E Z q+1
2

. Then Fix(G) ∩
l =Fix(σ)∩ l by Table III, since q > 9. Set l0 =Fix(σ)∩ l. Then C̄ = C̄(l0), since
l0 = Fix(G) ∩ l. In particular, C̄ ∼= D q+1

k
, where k = |K|, since C ∼= Dq+1. On

the other hand, C̄ is the semidirect product of C̄(l0, l0) with C̄(Y, l0) for some
point Y ∈ Fix(σ)− l0 by [16, Theorem 4.25].

Assume that C̄(l0, l0) 6= 〈1〉. If C̄(l0, l0) = C̄ , then C̄ = C̄(V, l0), for some
point V ∈ l0 by [16, Theorem 4.14], since C̄ ∼= D q+1

k
and q ≡ 3 mod 8. Hence

for each point X ∈ l0 − {V } and for each line t ∈ [X ]∩Fix(σ), we have that
σ ∈ Gt but Gt does not contain Klein groups. Then, by dual of Table III, we
have that Gt ∼= Dq−1, since G fixes X . Moreover,K ≤ Gt. Thus, K = 〈σ〉, since
〈σ〉 E K ≤ Z q+1

2
. Therefore, C̄ ∼= D q+1

2
and hence q+1

2 | √n as C̄ = C̄(V, l0).

Actually,
√
n = q+1

2 , since
√
n < q by our assumptions. Then

√
n ≡ 2 mod 4,

since q ≡ 3 mod 8. Hence, we arrive at a contradiction by Lemma 3.3. So,
C̄(l0, l0) < C̄. Then C̄(l0, l0) ≤ Z q+1

k
, since C̄(l0, l0) C C̄, C̄ ∼= D q+1

k
and

q ≡ 3 mod 8. Actually, C̄(l0, l0) = C̄(V, l0) ∼= Z q+1
k

and C̄(Y, l0) ∼= Z2 by [16,
Theorems 4.14 and 4.25]. Let u ∈ [V ] ∩ Fix(σ)− {l, V Y }. Then u is fixed by K
and by C̄(V, l0). Therefore, Z q+1

2
≤ Gu < CG(σ). Thus either Gu = CG(σ) or

Gu = G by dual of Lemma 3.4, since G fixes l0 and q > 9. We again obtain a
contradiction, since Gu < CG(σ). Hence, C̄(l0, l0) = 〈1〉.

Assume that C̄ = C̄(Y, l0) for some point Y ∈ Fix(σ) − l0. Let Q ∈ l0 and
let m ∈ [Q]∩Fix(σ) − {l, Y Q}. Then σ ∈ Gm but Gm does not contain Klein
groups. Then Gm ∼= Dq−1 by dual of Table III. Thus, x∗2 ≥ 1. Furthermore,
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x∗3 ≥ 1, since GY Q = C and C ∼= Dq+1 as q ≡ 3 mod 8. So, x∗2 + x∗3 ≥ 2. This is
a contradiction by dual of Lemma 3.6(1), as q > 9.

Lemma 5.2. Fix(T ) ∩ l ⊂ Fix(σ) ∩ l.

Proof. Assume that Fix(T ) ∩ l = Fix(σ) ∩ l. Then K = C by Lemma 5.1. As
a consequence Fix(T ) = Fix(σ). Let P be any point of Fix(σ) ∩ l and let r be
any line of [P ] − {l}. Then C ≤ Gr. Since q > 9, then C is maximal in G and
hence either Gr = C or Gr = G. If the former occurs, then |FixrG(T )| = 3

and |FixrG(σ)| = q+3
2 by dual of table III. Hence |FixrG(σ)| > |FixrG(T )| as

q > 9. A contradiction, since Fix(T ) = Fix(σ). Hence Gr = G for any point
P of Fix(σ) ∩ l and for any line r of [P ] − {l}. Thus Fix(G) = Fix(σ), since
Fix(G) ∩ l = Fix(σ) ∩ l and Fix(G) ⊆ Fix(σ). So, G fixes a Baer subplane of
Π. Then G is semiregular on l − Fix(G) and hence |G| | n − √n, which is a
contradiction. Thus, we have proved the assertion.

The previous lemma rules the possibility for T to induce either the identity
or a perspectivity of axis Fix(σ) ∩ l on Fix(σ). Hence, T induces either a per-
spectivity of axis distinct from Fix(σ) ∩ l or a Baer involution on Fix(σ). The
following lemma shows that only the second case is admissible.

Lemma 5.3. The group T induces a Baer collineation on Fix(σ).

Proof. The group T induces an involution β̄ on Fix(σ) by Lemma 5.2. Assume
that β̄ is an involutory (Cβ̄ , aβ̄)-perspectivity on Fix(σ). Then Cβ̄ ∈ l and
aβ̄ 6= l again by Lemma 5.2, since G fixes l. Then |Fix(T ) ∩ l| = 1 or 2, where
|Fix(T ) ∩ l| = x1 + 3x3 + x4 + x5 by table III. Clearly, x3 = 0. Furthermore, by
table III, we have the following system of Diophantine equations:

√
n+ 1 = x1 +

q + 1

2
x2 +

q + 1

4
x4 +

q + 1

4
x5 (80)

n+ 1 = x1 +
q(q + 1)

2
x2 +

q(q2 − 1)

24
x4 +

q(q2 − 1)

120
x5 + S . (81)

Suppose that β̄ is an involutory (Cβ̄ , aβ̄)-elation of Fix(σ). Then Fix(T )∩ l ={
Cβ̄
}

, since Cβ̄ ∈ l and aβ̄ 6= l by the above argument. Thus, x1 + x4 + x5 = 1,
since |Fix(T ) ∩ l| = x1 + x4 + x5. Clearly, G cannot fix Cβ̄ , otherwise we have
a contradiction by dual of Lemma 5.2, since Fix(T ) ∩

[
Cβ̄
]

= Fix(σ) ∩
[
Cβ̄
]
.

Consequently x1 = 0 and x4 + x5 = 1, since x1 + x4 + x5 = 1. Then either
x4 = 1 and x1 = x5 = 0, or x5 = 1 and x1 = x4 = 0.

Assume that x4 = 1 and x1 = x5 = 0. Then x2 = 0 by Lemma 3.6(3)
being q 6= 17. Moreover,

√
n + 1 = q+1

4 by (80). Hence,
√
n = q−3

4 . Since
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√
n >
√
q by our assumptions, then q−3

4 >
√
q. This yields q > 21. So we obtain

a contradiction, since q = 11 or 19 by Lemma 3.4, as x4 = 1 and q ≡ 3 mod 8.

Assume that x5 = 1 and x1 = x4 = 0. Then q = 11, 19, 59 by Lemma 3.4,
since q ≡ 3 mod 8. If x2 = 1, then

√
n + 1 = q+1

4 + q+1
2 (80). Therefore,√

n = 3q−1
4 . Actually, q 6= 59 by Lemma 3.6(6). If q = 19, then

√
n = 14.

Nevertheless, this case cannot occur by Lemma 3.3. Hence, q = 11 and
√
n = 8.

This contradicts the fact that n ≥ 65, since n + 1 ≥ q(q+1)
2 by (81), as x2 = 1.

Thus, x2 = 0. Then
√
n = q−3

4 , by (80), as x1 = x2 = x4 = 0. This is impossible
for q = 11 or 19 by the above argument. As a consequence, q = 59 and

√
n = 14.

Nevertheless, this case cannot occur by Lemma 3.3.

Suppose that β̄ is an involutory (Cβ̄ , aβ̄)-homology of Fix(σ). Again, Cβ̄ ∈ l
and aβ̄ 6= l by the above argument. Hence, |Fix(T ) ∩ l| = 2. Then x1 +x4 +x5 =

2, since |Fix(T ) ∩ l| = x1 + 3x3 + x4 + x5 and x2 = 0. It follows that, x1 ≤ 1.
Therefore, x4 +x5 ≥ 1, since G cannot fix Cβ̄ and since Fix(G) ⊂ Fix(T ). Thus,
either x1 = x4 = 1 and x5 = 0, or x1 = x5 = 1 and x4 = 0, or x1 = 0 and
x4 + x5 = 2.

Assume that x1 = x4 = 1 and x5 = 0. Then x2 = 0 by Lemma 3.6(3). So,√
n = q+1

4 by (80). Furthermore, q = 11 or 19 by Lemma 3.4(4), since q ≡
3 mod 8. We obtain a contradiction as above, since q+1

4 >
√
q being q+1

4 > q−3
4 .

Assume that x1 = x5 = 1 and x4 = 0. Then q = 11, 19, 59 by Lemma 3.4(5),
since q ≡ 3 mod 8. If x2 = 1, then

√
n = q+1

4 + q+1
2 by (80) and hence

√
n =

3q+3
4 . Furthermore, q 6= 59 by Lemma 3.6(6). If q = 11, then

√
n = 9. In

addition, S = 4 by (81), since x1 = x2 = x5 = 1. This is impossible, since q+1
2 =

6 must divide S by the definition of this one. Hence, q = 19 and
√
n = 15, which

is a contradiction by Lemma 3.3. Thus, x2 = 0 and
√
n = q+1

4 . If q = 59, then√
n = 15 and we have a contradiction by the previous argument. Consequently,

q = 11 or 19. Moreover,
√
n = q+1

4 by (80), since x1 = x2 = x4 = 0 and x5 = 1.
Nevertheless this cannot occur by the above argument, since q = 11 or 19.

Finally, assume that x1 = 0 and x4 + x5 = 2. Then
√
n + 1 = q+1

2 x2 + q+1
2

by (80). If x2 ≥ 1, then
√
n ≥ q. Nevertheless, this cannot occur by our

assumption. So, x2 = 0 and hence
√
n = q+1

2 − 1. That is
√
n = q−1

2 . If x4 > 0,

then
(
q−1

2

)2
+ 1 ≥ q(q2−1)

24 by (81), where q = 11 or 19 by Lemma 3.4(4),
as q ≡ 3 mod 8. Easy computations yield a contradiction. Therefore, x4 = 0

and x5 = 2, since x4 + x5 = 2. Then n + 1 = q(q2−1)
60 + S by (81), where

n =
(
q−1

2

)2
. It follows that, S =

(
q−1

2

)2
+1− q(q2−1)

60 . In particular, q = 11, 19, 59

by Lemma 3.4(5), since q ≡ 3 mod 8. Easy computation yield S = 4 or −32 or
−2580. So the cases q = 19 or 59 are ruled out, since S ≥ 0 by the definition of
this one. Hence q = 11 and S = 4. Nevertheless, this case cannot occur, since
q+1

2 = 6 must divide S again by the definition of this one. Thus, T induces a
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Baer collineation on Fix(σ).

Lemma 5.4. For each point P ∈ l, the group GP cannot be isomorphic either to
A4 or to A5.

Proof. The group T induces a Baer collineation on Fix(σ) by Lemma 5.3. So,
|Fix(T ) ∩ l| = 4

√
n+1. By Table III, we have the following system of Diophantine

equations:

4
√
n+1 = x1+3x3+x4+x5 (82)
√
n+1 = x1+

q + 1

2
x2+

q + 3

2
x3+

q + 1

4
x4+

q + 1

4
x5 (83)

n+ 1 = x1+
q(q + 1)

2
x2+

q(q − 1)

2
x3+

q(q
2−1)

24
x4+

q(q
2−1)

120
x5+S . (84)

Assume that x4 > 0. Then x4 = 1 by Lemma 3.5(3). Consequently x2 =

x3 = 0 by Lemma 3.6(3). Furthermore, q = 11 or 19 by Lemma 3.4, since
q ≡ 3 mod 8. If q = 11, then either 4

√
n = 2 or 3, since n < q2 by our assumption.

On the other hand, n+ 1 ≥ q(q2−1)
24 , since x4 = 1. Thus the case 4

√
n = 2 cannot

occur. Hence, 4
√
n = 3. Then x1+x5 = 3 and x1+3x5 = 7 by (82) and (83), since

x2 = x3 = 0 and x4 = 1. Thus, x1 = 1 and x5 = 2. So, S = 59 by (84), which
is a contradiction, since q+1

2 = 6 must divide S by the definition of this one. As
a consequence q = 19 and hence 4

√
n = 3 or 4, since q < n < q2. Nevertheless,

this contradicts the fact that n+ 1 ≥ q(q2−1)
24 , being x4 = 1. Therefore x4 = 0.

Assume that x5 > 0. Then q = 11, 19 or 59 by Lemma 3.4, since q ≡ 3 mod 8.
If x3 > 0, then x3 = 1 by Lemma 3.5(2). Furthermore, x2 = 0 an q 6= 59 by
Lemma 3.6(2) and (3). Thus, x1 = 0 and x5 = 1 by (82), since x4 = 0 and
x5 > 0. Now, by substituting x1 = x2 = x4 = 0 and x3 = x5 = 1 in (83),
we obtain

√
n = 3(q+1)

4 . Then
√
n = 9 for q = 11 and

√
n = 15 for q = 19.

The latter is ruled out by Lemma 3.3. Hence,
√
n = 9 and q = 11, which is a

contradiction, since n+ 1 ≥ q(q−1)
2 as x3 = 1. So, x3 = 0.

Now, assume that x2 > 0. Then x2 = 1 by Lemma 3.5(1). Then q 6= 59 by
Lemma 3.6(3). Then

√
n + 1 ≥ q+1

2 + q+1
4 by (83), as x2, x5 > 0. Therefore

3q−1
4 ≤ √n < √q. Then

√
n = 9 for q = 11 and

√
n = 16 for q = 19. Assume

the former occurs. Then x1 + x5 = 4 and x1 + 3x5 = 4 by (82) and (83),
respectively, since x2 = x4 = 0. Consequently, x5 = 0. Hence, we arrive at a
contradiction by our assumptions. Thus,

√
n = 16 for q = 19. Then x1 + x5 = 5

and x1 +5x5 = 7 by (82) and (83), respectively, since x2 = x4 = 0. Since x1 and
x5 must be integers, the previous equation have no solutions. As a consequence,
x2 = x3 = 0.

Now, subtracting (82) from (83), we obtain
√
n − 4
√
n = q−3

4 x5, since x2 =

x3 = x4 = 0. Easy computations for q = 11, 19 or 59, being 0 < x5 ≤ 3
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by Lemma 3.5(4), show that the admissible solutions for
√
n − 4

√
n = q−3

4 x5

and x1 = 4
√
n + 1 − x5 are (q, 4

√
n, x1, x5) = (11, 2, 2, 1), (11, 3, 1, 3), (19, 4, 2, 3)

and (59, 7, 5, 3). Now, by substituting these values in (84) and bearing in mind
that x2 = x3 = x4 = 0, we obtain S = 4, 48, 84 or −2736, respectively. The
case (q, 4

√
n, x1, x5) = (59, 7, 5, 3) cannot occur, since it must be S ≥ 0. Fur-

thermore, q+1
2 must divide S by the definition of this one. Then also the cases

(q, 4
√
n, x1, x5) = (11, 2, 2, 1) and (19, 4, 2, 3) cannot occur. Thus, (q, 4

√
n, x1, x5) =

(11, 3, 1, 3) and S = 48. Let Y Gh , h = 1, 2, 3, the three distinct orbits of type (5)
on l. Then

∣∣Y Gh
∣∣ = 11 for each h = 1, 2, 3 and hence

∣∣l − ∪3
h=1Y

G
h

∣∣ = 48.
As S = 48, then x10 > 0. Hence, let X ∈ l such that GX ≤ Z11.Z5. Then
GX ∼= Z11.Z5, since

∣∣XG
∣∣ ≤ 48 as XG ⊂ l − ∪3

h=1Y
G
h . Thus, each orbit of type

(10) has length 12. Therefore, x10 = 3, since S = 48. In particular, G acts
2-transitively on each of the orbits of type (10). Let A be a subgroup of G such
that A ∼= Z11. Then A fixes exactly 1 point in each of the three G-orbits of type
(10), since G acts 2-transitively on each of them. Hence, A fixes exactly 4 points
on l by Table III, since x1 = 1 and x5 = x10 = 3. This is impossible, since A
must fix at least 5 points on l and since n + 1 ≡ 5 mod 11, being n = 34. So,
x4 = x5 = 0 and we have proved the assertion.

Proposition 5.5. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q), q > 3. If q < n < q2 and q ≡ 3 mod 8, then G does not fix
lines of Π.

Proof. Assume that G fixes a line l of Π. Note that q > 9, since q ≡ 3 mod 8 and
q > 3. Now, |Fix(T ) ∩ l| = 4

√
n+ 1 by Lemma 5.3. Furthermore, x4 = x5 = 0 by

Lemma 5.4. Then, by table III, we have

4
√
n+ 1 = x1 + 3x3 (85)
√
n+ 1 = x1 +

q + 1

2
x2 +

q + 3

2
x3 (86)

n+ 1 = x1 +
q(q + 1)

2
x2 +

q(q − 1)

2
x3 + S . (87)

Assume that x3 > 0. Then x3 = 1 and x2 = 0 by Lemma 3.6(1). Thus,
4
√
n = x1 + 2 and

√
n = x1 + q+3

2 by (85) and (86), respectively. By composing
these equations, we have (x1 + 2)2 = x1 + q+1

2 and hence x2
1 + x1 − q−7

2 = 0. If
x1 ≤ 2, it is easily seen that, (n, x1, q) = (34, 1, 11) or (44, 2, 19). Let BG be the
G-orbit on l of type (3). Then l − (Fix(G) ∪ BG) 6= ∅. Moreover, it consists of
G-orbits of type (10). Then q+1 | n+1−x1−

∣∣BG
∣∣, since

∣∣l − (Fix(G) ∪ BG)
∣∣ =

n + 1 − x1 −
∣∣BG

∣∣ and since each G-orbit of type (10) has length divisible by
q + 1. Hence, we arrive at a contradiction in any case, since

∣∣BG
∣∣ = 55 for

(n, x1, q) = (34, 1, 11) and
∣∣BG

∣∣ = 171 for (n, x1, q) = (44, 2, 19). Thus, x1 ≥ 3
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for x3 > 0. Actually, x1 ≥ 3 also for x3 = 0, since 4
√
n ≥ 2. So, x1 ≥ 3 in any

case. Thus, G fixes at least 3 points on l.

Let Q be any of the points fixed by G on l. Clearly, |Fix(T ) ∩ [Q]| = 4
√
n + 1

by Lemma 5.3. Applying the dual of Lemma 5.4, we obtain that Gr cannot be
isomorphic either to A4 or to A5 for each r ∈ [Q]−{l}. Therefore, x∗4 = x∗5 = 0.
Consequently, we obtain the same system of Diophantine equations as (85),
(86) and (87) but referred to [Q] and hence with the x∗i in the role of the xi. At
this point, the above argument yields that G fixes at least 3 lines (including l)
through any point Q of Fix(G) ∩ l. Thus, G fixes a subplane of Π pointwise, as
|Fix(G) ∩ l| ≥ 3. In particular, o(Fix(G)) = x1 − 1.

Assume that Fix(G) ⊂ Fix(T ). Then either 4
√
n = (x1 − 1)2 or 4

√
n ≥

(x1 − 1)2 + (x1 − 1) by [16, Theorem 3.7], since T induces a Baer collineation
on Fix(σ). Furthermore, there must be aG-orbit of type (3) on l. So 4

√
n = x1+2

by (85). It follows that, either x1 +2 = (x1−1)2 or x1 +2 ≥ (x1−1)2 +(x1−1).
Easy computations show that, no one of them occurs, since x1 ≥ 3. Hence,
Fix(G) = Fix(T ). Thus, G fixes a subplane of Π of order 4

√
n. This forces x3 = 0

which yields 4
√
n + 1 = x1 in (85). Then x2 > 0 by (86). Actually, x2 = 1 by

Lemma 3.5(1). So,
√
n − 4
√
n = q+1

2 by (86). If S = 0, then n − 4
√
n = q(q+1)

2

by (87). Note that n − 4
√
n = (

√
n − 4
√
n)(
√
n + 4
√
n + 1). As n − 4

√
n = q(q+1)

2

and
√
n − 4
√
n = q+1

2 , then q(q+1)
2 = q+1

2 (
√
n + 4
√
n + 1). By elementary calcu-

lations of the previous equality, we obtain
√
n+ 4
√
n = q − 1. Thus, 4

√
n | q − 1.

On the other hand, 4
√
n | q + 1, since

√
n − 4

√
n = q+1

2 . So, 4
√
n = 2. Then

q = 3, since
√
n − 4

√
n = q+1

2 , which is a contradiction by our assumptions.
Therefore, S > 0. Then a Sylow p-subgroup S of G fixes at least one point on
l−Fix(G). Consequently, Fix(S) is a Baer subplane of Π by [16, Theorem 3.7],
since Fix(G) ⊂ Fix(S) and since Fix(G) fixes a subplane of Π of order 4

√
n. It

follows that, S is semiregular on l − Fix(S) and q | n− √n, since |S| = q. This
yields that, either q | √n − 1 or q | √n, as q is a prime power. Hence,

√
n ≥ q

in any case, which is a contradiction by our assumptions. As a consequence, G
does not fix lines of Π.

Theorem 5.6. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q), with q ≡ 3 mod 8 and q > 3. If n ≤ q2, then one of the
following occurs:

(1) n = q, Π ∼= PG(2, q) and G is strongly irreducible on Π;

(2) q < n < q2 and G is strongly irreducible on Π;

(3) n = q2 and one of the following occurs:

(a) G is strongly irreducible on Π;
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(b) G fixes a Baer subplane Π0
∼= PG(2, q) of Π.

Proof. No cases arise for n < q by Theorem 2.1, as q > 3. If n = q, the assertions
(1) easily follows by Theorem 2.2. If q < n < q2, the group G does not fix lines
or points of Π by Proposition 5.5 and its dual. Now, the assertion (2) follows
in this case by Lemma 3.1, since q ≡ 3 mod 8 and q > 3. When n = q2, the
assertions (3a) and (3b) follow by Theorem 2.3 and Corollary 2.4, respectively.

Finally, when q ≡ 3 mod 8, Theorem 1.1 easily follows from Theorem 5.6.

6 The case q ≡ 5 mod 8

Recall that σ and T are the representatives of the unique conjugate class of
involutions and Klein subgroups of G, respectively. Recall also that T is chosen
such that σ ∈ T . Furthermore, CG(σ) ∼= Dq−1 and NG(T ) ∼= A4. We filter the
list given in Lemma 3.4 with respect to the condition q ≡ 5 mod 8. Now, arguing
as in the beginning of the previous section, we obtain the following table.

Table IV

Type GP [G : GP ] |FixPG(σ)| |FixPG(T )|
1 G 1 1 1

2 Dq−1
q(q+1)

2
q+1

2 3

3 Dq+1
q(q−1)

2
q−1

2 0

4 A4
q(q2−1)

24
q−1

4 1

5 A5
q(q2−1)

120
q−1

4 1

10 Fq .Zd
q2−1

2d

q−1
d 2 | d

0 2 - d 0

By section 3, the G-orbits of type (10) on l cover exactly S points of l, where
S =

∑x10

j=1
q2−1
2dj

. Moreover, S1 =
∑x10

j=1
q−1
dj

and S2, S2′ , S4, S2,4 (sum with

the same summands q−1
dj

but over 2 | dj , 2 - dj , 4 | dj and dj ≡ 2 mod 4,

respectively). In particular, S = q+1
2 S1. Note also that, S4 = 0, since q ≡

5 mod 8.

If G fixes a point Q and acts on [Q], we may focus on the G-orbits of lines
in [Q]. So, following the notation introduced in section 4, we obtain a table,
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namely the dual of Table IV, where type (i)∗ replaces (i), the group Gm replaces
GP andmG replaces PG. Here,m is any line of [Q]. Recall that, we denote by x∗i
the number of G-orbits on [Q] of type (i)∗. As mentioned in section 4, we write
x∗i instead of x∗i (Q), even if the second notation would be correct. It will be clear
from the context which point we are focusing on. In particular, since we might
have G-orbits of type (10)∗, it makes sense considering S∗ =

∑x∗10

j=1
q2−1
2dj

and
hence S∗2 , S∗2′ , S∗4 , S∗2,4 with the same meaning of S2, S2′ , S4, S2,4, respectively,
but referred to lines instead of points. Clearly, S∗4 = 0, since q ≡ 5 mod 8.

The collineation σ is a Baer collineation of Π by Lemma 3.3. Set C = CG(σ).
Then C acts on Fix(σ) with kernel K. Hence, let C̄ = C/K. Clearly, 〈σ〉 E K E
C. Furthermore, either K E Z q−1

2
or K = C, since C ∼= Dq−1 and q ≡ 5 mod 8.

As we will see, we need to investigate the structure of K in order to show that
T induces a Baer collineation on Fix(σ).

Lemma 6.1. If Fix(T ) ∩ l = Fix(σ) ∩ l, then K = C.

Proof. Assume that Fix(T ) ∩ l = Fix(σ) ∩ l and that K E Z q−1
2

. Then Fix(G) ∩
l =Fix(σ) ∩ l by table IV, since q > 9. Set l0 =Fix(σ) ∩ l. Then C̄ = C̄(l0),
since l0 = Fix(G) ∩ l. In particular, C̄ ∼= D q−1

k
, where k = |K|, since K E Z q−1

2

and C ∼= Dq−1. On the other hand, C̄ is the semidirect product of C̄(l0, l0) with
C̄(Y, l0) for some point Y ∈ Fix(σ)− l0 by [16, Theorem 4.25].

Assume that C̄(l0, l0) 6= 〈1〉. Assume that also that C̄(l0, l0) = C̄. Then
C̄ = C̄(V, l0), for some point V ∈ l0 by [16, Theorem 4.14], since C̄ ∼= D q−1

k
,

〈σ〉 E K E Z q−1
2

and q ≡ 5 mod 8. Hence, for each point X ∈ l0 − {V } and for
each line t ∈ [X ] ∩ Fix(σ), we have that σ ∈ Gt but Gt does not contain Klein
groups. Then, by dual of table IV, we have that either Gt ∼= Dq+1 or Gt ∼= Fq .Zd
with d even, since G fixes X . Clearly, K ≤ Gt and 〈σ〉 E K ≤ Z q+1

2
. Thus,

K = 〈σ〉, since 2 | |Gt| but 4 - |Gt| as q ≡ 5 mod 8. Therefore, C̄ ∼= D q−1
2

and q−1
2 | √n. Actually, either

√
n = q−1

2 or
√
n = q − 1, since

√
n < q by

our assumptions. If
√
n = q−1

2 , then
√
n ≡ 2 mod 4 as q ≡ 5 mod 8. This is a

contradiction by Lemma 3.3. So
√
n = q − 1. Note that, either Gt ∼= Dq+1 or

Gt ∼= Fq .Zd, with d = d(t) even, for each line t ∈ [X ]∩Fix(σ) such that t 6= l.
Moreover, Fix(T )∩ [V ] = Fix(σ)∩ [V ], since C̄ = C̄(V, l0). Then Fix(G)∩ [V ] =

Fix(σ) ∩ [V ] by dual of table IV, since q > 9. Thus either |Gr| is odd, or 2 | |Gr|
but 4 - |Gr| for each r ∈ [X ] − Fix(σ). Consequently, either Gt ∼= Dq+1 or
Gt ∼= Fq .Zd, with d = d(r), for each r ∈ [X ] − Fix(σ) by dual of table IV, since
G fixes X . In this case d = d(r) might be also odd. Therefore, [X ] consists of
G-orbits of type (1)∗, (3)∗ or (10)∗. Then, again by dual of table IV, we have

n =
q(q − 1)

2
x∗3 +

q + 1

2
S∗1 , (88)
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since x∗1 = 1 (G fixes l ) and since S∗ = q+1
2 S∗1 . Actually,

(q − 1)2 =
q(q − 1)

2
x∗3 +

q + 1

2
S∗1 , (89)

since Π has order (q−1)2. Hence q+1
2 | (q−1)2− q(q−1)

2 x∗3, where x∗3 ≤ 1 by dual
of Lemma 3.5(2). If x∗3 = 0, by elementary calculations of the last divisibility
relation, we obtain q+1

2 | 4. So, we arrive at a contradiction, since q ≡ 5 mod 8.
Thus, x∗3 = 1. So, q + 1 | q2 − 3q + 1 by q+1

2 | (q − 1)2 − q(q−1)
2 . This is

impossible, since q + 1 is even while q2 − 3q + 1 is odd. Then C̄(l0, l0) < C̄ and
C̄(Y, l0) 6= 〈1〉 for some point Y ∈ Fix(σ)− l0. It follows that, C̄(l0, l0) ≤ Z q−1

k
,

since C̄ ∼= D q−1
k

. Actually, C̄(l0, l0) = C̄(V, l0) ∼= Z q−1
k

and C̄(Y, l0) ∼= Z2 by [16,
Theorems 4.14 and 4.25]. Let R ∈ l0 − {V } and set f = RY . Clearly, C̄(Y, l0)

fixes f . ThenD2k ≤ Gf , where k is an even divisor of q−1
2 , since 〈σ〉 ≤ K ≤ Gf .

If k = 2, then C̄(V, l0) ∼= Z q−1
2

and q−1
2 | √n, arguing as above. So,

√
n is even,

as q ≡ 5 mod 8, which is a contradiction, since C̄(Y, l0) consists of an involutory
homology. Therefore, k > 2. Hence, 4 | 2k with k > 2. As a consequence,
C ≤ Gf by dual of Table IV. Then C̄ fixes f . Hence, we obtain a contradiction,
since C̄(l0, l0) = C̄(V, l0) 6= 〈1〉, while f = RY with R ∈ l0 − {V }. Thus,
C̄(l0, l0) = 〈1〉.

Assume that C̄ = C̄(Y, l0) for some point Y ∈ Fix(σ) − l0. Let Q ∈ l0 and
m ∈ [Q] ∩ Fix(σ) − {l, QY }. Then σ ∈ Gm but Gm does not contain Klein
subgroups of G. By dual of table IV, either Gm ∼= Dq+1 or Gm ∼= Fq .Zd. So,

√
n =

q + 1

2
x∗2 +

q − 1

2
x∗3 + S∗2 . (90)

Note that, x∗2 > 0, as GQY = C. Then x∗2 = 1 by dual of Lemma 3.5(2).
Hence, x∗3 = 0 by dual of Lemma 3.6(1). Furthermore, T fixes exactly 3 points
on QY G. Thus,

√
n = 2, since T must induce either a perspectivity or the

identity on Fix(σ) as Fix(T ) ∩ l = Fix(σ) ∩ l. On the other hand,
√
n ≥ q+1

2 by
(90) as x∗2 = 1. This yields

√
n ≥ 5, being q > 9, which is a contradiction, since

we proved that
√
n = 2.

Lemma 6.2. Fix(T ) ∩ l ⊂ Fix(σ) ∩ l.

Proof. Assume that Fix(T ) ∩ l = Fix(σ) ∩ l. Then K = C by Lemma 6.1. Thus,
Fix(T ) = Fix(σ). Let P be any point of Fix(σ) ∩ l and let r be any line of
[P ] − {l}. Then C ≤ Gr. Since q > 9, then C is maximal in G and hence
either Gr = C or Gr = G. If the former occurs, then |FixrG(T1)| = 3 and
|FixrG(σ)| = q+1

2 by dual of Table V. Hence, |FixrG(σ)| > |FixrG(T1)| as q > 9.
This is a contradiction, since Fix(T1) = Fix(σ). So, Gr = G for any point
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P of Fix(σ) ∩ l and for any line r of [P ] − {l}. Thus Fix(G) =Fix(σ), since
Fix(G)∩ l = Fix(σ)∩ l and Fix(G) ⊆ Fix(σ). Therefore,G fixes a Baer subplane
of Π. Then G is semiregular on l − Fix(G) and hence |G| | n − √n, which is a
contradiction. So, we have proved the assertion.

Lemma 6.3. The group T induces a Baer collineation on Fix(σ).

Proof. The group T induces a non trivial involution β̄ on Fix(σ) by Lemma 6.2.
Assume that β̄ is an involutory (Cβ̄ , aβ̄)-perspectivity on Fix(σ). Then aβ̄ 6= l

again by Lemma 6.2. Thus, |Fix(T ) ∩ l| = 1 or 2. Therefore, x1 +3x2+x4 +x5 =

1 or 2, since |Fix(T ) ∩ l| = x1 + 3x2 +x4 +x5 by table IV. Clearly x2 = 0. Hence,
x1 + x4 + x5 = 1 or 2. Furthermore, by table IV, we have the following system
of Diophantine equations:

√
n+ 1 = x1 +

q − 1

2
x3 +

q − 1

4
x4 +

q − 1

4
x5 + S2 (91)

n+ 1 = x1 +
q(q − 1)

2
x3 +

q(q2 − 1)

24
x4 +

q(q2 − 1)

120
x5 + S . (92)

Assume |Fix(T ) ∩ l| = 1. Then β̄ is an involutory (Cβ̄ , aβ̄)-elation of Fix(σ)

with Cβ̄ ∈ l and aβ̄ 6= l. So Fix(T ) ∩ l =
{
Cβ̄
}

and x1 + x4 + x5 = 1. Clearly, G
cannot fix Cβ̄ , otherwise we obtain a contradiction by dual of Lemma 6.2, since
Fix(T ) ∩

[
Cβ̄
]

= Fix(σ) ∩
[
Cβ̄
]
. Consequently, x1 = 0 and x4 + x5 = 1.

Assume that x4 = 1 and x5 = 0. Then x3 = 0 by Lemma 3.6(3) and q = 13

by Lemma 3.4. So, either
√
n = 10 or 12, since q(q+1)

2 ≤ n < q2 + 1 with n an
even square number. The former is ruled out by Lemma 3.3. Hence

√
n = 12.

Since x1 = x3 = x5 = 0, since q+1
2 | S and since q+1

2 divides the G-orbit of type
(4) as q = 13, then q+1

2 | n+ 1 by (92). This cannot occur, since q+1
2 = 7 while√

n = 12.

Assume that x4 = 0 and x5 = 1. Then q = 29, 61, 101, 109 by Lemma 3.4,
since q ≡ 5 mod 8. If x3 = 1, then q = 29 by Lemma 3.6(4). Let QG be an orbit
of type (3). Clearly,

∣∣QG
∣∣ = q(q−1)

2 . Now, let RG be an orbit of type (5), then∣∣RG
∣∣ = q(q2−1)

120 . SinceQG∪RG ⊆ l, it follows that, n+1 ≥ q(q−1)
2 + q(q2−1)

120 . Then

n ≥ 608, since q(q−1)
2 + q(q2−1)

120 = 609, being q = 29. So, 24 <
√
n < 29, since

n < q2 and q = 29. Actually,
√
n = 26 cannot occur by Lemma 3.3. Therefore,√

n = 28, since
√
n must be even. Thus, S = 176, since n+ 1 = 608 +S by (92),

since x1 = x4 = 0, x3 = x5 = 1 and q = 29. Then S = 176, as
√
n = 28. Hence

q+1
2 | 176, as q+1

2 | S, which is a contradiction, since q = 29. Consequently,

x3 = 0. Then n+ 1 = q(q2−1)
120 + S by (92), since x1 = x3 = x4 = 0 and x5 = 1.

If S = 0, then n = q(q2−1)
120 − 1 with q = 29, 61, 101, 109. We again obtain a

contradiction, since n must be a square. Thus, S > 0. Since q+1
2 | S, then
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q+1
2 | n+ 1− q(q2−1)

120 , since n+ 1 = q(q2−1)
120 + S. Moreover, q = 29, 61, 101, 109,

and
√

q(q2−1)
120 − 1 < n < q2, with n an even square number. Easy computations

show that, only the case
√
n = 98 and q = 101 is admissible. Nevertheless, it

cannot occur by Lemma 3.3.

Assume that |Fix(T ) ∩ l| = 2. Then β̄ is an involutory (Cβ̄ , aβ̄)-homology
of Fix(σ) with Cβ̄ ∈ l and aβ̄ 6= l. Furthermore, x1 + x4 + x5 = 2, since
|Fix(T ) ∩ l| = x1 + 3x2 + x4 + x5 with x2 = 0.

Assume that x4 > 0. Then x4 = 1 by Lemma 3.5(3). Then x2 = x3 = 0 by
Lemma 3.6(3). Moreover, q = 13 by Lemma 3.4, since q ≡ 5 mod 8. So, 4

√
n = 2

or 3, since q < n < q2 by our assumption. On the other hand, n+ 1 ≥ q(q2−1)
24 ,

with q = 13, since x4 = 1. Hence, we arrive at a contradiction. Thus, x4 = 0

and either x1 = x5 = 1, or x1 = 0 and x5 = 2, since x1 ≤ 1 and x1 +x4 +x5 = 2.
In order to make easier the analysis of these two cases, we are going to show
that x3 = 0.

Assume that x3 > 0. Then x3 = 1 by Lemma 3.5(3). So, q = 29 by
Lemma 3.6(4), since x5 ≥ 1. Therefore, 24 <

√
n < 29, arguing as above.

Then
√
n = 25 or 27, since

√
n is odd. Actually, the case

√
n = 27 cannot occur

by Lemma 3.3, as
√
n ≡ 3 mod 4. Thus,

√
n = 25. Let XG

1 and XG
2 be the orbits

on l of type (3) and (5), respectively, as x3 = 1 and x5 ≥ 1. Then
∣∣XG

1

∣∣ = 406

and
∣∣XG

2

∣∣ = 203 as q = 29. Since
√
n = 25, we have

∣∣l −XG
1 −XG

2

∣∣ = 17. As
the minimal primitive permutation representation of G ∼= PSL(2, 29) is 30, the
group G fixes l −XG

1 −XG
2 pointwise. As a consequence, x1 = 17 and x5 = 1,

since
∣∣l −XG

1 −XG
2

∣∣ = 17. This is impossible, since we saw x1 ≤ 1. So, x3 = 0.

Now, assume that x1 = x5 = 1. Thus, n = q(q2−1)
120 +S by (92), as x3 = x4 = 0.

Furthermore, q = 29, 61, 101, 109 by Lemma 3.4, since q ≡ 5 mod 8. Clearly,
n > q(q2−1)

120 , since n is a square by Lemma 3.3, while q(q2−1)
120 is not for these

numerical values of q. Therefore, S > 0. Since q+1
2 | S, then q+1

2 | n− q(q2−1)
120 ,

where q = 29, 61, 101, 109, and
√

q(q2−1)
120 <

√
n < q with

√
n odd and hence√

n ≡ 1 mod 4 by Lemma 3.3. Easy computations show that no cases arise.

Assume that x1 = 0 and x5 = 2. Therefore, n + 1 ≥ q(q2−1)
60 by (92), as

x3 = x4 = 0. Furthermore, q = 29, 61, 101, 109 by Lemma 3.4, since q ≡
5 mod 8. Actually, the cases q = 61, 101, 109 cannot occur, since they do not
satisfy q(q2−1)

60 − 1 ≤ n < q2. Thus, q = 29 and hence 405 ≤ n < 292. Actually,
either n = 212 or 252, since

√
n ≡ 1 mod 4 by Lemma 3.3. Then S = 36 or 220

by (92), respectively, since x1 = x3 = x4 = 0, x5 = 2 and q = 29. This leads
to a contradiction, since q+1

2 = 15 must divide S by the definition of this one.
Hence, we have proved the assertion.
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Lemma 6.4. For each point P ∈ l, the group GP cannot be isomorphic either to
A4 or to A5.

Proof. The group T induces a Baer collineation on Fix(σ) by Lemma 6.3. Thus,
|Fix(T ) ∩ l| = 4

√
n + 1. Then, by Table IV, we have the following system of

Diophantine equations:

4
√
n+1 = x1+3x2+x4+x5 (93)
√
n+1 = x1+

q + 1

2
x2+

q − 1

2
x3+

q − 1

4
x4+

q − 1

4
x5+S2 (94)

n+ 1 = x1+
q(q + 1)

2
x2+

q(q − 1)

2
x3+

q(q2−1)

24
x4+

q(q2−1)

120
x5+S . (95)

Assume that x4 > 0. Then x4 = 1 by Lemma 3.5(3). So, x2 = x3 = 0

by Lemma 3.6(3). Furthermore, q = 13 by Lemma 3.4, since q ≡ 5 mod 8.
Thus, 4

√
n = 2 or 3, since q < n < q2 by our assumption. Hence, we obtain a

contradiction, since n+ 1 ≥ q(q2−1)
24 for q = 13, being x4 = 1. Therefore, x4 = 0.

Assume that x5 > 0. Then q = 29, 61, 101, 109 by Lemma 3.4, since q ≡
5 mod 8. If x2 + x3 > 0, then x2 + x3 = 1, x5 ≤ 2 and q = 29 by Lemma 3.6(2)
and (4). Moreover, 4

√
n = 3, 4 or 5, since q < n < q2 and since n is a fourth

power by Lemma 6.3. LetQG be an orbit of type either (2) or (3), as x2+x3 = 1.
Then

∣∣QG
∣∣ = q(q±1)

2 , respectively. Now, let RG be an orbit of type (5) as x5 > 0,

then
∣∣RG

∣∣ ≥ q(q2−1)
120 . Since QG ∪ RG ⊆ l, then n + 1 ≥ q(q±1)

2 + q(q2−1)
120 . In

particular, n + 1 = 638 or 609, since q(q±1)
2 + q(q2−1)

120 = 638 or 609 according
to whether QG is of type (2) or (3), respectively. While the cases 4

√
n = 3, 4 or

5 cannot occur when QG is of type (2), only 4
√
n = 5 is admissible when QG

is of type (3). In this case, since
∣∣l − (QG ∪RG)

∣∣ = 17 and since the minimal
primitive permutation representation of degree of PSL(2, 29) is 30, the group G
fixes l−(QG∪RG) pointwise. Hence, x1 = 17 as

∣∣l − (QG ∪ RG)
∣∣ = 17 whenQG

is of type (3). So 4
√
n ≥ 16 as 4

√
n+ 1 = x1 + 3x2 + x5, which is a contradiction,

being 4
√
n = 5 by the above argument. Thus, x2 = x3 = 0.

Since q(q2−1)
120 ≤ n + 1 < q2 + 1 and since n is a fourth power, it is a

straightforward calculation to show that, (q, n) = (29, 44), (29, 54), or (61, 74),
or (101, 104). Assume that q 6= 29. Let u be an odd prime divisor of q + 1. In
particular, u = 31 when q = 61 and u = 17 when q = 101. Note that, u | S,
since q+1

2 | S. Furthermore, u | q(q
2−1)

120 . Then u | n + 1 − x1. Indeed, we

have n + 1 − x1 = q(q2−1)
120 x5 + S by (95), since x2 = x3 = x4 = 0. Hence,

n+ 1 ≡ x1 mod u. This yields x1 ≡ 15 mod 31 for q = 61 and x1 ≡ 5 mod 31 for
q = 101. Since 0 < x1 < 4

√
n+ 1 and 4

√
n+ 1 < u in each case, then x1 = 15 for

q = 61 and x1 = 5 for q = 101. This is a contradiction, since x1 + x5 = 4
√
n+ 1
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with 4
√
n ≤ 10. Thus, (q, n) = (29, 44), (29, 54). Then n+ 1 = x1 + 203x5 + S by

(95), since x2 = x3 = x4 = 0. Assume that S = 0. Then n + 1 = x1 + 203x5.
Since 4

√
n + 1 = x1 + x5 by (93), then n + 1 = 4

√
n + 1 + 202x5. Therefore,

202 | n − 4
√
n, as x5 > 0, which is a contradiction, since 4

√
n = 4 or 5. Hence,

S > 0. Actually, S = n − 4
√
n − 202x5. If 4

√
n = 4, then x5 = 1 and S = 50. If

4
√
n = 5, then x5 ≤ 3. Furthermore, S = 418, 216, or 19, for x5 = 1, 2, or 3,

respectively. On the other hand, 15 | S, since q+1
2 = 15 and since q+1

2 | S by the
definition of S. in each case. So, we obtain a contradiction in any case.

Proposition 6.5. Let Π be a projective plane of order n that admits a collineation
group G ∼= PSL(2, q) fixing a line l. If q < n < q2 and q ≡ 5 mod 8, then Π has
order 16 and G ∼= PSL(2, 5).

Proof. Suppose that G fixes a line l of Π. Assume that q = 5. Then 5 < n < 52

by our assumptions. Actually, n = 16, since n must be a square and
√
n ≡

0, 1 mod 4 by Lemma 3.3. Thus, we have proved the assertion (1).

Assume that q > 5. Actually, q > 9, since . Recall that, |Fix(T ) ∩ l| =
4
√
n + 1 by Lemma 6.3, and that for each point P ∈ l, the group GP cannot be

isomorphic either to A4 or to A5 by Lemma 6.4. So, x4 = x5 = 0. Hence, by
table IV, we have

4
√
n+ 1 = x1 + 3x2 (96)
√
n+ 1 = x1 +

q + 1

2
x2 +

q − 1

2
x3 + S2 (97)

n+ 1 = x1 +
q(q + 1)

2
x2 +

q(q − 1)

2
x3 + S . (98)

Assume that x2 > 0. Then x2 = 1 by Lemma 3.5(1) and therefore x3 = 0 by
Lemma 3.6(2). It follows that, 4

√
n = x1 + 2 and

√
n = x1 + q+1

2 + S2 by (96)
and (97), respectively. By elementary calculations of the previous equations, we
obtain (x1 + 2)2 + 1 = x1 + q+1

2 + S2. So, x2
1 + 3x1 = q−9

2 + S2. If x1 = 0, then
q = 9, since S2 ≥ 0. This is a contradiction, since q ≡ 5 mod 8. If x1 = 1, then
4
√
n = 3 and hence n = 81. Moreover, n+ 1 ≥ x1 + q(q+1)

2 by (98), being x2 = 1.
This is a contradiction, since q(q+1)

2 ≥ 91 as q ≥ 13, while n = 81. If x1 = 2,
then 4

√
n = 4 and therefore q > 13, since q < n < q2 by our assumptions. Thus,

q ≥ 29, since q ≡ 5 mod 8. Again, n+ 1 ≥ x1 + q(q+1)
2 , with q(q+1)

2 ≥ 435, being
q ≥ 29. This is impossible, since n = 44. Thus, x1 ≥ 3 for x2 > 0. Note that,
x1 ≥ 3 also for x2 = 0, since 4

√
n+ 1 ≥ 3. So, x1 ≥ 3 in any case. Thus, G fixes

always at least 3 points on l.

Let P be any of these points and let r be any line of [P ] − {l}. Applying the
dual of Lemma 6.4, we obtain that, Gr cannot be isomorphic either to A4 or to
A5 for each line r ∈ [P ] − {l}. Hence, x∗4 = x∗5 = 0. By dual of Table IV, we
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obtain the same system of Diophantine equations as (96), (97) and (98) but
referred to [P ] and with the x∗i in the role of xi. Now, we may repeat the above
argument showing that, G fixes at least 3 lines (including l) through any point
P of Fix(G) ∩ l. Thus G fixes a subplane of Π pointwise, as |Fix(G) ∩ l| ≥ 3. In
particular, o(Fix(G)) = x1 − 1.

Assume that Fix(G) ⊂ Fix(T ). Then either 4
√
n = (x1 − 1)2 or 4

√
n ≥

(x1 − 1)2 + (x1 − 1) by [16, Theorem 3.7], since T induces a Baer collineation
on Fix(σ). Furthermore, there must be a G-orbit on l of type (2) by (96). So,
4
√
n+1 = x1 +2. Hence, either x1 +2 = (x1−1)2 or x1 +2 ≥ (x1−1)2 +(x1−1).

Easy computations show that no one of them occurs, since x1 ≥ 3. Conse-
quently, Fix(G) = Fix(T ). This yields x2 = 0 and 4

√
n+ 1 = x1.

Assume that S = 0. Then x3 > 0 by (97), as x2 = 0. Actually, x3 = 1 by
Lemma 3.5(2). So (96), (97) and (98), respectively, become

4
√
n+ 1 = x1 (99)
√
n+ 1 = x1 +

q − 1

2
(100)

n+ 1 = x1 +
q(q − 1)

2
. (101)

Then
√
n− 4
√
n = q−1

2 combining (99) with (100), and n−√n = (q−1)2

2 combin-
ing (100) with (101). Finally, combining these ones, we have n+ 4

√
n = q − 1.

Then n + 4
√
n = 2(

√
n − 4
√
n), as

√
n − 4
√
n = q−1

2 . Now, dividing by 4
√
n, we

obtain ( 4
√
n)3 − 2 4

√
n+ 3 = 0 which has no integer solutions. Therefore, S > 0.

Let S be a Sylow p-subgroup of G normalized by σ and let X ∈ l such that
S ≤ GX (such a point does exist, as S > 0). Then either GX ∼= Fq .ZdX ,
with dX | q−1

2 , or GX = G by Table V. Then S fixes a Baer subplane of Π,
since Fix(G) ⊂ Fix(S), since o(Fix(G)) = 4

√
n and since S > 0. Recall that

S1 =
∑x10

j=1
q−1
dj

and that S2 and S2′ are the sum with the same summands q−1
dj

but over 2 | dj and 2 - dj , respectively. Note that, dX = dh for some 1 ≤ h ≤ x10.
Then |FixXG(S)| = q−1

2dh
by Proposition 2.5, since NG(S) = S.Z q−1

2
. Thus, the

number of points coming out from G-orbits on l of type (10) which fixed by S
are exactly

∑x10

j=1
q−1
2dj

. These turn out to be 1
2S1 as S1 =

∑x10

j=1
q−1
dj

. Therefore,
o(Fix(S))+1 = x1 + 1

2S1. So,
√
n+1 = x1 + 1

2S1, since Fix(S) is a Baer subplane
of Π. Then x1 + 1

2S1 = x1 + q−1
2 x3 + S2, since

√
n + 1 = x1 + q−1

2 x3 + S2 by
(97). As a consequence

S1 = (q − 1)x3 + 2S2 . (102)

Assume that x3 > 0. Then x3 = 1 by Lemma 3.5(2). Then S1 ≥ q − 1 and
hence S ≥ q2−1

2 , since S = q+1
2 S1. Now, by substituting S ≥ q2−1

2 in (98) and

bearing in mind x3 = 1, we obtain n + 1 ≥ q(q−1)
2 + q2−1

2 . On the other hand,
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n ≤ (q − 1)2 since n < q2 and n is a square. Then (q − 1)2 + 1 ≥ q(q−1)
2 + q2−1

2 ,
which is a contradiction.

Assume that x3 = 0. Then S1 = 2S2 by (102). Note that, S1 > 0, as S =
q+1

2 S1 and S > 0. As a consequence, S2′ > 0 being S1 = 2S2 and S1 = S2 +S2′ .
Now, we focus on the points on l fixed by S 〈σ〉. If S 〈σ〉 fixes a point Q on l,
then GQ is either of type (1) or of type (10). So, S 〈σ〉 fixes at least x1 points
on l. Furthermore, if QG is of type (10), then

∣∣FixQG(S 〈σ〉)
∣∣ = q−1

2dj
for dj even

and 0 for dj odd by Proposition 2.5. Therefore, the number of points coming
out fromG-orbits on l of type (10) which fixed by S 〈σ〉 are exactly

∑
dj≡20

q−1
2dj

.

These turn out to be 1
2S2 as S2 =

∑
dj≡20

q−1
dj

. It follows that, S 〈σ〉 fixes exactly
x1+ 1

2S2 on l. Hence, σ fixes exactly x1+ 1
2S2 points on Fix(S)∩l. Then σ induces

a Baer collineation on Fix(S), since x1 + 1
2S2 ≥ 3, since o(Fix(S))+1 = x1 + 1

2S1

with S1 > S2′ > 0. Consequently, 4
√
n + 1 = x1 + 1

2S2, since Fix(S) is a Baer
subplane of Π. On the other hand, 4

√
n+ 1 = x1 by (99). Hence, x1 + 1

2S2 = x1.
This yields S2 = 0. Thus, S = 0, since S1 = 2S2 and S = q+1

2 S1. This is a
contradiction, since S > 0. So, G does not fix lines of Π.

Corollary 6.6. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, 5). If n < 25 and G fixes a subplane Π0 of Π, then Π0

∼=
PG(2, 4) and n = 16.

Proof. Let Π be a projective plane of order n admitting a collineation group
G ∼= PSL(2, 5). Assume that n < 25 and that G fixes a subplane Π0 of Π of order
m. Clearly, m < 5 by [16, Theorem 3.7]. Then Π0

∼= PG(2, 4) by Theorem 2.1.
In particular, G fixes a secant l of Π0 which is the kernel of the line oval of Π0

left invariant by G itself. Then n = 16 by Proposition 6.5.

Theorem 6.7. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q) with q ≡ 5 mod 8. If n ≤ q2, then one of the following
occurs:

(1) n < q, Π ∼= PG(2, 4) and G ∼= PSL(2, 5);

(2) n = q, Π ∼= PG(2, q) and G is strongly irreducible on Π;

(3) q < n < q2 and one of the following occurs:

(a) G is strongly irreducible on Π;

(b) n = 16 and G ∼= PSL(2, 5) fixes a point, or a line of Π or subplane
Π0
∼= PG(2, 4);

(4) n = q2 and one of the following occurs:
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(a) G is strongly irreducible on Π;

(b) G fixes a subplane Π0 of Π. In particular, if q 6= 5, then Π0
∼= PG(2, q)

is a Baer subplane of Π.

Proof. If n ≤ q, the assertions (1) (2) easily follows by Theorems 2.1 and 2.2,
respectively. If q < n < q2, then either the assertion (3b) or group G does not
fix lines or points of Π by Proposition 6.5 and its dual. If the latter occurs, the
assertion (3a) easily follows by Lemma 3.1, since q ≡ 5 mod 8 and by Corollary
6.6. Finally, if n = q2, the assertions (4a) and (4b) and follow by Theorems 2.3
and 2.4, respectively.

At this point, Theorem 1.1 easily follows, when q ≡ 5 mod 8, from Theo-
rem 6.7.

7 The case q ≡ 7 mod 8

Assume that q ≡ 7 mod 8. Recall that σ is a representative of the unique con-
jugate class of involution in G, and that T1 and T2 are the representatives of
the two conjugate classes of Klein subgroups of G. In particular, T1 and T2 are
chosen in order to contain σ. Furthermore, CG(σ) ∼= Dq+1 and NG(Tj) ∼= S4

for each j = 1 or 2.

We filter the list given in Lemma 3.4 with respect to the condition q ≡ 7 mod

8. Then, for each point P ∈ l, either GP = G (type (1)), or GP ∼= Dq−1 (type
(2)), or GP ∼= Dq+1 (type (3)), GP ∼= A5 (type (5)), or GP ∼= S4 (type (6))
or GP ∼= Fq .Zd, where d | q−1

2 and d odd (type (10)). Note that there are two
conjugate classes of subgroups isomorphic to A5 and two ones of subgroups
isomorphic to S4 by [4]. So, following the notation introduced in section 4,
there are admissible subgroups of type (5a) and (5b), and admissible ones of
type (6a) and (6b). Hence, xi = xia + xib for i = 5 or 6. The usual argument,
involving Proposition 2.5, yields the table on the next page containing all the
required informations about the admissible GP .

The numbers S, S1, S2, S2′ , S2,4 and S4 have the usual meaning. In par-
ticular, S2 = S2,4 = S4 = 0, since q ≡ 7 mod 8. Consequently, S1 = S2′ and
S = q+1

2 S2′ .

As in the preceding sections, we may consider the dual of table V, that is the
table referred to the G-orbits of lines through some point Q of Π fixed by G.
In particular, we might have G-orbits of lines of type (ia)∗ and (ib)∗ for i = 5

or 6, and it makes sense considering S∗, S∗1 , S∗2 , S∗2′ , S∗2,4 and S∗4 . Similarly to
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Table V

Type GP [G : GP ] |FixPG(σ)| |FixPG(T1)| |FixPG(T2)|
1 G 1 1 1 1

2 Dq−1
q(q+1)

2
q+1

2 0 0

3 Dq+1
q(q−1)

2
q+3

2 3 3

5a A5
q(q2−1)

120
q+1

4 2 0

5b A5
q(q2−1)

120
q+1

4 0 2

6a S4
q(q2−1)

48
3(q+1)

8

4, q ≡16 15

1, q ≡16 7

4, q ≡16 15

3, q ≡16 7

6b S4
q(q2−1)

48
3(q+1)

8

4, q ≡16 15

3, q ≡16 7

4, q ≡16 15

1, q ≡16 7

10 Fq .Zd
q2−1

2d 0 0 0

above, we have S∗2 = S∗2,4 = S∗4 = 0, since q ≡ 7 mod 8, and hence S∗1 = S∗2′
and S∗ = q+1

2 S∗2′ .
Note that σ is a Baer collineation of Π by Lemma 3.3. Set C = CG(σ). Then

C acts on Fix(σ) with kernel K. Hence, let C̄ = C/K. Clearly, 〈σ〉 E K E C.
Furthermore, either K E Z q+1

2
or K ∼= D q+1

2
or K = C, since C ∼= Dq+1 and

q ≡ 7 mod 8. As we will see, we need to investigate the admissible structure of
K in order to show that Tj induces a Baer collineation on Fix(σ) for each j = 1

or 2.

Lemma 7.1. If Fix(Tj)∩ l = Fix(σ)∩ l for some j = 1 or 2, then eitherK ∼= D q+1
2

or K = C.

Proof. Assume that Fix(T1)∩l = Fix(σ)∩l and thatK E Z q+1
2

. Then Fix(G)∩l =

Fix(σ) ∩ l by table V, since q > 9. Set l0 =Fix(σ) ∩ l. Then C̄ = C̄(l0), since
l0 = Fix(G) ∩ l. In particular, C̄ ∼= D q+1

k
, where k = |K|, k is even and k | q+1

2 .
Then the group C̄ is the semidirect product of C̄(l0, l0) with C̄(Y, l0) for some
point Y ∈ Fix(σ)− l0 by [16, Theorem 4.25].

Assume that C̄(l0, l0) 6= 〈1〉. If C̄(l0, l0) = C̄, then either C̄ ∼= E4 and K ∼=
Z q+1

4
or C̄ = C̄(V, l0) for some point V ∈ l0 by [16, Theorem 4.14], since

C ∼= Dq+1 and q ≡ 7 mod 8. Suppose the former occurs. Let Ri, i = 1, 2 or 3,
be the (unique) points on l0, such that C̄(Ri, l0) 6= 〈1〉. Actually, C̄(Ri, l0) ∼=
Z2 for each i = 1, 2, 3. So, there are at least two points among the Ri, i =

1, 2 or 3, say R2 and R3, such that Ch ∼= D q+1
2

for each line h ∈ [Ri] − {l},
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i = 2, 3, since K ∼= Z q+1
4

and C ∼= Dq+1. As a consequence, D q+1
2
≤ Gh for

each h ∈ ([R2] ∪ [R3]) − {l}. Now, since G fixes the Ri, i = 2, 3, we may
filter the groups listed in the dual of Lemma 3.4 with respect to the condition
D q+1

2
≤ Gh. Easy computation show that either Gh = C or Gh = G, which

is a contradiction, since Ch ∼= D q+1
2

. Therefore, C̄ = C̄(V, l0) for some point
V ∈ l0 by [16, Theorem 4.14]. Thus, for each point X ∈ l0 − {V } and for each
line t ∈ [X ]∩Fix(σ), we have σ ∈ Gt but Gt does not contain Klein groups.
Then Gt ∼= Dq−1 by dual of table V, since G fixes X . Assume there exists
u ∈ [X ] ∩ Fix(σ) such that Gu ∼= Dq−1. Clearly, K ≤ Gu. Then K = 〈σ〉,
since 〈σ〉 E K ≤ Z q+1

2
. so, C̄ ∼= D q+1

2
and hence q+1

2 |
√
n. Actually,

√
n = q+1

2 ,
since

√
n < q by our assumptions. On the other hand, uG ⊂ [X ]−{l} as G fixes

X . Then n ≥ q(q+1)
2 since

∣∣uG
∣∣ = q(q+1)

2 as Gu ∼= Dq−1. Then
(
q+1

2

)2 ≥ q(q+1)
2 ,

since
√
n = q+1

2 . This contradicts the fact that q > 9. Thus, C̄(l0, l0) < C̄ .
Then C̄(l0, l0) ≤ Z q+1

k
, since C̄ ∼= D q+1

k
. Actually, C̄(l0, l0) = C̄(V, l0) ∼= Z q+1

k

and C̄(Y, l0) ∼= Z2 by [16, Theorems 4.14 and 4.25]. Let s ∈ [V ] − {l, V Y },
then s is fixed by K and by C̄(V, l0). Therefore, Gs ∩ C ∼= Z q+1

2
. It follows that

Z q+1
2
≤ Gs. Then either Gs = CG(σ) or Gs = G by dual of Lemma 3.4, since

G fixes l0, since q > 9. This is a contradiction, since Gs ∩ C ∼= Z q+1
2

. Hence,
C̄(l0, l0) = 〈1〉.

Assume that C̄ = C̄(Y, l0) for some point Y ∈ Fix(σ)− l0. Let Q ∈ Fix(σ) ∩ l
and let m ∈ [Q] ∩ Fix(σ) − {l, Y Q}. Then σ ∈ Gm but Gm does not contain
Klein groups. So, Gm ∼= Dq−1 by dual of table V, since G fixes Q. Therefore,
x∗2 ≥ 1. Furthermore, x∗3 ≥ 1, since GY Q = C. Thus, x∗2 + x∗3 ≥ 2, which is a
contradiction by dual of Lemma 3.6(1), being q > 9.

Lemma 7.2. It holds that Fix(Tj) ∩ l ⊂ Fix(σ) ∩ l for each j = 1, 2.

Proof. Assume that Fix(T1) ∩ l = Fix(σ) ∩ l. Then either K ∼= D q+1
2

or K = C

by Lemma 7.1.

Assume that K = C. Then Fix(T1) = Fix(σ). Let P be any point of Fix(σ)∩ l
and let r be any line of [P ]−{l}. So, C ≤ Gr. Since q > 9, then C is maximal in
G and hence either Gr = C or Gr = G. If the former occurs, then |FixrG(T1)| =
3 and |FixrG(σ)| = q+3

2 by dual of table V. Therefore, |FixrG(σ)| > |FixrG(T1)|
as q > 9. This is impossible, since Fix(T1) = Fix(σ). Thus, Gr = G for any point
P of Fix(σ) ∩ l and for any line r of [P ] − {l}. Consequently, Fix(G) = Fix(σ),
since Fix(G)∩l = Fix(σ)∩l and Fix(G) ⊆ Fix(σ). Thus, G fixes a Baer subplane
of Π. Then G is semiregular on l − Fix(G) and hence |G| | n − √n, which is
impossible.

Assume that K ∼= D q+1
2

. Then D q+1
2
≤ Gf for each line f of Fix(σ) − {l}.

Therefore, either Gf = C or Gf = G by dual of Lemma 3.4, being q ≡ 7 mod 8
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and q > 9. Now, the above argument yields Fix(G) = Fix(σ) and we again
obtain a contradiction. Thus, Fix(T1) ∩ l ⊂ Fix(σ) ∩ l.

Now, repeating the above argument with T2 in the role of T1, we obtain
Fix(T2) ∩ l ⊂ Fix(σ) ∩ l. Hence, we have proved the assertion.

Lemma 7.3. The group Tj induces a Baer collineation on Fix(σ) for each j = 1, 2.

Proof. The group Tj induces an involution β̄j on Fix(σ) for each j = 1, 2 by
Lemma 7.2. Assume that β̄1 is a (Cβ̄1

, aβ̄1
)-elation of Fix(σ). Then Cβ̄1

∈ l and
aβ̄1
6= l again by Lemma 7.2. Hence Fix(T1)∩ l =

{
Cβ̄1

}
. Thus NG(T1) ≤ GCβ̄1

,
where NG(T1) ∼= S4. Then either GCβ̄1

= NG(T1) or GCβ̄1
= G by table V.

Actually GCβ̄1
= G cannot occur, otherwise we have a contradiction by dual of

Lemma 6.2, since Fix(T1) ∩
[
Cβ̄1

]
= Fix(σ) ∩

[
Cβ̄1

]
. Hence GCβ̄1

= NG(T1)

and hence x6 > 0. Actually x6a = 1 and q ≡ 7 mod 16 by table V. Moreover,
x1 = x3 = x5a = x6b = 0 again by table V. Also, q = 23 and x5 = 0 by
Lemma 3.4(6), and x2 = 0 by Lemma 3.6(4). Therefore Fix(σ)∩l = Fix(σ)∩CG

β̄1

and hence
√
n + 1 = 3(q+1)

8 again by table V, being x6a = 1. That is
√
n = 8, as

q = 23. Thus also T2 must induce an elation on Fix(σ). Nevertheless T2 fixes
exactly 3 points on CG

β̄1
by table V, since GCβ̄1

= S4 and q ≡ 7 mod 16. Then
T2 fixes exactly 3 points on Fix(σ) ∩ l as Fix(σ) ∩ l = Fix(σ) ∩ CG

β̄1
. This is a

contradiction, since T2 induces an elation on Fix(σ) and
√
n = 8.

Assume that β̄1 is a (Cβ̄1
, aβ̄1

)-homology of Fix(σ). Again Cβ̄1
∈ l and aβ̄1

6= l

by Lemma 7.2. Set {X} = aβ̄1
∩ l. Hence Fix(T1) ∩ l =

{
Cβ̄1

, X
}

. Let γ̄ be
the collineation induced by γ on Fix(σ), where γ ∈ G and γ2 = σ (clearly
such a element does exists in G, since q ≡ 7 mod 8). Then either γ̄ = 1 or
γ̄ is a Baer involution or a involutory perspectivity. Nevertheless γ̄ centralizes
β̄1 in each cases. Then γ̄ fixes Cβ̄1

, aβ̄1
and hence X . Thus NG(T1) ≤ GCβ̄1

and NG(T1) ≤ GX . Similar argument to that used above yields GCβ̄1
< G and

hence GCβ̄1
= NG(T1) by table V, since NG(T1) ∼= S4. Thus x6a > 0. Then

x6 = x6a = 1 by Lemma 3.5(5) as q ≡ 7 mod 16. Hence GX = G. Therefore
x1 = 1, since Fix(G) ∩ l ⊂ Fix(T1) ∩ l. Furthermore, q = 23 and x5 = 0 by
Lemma 3.4(6), and x2 = 0 by Lemma 3.6(4). Finally,

√
n+ 1 = 3(q+1)

8 x6a + x1

by table V, where x1 = x6a = 1. That is
√
n = 3(q+1)

8 . Then n = 81 as q = 23. On

the other hand n+ 1 ≥ q(q2−1)
48 + 1 again by table V. Hence,

[
3(q+1)

8

]2
≥ q(q2−1)

48 ,
which is a contradiction, since q = 23. Thus, T1 induces a Baer involution on
Fix(σ).

Arguing as above, with T2 in the role of T1, we have that T2 induces a Baer
involution on Fix(σ). Hence, we have proved the assertion.
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Lemma 7.4. For each point P ∈ l the group GP cannot be isomorphic either to
S4 or to A5.

Proof. Assume that x6 > 0. Then x6 = 1 by Lemma 3.5(5), being q ≡ 7 mod 8.
We may assume that x6 = x6a = 1 without of loss of generality (see Table V).
Let Q ∈ l such that GQ ∼= S4. Then

∣∣QG
∣∣ = q(q2−1)

48 and hence n ≥ q(q2−1)
48 − 1,

as QG ⊂ l. Also, q = 23 or 31 by Lemma 3.4. Easy computations show that
4
√
n = 4 for q = 23 and 4

√
n = 5 for q = 31, since q(q2−1)

48 − 1 ≤ n < q2 with n a

fourth power by Lemma 7.3. In both cases n + 1 − q(q2−1)
48 < q + 1. It follows

that
∣∣l −QG

∣∣ < q + 1, since
∣∣l −QG

∣∣ = n + 1 − q(q2−1)
48 . Then G fixes l − QG

pointwise, since the minimal primitive permutation representation of G is q+ 1,
being q = 23 or 31. That is x1 =

∣∣l −QG
∣∣. If q = 23, then o(Fix(T1)) = x1 and

o(Fix(T2)) = x1 + 3 by Table V, since x6 = 1 and q ≡ 7 mod 16. Nevertheless,
o(Fix(T1)) = o(Fix(T2)) by Lemma 7.3. Hence, we arrive at a contradiction. As
a consequence, q = 31. Thus, x1 = 6. Therefore, 4

√
n + 1 ≥ 10 as 4

√
n + 1 ≥

x1 + 4x6a. This is impossible, since 4
√
n = 5. So, x6 = 0.

Assume that x5 > 0. Since T1 and T2 fix Baer subplanes of Fix(σ), we have
4
√
n+1 = x1 +3x3 +2x5a and 4

√
n+1 = x1 +3x3 +2x5b by Table V, since x6 = 0.

Then 4
√
n+ 1 = x1 + 3x3 + x5 summing up these two equations and by bearing

in mind that x5 = x5a + x5b. Hence, by Table V, we have

4
√
n+ 1 = x1 + 3x3 + x5 (103)
√
n+ 1 = x1 +

q + 1

2
x2 +

q + 3

2
x3 +

q + 1

4
x5 (104)

n+ 1 = x1 +
q(q + 1)

2
x2 +

q(q − 1)

2
x3 +

q(q2 − 1)

120
x5 + S . (105)

Note that q = 31, 71 or 79 by Lemma 3.4. Assume that x2 + x3 > 0. Then
x2 + x3 = 1, 0 < x5 ≤ 2 and q = 31 by Lemma 3.6(2) and (4). Therefore,
4
√
n = 3, 4 or 5, since q < n < q2 being n a fourth power by Lemma 7.3. On

the other hand, n + 1 ≥ q(q−1)
2 + q(q2−1)

120 by (105), since x2 + x3 = 1. That is
n+ 1 ≥ 713, as q ≥ 31. Nevertheless, this is a contradiction, since n ≤ 54. Thus,
x2 = x3 = 0. Then 4

√
n + 1 = x1 + x5 and

√
n + 1 = x1 + q+1

4 x5 by (103)
and (104). By elementary calculations of the previous equations, we obtain√
n − 4
√
n − q−3

4 x5 = 0, where x5 ≤ 3 by Lemma 3.5(4), and where q = 31, 71

or 79. It is a straightforward computation to see that, no integer solutions arise.
Thus, x5 = x6 = 0 and we obtain the assertion.

Proposition 7.5. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q) fixing a line l. If q < n < q2 and q ≡ 7 mod 8 then Π is
the Lorimer-Rahilly plane of order 16 or the Johnson-Walker plane of order 16, or
their duals, and G ∼= PSL(2, 7).
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Proof. Suppose that G fixes a line l of Π. Assume that q > 7. Hence, q > 9 as
q ≡ 7 mod 8. Recall that |Fix(Tj) ∩ l| = 4

√
n + 1 by Lemma 7.3, and that for

each point P ∈ l, the group GP cannot be isomorphic either to A4 or to A5

by Lemma 7.4. Then, by table V, we have the following system of Diophantine
equations:

4
√
n+ 1 = x1 + 3x3 (106)
√
n+ 1 = x1 +

q + 1

2
x2 +

q + 3

2
x3 (107)

n+ 1 = x1 +
q(q + 1)

2
x2 +

q(q − 1)

2
x3 + S . (108)

If x3 > 0, then x3 = 1 by Lemma 3.5(2). Furthermore, x2 = 0 by Lemma 3.6(2).
Then 4

√
n = x1 + 2 and

√
n = x1 + q+3

2 . By composing these equations, we have
(x1 + 2)2 = x1 + q+1

2 and hence x2
1 + x1 − q−7

2 = 0. If x1 ≤ 2, it is easily seen
that (n, x1, q) = (24, 0, 7) as q ≡ 7 mod 8. Nevertheless, n+ 1 ≥ 21 by (108) as
x3 = 1. So, x1 ≥ 3 for x3 > 0. Actually, x1 ≥ 3 also for x3 = 0 by (106), since
it must be 4

√
n ≥ 2. Consequently, x1 ≥ 3 in each case. Thus, G fixes always at

least 3 points on l.

Let P be any of these points. Applying the dual of Lemma 7.4, we obtain that
the group Gr cannot be isomorphic either to A4 or to A5 for each r ∈ [P ]− {l}.
Thus, x∗4 = x∗5 = 0. By dual of table VI, we obtain the same system of Diophan-
tine equations as (106), (107) and (108) but referred to [P ] and with the x∗i in
the role of xi. At this point, we may repeat the above argument showing that G
fixes at least 3 lines (including l) through any point P of Fix(G) ∩ l. So, G fixes
a subplane of Π pointwise, as |Fix(G) ∩ l| ≥ 3. In particular, o(Fix(G)) = x1−1.
Now, we may use the same argument of Theorem 5.5, with (106), (107) and
(108) in the role of (85), (86) and (87), respectively, in order to obtain that G
fixes a subplane of Π of order 4

√
n. Hence, we have a contradiction.

Assume that q ≤ 7. Actually, q = 7, since q ≡ 7 mod 8. Then either n = 16

or 25, since q < n < q2 and since
√
n ≡ 0, 1 mod 4 by Lemma 3.3. Assume

that q = 25. Let ϕ be any element in G of order 7. Then ϕ fixes at least 5

points on l and 2 on Π − l, as n + 1 ≡ 5 mod 7 and n2 ≡ 2 mod 7. Thus,
o(Fix(ϕ)) = 4 + 7θ, where θ ≥ 0. Actually, θ = 0 by [16, Theorem 3.7], since
n = 25. So, o(Fix(ϕ)) = 4. Note that NG(〈ϕ〉) = 〈ϕ, ψ〉, where o(ψ) = 3

and ψ normalizes 〈ϕ〉. Also, NG(〈ϕ〉) is the unique maximal subgroup of G
containing ϕ. Therefore, for each point Q ∈ Fix(ϕ) ∩ l, either GQ = 〈ϕ〉 or
GQ = 〈ϕ, ψ〉 or GQ = G. Assume that GB = 〈ϕ〉 for some B ∈ Fix(ϕ) ∩ l. Then∣∣BG

∣∣ = 24. Thus, l consists of BG and of 2 points fixed by G as n + 1 = 26.
Consequently, any involution fixes exactly 2 points on l, namely those fixed by
G, since

∣∣BG
∣∣ = 24 and |G| = 168. Hence, the involutions are homologies of

Π, which is a contradiction by Lemma 3.3. It follows that either GQ = 〈ϕ, ψ〉 or
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GQ = G for or eachQ ∈ Fix(ϕ)∩l. Nevertheless, Fix(ϕ)∩l = Fix(〈ϕ, ψ〉)∩l. So,
|Fix(NG(〈ϕ, ψ〉) ∩ l| = 5. Assume that |Fix(〈ϕ, ψ〉) ∩ l − Fix(G) ∩ l| ≥ 3. Since
this group is maximal, then there are at least 3 orbits of length 8. Therefore,
l consists of three G-orbits each of length 8 and of 2 points fixed by G. Thus,
any involution fixes exactly 2 points on l and we again obtain a contradiction
by Lemma 3.3. It follows that |Fix(NG(〈ϕ, ψ〉)) ∩ l − Fix(G) ∩ l| ≤ 2 and hence
|Fix(G) ∩ l| ≥ 3. Now, we may repeat the above argument with [X ] in the
role of l for each point X ∈ Fix(G) ∩ l. This yields |Fix(G) ∩ [X ]| ≥ 3 for
each X ∈ Fix(G) ∩ l. Then G is planar, since |Fix(G) ∩ l| ≥ 3. Therefore,
o(Fix(G)) ≥ 2.

Now, let β be any involution of G. Then o(Fix(β)) = 5 by Lemma 3.3 as
n = 25. Note that Fix(G) ( Fix(β), since ϕ and β fix exactly 4 and 6 points
on l, respectively. So, we have a contradiction by [16, Theorem 3.7], since
o(Fix(β)) = 5 while 2 ≤ o(Fix(G)) < 5. Thus, n = 16. Then either Π is the
Lorimer-Rahilly plane of order 16 or the Johnson-Walker plane of order 16, or
one of their duals by [3]. Hence, we have proved the assertion.

Theorem 7.6. Let Π be a projective plane of order n admitting a collineation
group G ∼= PSL(2, q), with q ≡ 7 mod 8. If n ≤ q2, then one of the following
occurs:

(1) n < q, Π ∼= PG(2, 2) or PG(2, 4) and G ∼= PSL(2, 7);

(2) n = q and Π ∼= PG(2, q);

(3) q < n < q2 and one of the following occurs:

(a) G is strongly irreducible on Π;

(b) n = 16, Π is the Lorimer-Rahilly plane or the Johnson-Walker plane, or
one of their duals, and G ∼= PSL(2, 7);

(c) G ∼= PSL(2, 7) fixes a subplane of Π isomorphic either to PG(2, 2) or to
PG(2, 4);

(4) n = q2 and one of the following occurs:

(a) G is strongly irreducible on Π;

(b) G fixes a Desarguesian Baer subplane Π0 of Π.

Proof. If n ≤ q, the assertions (1) and (2) easily follow by Theorems 2.1 and
2.2, respectively. If q < n < q2, then either the assertion (3b) or the group G
fixes lines or points of Π by Proposition 5.5 and its dual. If the latter occurs, the
assertions (3a) and (3c) easily follow by Lemma 3.1, since q ≡ 7 mod 8. Finally,
the assertions (4a) and (4b) follow by Theorems 2.3 and 2.4, respectively.
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Now, Theorem 1.1, when q ≡ 7 mod 8, easily follows from Theorem 7.6.

8 Concluding proofs and other examples

Proof of Theorem 1.1. Let Π be a projective plane of order n admitting a col-
lineation group G ∼= PSL(2, q), q > 3. Assume that n ≤ q2. If q is odd, the
assertion of Theorem 1.1 easily follows by Theorems 4.22, 5.6, 6.7 and 7.6 for
q ≡ 1, 3, 5, 7 mod 8, respectively. It remains to investigate the case q even in
order to complete the proof of the theorem. Hence, assume that G ∼= PSL(2, q),
with q = 2h, h > 1. Since PSL(2, 4) ∼= PSL(2, 5) and since we have already dealt
with this case in Theorem 6.7, we may assume that q > 4.

(I) If n < q2 the involutions in G are perspectivities of Π.

Assume that n < q2. Assume also that the involutions in G are Baer collin-
eations of Π. Let H be an elementary abelian subgroup of G of order q. Then
H fixes a point X of Π, since n2 + n + 1 is odd. Furthermore, each non trivial
element in H fixes exactly

√
n + 1 lines through X , since H − {1} consists of

involutions. Then q | (q − 1)(
√
n + 1) + (n + 1) by [16, Result 1.14]. Hence,

q | √n(
√
n − 1). Thus, either q | √n − 1 or q | √n, since q = 2h, h > 1. So,√

n ≥ q and therefore n ≥ q2 in any case. This is a contradiction, since n < q2

by our assumption. Thus, the involutions in G are perspectivities of Π, since
G ∼= PSL(2, q) contains a unique conjugate class of involutions by [4].

(II) If n < q2 and n 6= q, then G does not fix lines of Π.

Assume that n < q2, n 6= q. Assume also that G fixes a line l of Π. Let H be
as above.

Suppose that n is even. Then H = H(C,C) for some point C ∈ l by (I),
since H is an elementary abelian 2-group fixing l and since H(l) = 〈1〉 by
Lemma 3.2(1). So, H ≤ GC . Furthermore, GC < G by Lemma 3.2(2). Then
GC ≤ H.Zd, where d | q−1 by [17, Hauptsatz II.8.27]. Note thatH fixes exactly
q−1
d points in CG by (1) of Proposition 2.5. Nevertheless, H fixes exactly 1 point

on l. Then q−1
d = 1 and hence GC ∼= H.Zq−1. In particular,

∣∣CG
∣∣ = q + 1. Thus,

n ≥ q. Actually, n > q, since n 6= q by our assumptions. In addition, since H is
a Sylow 2-subgroup of G, then each Sylow 2-subgroup of G fixes exactly 1 point
on l which lies in CG. Therefore, GX has odd order for each point X ∈ l−CG.
Such points do exist as n > q. Moreover,

∣∣XG
∣∣ < q2 − q, since XG ⊆ l − CG,

and since
∣∣l − CG

∣∣ < q2 − q as n < q2. This yields |GX | > q + 1 with |GX | odd.
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Hence, we arrive at a contradiction by a direct inspection of the list given in
[17, Hauptsatz II.8.27].

Suppose that n is odd. Then H consists of homologies of Π by (I), since H is
an elementary abelian 2-group. In particular, H = H(C, a), where C ∈ l, a 6= l

by [19, Lemma (3.1)], since H(l) = 〈1〉 by Lemma 3.2(1). Set {Q} = a ∩ l.
Clearly, Q 6= C. Arguing as above, we have GC ≤ H.Zd, where d | q − 1.
Consequently, H fixes exactly q−1

d points in CG. Nevertheless, H fixes exactly 2

points on l. Then q−1
d = 1, as q is even. Therefore,

∣∣CG
∣∣ = q + 1. Thus, n ≥ q,

since CG ⊆ l. Actually, n > q, since n 6= q by our assumptions. In particular,
Q /∈ CG. The above argument, with QG in the role of CG, yields that either∣∣QG

∣∣ = 1 or
∣∣QG

∣∣ = q + 1. It should be stressed that, differently from C, the
possibility

∣∣QG
∣∣ = 1 might occur. Indeed, Lemma 3.2(2) cannot be applied to Q

as H = (C, a), {Q} = a ∩ l and Q 6= C. Now, suppose that l − (CG ∪ QG) 6= ∅.
Then there exists a point Y ∈ l − (CG ∪ QG) such that |GY | is odd. Moreover,
|GY | > q+ 1, since Y G ⊆ l− (CG∪QG), and since

∣∣l − (CG ∪QG)
∣∣ < q2− q−1

as n < q2 and
∣∣QG

∣∣ ≥ 1. This leads to a contradiction by a direct inspection of
the list given in [17, Hauptsatz II.8.27], since |GY | is odd. Thus, l = CG ∪QG.
Since

∣∣CG
∣∣ = q + 1, then either n = q + 1 or n = 2q + 1 according to whether∣∣QG

∣∣ = 1 or
∣∣QG

∣∣ = q + 1, respectively. So, we obtain a contradiction in each
case by [23, Theorem 26], since G acts 2-transitively on CG. As a consequence,
G does not fix lines of Π.

(III) Either n = q or n = q2.

If n < q2 and n 6= q, then G does not fix points or lines of Π by (II) and its
dual. Furthermore, G does not fix triangles of Π, since G is simple as q > 3. So,
G is irreducible on Π. Moreover, G contains involutory perspectivities by (I).
This is impossible by [12, Lemma 5.1], since q is even and q > 4. Thus, either
n = q and hence Π ∼= PG(2, q) by Theorem 2.2, or n = q2. That is the assertions
(2a) and (4a.iii) (of Theorem 1.1). This completes the proof.

Once Theorem 1.1 has been proved, Theorem 1.2 is just a consequence of
this one. Theorem 1.3 follows in turn by a combination of Theorem 1.2, of
Theorems 2.1 and 3.3 of [6] and of Theorem 5.1 of [7].

Finally, we have the following other examples for Theorem 1.1 (these are not
quoted examples in [15, Theorem A] or [13, Theorem 6.1] or [14, Theorem C]):

(1) Let G ∼= PSL(2, 7) and let Γ ∼= PSL(3,mh), with 7 < mh < 49.

Assume thatmh is odd. IfG ≤ Γ, thenm3h ≡ 1 mod 7 by [1] and this case
really occurs. Actually, mh = 9, 11, 23, 25, 29, 37 or 43, as 7 < mh < 49.
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Since the other cases are already quoted in [15] or [13] or [14], we may
assume that q = 25 or 43. Hence G ∼= PSL(2, 7) acts Π ∼= PG(2, 25) or
PG(2, 43). In latter, clearly, the involutions are homologies. Furthermore,
by Theorem 1.1, the group G is strongly irreducible (we do not need to
have additional assumptions as in Theorem A of [15]).

Assume that mh = 32 is even. Then G ≤ Γ by [8]. Hence, G ∼= PSL(2, 7)

acts on Π ∼= PG(2, 32).

(2) Let G ∼= PSL(2, 9) and let Γ ∼= PSL(3,mh), with 9 < mh < 81.

Assume that mh is odd. If G ≤ Γ, then either mh ≡ 1, 19 mod 30 or
m = 5 and h even by [1] and these cases really occur. Actually, mh =

19, 31, 25, 49, 61 or 79, as 9 < mh < 81. Since the other cases are already
quoted in [15] or [13] or [14], we may assume that q = 49 or 79. While
in latter the involutions are clearly homologies, in the former this follows
by Theorem 2.6. Furthermore, it follows by Theorem 1.1 that, the group
G is strongly irreducible (no additional assumptions are required, as in
Theorem A of [15]).

(3) Let G ∼= PSL(2, 9). Then G is a subgroup of PSL(3, 4) by [2]. Now, the
group PSL(3, 4), and hence PSL(2, 9), leaves invariant a Desarguesian sub-
plane of order 4 in a Desarguesian plane or a Figueroa plane of order 64

(see [5], [10])(so this is an example for the case (3b.iii) of Theorem 1.1.
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