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Abstract

We consider stable planes E = (P,L) admitting an abelian group ∆

which acts (sharply) transitively on the point set P . Known examples are
the so-called arc planes with ∆ = R2, see [1], affine translation planes and
shift planes. We examine the possible actions of ∆ on the line space L and
use the results in order to characterize affine shift planes and translation
planes.
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1 Introduction

Let E = (P,L) be a stable plane with P locally compact, connected and of posi-
tive finite dimension. This implies, according to [5] (1.11) and [7] Theorem 1,
that each line has dimension l and P has dimension 2l. Throughout this article
we assume that the automorphism group Σ of the stable plane E contains an
abelian subgroup ∆ ≤ Σ which acts transitively (and hence sharply transitively)
on the point space P .

Well-known affine examples are translation planes and shift planes (that is,
planes with point setR2l and lines of the form {c}×Rl , c ∈ Rl, plus all translates
of a graph of a suitable function f : Rl → Rl). We prove that there are no other
affine planes satisfying our assumptions. In particular, if E is affine, P is iso-
morphic to R2l and each line is homeomorphic to Rl. For l = 2 this agrees with
∗The author thanks Rainer Löwen for his numerous advice in writing papers.



54 A. Wörner

a result of N. Knarr, see [3], who determines all types of 4-dimensional com-
pact projective planes with a 4-dimensional abelian closed connected subgroup
of the automorphism group. The only two types with a sharply transitive ac-
tion are translation planes and shift planes. See e.g. [10] for more information
about translation planes (chapters 73 and 81) and shift planes (chapter 74).

In [11] M. Stroppel considers a stable plane with a connected locally compact
abelian group Ξ of automorphisms. He shows that either Ξ is quasi-perspective,
or some point orbits generate (not necessarily proper) subplanes. The quasi-
perspective action leads to shear planes as considered by H. Löwe, who char-
acterizes shear planes (see [4]) as stable planes of dimension 2l admitting a
quasi-perspective collineation group isomorphic to R2l without fixed points. If,
on the other hand, some point orbit under the action of Ξ is the entire point
space, this action is sharply transitive and thus belongs to the case considered
here.

Our assumptions are chosen in order to study arc planes in arbitrary dimen-
sions. In fact, the arc planes considered by H. Groh in [1] with an abelian group
action (i.e. if ∆ = R2) satisfy our assumptions. Based on the present results,
we shall engage in a systematic search for higher-dimensional arc planes in a
subsequent paper.

2 Line types

Definition 2.1. A stable plane is a pair E = (P,L) consisting of a set P of points
and a set L of lines, where each line is a subset of P . For any two different
points p1, p2 ∈ P there exists a unique line L ∈ L with p1, p2 ∈ L =: p1 ∨p2.
Thus, we have the mapping of joining two points ∨ : (P ×P ) \∆P → L, where
∆P denotes the diagonal in P × P , and also the mapping of intersecting two
lines ∧ : L × L ⊇ dom(∧ ) → P . In addition we have Hausdorff topologies on
P and L such that ∨ and ∧ are continuous and dom(∧ ) ⊆ L × L is open.

Let E = (P,L) always be a stable plane satisfying the general assumptions
stated in the introduction.

Proposition 2.2. The subgroup ∆ is closed in Σ and is a Lie group isomorphic
to Rn × Φ, where Φ is a maximal compact subgroup of ∆. The point space P is
homeomorphic to ∆; in particular, ∆ is connected.

Proof. Since ∆ is abelian, this also holds for the topological closure ∆̄ in Σ.
Acting transitively on P , the closure ∆̄ acts sharply transitively, hence ∆ = ∆̄ ≤
Σ is closed.
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According to [5, (2.3)], the group Σ is a topological transformation group of
P . Furthermore, P is locally contractible. Σ is second countable and is locally
compact according to [5, (2.9)]. Therefore both properties also hold for the
closed subgroup ∆. According to [10, (96.14)], the group ∆ is a Lie group.
For a fixed p ∈ P , the mapping Ψp : ∆→ P , δ 7→ pδ is continuous and bijective,
because ∆ acts sharply transitively on P . With [10, (96.8)] it follows that the
mapping is also open, hence a homeomorphism.

In particular, ∆ ≈ P is connected. From the Theorem of Malcew-Iwasawa
(e.g. [10, (93.10)]) it follows that ∆ ∼= Rn × Φ.

We distinguish two kinds of lines according to their stabilizer in ∆.

Definition 2.3. Let L ∈ L. If the stabilizer ∆L is non-trivial, we call L a straight
line. In the other case ∆L = {1}, we call L an arc. Since the type of L is
invariant under the action of ∆, we also call the orbit L∆ straight orbit and arc
orbit, respectively.

First we prove that it is impossible for our stable plane to contain only arcs.

Theorem 2.4. The line space L of a stable plane E = (P,L) satisfying our general
assumptions contains at least one straight orbit.

For the proof we use the following lemma; here, Lp denotes the set of all
lines passing through p.

Lemma 2.5. Let p ∈ P and let L be an arc. Then L is homeomorphic to the subset
L∆ ∩ Lp ⊆ Lp , and this subset is open.

Proof. We have L∆∩Lp = LΓ, where Γ := {δ ∈ ∆ |Lδ ∈ Lp}. First we show that
L ≈ Γ. The mapping Ψp : ∆ → P , δ 7→ pδ is a homeomorphism. By definition
we have

γ ∈ Γ ⇐⇒ Lγ ∈ Lp ⇐⇒ ∃ q ∈ L : qγ = p ⇐⇒ pγ
−1 ∈ L,

and therefore Ψp(Γ−1) = L with Γ−1 := {γ−1 | γ ∈ Γ}. Thus we have L ≈ Γ−1 ≈
Γ. In particular, Γ is locally compact and closed in ∆; note that, according to [5,
(1.3)], each line L ⊆ P is closed.

The mapping Φ̂ : ∆ → L , δ 7→ Lδ is continuous and injective, and so is
Φ := Φ̂

∣∣Lp
Γ

: Γ→ Lp. According to [7, (11b)], the line pencil Lp has the domain
invariance property. In addition, according to [6, (1.2)], the line pencil Lp and
the line L are locally homeomorphic. Thus, it follows (see e.g. [10, (51.19)])
that Φ is an open mapping and therefore L ≈ Γ ≈ Φ(Γ) = LΓ = L∆ ∩ Lp. In
particular, LΓ = Φ(Γ) ⊆ Lp is open.



56 A. Wörner

Now we prove Theorem 2.4.

Proof of Theorem 2.4. Assume, by way of contradiction, that all lines are arcs.
Let {Li | i ∈ I} be a representing system of orbits and p ∈ P . According to
Lemma 2.5, each set L∆

i ∩Lp is open in Lp. The union of these sets is a disjoint
open cover of Lp, because there are no straight lines. Since Lp is connected
according to [5, (1.14)], it follows that |I | = 1; so there is only one line orbit,
say L∆ = L. According to Lemma 2.5, we have L ≈ L∆ ∩ Lp = Lp. Since Lp is
compact according to [2, (3.8)], the line L and hence each line is compact. Now
[2, (3.10)] and (3.11) show that E is a projective plane and the point space P
is compact. Thus, ∆ is a compact connected abelian Lie group and therefore
(see e.g. [10, (94.38)]) a torus. In particular, the fundamental group of P is
isomorphic to Z2l, in contradiction to [10, (51.28)] for l ≥ 2 or to [10, (52.14)]
for l = 1.

The presence of straight lines in our stable plane allows us to prove that all
lines are manifolds. As a first step we have the following lemma.

Lemma 2.6. Let K be a straight line. Then K is a manifold and the Lie group
∆K acts sharply transitively on K.

Proof. Let o ∈ K. By definition we have o∆K ⊆ K. Assume, by way of contra-
diction, that there is a point p ∈ K \ o∆K , say p = oδ with δ ∈ ∆ \∆K . Since
∆ is abelian and p ∈ K, we obtain that K ⊇ p∆K = oδ·∆K = o∆K ·δ. Hence(
o∆K

)δ ⊆ K ∩Kδ, and K = Kδ since |o∆K | ≥ 2. This contradicts δ /∈ ∆K .

We have shown that ∆K is (sharply) transitive on K. The mapping Ψo : ∆→
P (defined as in the proof of Proposition 2.2) restricts to a homeomorphism
∆K ≈ K. Since K ⊆ P is closed ([5, (1.3)]), the stabilizer ∆K is a closed
subgroup of the Lie group ∆, hence a Lie group. In particular, ∆K and K are
manifolds.

As an immediate consequence we can prove for later use

Lemma 2.7. For a straight line K and p ∈ P we have that |K∆ ∩ Lp| = 1.

Proof. Without loss of generality we may assume that p ∈ K. Let δ ∈ ∆, then

Kδ ∈ Lp ⇐⇒ ∃ k ∈ K : kδ = p ⇐⇒ δ ∈ ∆K ,

where the equivalence on the right hand side follows from Lemma 2.6 (exis-
tence of a γ ∈ ∆K with kγ = p) together with the sharply transitive action of ∆

(uniqueness of this γ). Hence Kδ = K, which proves the assertion.
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Proposition 2.8. All lines of the stable plane E are manifolds and each line pencil
Lp is homeomorphic to the l-sphere Sl.

Proof. By Theorem 2.4, there is always a straight line and by Lemma 2.6, this
line is a manifold. According to [2, (3.2)], any two lines are locally homeomor-
phic, hence all lines are manifolds. Now [2, ] gives the assertion about the line
pencils.

3 Types of planes

Under certain additional assumptions about the stable plane E = (P,L) and the
action of ∆ we can characterize some special types of planes.

Lemma 3.1. Let the stable plane E contain at least two straight orbits. Then each
straight line is connected. For straight lines K and L satisfying K∆ 6= L∆ the
intersection ∆K ∩∆L is trivial.

Proof. Let K,L ∈ L be straight satisfying K∆ 6= L∆. Then we have ∆K ∩∆L =

{1}. Indeed, assume, by way of contradiction, that there is a δ ∈ ∆K ∩∆L with
δ 6= 1. Since ∆ is abelian, ∆K fixes each element of the orbit K∆; so we can
assume without loss of generality that K and L intersect in K ∧L =: p ∈ P . But
then p 6= pδ ∈ K ∩ L, hence we obtain the contradiction K = L.

Thus, we have the isomorphism ∆K ×∆L
∼= ∆K ·∆L ≤ ∆ of Lie groups (see

Lemma 2.6). As ∆K ≈ K, the line stabilizers have dimension l, and therefore
dim(∆K · ∆L) = 2l. Since ∆ is abelian and connected (Proposition 2.2), it
follows according to [10, (93.12)] that ∆K · ∆L = ∆. Hence ∆K and ∆L are
connected and so are K and L.

Theorem 3.2. If a stable plane E = (P,L) satisfying our general assumptions
contains only straight lines, then it is an affine translation plane with point space
isomorphic to R2l.

Proof. Let {Ki | i ∈ I} be a representing system of line orbits. First we show
that {∆Ki | i ∈ I} is a fibration of the Lie group ∆ (that is, each δ ∈ ∆ , δ 6= 1 is
contained in exactly one ∆Ki).

From Lemma 3.1 we know that ∆Ki ∩ ∆Kj = {1} holds for all i 6= j. On
the other hand, let δ ∈ ∆. Choose an arbitrary p ∈ P and set K := p∨pδ .
Since there are only straight lines, there exists an i ∈ I satisfying ∆K = ∆Ki .
Moreover, δ ∈ ∆K , because we have p, pδ ∈ K, and according to Lemma 2.6,
there exists a γ ∈ ∆K such that pγ = pδ. The sharply transitive action of ∆

gives us that γ = δ.
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From the existence of a non-trivial fibration of the connected Lie group ∆ it
follows according to [9] that the center of ∆ is compact-free. Thus, ∆ being
abelian is compact-free and with Proposition 2.2 we get ∆ ∼= Rn with n =

dimP = 2l. In particular, P ≈ ∆ can be made into a real vector space, and
each line (being connected according to Lemma 3.1) is an affine subspace of
dimension l.

Let G ∈ L and q /∈ G. By Lemma 2.7, there exists exactly one element Gδ

in the orbit G∆ with q ∈ Gδ . If we show that any other line passing through
q intersects G, we have identified Gδ as the unique parallel of G through q

and hence obtained an affine plane. Let L ∈ L \ G∆. All lines being affine
subspaces of a vector space, we can write lines as solutions of linear systems
of equations G = {x ∈ R2l |Ax = a} and L = {x ∈ R2l |Bx = b}, where
A,B ∈ Rl×2l are matrices of rank l and a, b ∈ Rl. A point of intersection of G

and L can be found by solving the systemG∩L =

{
x ∈ R2l

∣∣∣
(
A

B

)
x =

(
a

b

)}
.

The associated homogeneous system has only the trivial solution because of

G∆ 6= L∆. Therefore we have rg

(
A

B

)
= 2l and each inhomogeneous system

has a solution, hence G and L intersect.

Thus we have an affine translation plane as desired.

Remark 3.3. In the proof of the parallel axiom above only basic arguments of
linear algebra are used. This is possible because of the invariance of the line
system under vector space translation. Another approach to affine planes is
given in [8], where this invariance is not part of the assumptions (which only
require that the point set is a vector space and the lines are affine subspaces),
but turns out to be equivalent to the axiom of parallels (see [8, (1.2)]).

In view of the result from Theorem 3.2, in the following we concentrate on
the case that there is at least one arc orbit in our stable plane.

Lemma 3.4. Let K be a straight line and L an arc. For δ ∈ ∆K , δ 6= 1 we have
L ∩ Lδ = ∅.

Proof. Assume, by way of contradiction, that there exists a q ∈ Lδ ∩ L. This
means that there is an r ∈ L such that rδ = q. Since δ 6= 1, the line L is
uniquely determined by its points q and r 6= q. But according to Lemma 2.6,
the set r∆K is a line of the orbit K∆ (hence r∆K 6= L) also joining q and r, a
contradiction.

Lemma 3.5. If there is exactly one straight orbit, then there is also exactly one arc
orbit and each arc is homeomorphic to Rl.
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Proof. LetK be a straight line and let p ∈ K. It follows from Proposition 2.8 that
Lp \{K} ≈ Rl is connected. According to Lemma 2.7, we have {K} = K∆∩Lp,
thus Lp \ {K} contains only arcs. By Lemma 2.5, the set L∆ ∩ Lp is open
in Lp \ {K} for each arc L. We have obtained an open disjoint cover of the
connected set Lp \ {K}; this shows that there exists exactly one arc orbit, say
L∆. Again by Lemma 2.5, we have L ≈ L∆ ∩ Lp = Lp \ {K} ≈ Rl.

In the special case of affine planes containing arcs, we obtain the following
result.

Theorem 3.6. Let E = (P,L) be a stable plane satisfying our general assumptions
which is affine and contains at least one arc orbit. Then E is a shift plane. In
particular, the following conditions hold.

1. There is exactly one straight orbit K∆.

2. There is exactly one arc orbit L∆.

3. Each line is homeomorphic to Rl.

4. For all δ ∈ ∆, we have Kδ ∩ L 6= ∅.

5. The point space is homeomorphic to R2l.

Proof. We begin by proving the conditions 1 – 5. Let L be an arc and let K1 be a
straight line (existence from Theorem 2.4). We assume, by way of contradiction,
that there is a shift (that is, an image under the action of an element of ∆) ofK1

which does not intersect L. For simplicity we assume that K1 ∩ L = ∅ already
holds. Choose s ∈ L (which implies s /∈ K1) and γ ∈ ∆ such that s ∈ Kγ

1 . Since
s /∈ K1, we have Kγ

1 6= K1 and therefore (see Lemma 2.7) Kγ
1 ∩K1 = ∅. Thus,

Kγ
1 and L are two different parallels of K1 passing through s, which contradicts

the axiom of parallels.

We assume, again by way of contradiction, that there is another straight line
K2 such that K∆

1 6= K∆
2 . We know from above that Kδ

i ∩ L 6= ∅ holds for each
δ ∈ ∆ and i = 1, 2. We choose a point p /∈ L and we shift K1 and K2 such that
the shifted lines contain p. For simplicity we assume that p ∈ K1,K2 already
holds. As both lines intersect L, let Ki ∩ L =: ki. Further, let δi denote the
element of ∆ for which kδii = p holds for i = 1, 2. According to Lemma 2.6,
we have δi ∈ ∆Ki and δi 6= 1, because of ki 6= p , i = 1, 2. Lemma 3.4 shows
that the lines Lδ1 and Lδ2 are two parallels of L passing through p contrary to
the axiom of parallels; they are different because otherwise we would obtain
that δ1 = δ2, ∆K1 = ∆K2 (by Lemma 3.1) and K∆

1 = K∆
2 , contrary to our

assumptions.
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Thus, conditions 1 and 4 are proved; we setK := K1. By applying Lemma 3.5,
we get 2 and L ≈ Rl. Now choose a point q /∈ K. We define the mapping
Υ : K → Lq , x 7→ x∨ q. Then Υ is continuous and injective, hence also open
(as K and Lq are l-manifolds). Since K∆ is the only straight orbit, the image
Υ(K) contains only arcs by Lemma 2.7, thus Υ(K) ⊆ L∆ ∩ Lq = Lq \ {Kq},
where Kq is the shift of K passing through q. On the other hand, by condition
4, each element of Lq \ {Kq} intersects K. This shows Υ(K) = Lq \ {Kq} and
therefore K ≈ Rl. This proves 3.

From [7, Corollary 10] we get that P ≈ R2l. We can coordinatize P such
that K = {0} × Rl becomes the y-axis and a vector space complement W of K
becomes the x-axis W = Rl × {0}. Thus, L can be considered as the graph of a
function f : W ⊇ U → K. Condition 4 shows U = W , hence f becomes a shift
function of a shift plane (i.e., the lines are {c} ×Rl for all c ∈ Rl, together with
s+ graphf for all s ∈ R2l and a shift function f : Rl → Rl) as desired.

Remark 3.7. It is also possible to prove 5 more directly using 3 and 4 as follows.

For p ∈ P , let Kp be the unique shift of K passing through p. The mapping
p 7→ Kp is injective and continuous by [6, (1.1)]. For the arc L we define Lp
as the shift Lδ passing through p with δ ∈ ∆K . The mapping p 7→ Lp is well-
defined by 4 together with Lemma 2.6 and also injective and continuous. Again
according to 4, the mapping P → K × L , p 7→ (Lp ∧K,Kp ∧L) is well-defined.
It is also continuous and bijective (with the inverse (a, b) 7→ La ∧Kb), hence a
homeomorphism. Thus, by 3, we get that P ≈ R2l.

Corollary 3.8. A stable plane satisfying our general assumptions is affine if and
only if it is either an affine translation plane or a shift plane. For l > 2 only the
case of translation planes is left.

Proof. Shift planes and translation planes are affine. The converse follows from
the Theorems 3.2 and 3.6. According to [10, (74.6)], shift planes only exist for
l ∈ {1, 2}.

Non-affine examples of stable planes satisfying our assumptions include the
arc planes studied by H. Groh in [1] with abelian group action (∆ = R2); e.g.,
take P = R2 as point space, and as lines take all shifts s + L , s ∈ R2 , with
L = {(x, ex) |x ∈ R} or L = {(0, y) | y ∈ R} or L = {(x, ax) |x ∈ R} for
some a ≤ 0. Groh gives a complete description of the possibilities. Therefore
it would be interesting to see if examples can also be found for P = R2l with
l ∈ {2, 4, 8}. However, this turns out to be very hard, and up to now no such
examples are known. On the other hand, if one could prove their non-existence,
each stable plane with point set R4,R8 or R16, satisfying our assumptions about
the automorphism group would be affine.
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The existence problem for arc planes of higher dimension will be discussed
in detail in a subsequent paper.
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