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Abstract

We provide an algebraic description of the perfect Ree-Tits generalized
octagons, i.e., an explicit embedding of octagons of this type in a 25-dimen-
sional projective space. The construction is derived from the interplay be-
tween the 52-dimensional module of the Chevalley algebra of type F4 over
a field of even characteristic and its 26-dimensional submodule. We de-
fine a quadratic duality operator that interchanges special sets of (totally)
isotropic elements in those modules and establish the points of the octagon
as absolute points of this duality. We introduce many algebraic operations
that can be used in the study of the generalized octagon. We also prove that
the Ree group acts as expected on points and pairs of points.
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1 Introduction and overview

Of all generalized polygons related to simple groups [5] the generalized oc-
tagons have probably been studied the least. Perhaps one of the reasons is the
fact that only a single (infinite) family of examples is known and that these
Ree-Tits octagons, and their embeddings in a projective space, are not easily
constructed.

The standard way to define a Ree-Tits octagon is as a coset geometry of a
Ree group. This group is itself constructed by ‘twisting’ the Chevalley group of
type F4 over a suitable field K of characteristic 2. Another construction tech-
nique makes use of a special coordinatization (introduced by H. Van Maldeghem
[5]) which is itself based on the properties of the Ree groups, in particular the
commutation relations displayed in [4].

What is missing for the Ree-Tits octagon, and exists for all other classical gen-
eralized polygons, is an explicit embedding into some projective?space. In Sec-
tion 10 of this text we shall construct such an embedding into a 25-dimensional
space, where the points (lines) of the Ree-Tits octagon are a subset of the points
(lines) of the projective space. We will provide explicit ‘formulae’ which can be
applied to the projective coordinates of a point to determine whether or not it
is a point of the octagon. And likewise, we shall provide a means to determine
from the projective coordinates of two points of the octagon, whether they are
collinear in the octagon, and more generally, what is their mutual distance.

These ‘formulae’ are not so elementary as in the case of the other generalized
polygons. For example, we shall prove that a point Ke belongs to the Ree-Tits
octagon if and only if both e2 = 0 and q([e,W], e) = 0. The first expression is
shorthand for a system of 26 quadratic equations in 26 variables (the 26 coordi-
nates of e). The second expression corresponds to a system of 676 polynomials
of degree 3 in 26 variables, additionally involving a field automorphism σ of K.
(For contrast, compare this to the formulae needed to define the points of the
split Cayley hexagon : a single quadratic equation in 7 variables suffices.)

This text looks at the octagon (and the metasymplectic space to which its
points and lines belong) from three different perspectives : groups, geometries
and algebras, concentrating on the latter.

We start with the well-known 52-dimensional Chevalley algebra F of type
F4 and its 26-dimensional module W in the special case of characteristic 2.
In this particular case W is a subalgebra of F. (Many of the definitions and
propositions in the first few sections of this text can also be extended to fields
with different characteristics.)

W is isomorphic to the exceptional (quadratic) 26-dimensional Jordan alge-
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bra over the fieldK of which F is the algebra of derivations. (We have chosen to
work independently of this fact, primarily because Jordan algebras, especially
in characteristic 2, are not so easily accessible and we do not want to assume
prior knowledge of them in this paper.)

Not all elements of W and F are of the same interest to us. Instead we sin-
gle out a set of so-called isotropic elements of W and a set of totally isotropic
elements of F. These special elements allow us to attach geometrical meaning
to the algebras W and F : isotropic elements (or more correctly 1-dimensional
subspaces of isotropic elements) turn out to be points of the associated meta-
symplectic space, and totally isotropic elements correspond to symplecta.

Isotropic and totally isotropic elements also allow us to define a Chevalley
group F̂4(K) of type F4 and its action on W and F. For each isotropic element e
there is a corresponding group element x(e) and each totally isotropic element
E corresponds to a group element x(E). The Chevalley group is generated by all
these elements. Not suprisingly the (non-zero) isotropic elements form a single
orbit under this action, and so do the (non-zero) totally isotropic elements.

To establish the various relations between different isotropic and totally iso-
tropic elements we need to define a large number of algebraic operations on
these elements. Some of these are new, others bear a direct relation to the op-
erators used in the construction of the 27-dimensional module of the Chevalley
algebra of type E6 [1, 3]. In many cases ours are specific versions of operators
that are more generally known, but were simplified for the special context of
this paper in order to make it more self-contained and intelligible.

These operations also have a geometric interpretation. For example, two
points e and f are collinear in the metasymplectic space if and only e · f = 0,
[e, f ] = 0 and e ∗ f = 0. Two symplecta E,F have trivial intersection if and only
if [E,F ] 6= 0. We regret that it was beyond the scope of this text to establish
these connections in more detail, at least in the case of the metasymplectic
space. We do give a more complete treatment for the octagon.

Because K has characteristic 2, not only W is a subalgebra of F, but it is
also an ideal and moreover isomorphic to its quotient Q = F/W. Many of
the operations defined on F turn out to be well-defined on Q and the algebra
isomorphism µ is ‘compatible’ with many of them (e.g., [µ(e), µ(f)] = µ([e, f ])

and 〈µ(e), µ(f)〉 = e · f).

We intend to use µ to ‘twist’ both the Chevalley group and the metasymplec-
tic geometry. At least one hurdle needs to be overcome : in geometric terms
we would like to map points onto symplecta in such a way that (symmetric)
incidence is preserved. In algebraic terms this has two consequences. Isotropic
elements should be mapped to totally isotropic elements, and the algebraic op-
eration that indicates incidence should be preserved.
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The first problem is that totally isotropic elements belong to F and not to Q.
(However, it can be proved that no two totally isotropic elements can differ only
in an element of W, hence this is not really an issue). Secondly, and unfortu-
nately, the algebraic operation that we use to check incidence is an operation
on W× F and not on W ×Q, and there seems no easy way to make it so.

It turns out that we need yet another new operationQ(·) to solve this problem
(defined by means of µ). This ‘duality’ operation Q is quadratic and not linear
like µ, Q maps isotropic elements of W to totally isotropic elements of F (and
not of Q), and most importantly, Q transforms the ‘incidence operation’ into
something very much like it, sufficiently so for incidence to be preserved. (As
far as we are aware, this paper is the first to give an explicit algebraic definition
of a duality operation of this kind.)

Note that applying first Q and then µ−1 brings us ‘almost’ back to the orig-
inal : we only need an extra application of the Frobenius automorphism. Be-
cause of this supplementary automorphism we shall be forced in Section 7 to
introduce a Tits automorphism σ (and restrict ourselves to fields for which such
σ exists).

Essentially, the points of the octagon O can now be defined as ‘absolute’
elements of the duality Q. The last sections of this text simply prove that O
turns out to be what we expect of it. We use Q to define the Ree group 2F̂4(K)

and prove that it has the desired properties : it is transitive on the points of
O and on all pairs of points at a given distance. The corresponding elations
and root groups have properties that make O a Moufang octagon. We also
indicate how the different operators that have been defined in the text can be
used in various ways to determine the distance between two given points and
to compute the coordinates of the points on the shortest path between them
(when they are not opposite).

We strongly regret that we had to restrict ourselves to the case of a field K

that is perfect. From section 7 onwards we frequently use the fact that the Tits
morphism σ has an inverse σ−1 and we occasionally have to extract a square
root of an element of K. We currently do not see how to avoid this.

Finally, a word on notation and proofs.

In this text we had to introduce several new operations and choose an ap-
propriate notation for them. For some, like the Lie bracket, it was obvious how
to do this, for others, there were some difficulties. In particular, it would have
been nice to choose the same notation for operations that later turn out to be
‘compatible’ with respect to µ and Q. Hence E · F could have been preferred
to 〈E,F 〉. However, although in general E,F stand for elements of F, they can
also belong to W which is a subspace of F, and then this notation would be
ambiguous. For the same reason we cannot call totally isotropic elements of F
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isotropic, although both notions are clearly dual with respect to Q. We hope
that the reader does not get too confused.

Many of the lemmas, propositions and theorems in this text have proofs that
are rather technical. In many cases these proofs can be (and have been) ver-
ified by computer using a symbolic computer algebra system. There is only
one proposition (Proposition 2.2) which we do not prove ‘by hand’ because this
would have taken numerous extra pages. Although the property itself is very
relevant to the rest of the text, we did not think that the proof would contribute
greatly to its understanding.

2 The Chevalley algebra of type F4

In this section we shall review some general properties of the Chevalley algebra
of type F4. We restrict ourselves to the case where the base field K has charac-
teristic 2. More information, also for the case of general characteristic, can be
found in [2].

Consider a root system Φ of type F4. The elements of Φ can be expressed as
4-tuples of real coordinates, in the following way :

1. There are 24 roots whose coordinates are permutations of 4-tuples of the
form (±1,±1, 0, 0).

2. There are 16 roots with coordinates of the form (± 1
2 ,± 1

2 ,± 1
2 ,± 1

2 ).

3. There are 8 roots whose coordinates are permutations of 4-tuples of the
form (±1, 0, 0, 0).

We will denote coordinate quadruples by a shorthand notation of the form 1000,
01̄1̄0, +--+, where 1̄ stands for −1, + for 1

2 and - for − 1
2 .

Half of the roots have Euclidian length
√

2, and are called long roots (they
correspond to the first case above). The other half have length 1, and are called
short roots (the other two cases). We shall denote the sets of long (resp. short)
roots by ΦL (resp. ΦS).

It is customary to express relations between the roots not in terms of the
Euclidian inner product r · s, but by means of the following binary product :

〈r, s〉 def
= 2

r · s
r · r . (1)

This operator has the advantage that for r, s ∈ Φ, 〈r, s〉 is always an integer (in
fact 〈r, s〉 = 0,±1,±2). However, 〈r, s〉 is linear only in the second argument,
and not in the first.
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The value of 〈r, s〉 is closely related to whether r + s, r − s are roots and of
what kind, as summarised in the following tables :

When r, s ∈ ΦS

〈r, s〉 = if and only if

2 r = s

1 r − s ∈ ΦS

0 both r − s, r + s ∈ ΦL

−1 r + s ∈ ΦS

−2 r = −s

When r, s ∈ ΦL

〈r, s〉 = if and only if

2 r = s

1 r − s ∈ ΦL

0 r − s, r + s /∈ Φ

−1 r + s ∈ ΦL

−2 r = −s

When r ∈ ΦS , s ∈ ΦL

〈r, s〉 = if and only if

2 r − s ∈ ΦS

0 r − s, r + s /∈ Φ

−2 r + s ∈ ΦS

When r ∈ ΦL, s ∈ ΦS

〈r, s〉 = if and only if

1 r − s ∈ ΦS

0 r − s, r + s /∈ Φ

−1 r + s ∈ ΦS

(2)

With the root system Φ we may associate the dual root system Φ∗ of roots r∗

of the form
r∗

def
=

2r

r · r , with r ∈ Φ.

The element r∗ is called the co-root corresponding to r. Note that 〈r∗, s∗〉 =

〈s, r〉.
The roots

r1
def
= 11̄00, r2

def
= 011̄0, r3

def
= 0010, r4

def
= ---+, (3)

called simple roots, form a so-called fundamental system. Every root of Φ can
be written as a linear combination of simple roots, with integral coefficients. If
r = α1r1 + α2r2 + α3r3 + α4r4, then

α1 = 2〈r1, r〉 + 3〈r2, r〉 + 2〈r3, r〉 + 1〈r4, r〉
α2 = 3〈r1, r〉 + 6〈r2, r〉 + 4〈r3, r〉 + 2〈r4, r〉
α3 = 4〈r1, r〉 + 8〈r2, r〉 + 6〈r3, r〉 + 3〈r4, r〉
α4 = 2〈r1, r〉 + 4〈r2, r〉 + 3〈r3, r〉 + 2〈r4, r〉

(4)

With these notations the co-roots satisfy

r∗ =

{
2α1r

∗
1 + 2α2r

∗
2 + α3r

∗
3 + α4r

∗
4 , when r ∈ ΦS ,

α1r
∗
1 + α2r

∗
2 + 1

2α3r
∗
3 + 1

2α4r
∗
4 , when r ∈ ΦL.

(5)
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From (4) it can be inferred that when r ∈ ΦL, both α3 and α4 are even inte-
gers. Hence the coefficients that occur in (5) are integral. Indeed, the co-roots
r∗1 , . . . , r

∗
4 form a fundamental system for the dual root system Φ∗.

If we write r∗ = α∗1r
∗
1 + · · ·+ α∗4r

∗
4 we obtain

α∗1 = 2〈r, r1〉 + 3〈r, r2〉 + 4〈r, r3〉 + 2〈r, r4〉
α∗2 = 3〈r, r1〉 + 6〈r, r2〉 + 8〈r, r3〉 + 4〈r, r4〉
α∗3 = 2〈r, r1〉 + 4〈r, r2〉 + 6〈r, r3〉 + 3〈r, r4〉
α∗4 = 1〈r, r1〉 + 2〈r, r2〉 + 3〈r, r3〉 + 2〈r, r4〉

(6)

To every root r we associate the reflection wr about the hyperplane orthogo-
nal to r :

wr(x)
def
= x− 〈r, x〉r

It is a (defining) property of a root system that these reflections always map
roots onto roots. The finite groupW generated by all reflectionswr with r ∈ Φ is
the Weyl group of type F4. This group acts regularly on all fundamental systems
of roots in Φ and it acts transitively on roots of the same type (short or long)
and on pairs of roots with the same type and inner product. In other words,
the 16 cases listed in (2) correspond exactly to the orbits of W on ordered pairs
(r, s) of roots.

The Chevalley algebra F of type F4 over a field K is a 52-dimensional vector
space over K with a bilinear ‘Lie bracket’ operator [·, ·]. F can be written as a
direct sum of the following form :

F = H⊕
⊕

r∈Φ

Ker.

The elements er, one for every r ∈ Φ, are the root vectors of F, and H is the
Cartan subalgebra of dimension 4, generated by the elements hr

def
= [er, e−r] for

r ∈ Φ.

Not all elements hr, r ∈ Φ are linearly independent. In fact, the elements
hr can be expressed as linear combinations of the 4 elements hr1 , . . . , hr4 , in a
manner very similar to (5) :

hr =

{
2α1hr1 + 2α2hr2 + α3hr3 + α4hr4 , when r ∈ ΦS ,
α1hr1 + α2hr2 + 1

2α3hr3 + 1
2α4hr4 , when r ∈ ΦL.

(7)

The coefficients should now be interpreted as elements of the base field K. (In
our particular case of characteristic 2 we could therefore have left out the terms
involving 2α1 and 2α2.) Note that, because the characteristic of K is small, it
may happen that hr = hr′ although r 6= r′.
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The 4 elements hri together with the 48 root vectors er, form a Chevalley basis
for F. As charK = 2, the Chevalley basis elements can be chosen to satisfy

[hr, hs] = 0,

[es, hr] = [hr, es] = 〈r, s〉es,
[er, e−r] = hr,

[er, es] = er+s, when r + s ∈ Φ and 〈r, s〉 6= 0,

[er, es] = 0, otherwise.

(8)

Note that in particular [er, es] = 0 whenever 〈r, s〉 ≥ 0, by (2).

The second equality in (8) needs some extra attention. First note that 〈r, s〉
should be interpreted as an element of K, which is possible because 〈r, s〉 is
always an integer. Secondly, note that this equality holds for all r ∈ Φ and not
only for simple roots ri, even though the hr are not linearly independent and
the equality is not linear in r.

We shall often need to express an element A ∈ F as a linear combination of
Chevalley base elements. The corresponding coordinates shall be denoted by
A[r] for r ∈ Φ and A[i] for i = 1, 2, 3, 4. More precisely, we have

A =
∑

r∈Φ

A[r]er +

4∑

i=1

A[i]hri . (9)

The values for hr[i] can be derived from (6) reduced modulo 2, since (7)
shows that the elements hr behave like the co-roots r∗ and hence that hr[i] =

α∗i mod 2.
hr[1] = 〈r, r2〉, hr[2] = 〈r, r1〉,
hr[3] = 〈r, r4〉, hr[4] = 〈r, r3〉+ 〈r, r1〉

(10)

In terms of coordinates (8) can be expressed as follows : let A,B,C ∈ F with
C = [A,B], then

C[t] =
∑

r,s∈Φ

r+s=t,〈r,s〉6=0

A[r]B[s] +

4∑

i=1

〈ri, t〉(A[t]B[i] +A[i]B[t]), for t ∈ Φ,

C[i] =
∑

r∈Φ

A[r]B[−r]hr [i], for i = 1, . . . , 4.

(11)

Because charK = 2, the Lie bracket [·, ·] is a symmetric bilinear operation on
F. We associate a quadratic operator ·2 to this bilinear operator by choosing
values on the base vectors of F as follows :

e2
r = 0, h2

ri = hri for r ∈ Φ, i = 1, . . . , 4 (12)
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and setting

(A+ kB)2 = A2 + k[A,B] + k2B2, for every A,B ∈ F, k ∈ K. (13)

(Properties (12–13) uniquely determine the action of ·2 on F.)

In terms of coordinates we have :

A2[t] =
∑

{r,s}⊂Φ

r+s=t,〈r,s〉6=0

A[r]A[s] +

4∑

i=1

〈ri, t〉A[i]A[t], for t ∈ Φ,

A2[i] = A[i]2 +
∑

{r,−r}⊂Φ

A[r]A[−r]hr [i], for i = 1, . . . , 4.

(14)

(The first sum in the first equation treats each pair exactly once. The sum in the
last equation consists of 24 terms, one for each pair {r,−r} of roots. Equations
(14) could serve as an alternative definition of ·2.)

Note that h2
r = hr for all r ∈ Φ (and not only when r = ri is a simple root).

Proposition 2.1. Let X,A ∈ F, then

[[X,A], A] = [X,A2]. (15)

Proof. The Jacobi identity proves that [[X,A], B] + [[X,B], A] = [X, [A,B]],
hence by (13) it is sufficient to prove (15) when A is a Chevalley base element.

Let r ∈ Φ. We express [X, er] in terms of coordinates of X :

[X, er] =
∑

s∈Φ
r+s∈Φ,〈r,s〉6=0

X [s]er+s +X [−r]hr +
∑

i

X [i]〈ri, r〉er ,

We have 〈r, r+ s〉 = 〈r, r〉+ 〈r, s〉 = 2 + 〈r, s〉 ≥ 0, and hence [er+s, er] = 0. Also
[hr, er] = 0 and [er, er] = 0, and therefore [[X, er], er] = 0 = [X, e2

r].

Similarly, [X,hr] =
∑
s∈Φ X [s]〈r, s〉es, so [[X,hr], hr] =

∑
s∈ΦX [s]〈r, s〉2es,

which is the same as [X,hr] because 〈r, s〉2 = 〈r, s〉 in characteristic 2.

Let W denote the subspace of F generated by the elements hr, er, restricted
to the short roots r ∈ ΦS :

W
def
= I⊕

⊕

r∈ΦS

Ker, (16)

where I is the subspace of H generated by all hr with r ∈ ΦS . In other words :
A ∈ W if and only if its coordinates satisfy A[r] = 0, for all r ∈ ΦL, and
A[1] = A[2] = 0. Hence W has dimension 26.
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It follows from (8) that [W,F] ≤ W and hence that W is an ideal and a
subalgebra of F. Also note that W2 ≤W by (12).

Below we repeat (8) for the special case that both r, s ∈ ΦS . These could be
considered the defining relations for W :

[hr, hs] = 0,

[hr, es] = 〈r, s〉es,
[er, e−r] = hr,

[er, es] = 0, when r + s 6= 0, r + s /∈ ΦS ,

[er, es] = er+s, when r + s ∈ ΦS .

(17)

As before, [er, es] = 0 whenever 〈r, s〉 ≥ 0.

It turns out (although we do not need this here) that W can be extended
to a 27-dimensional module of the Chevalley algebra of type E6. There is a
well-known construction of this module [3] that uses a bilinear operator × and
a related quadratic operator #. These operators are closely related (but not
identical) to the Lie bracket and the square operator we use here.

When restricted to r, s ∈ ΦS the product 〈r, s〉 is bilinear, symmetric and
integral. This allows us to define the following symmetric bilinear dot product
on W, with values in K :

er · es def
=

{
1 when r = −s,
0 otherwise.

er · hs = hs · er def
= 0,

hr · hs def
= 〈r, s〉, for r, s ∈ ΦS .

(18)

(This dot product is related to the product (·, ·) used in the construction of
the 27-dimensional E6-module mentioned above.)

Consider a ∈W. In terms of coordinates with respect to the Chevalley base
elements we find

a · er = a[−r], a · hr3 = a[4], a · hr4 = a[3],

and hence, for general a, b ∈W :

a · b =
∑

r∈ΦS

a[r]b[−r] + a[3]b[4] + a[4]b[3]. (19)

Note that a · a = 0 for all a ∈W. The dot product is also nondegenerate on W,
in other words, if a · x = 0 for all x ∈W, then necessarily a = 0.
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Let A ∈ F, r, s ∈ ΦS . Then we easily compute the following :

[er, A] · es =





∑4
i=1〈ri, r〉A[i], when r = −s,

A[−r − s], when 〈r, s〉 = 0 or −1,

0, otherwise.

[hs, A] · er = 〈s, r〉A[−r],
[er, A] · hs = 〈s, r〉A[−r],
[hr, A] · hs = 0.

(20)

It follows that [W, A] = 0 for A ∈ F only when A = 0.

As an immediate consequence of (20) we find

[a, C] · a = 0, [a, C] · b = [b, C] · a, for a, b ∈W and C ∈ F. (21)

When C = c belongs to W we may interchange the roles of a and c in the above,
to obtain

[a, b] · c = [b, c] · a = [c, a] · b, for all a, b, c ∈W. (22)

Taking the dot product of dwith the Jacobi identity [[a, b], c]+[[b, c], a]+[[c, a], b] =

0, and applying (22) yields

[a, b] · [c, d] + [a, c] · [b, d] + [a, d] · [b, c] = 0, for all a, b, c, d ∈W. (23)

To the symmetric bilinear dot product we associate a quadratic norm function
N(·) as follows :

N(er)
def
= 0, N(hri)

def
= 1, for r ∈ ΦS , i = 3, 4. (24)

with

N(a+ kb) = N(a) + ka · b+ k2N(b), for a, b ∈W, k ∈ K. (25)

In terms of coordinates :

N(a) =
∑

{r,−r}⊂ΦS

a[r]a[−r] + a[3]2 + a[3]a[4] + a[4]2. (26)

where the sum is taken such that every pair {r,−r} occurs exactly once. Note
that N(hr) = 1 for all r ∈ ΦS (and not only when r = ri is a simple root).

The following is a basic structural ‘axiom’ for the algebra W :

Proposition 2.2. Let a ∈W, then

(a2)2 = N(a)a2 + (a2 · a)a (27)
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Sketch of the proof. The fastest way to prove this proposition is by means of
a computer. When expressed in terms of coordinates (27) can be interpreted as
a set of 26 polynomial identities of the fourth degree in 26 different coordinate
variables a[r], a[i], with r ∈ ΦS , i = 3, 4. These identities can then be verified
by computer.

Without the use of a computer, a technical proof consists of proving (27)
and its corollaries (28–31) in the special case that a, b, c, d are Chevalley base
elements. There are however many very different cases to consider.

Finally, note that (27) is a consequence of a similar identity (a#)# = D(a)a

which is known [1, 3] to hold in the 27-dimensional E6-module overK of which
W is a subspace of co-dimension 1.

From (27) we may derive many other identities. For example, substituting
a + kb for a and grouping the terms according to the degree in k, one obtains,
for every a, b ∈W :

[[a, b], a2] = (a · b)a2 +N(a)[a, b] + (a2 · b)a+ (a2 · a)b (28)

[a, b]2 + [a2, b2] = N(a)b2 + (a · b)[a, b] +N(b)a2 + (a2 · b)b+ (a · b2)a (29)

Substituting b+ c for b in the above, yields, for a, b, c ∈W,

[[a, b], [a, c]] + [a2, [b, c]] = N(a)[b, c] + (a · b)[a, c] + (a · c)[a, b]
+ (b · c)a2 + (a2 · b)c+ (a2 · c)b+ ([a, b] · c)a (30)

and finally, substituting a+ d for a, gives, for a, b, c, d ∈W,

[[a, b], [c, d]] + [[a, c], [b, d]] + [[a, d], [b, c]]

= (a · b)[c, d] + (a · c)[b, d] + (a · d)[b, c] + (b · c)[a, d] + (b · d)[a, c]

+ (c · d)[a, b] + ([a, b] · c)d + ([b, c] · d)a + ([c, d] · a)b + ([d, a] · b)c (31)

Lemma 2.3. Let H : ΦS → K satisfy

H(r + s) = H(r) +H(s) (32)

for all r, s ∈ ΦS such that r+s ∈ ΦS . Then there exist four constantsH1, . . . , H4 ∈
K with the property

H(r) =
4∑

i=1

〈ri, r〉Hi, for all r ∈ ΦS . (33)

Proof. Consider the 5 roots s0 = ++++, s1 = 1̄000, s2 = 01̄00, s3 = 001̄0 and
s4 = 0001̄. Note that every short root of the form (± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ) can be
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written as s0 + si, s0 + si + sj , s0 + si + sj + sk or s0 + s1 + s2 + s3 + s4, with
i, j, k ∈ {1, . . . , 4}. Also 1000 is the sum of +--- and ++++ and likewise for 0100,
0010 and 0001.

By (32) we may conclude that for every r ∈ ΦS , H(r) can be written as
a linear combination of H(s0),. . . , H(s4). However, these five values are not
independent. Indeed, we have

r = ---+ = ((s0 + s1) + s2) + s3,

s = ++-- = ((s0 + s3) + s4),

r + s = 001̄0 = s3,

and hence H(r) = H(s0) + H(s1) + H(s2) + H(s3), H(s) = H(s0) + H(s3) +

H(s4), and H(r+ s) = H(s3). Therefore (32) implies H(s1) +H(s2) +H(s3) +

H(s4) = 0.

We have
s0 = r1 +2r2 +3r3 +r4

s1 = −r1 −r2 −r3

s2 = −r2 −r3

s3 = −r3

s4 = −r1 −2r2 −3r3 −2r4.

(34)

Setting

H1
def
= H(s2)+H(s3), H2

def
= H(s1)+H(s2), H3

def
= H(s0)+H(s4), H4

def
= H(s3),

we also easily verify that

H(s0) = H2 +H4 +H3

H(s1) = H2 +H1 +H4

H(s2) = H1 +H4

H(s3) = H4

H(s4) = H2 +H4.

(35)

Comparing (34) and (35) and using the fact that 〈ri, rj〉 is even unless {i, j} =

{1, 2} or {3, 4}, we see that (33) is satisfied for r = s0, . . . , s4. The lemma then
follows because (33) is linear in r.

Proposition 2.4. Let τ ∈ Hom(W,W) be a linear transformation that satisfies

τ(a2) = [τ(a), a], for all a ∈W, (36)

or equivalently

τ(a2) · b = τ(a) · [a, b], for all a, b ∈W, (37)

then there exists a unique element T ∈ F such that τ(a) = [a, T ] for every a ∈W.
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Proof. Let r, s, t, u ∈ ΦS . We shall compute τ(er) · es. Setting a = er, hr and
b = es, hs in (37) we easily obtain that τ must satisfy

τ(er) · hr = 0,

τ(er) · er = 0,

τ(er) · es = 0, when 〈r, s〉 = 1,

τ(hr) · es = 0, when 〈r, s〉 6= ±1,

τ(hr) · hs = 0.

(38)

(The third identity is obtained by setting b = er−s.)

Substituting c for b and a+ b for a in (37) we find that τ must satisfy

τ([a, b]) · c = τ(a) · [b, c] + τ(b) · [a, c], for all a, b, c ∈W. (39)

Setting a = er, b = hu and c = es in this equation, we find

τ(hu) · [er, es] = 〈u, r + s〉τ(er) · es,

Hence, when 〈r, t〉 = 1 we may take t = r+s and find τ(hu) · et = 〈u, t〉τ(er) · es.
Because we can always find u such that 〈u, t〉 = 1 we see that τ(er) · es only de-
pends on the value of t = r+ s. We shall denote this value by T(−t). Combining
this with the fourth identity of (38) we obtain :

τ(er) · es = T(−r−s), when 〈r, s〉 = −1,

τ(hs) · er = 〈s, r〉T(−r)
(40)

(For the second equation we have renamed the variables u, t to s, r, respec-
tively.)

Now consider t ∈ ΦL and r, s, r′, s′ ∈ ΦS with t = r + s = r′ + s′ but
{r, s} 6= {r′, s′}. We have 〈r, t〉 = 〈r, r + s〉 = 〈r, r〉 + 〈r, s〉 = 2 and hence
also 〈r, t〉 = 〈r, r′〉 + 〈r, s′〉 = 2. This implies 〈r, r′〉 = 〈r, s′〉 = 1 and therefore
r′ − r ∈ ΦS . Setting a = er, b = er′−r and c = es′ in (39), we find

τ(er′) · es′ = τ(er) · [er′−r, es′ ] + τ(er′−r) · [er, es′ ] = τ(er) · es.

It follows that the value of τ(er) · es depends only on t = r + s. As before, we
shall denote this value by T(−t) (but now t is a long root), obtaining

τ(er) · es = T(−r−s), when 〈r, s〉 = 0. (41)

Setting a = er, b = es, c = e−s in (39) we find

τ(er) · hs = τ([er, es]) · e−s + τ([er, e−s]) · es,
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and by distinguishing different cases according to the value of 〈r, s〉, we obtain

τ(er) · hs = 〈s, r〉T(−r) (42)

Finally, consider r, s ∈ ΦS such that 〈r, s〉 = −1 and set a = er, b = es and
c = e−r−s to obtain

τ(er+s) · e−r−s = τ(er) · e−r + τ(es) · e−s.

We may now apply Lemma 2.3 with H(r)
def
= τ(er) ·e−r to prove that there exist

constants H1, . . . , H4 such that

τ(er) · e−r =

4∑

i=1

〈ri, r〉Hi. (43)

Comparing equations (38–43) with (20) we see that τ behaves exactly like the
elements T ∈ F with coordinates T [r] = T(r) and T [i] = Hi.

Corollary 2.5. Let b, c ∈W be such that b · c = 0 and [b, c] = 0. Then there exists
a unique element b ∗ c ∈ F such that

[a, b ∗ c] = [[a, b], c] + (a · b)c+ (a · c)b, for all a ∈W. (44)

Proof. We apply Proposition 2.4 to the map which maps a onto the right hand
side of (44). We verify (36) :

[[a2, b], c] + (a2 · b)c+ (a2 · c)b+ [[a, b], c], a] + (a · b)[a, c] + (a · c)[a, b]
= [[a, b], a], c] + [[a, b], c], a] + (a2 · b)c+ (a2 · c)b+ (a · b)[a, c] + (a · c)[a, b]
= [[a, b], [a, c]] + (a2 · b)c+ (a2 · c)b+ (a · b)[a, c] + (a · c)[a, b],

applying the Jacobi identity to the first two terms. By (30) this reduces to

[a2, [b, c]] +N(a)[b, c] + (b · c)a2 + ([a, b] · c)a

which is zero, as [b, c] = 0 and b · c = 0. (Note that, by (22), the last term is also
equal to (a · [b, c])a.)

It should be noted that the ∗-product is only partially defined on W ×W.
(Its definition could be extended to all possible b, c ∈ W if we would allow its
value to belong to a Chevalley algebra larger than F, of type E6. However, we
do not need this for this text.)

We realize that the reader might perceive the introduction of ∗ as the defi-
nition of ‘yet another operator’. However, it will play an important role in the
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definition of totally isotropic elements (in the next section) and in this way help
to provide a geometric interpretation of the algebraic theory which is being
developed.

The following lemma provides some simple examples of products of this kind.

Lemma 2.6. Let r, s ∈ ΦS be such that 〈r, s〉 = 0. Then r + s ∈ ΦL and

er ∗ es = er+s, (er + e−s) ∗ (es + e−r) = er+s + e−r−s + hr+s. (45)

When r, s ∈ ΦS such that 〈r, s〉 = 1 then er ∗ es = 0.

Proof. Write t = r + s.

1. Let u ∈ ΦS . Then [eu, er ∗ es] = [[eu, er], es] + (eu · er)es + (eu · es)er is
non-zero only in the following cases :

– When u = −r and then it is equal to [hr, es] + es = 〈r, s〉es + es = es.

– When u = −s and then it is equal to er.

– When u 6= s, 〈u, r〉 = −1 and then it is equal to [eu+r, es], which is
eu+t provided that 〈u+ r, s〉 = −1

By (2) t + u ∈ ΦS if and only if −2 = 〈u, t〉 = 〈u, r〉 + 〈u, s〉 if and only
if u = −r, u = −s or 〈u, r〉 = 〈u, s〉 = −1. In other words, [eu, er ∗ es]
is non-zero exactly for those u ∈ ΦS for which t + u ∈ ΦS , and then the
value is eu+t. This is exactly the same behavior as that of et.

Likewise [hu, er ∗ es] = 〈u, r〉[er , es] = 0 and also [hu, et] = 0, for all
u ∈ ΦS .

2. Consider the expression

[[eu, er], e−r] + (eu · er)e−r + (eu · e−r)er. (46)

The value of this expression is non-zero in the following cases :

– When u = −r and then it is equal to [hr, e−r] + e−r = e−r.

– When u = r and then it is equal to er.

– When 〈u, r〉 = −1 and then it is equal to [eu+r, e−r] = eu.

We may obtain a similar result for the expression

[[eu, e−s], es] + (eu · es)e−s + (eu · e−s)es, (47)

and combining these results we obtain the following value for the sum of
(46) and (47) : it is equal to eu in those cases where u = r,−r, s,−s or
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when either 〈u, r〉 = −1 or 〈u,−s〉 = −1 (but not both), and otherwise the
value is 0. As in the first part of this proof, the identity 〈u, t〉 = 〈u, r〉+〈u, s〉
may be used to show that these conditions are equivalent to 〈u, t〉 = ±2

or 〈t, u〉 = ±1. Hence the value for the sum of (46) and (47) is 〈t, u〉eu =

[ht, eu]. In combination with the first part of the lemma, this proves the
right hand identity in (45). (We leave it to the reader to verify the identity
when applied to hu instead of eu.)

3. When 〈r, s〉 = 1 we find that [eu, er∗es] = [[eu, er], es]+(eu·er)es+(eu·es)er
is always zero except possibly in the following cases :

– When u = −r, but then it is equal to [hr, es] + es = 〈r, s〉es + es = 0.

– When u = −s, but then it is equal to [er−s, es] + er = er + er = 0.

– When 〈u, r〉 = −1 and then it is equal to [eu+r, es], which again is 0,
for now 〈s, u+ r〉 = 〈s, u〉+ 〈s, r〉 = 〈s, u〉+ 1 ≥ 0.

Lemma 2.7. Let b, c ∈W be such that [b, c] = 0, b · c = 0. Let a ∈W. Then

1. b ∗ b = b2,

2. b ∗ c = c ∗ b,

3. [b, b ∗ c] = 0 and hence [a, b ∗ c] · b = 0,

4. [[a, b ∗ c], b] = [[a, b], b ∗ c] = [[a, b2], c] = [[a, c2], b],

5. [a, (b ∗ c)2] = [[a, b2], c2] = [[a, c2], b2].

Proof. The first four statements are immediate consequences of the definition
and the fact that b · b = 0 for all b ∈W. For the last statement, we find

[a, (b ∗ c)2] = [[a, b ∗ c], b ∗ c]
= [[[a, b ∗ c], b], c] + ([a, b ∗ c] · b)c+ ([a, b ∗ c] · c)b = [[a, b2], c2],

using the first statements of the lemma.

Lemma 2.8. Let b, c ∈ W, A ∈ F be such that [b, c] = [b, [c, A]] = 0, b · c =

b · [c, A] = 0 and hence [c, [b, A]] = 0 and c · [b, A] = 0. Then

[A, b ∗ c] = [b, A] ∗ c+ [c, A] ∗ b. (48)

Proof. Consider x ∈W. Then

[x, [b, A] ∗ c] + [x, [c, A] ∗ b] = [[x, c], [b, A]] + (x · c)[b, A] + (x · [b, A])c+

[[x, b], [c, A]] + (x · b)[c, A] + (x · [c, A])b.
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Also

[x, [b ∗ c, A]] = [[x, b ∗ c], A] + [[x,A], b ∗ c]
= [[[x, b], c], A] + (x · b)[c, A] + (x · c)[b, A] +

[[[x,A], b], c] + ([x,A] · b)c+ ([x,A] · c)b.

Finally, several applications of the Jacobi identity yield

[[x, b], [c, A]] + [[[x, b], c], A] + [[[x,A], b], c] + [[x, c], [b, A]]

= [[[x, b], A], c] + [[[x,A], b], c] + [[x, c], [b, A]]

= [[[b, A], x], c] + [[x, c], [b, A]] = [[[b, A], c], x] = 0.

Adding these results, we find that [x, [A, b ∗ c]] = [x, [b, A] ∗ c] + [x, [c, A] ∗ b], for
all x ∈W.

3 Isotropic and totally isotropic elements

An element a ∈W shall be called isotropic if and only if a2 = 0. The elements er
with r ∈ ΦS serve as typical examples of isotropic elements. Another example
is provided by the element er+e−r+hr. Also er+es is isotropic when r, s ∈ ΦS
and 〈r, s〉 = 0 or 1.

A subspace S of W is called totally isotropic when all its elements are iso-
tropic. By (13) this means that S is totally isotropic if and only if every base
a1, . . . , ad of S satisfies a2

i = [ai, aj ] = 0, for 1 ≤ i, j ≤ d.

Clearly Ke is totally isotropic if and only if e2 = 0, and Ke + Kf is totally
isotropic if and only if e2 = f2 = [e, f ] = 0.

The one-dimensional totally isotropic subspaces Ke will later serve as points
of a geometry (which is metasymplectic [5], although we shall not expand on
this) and the operators defined on W, when applied to these points, will enable
us to distinguish between various relations of pairs of such points (for example,
Ke and Kf shall turn out to be collinear, or equal, if and only if e · f = 0,
[e, f ] = 0 and e ∗ f = 0).

The following lemma lists some simple properties of isotropic elements of
W.

Lemma 3.1. Let e be an isotropic element of W. Then

1. N(e) = 0,

2. [a, e]2 = (a · e)[a, e] + (a2 · e)e for all a ∈W,
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3. [[[a, e], b], e] = [[a, e], [b, e]] = (a · e)[b, e] + (b · e)[a, e] + ([a, b] · e)e, for all
a, b ∈W.

4. e ∗ [a, e] = (a · e)e, for all a ∈W.

Proof. 1. Applying (28) to a = e, we find that N(e)[e, b] = 0 for all b ∈ W.
Hence N(e)e = 0, and therefore N(e) = 0.

2,3. These follow immediately from (29, 30) and the above.

4. Note that e · [a, e] = 0 and [e, [a, e]] = [a, e2] = 0, hence e ∗ [a, e] is well-
defined. Now, for every b ∈W we have

[b, e ∗ [a, e]] = [[b, e], [a, e]] + (b · [a, e])e+ (b · e)[a, e] = (a · e)[b, e],

by the previous statement.

An element E ∈ F of the form E = e ∗ f for some e, f ∈ W such that
e2 = [e, f ] = f2 = 0 and e · f = 0, shall be called totally isotropic. We shall call
{e, f} a defining pair for E. (A defining pair need not be unique.)

The base elements er with r ∈ ΦL are typical examples of totally isotropic
elements. Indeed, we may always find s, t ∈ ΦS such that r = s+t and 〈s, t〉 = 0,
and then er = es ∗ et. By (45) also the element er + e−r +hr is totally isotropic.

(In terms of metasymplectic spaces, when E = e ∗ f is totally isotropic and
non-zero, the one-dimensional subspace KE corresponds to a symplecton, the
unique symplecton incident with both Ke and Kf .)

Lemma 3.2. Let E be a totally isotropic element of F with defining pair {e, f}.
Let a, b ∈W. Then

1. [e, E] = [E, f ] = 0,

2. [a,E] · f = e · [E, a] = 0,

3. [[a,E], f ] = [e, [E, a]] = 0,

4. E2 = 0.

5. [a,E] ∗ f = (a · f)E and, by symmetry, e ∗ [F, a] = (e · a)F ,

6. [a,E]2 = 0 and hence [[a,E], [b, E]] = 0.

7. N([a,E]) = 0 and hence [a,E] · [b, E] = 0.

8. [a,E] ∗ [b, E] = ([a,E] · b)E.

Proof. 1–4. These statements are immediate applications of Lemma 2.7.
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5. As a consequence of statements 2 and 3 of this lemma, the ∗-products are
well-defined. We have

[a,E] ∗ f = [a, e ∗ f ] ∗ f = [[a, e], f ] ∗ f + (a · e)f ∗ f + (a · f)e ∗ f,

where again each term on the right hand side is well-defined. Now, f ∗f =

0 by Lemma 2.7, hence it remains to be proved that [[a, e], f ] ∗ f = 0.

Write b for [a, e] and let x ∈W. Then

[x, [b, f ] ∗ f ] = [[x, [b, f ]], f ] + (x · f)[b, f ] + (x · [b, f ])f = (b · f)[x, f ]

by application of Lemma 3.1–3. Hence [b, f ] ∗ f = (b · f)f = 0, because
b · f = [a, e] · f = [e, f ] · a = 0.

6. We have

[a,E]2 = ([[a, e], f ] + (a · f)e+ (a · e)f)2

= [[a, e], f ]2 + (a · f)2e2 + (a · e)2f2

+ (a · f)[[[a, e], f ], e] + (a · e)[[[a, e], f ], f ] + (a · e)(a · f)[e, f ]

= [[a, e], f ]2

= ([a, e] · f)[a, f ] + ([a, e]2 · f)f = ([a, e]2 · f)f

by Lemma 3.1–2. Also, by the same lemma,

[a, e]2 · f = (a · e)[a, e] · f + (a2 · e)(e · f) = 0.

7. Follows from the above and from Lemma 3.1–1.

8. Set e′ = [a,E] and E′ = e′ ∗ f . Then by the above E ′ = (a · f)E. Set
f ′ = [b, E′] and E′′ = e′ ∗ f ′. Then by the above E′′ = (b · e′)E′ =

(a · f)([a,E] · b)E. Also e′ ∗ f ′ = (a · f)[a,E] ∗ [b, E].

It follows that the result holds whenever a·f 6= 0, and because the identity
is linear in a, it will also hold when a · f = 0.

Statement 6 of this lemma justifies the name ‘totally isotropic’ for E : it
proves that [W, E] is a totally isotropic subspace of W.

Lemma 3.3. Let E be a totally isotropic element of F with defining pair {e, f}.
Let A ∈ F. Define

〈E,A〉 def
= [e, A] · f. (49)

Then

1. [[e, A], E] = 〈E,A〉e, and
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2. [[[a,E], A], E] = [[a,E], [A,E]] = 〈E,A〉[a,E], for every a ∈W.

3. [E,A]2 = 〈A,E〉[E,A] + 〈A2, E〉E.

Proof. 1. We find

[[e, A], E] = [[e, A], e ∗ f ] = [[[e, A], e], f ] + ([e, A] · f)e+ ([e, A] · e)f
= [[A, e2], f ] + ([e, A] · f)e = 〈E,A〉e.

2. Apply this result to e′ = [a,E] and E′ = e′ ∗ f . By Lemma 3.2 we have
E′ = (a · f)E. We find

(a · f)[[[a,E], A], E] = [[e′, A], E′] = ([e′, A] · f)e′ = ([e′, A] · f)[a,E].

Also

[e′, A] · f = [[a,E], A] · f = [[a, e ∗ f ], A] · f
= [[[a, e], f ], A] · f + (a · f)([e, A] · f) + (a · e)([f,A] · f)

= [[[a, e], A], f ] · f + [[[a, e], [f,A]] · f + (a · f)([e, A] · f)

= [f, [f,A]] · [a, e] + (a · f)([e, A] · f) = (a · f)([e, A] · f)

Hence, whenever a · f 6= 0, we have [[[a,E], A], E] = ([e, A] · f)[a,E], and
because this identity is linear in a, it will also hold when a · f = 0.

3. Take a ∈W. We find

[a, [E,A]2] = [[a, [E,A]], [E,A]]

= [[[a, [E,A]], E], A] + [[[a, [E,A]], A], E]

= [[[a,E], A], E], A] + [[a,A], E], E], A]

+ [[[a,E], A], A], E] + [[a,A], E], A], E]

= 〈A,E〉[[a,E], A] + 〈A2, E〉[a,E] + 〈A,E〉[[a,A], E]

= 〈A,E〉[a, [E,A]] + 〈A2, E〉[a,E],

and this is true for any a ∈W.

Note that statement 2 of this lemma proves that the value of 〈E,A〉 is inde-
pendent of the choice of the defining pair.

Lemma 3.4. The operation 〈E,A〉 as defined in (49) can be extended in a unique
way to a bilinear operator 〈·, ·〉 defined over all elements of F.

This operator is symmetric and satisfies

〈F,W〉 = 〈W,F〉 = 0, (50)
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〈er, e−r〉 = 1, when r ∈ ΦL

〈er, es〉 = 0, when r, s ∈ ΦL, r 6= −s
〈hr, es〉 = 〈es, hr〉 = 0,

〈hr, hs〉 = 〈r, s〉, when r, s ∈ ΦL

(51)

Proof. Note that by definition 〈E,A〉 is linear in its second argument. We need
to prove that it can be ‘made’ linear in its first argument : in other words, if a
linear combination

∑
i kiEi of totally isotropic elements Ei turns out to be zero,

then
∑

i ki〈Ei, A〉 = 0 should be zero for every A ∈ F.

Because er and er + e−r + hr are totally isotropic for every r ∈ ΦL, A can
always be written as a a linear combination of totally isotropic elements and
elements of W. Hence it is sufficient to prove the linearization property above
in the case that A is totally isotropic and in the case that A belongs to W.

When A is totally isotropic, we claim that 〈E,A〉 = 〈A,E〉. Indeed, let {e, f}
be a defining pair for E and {e′, f ′} for A, then

〈E,A〉 = [e, e′ ∗ f ′] · f = [[e, e′], f ′] · f + (e · f ′)(e′ · f) + (e · e′)(f · f ′)
= [e, e′] · [f, f ′] + (e · f ′)(e′ · f) + (e · e′)(f · f ′),

and this identity remains unchanged when interchanging e with e′ and f with
f ′.

So in this case,
∑

i

ki〈Ei, A〉 =
∑

i

ki〈A,Ei〉 = 〈A,
∑

i

kiEi〉 = 0,

as 〈·, ·〉 is known to be linear in its second argument.

When A belongs to W, we have 〈E,A〉 = [e, A] · f = [e, f ] · A = 0, by (21).
Hence

∑
i ki〈Ei, A〉 is trivially zero.

This proves that 〈·, ·〉 can be extended to a bilinear operator that is fully
defined over F. We shall now establish that the formulae (50) and (51) are
the only ones possible. Because every element of F can be written as a linear
combination of an element of W and elements of the form er, hr, with r ∈ ΦL,
this will prove that the bilinear product is unique.

Consider the special case E = er with r ∈ ΦL. By (45) we may write er =

es ∗ et with s, t ∈ ΦS such that s + t = r. By (49) and (20) we have 〈er, A〉 =

[es, A] · et = A[−s − t] = A[−r]. This proves 〈er, hs〉 = 0 and 〈er, es〉 = 0 for
every s ∈ Φ, except the case 〈er, e−r〉 = 1.

As a second special case, consider E = er + e−r + hr. With s, t as before, we
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find

〈er + e−r + hr, A〉 = [es + e−t, A] · (et + e−s)

= A[−s− t] +

4∑

i=1

〈ri, s〉A[i] +

4∑

i=1

〈ri, t〉A[i] +A[s+ t]

= A[−r] +

4∑

i=1

〈ri, r〉A[i] +A[r]

Hence 〈hr, A〉 =
∑4

i=1〈ri, r〉A[i] and then 〈hr, es〉 = 0 and 〈hr, hrj 〉 = 〈rj , r〉,
and hence 〈hr, hs〉 = 〈s, r〉.

This lemma also provides us with a tool to compute 〈A,B〉 in terms of coor-
dinates :

〈A,B〉 =
∑

r∈ΦL

A[r]B[−r] +A[1]B[2] +B[2]A[1]. (52)

Every totally isotropic element E satisfies E2 = 0, but this is not a sufficient
condition. Indeed

Lemma 3.5. W− {0} does not contain any totally isotropic elements.

Proof. Let e ∈W be a totally isotropic element of F. Then e2 = 0 and [a, e]2 = 0

for all a ∈W. By Lemma 3.1–2 we then have (a · e)[a, e] = 0 for every a ∈W.
Hence [a, e] = 0 whenever a · e 6= 0, and because the condition is linear in a,
also when a · e = 0. So [W, e] = 0 and hence e = 0.

4 Automorphisms

A nonsingular semi-linear transformation g : W →W : a 7→ ag shall be called
an automorphism of W if it satisfies

(a2)g = (ag)2, for all a ∈W. (53)

As an immediate consequence of (13) we find that also [ag , bg] = [a, b]g. More-
over

Lemma 4.1. Let g be an automorphism of W which is semi-linear with corre-
sponding field automorphism σ. Then

N(ag) = N(a)σ , for all a ∈W,

ag · bg = (a · b)σ for all a, b ∈W.
(54)
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Proof. Note that the second equation follows from the first, by (25).

Let a ∈W. Write b = ag . Applying g to equation (27) we obtain

(b2)2 = N(a)σb2 + (a2 · a)σb,

because g is a semi-linear operation. But also by (27) we have (b2)2 = N(b)b2 +

(b2 · b)b. Hence

(N(b)−N(a)σ)b2 = ((a2 · a)σ − b2 · b)b. (55)

When a and a2 are linearly independent, and hence b and b2 are linearly inde-
pendent, this implies N(b) = N(a)σ (and (a2 · a)σ = b2 · b).

When a2 = ka for some k ∈ K − {0}, and hence b2 = kσb, we find that
a2 · a = b2 · b = 0. Hence the right hand side of (55) is zero, and again N(b) =

N(a)σ , provided b2 6= 0 (and hence a2 6= 0).

Finally, when a2 = 0, we have N(a) = 0, by Lemma 3.1, but then also b2 = 0

and N(b) = 0.

Lemma 4.2. Every automorphism g of W can be extended in a unique way to a
nonsingular semi-linear transformation of F that satisfies

(A2)g = (Ag)2, for all A ∈ F, (56)

and then
[A,B]g = [Ag , Bg ], for all A,B ∈ F,

(a ∗ b)g = ag ∗ bg , for all a, b ∈W.
(57)

Proof. Note that (57) is an immediate consequence of (56). Also, if such an
extension exists, it should satisfy

[ag, Ag ] = [a,A]g , for all a ∈W, A ∈ F. (58)

Consider the linear transformation τA that maps a ∈W onto [ag
−1

, A]g. We
shall verify that τA satisfies the conditions of Proposition 2.4. Indeed, write
b = ag

−1

, then

τA(a2) = [(a2)g
−1

, A]g = [b2, A]g = [[b, A], b]g = [[b, A]g, bg] = [τA(a), a].

As a consequence, we may define Ag to be the unique element of F for which
[a,Ag ] = τA(a) = [ag

−1

, A]g , for all a ∈ W. Note that this definition of Ag

satisfies (58).

It remains to be proved that (56) is satisfied for all A ∈ F. It is sufficient to
prove that [a, (A2)g ] = [a, (Ag)2] for all a ∈W. Again write b = ag

−1

, then

[a, (A2)g ] = [b, A2]g = [[b, A], A]g = [[a,Ag ], Ag ],

by (58).
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A nonsingular semi-linear transformation g of F that satisfies (56) shall be
called an automorphism of F. The lemma above proves that there is a 1–1 rela-
tion between g and its restriction to W (which is an automorphism of W). We
shall therefore often drop the distinction between both types of automorphism.

The lemma also shows that to prove that two automorphisms are equal over
F, it is sufficient to prove that they are equal over W.

Every automorphism σ of the field K can be extended to an automorphism
of F simply by letting it act on the coordinates with respect to the Chevalley
basis. An automorphism of this kind shall be called a field automorphism.

The following proposition provides another type of automorphism.

Proposition 4.3. Let e be an isotropic element of W. Define the linear map

x(e) : F→ F : A 7→ Ax(e) def
= A+ [e, A] + e ∗ [A, e]. (59)

Then x(e) is an automorphism of F. Its restriction to W satisfies

ax(e) = a+ [e, a] + (a · e)e, for all a ∈W. (60)

For k, k′ ∈ K we have x(ke)x(k′e) = x((k + k′)e) and in particular x(e)2 = 1.

Proof. We first verify (56).

(Ax(e))2

= (A+ [e, A] + e ∗ [A, e])2

= A2 + [e, A]2 + (e ∗ [A, e])2 + [A, [e, A]] + [A, e ∗ [A, e]] + [[e, A], e ∗ [A, e]]

Set b = [e, A] and c = e and apply Lemma 2.7 to find that [[e, A], e ∗ [A, e]] = 0

and (e ∗ [A, e])2 = 0. As [b, [c, A]] = 0 and b · [c, A] = 0 we may apply Lemma 2.8
to obtain

[A, e ∗ [A, e]] = [[A, [A, e]], e] + [[A, e], A] ∗ e+ [e, A] ∗ [e, A] = [e, A2] ∗ e+ [e, A]2.

Combining these results, we find

(Ax(e))2 = A2 + [e, A2] + (A2)e = (A2)x(e).

By Lemma 3.1–4, (59) reduces to (60) when restricted to W.

For the final statement it is sufficient to prove that ax(ke)x(k′e) = ax((k+k′)e)

for all a ∈W. By (60) we have

(ax(ke))x(k′e) = (a+ k[e, a] + k2(e · a)e)x(k′e)

= a+ k[e, a] + k2(e · a)e+ k′[e, a] + k′2(e · a)e

= a+ (k + k′)[e, a] + (k + k′)2(e · a)e.

Note that x(e)2 = 1 implies that x(e) is nonsingular.
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The group generated by all x(e) with e an isotropic element of W shall de
denoted by F̂4(K) and is called a Chevalley group of type F4. Note that this is a
subgroup of the general linear group of F.

Proposition 4.4. Let E be a totally isotropic element of F. Define the linear map

x(E) : F→ F : A 7→ Ax(E) def
= A+ [E,A] + 〈A,E〉E. (61)

Then x(E) is an automorphism of F. Its restriction to W satisfies

ax(E) = a+ [a,E], for all a ∈W. (62)

For k, k′ ∈ K we have x(kE)x(k′E) = x((k + k′)E) and in particular x(E)2 = 1.

Proof. We first verify (56).

(Ax(E))2

= (A+ [E,A] + 〈A,E〉E)2

= A2 + [E,A]2 + 〈A,E〉2E2 + [A, [E,A]] + 〈A,E〉[A,E] + 〈A,E〉[[A,E], E]

= A2 + [E,A]2 + [E,A2] + 〈A,E〉[A,E]

= A2 + [E,A2] + 〈A2, E〉E,

by Lemma 3.3. And this is the same as (Ax(E))2. By (50) , (61) reduces to (62)
when restricted to W.

For the final statement it is sufficient to prove that ax(kE)x(k′E) = ax((k+k′)E)

for all a ∈W. By (60) we have

(ax(kE))x(k′E) = (a+ k[E, a])x(k′E)

= a+ k[E, a] + k′[E, a] + kk′[E, [E, a]] = a+ (k + k′)[E, a].

Note that x(E)2 = 1 implies that x(E) is nonsingular.

In the special case of elements ker with k ∈ K, r ∈ ΦS or r ∈ ΦL, we use the
notation xr(k)

def
= x(ker). The following identities can easily be verified

e
xr(k)
−r = e−r + khr + k2er,

e
xr(k)
s = es, when 〈r, s〉 ≥ 0,

e
xr(k)
s = es + ker+s, when 〈r, s〉 = −1,

e
xr(k)
s = es + ker+s + k2e2r+s, when 〈r, s〉 = −2, s 6= −r,
h
xr(k)
s = hs + 〈s, r〉ker

(63)

It can be proved that the set of all elements xr(k) with k ∈ K, r ∈ Φ generate
the group F̂4(K). This is often taken as the definition of F̂4(K) (cf. [2]).

When g, h are group elements, we shall write gh def
= h−1gh. We have
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Lemma 4.5. Let e be an isotropic element of W, E a totally isotropic element of
F and g an automorphism of F. Then

x(e)g = x(eg), x(E)g = x(Eg). (64)

Proof. Let A ∈ F. We have

(Ax(e))g = (A+ [e, A] + [e, A] ∗ e)g = Ag + [eg, Ag ] + [eg, Ag ] ∗ eg = (Ag)x(eg),

hence x(e)g = gx(eg). The second equation is proved in a similar way.

Proposition 4.6. Let e, f be isotropic elements of W such that e · f = 0. Let E,F
be totally isotropic elements of F such that 〈E,F 〉 = 0. Then

x(e)x(f) = x(f)x(e)x([e, f ]),

x(e)x(E) = x(E)x(e)x([e, E])x(e ∗ [e, E]),

x(E)x(F ) = x(F )x(E)x([E,F ]).

(65)

If moreover [e, f ] = 0 then

x(e ∗ f) = x(e)x(f)x(e + f). (66)

Proof. First consider the case [e, f ] = 0. Note that in that case fx(e) = f+[e, f ]+

(e · f)e = f . For a ∈W we find

ax(f)x(e) = (a+ [f, a] + (a · f)f)x(e)

= ax(e) + [fx(e), ax(e)] + (a · f)fx(e)

= a+ [e, a] + (a · e)e+ [f, a] + [f, [e, a]] + (a · e)[e, f ] + (a · f)f

= a+ [e, a] + [f, a] + [[a, e], f ] + (a · e)e+ (a · f)f,

and then
ax(f)x(e)x(e∗f) = ax(f)x(e) + [ax(f)x(e), e ∗ f ].

Using Lemma 2.7 to discard most of the resulting terms, we find

[ax(f)x(e), e ∗ f ] = [a, e ∗ f ]

and we finally obtain

ax(f)x(e)x(e∗f) = a+ [e, a] + [f, a] + (a · e)f + (a · f)e+ (a · e)e+ (a · f)f

= a+ [e+ f, a] + (e+ f, a) · (e+ f) = ax(e+f).

Rearranging terms yields (66).
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Now, by Lemma 4.5, we have

x(f)x(e)x(f) = x(ex(f)) = x(e+ [e, f ] + (e · f)f) = x(e+ [e, f ]).

As e · [e, f ] = 0 and [e, [e, f ]] = 0, we may apply (66) to see that x(e + [e, f ]) =

x(e)x([e, f ])x(e ∗ [e, f ]) = x(e)x([e, f ]), the first equation of (65).

Similarly,

x(E)x(e)x(E) = x(e+ [e, E]) = x(e)x([e, E])x(e ∗ [e, E]),

because e · [e, E] = 0 and [e, [e, E]] = 0. This yields the second identity of (65).

Finally, for a ∈W we find

ax(F )x(E) = (a+ [a, F ])x(E) = a+ [a, F ] + [a,E] + [[a, F ], E]

and then

ax(F )x(E)x(F )

= a+ [a, F ] + [a,E] + [[a, F ], E] + [a, F ] + [a,E], F ] + [[[a, F ], E], F ]

= a+ [a,E] + [a, [E,F ]],

for [[[a, F ], E], F ] = 〈E,F 〉[a, F ] = 0, by Lemma 3.3–2. Similarly

ax(E)x([E,F ]) = (a+ [a,E])x([E,F ]) = a+ [a,E] + [a, [E,F ]] + [[a,E], [E,F ]].

And again [[a,E], [E,F ]] = 〈E,F 〉[a,E] = 0, by Lemma 3.3–2.

This proposition does not apply when e · f 6= 0 or 〈E,F 〉 6= 0. In the special
case e · f = 1 and 〈E,F 〉 = 1 we may consider the elements

n(e, f)
def
= x(e)x(f)x(e) = x(e+ f + [e, f ]),

n(E,F )
def
= x(E)x(F )x(E) = x(E + F + [E,F ])

(67)

We leave it to the reader to verify that these elements have the following inter-
esting property :

en(e,f) = f, fn(e,f) = e, En(E,F ) = F, Fn(E,F ) = E. (68)

In the special case of elements ker with k ∈ K,k 6= 0, r ∈ Φ, we write nr(k)
def
=

n(ker, k
−1e−r). Also of interest are the elements hr(k)

def
= nr(k)nr(1).

The following identities can easily be verified

e
nr(1)
s = ewr(s),

h
nr(1)
s = hwr(s), for all s ∈ Φ.

(69)
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and
e
hr(k)
s = k〈r,s〉es,

h
hr(k)
s = hs, for all s ∈ Φ.

(70)

Note that the group generated by all nr(1), r ∈ Φ acts on the root spaces Kes in
the same way as the Weyl group W acts on the roots s ∈ Φ. If w ∈ W we shall
denote the corresponding element of F̂4(K) by n(w). We have

e
n(w)
s = ew(s),

h
n(w)
s = hw(s), for all s ∈ Φ.

(71)

The elements n(e, f) and n(E,F ) prove useful in the following

Theorem 4.7. The group F̂4(K) acts transitively on the isotropic elements of W−
{0} and on the totally isotropic elements of F− {0}.

Proof. 1. Because the Weyl group acts transitively on the short roots, we may
use elements nr(1) to map er onto es whenever r, s ∈ ΦS . If an isotropic
element f has a coordinate f [r] 6= 0, then we may use n(f, e−r/f [r]) to
map f onto f [r]er and then we may use hs(f [r]) with 〈s, r〉 = −1 to map
this further onto er. Hence, it is sufficient to prove that f 6= 0 always has
at least one coordinate f [r] different from 0.

If this were not the case, then f ∈ I and hence f = f [3]hr3 +f [4]hr4 . Then
f2 = f [3]2hr3 + f [4]2hr4 , and this must be 0 because f is isotropic. Hence
f [3] = f [4] = 0 and therefore f = 0.

2. We can use the same argument on totally isotropic elements F in F−{0}.
It remains to be proved that we can always find r ∈ ΦL such that F [r] 6= 0.

Assume the contrary : let F ∈ W + H. Setting F 2 = 0 and computing
coordinates, we easily prove that F [1] = F [2] = 0. Hence F must be an
element of W and hence F = 0 by Lemma 3.5.

It is also possible to determine all orbits of F̂4(K) on pairs of isotropic or
totally isotropic elements, but as was already mentioned in the introduction,
this would lead us too far. In fact, the algebraic framework which we have
established so far can serve as a valuable tool in the construction of the meta-
symplectic space associated with W, F and F̂4(K). This is done using essentially
the same techniques as we will use in Sections 8–10 of this text to construct the
Ree-Tits octagon.

Lemma 4.8. Let E ∈ F−{0} be totally isotropic. Then [W, E] is a totally isotropic
subspace of W with the following properties :
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1. dim[W, E] = 6.

2. If v, w ∈ [W, E], then v ∗ w ∈ KE and the bilinear form v ∗ w/E makes
[W, E] into a symplectic space.

3. Every element e of [W, E] can be written as e = [w,E] such that w is an
isotropic element of W.

4. Let e 6= 0. Then e belongs to [W, E] if and only if E has a defining pair
containing e.

5. An element e ∈W belongs to [W, E] if and only if [[e,W], E] = 0.

Proof. By Theorem 4.7 we only need to prove this for a single non-zero isotropic
element of W, say E = e

11̄00
.

1. It is easily verified that in this case [W, E] is generated by the following
six elements :

e
1000

, e
01̄00

, e
+-++

, e
+---

, e
+-+-

, e
+--+

. (72)

2. It can be inferred from the inner products of the corresponding roots that
e ∗ f = 0 is zero for any pair of elements of (72) except for the following

e
1000

∗ e
01̄00

= e
+-++

∗ e
+---

= e
+-+-

∗ e
+--+

= e
11̄00

= E. (73)

The value of u∗v/E is then equal to u1v2+u2v1+u3v4+u4v3+u5v6+u6v5,
when uj , vj are the coordinates of u, v with respect to the basis listed in
(72).

3. The element u with coordinates u1, . . . , u6 can be written as [w,E] with

w = u1e0100
+ u2e1̄000

+ u3e-+++
+ u4e-+--

+ u5e-++-
+ u6e-+-+

.

Note that w belongs to [W, e
1̄100

] and therefore is isotropic.

4. If e has a non-zero coordinate with respect to the base above, say e1 6= 0,
then {e, e

01̄00
/e1} is a defining pair for E, by (73).

Conversely, applying Lemma 3.3–1 we find e = [w,E] with w = [e, e
1̄100

].

5. Clearly, if e = [w,E] then [[e,W], E] = [[[w,E],W], E] = 0, by Lemma
3.3–2 and (50).
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Conversely, [[e,W], E] = 0 if and only if [[[e,W], E] ·W = 0 and this is
equivalent to [W, E] · [e,W] = e · [[W, E],W] = 0. The space [[W, E],W]

is the sum of the spaces [er,W] where er is one of the six base vectors
from (72), and from this we may compute that [E,W] is generated by I

together with all vectors es where s ∈ ΦS except when s is in the following
list :

1̄000, 0100, -+--, -+++, -+-+, -++-. (74)

Note that for each root s in this list e−s is one of the six base vectors of
[W, E]. Hence e · [[W, E],W] = 0 if and only if e ∈ [W, E].

5 The quotient algebra Q

Just like W is a subalgebra of F related to the short roots, there is another well-
known subalgebra of F related to the long roots. This is the Chevalley algebra
of type D4 which we denote by D :

D
def
= H⊕

⊕

r∈ΦL

Ker.

This algebra has dimension 28. The defining relations for D can be derived from
(8) for the special case that both r, s ∈ ΦL :

[hr, hs] = 0,

[hr, es] = 〈r, s〉es,
[er, e−r] = hr,

[er, es] = 0, when r + s 6= 0, r + s /∈ ΦL,

[er, es] = er+s, when r + s ∈ ΦL.

(75)

Note that also D2 ≤ D.

The similarity between (17) and (75) suggests that by somehow mapping
short roots to long roots in a way that preserves their properties we could es-
tablish an isomorphism between W and D. Because dim W 6= dim D this is
not immediately possible. However, D contains I as an ideal, and the quotient
Q

def
= D/I ' F/W is another Lie algebra of dimension 26.

Consider the following linear transformation γ on the 4-dimensional real vec-
tor space generated by Φ :

γ : r1 7→ r∗4 = 2r4, r2 7→ r∗3 = 2r3, r3 7→ r∗2 = r2, r4 7→ r∗1 = r1

This map satisfies γ(r) · γ(s) = 2r · s and has the property that it maps the root
system Φ onto its dual Φ∗.



98 Coolsaet

We use γ to define a map · on Φ that interchanges short and long roots :

r
def
= γ(r)∗ =

{
γ(r), when r ∈ ΦS ,
1
2γ(r), when r ∈ ΦL.

It can easily be proved that 〈r, s〉 = 〈s, r〉.
Lemma 5.1. Let w be an element of the Weyl group W . Define w : Φ → Φ : x 7→
w(x)

def
= w(x). Then

wr = wr, for all r ∈ Φ, (76)

and hence W = W .

Proof. Consider x ∈ Φ, r ∈ Φ. We have wr(x) = wr(x). Note that W preserves
the length of a root, and that · interchanges short and long roots. It follows
that wr(x) = 1

2γ(wr(γ(x)). Hence

wr(x) =
1

2
γ(wr(γ(x))) =

1

2
γ(γ(x)− 〈r, γ(x)〉r)

=
1

2
γ(γ(x))− 1

2
〈r, γ(x)〉γ(r)

= x− r · γ(x)

r · r γ(r)

= x− γ(r) · γ(γ(x))

γ(r) · γ(r)
γ(r)

= x− 1

2
〈γ(r), 2x〉γ(r)

= x− 〈γ(r), x〉γ(r) = wγ(r)(x),

(77)

and because the reflection operator wγ(r)(x) does not change when we multiply
γ(r) by a scalar, this is equal to wr(x).

We may use the map · to construct an isomorphism between W and Q '
F/W. Define a linear transformation µ : W→ Q as follows :

µ(er)
def
= e r + W, µ(hr)

def
= h r + W, for every r ∈ ΦS .

That µ is an isomorphism of Lie algebras is an immediate consequence of (17),
(75) and the properties of γ. We only need to prove that it is well-defined, for it
potentially may occur that hr = hs although r 6= s. However, it is easily verified
that in that case also h r = h s mod W.

Many of the operations on F are also well-defined on Q. For A,B ∈ F we
easily prove

[A+ W, B + W] = [A,B] + W

(A+ W)2 = A2 + W

〈A+ W, B + W〉 = 〈A,B〉
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For a, b ∈W, we find
[µ(a), µ(b)] = µ([a, b]),

µ(a)2 = µ(a2),

〈µ(a), µ(b)〉 = a · b.
(78)

(The last identity is obtained by comparing (18) and (50)).

6 The operator Q(·)
It turns out that µ is not the best candidate for a duality operator which would
enable us to ‘twist’ F̂4(K) and obtain a meaningful definition of the Ree-Tits
octagon. Such an operator should map isotropic elements onto totally isotropic
elements (points onto symplecta) in such a way that (symmetric) incidence is
preserved. (Ke and KE are ‘incident’ if and only if e ∈ [W, E].) Unfortunately
Q does not (yet) have a notion of total isotropicity, and moreover, there is no
obvious way to associate µ([W, E]) with µ−1(E), or for that matter, to give a
useful definition of [W, E] when E ∈ Q.

Instead, in this section we shall introduce a duality operatorQ(·) with images
in F (and not Q). This operator is quadratic (and not linear like µ) and is
defined only on isotropic elements. (There seems to be no elegant way to extend
it to all of W.)

Let e be an isotropic element of W, let w ∈ W and A,B ∈ F. Then [e, w] ·
[e, A] = w · [e, [e, A]] = 0 by (21). Hence the value of [e, A+ W] · [e,B + W] is
well-defined.

Proposition 6.1. Let e be an isotropic element of W. Then there is a unique
element Q(e) of F satisfying

[a,Q(e)] · b = [e, µ(a)] · [e, µ(b)], for all a, b ∈W. (79)

We have
µ([a,Q(e)]) = [e, µ(a)] ∗ e mod W, for all a ∈W. (80)

Proof. Consider the unique linear map τe ∈ Hom(W,W) that satisfies τe(a) ·b =

[e, µ(a)] · [e, µ(b)], for all a, b ∈ W. It is sufficient to prove that τe satisfies the
conditions of proposition 2.4. Indeed, let A = µ(a), B = µ(b), then several
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applications of (21) and (22) yield

τe(a) · [a, b] = [e, µ(a)] · [e, µ([a, b])]

= [e, A] · [e, [A,B]]

= [e, A] · [[e, A], B] + [e, A] · [[e,B], A]

= [e, A] · [[e,B], A]

= [[[e,B], A], A] · e = [[e,B], A2] · e = [e, A2] · [e,B]

and this is equal to τe(a2) · b.
Finally, applying (78), we find

〈µ([a,Q(e)], µ(b)〉 = [a,Q(e)] · b = [e · µ(a)] · [e, µ(b)] = 〈[e, µ(a)] ∗ e, µ(b)〉,

and as any element of Q can be written as µ(b) for some b ∈ W, we obtain
(80).

Proposition 6.2. Let e, f ∈W such that e2 = f2 = 0. Then

1. Q(e) is totally isotropic (or zero).

2. If e · f = 0, then Q([e, f ]) = [Q(e), Q(f ].

3. If [e, f ] = 0 then Q(e+ f) = Q(e) +Q(f) + µ−1(e ∗ f).

4. If A ∈ F is totally isotropic and a = µ−1(A), then Q([e, A]) = a ∗ [Q(e), a].

Proof. Let a, b, c, d ∈W. For ease of notation we introduce the following abbre-
viations :

E
def
= Q(e), F

def
= Q(f), x

def
= [a,Q(e)], y

def
= [b,Q(E)].

We choose A,B,C,D,X, Y ∈ F be such that

A = µ(a), B = µ(b), C = µ(c), D = µ(d) mod W,

and
X = µ(x) = [e, A] ∗ e, Y = µ(y) = [e,B] ∗ e mod W.

We shall also abbreviate [u,E] ·v to Euv for general u, v ∈W. Note that [e,X ] =

[e, Y ] = 0 and

[e, [C,X ]] = [[e, C], X ] + [[e,X ], C] = [[e, C], e ∗ [e, A]] = ([e, C] · [e, A])e,

and hence

[e, [C,X ]] = Eace, [e, [D,X ]] = Eade, [e, [C, Y ]] = Ebce, [e, [D,Y ]] = Ebde.

Also [[e, A], Y ] = [[e,B], X ] = Eabe.
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1. We compute

[[c, [a,Q(e)]], [b,Q(e)]] · d
= [[c, x], y] · d = [c, x] · [d, y] = x · [c, [d, y]]

= [e, A] · [e, µ([c, [d, y]])]

= [e, A] · [e, [C, [D,Y ]]]

= [e, A] · [C, [e, [D,Y ]]] + [e, A] · [[e, C], [D,Y ]]

= [e, A] · [C, [e, [D,Y ]]] + [e, A] · [[[e, C], Y ], D] + [e, A] · [[[e, C], D], Y ].

Now,

[e, A] · [C, [e, [D,Y ]]] = [e, A] · [C,Ebde] = EacEbd

[e, A] · [[[e, C], Y ], D] = [e, A] · [Ebce,D] = EbcEad

[e, A] · [[[e, C], D], Y ] = [[e, A], Y ] · [[e, C], D] = Eabe · [[e, C], D] = EabEcd.

This proves

[[c, x], y] · d = EacEbd +EbcEad +EabEcd. (81)

Adding to this expression the expression obtained by interchanging the
roles of a and b (and hence those of x and y) yields [c, [x, y]] · d = 0, for all
c, d ∈W. Hence [x, y] = 0.

Setting a = b in (81) we get [c, x2] · d = 0, for all c, d ∈ W. Therefore
x2 = 0 and by symmetry y2 = 0.

Also

x · y = [a,Q(e)] · y = [e, A] · [e, Y ] = e · [[e, A], Y ] = Eabe · e = 0.

This proves that x ∗ y is well-defined. We find

[c, x ∗ y] · d = [[c, x], y] · d+ (c · y)(x · d) + (c · x)(y · d)

= [[c, x], y] · d+EbcEad +EacEbd,

and by (81) we find that this is equal to EabEcd = Eab[c,Q(e)] · d, for all
c, d ∈ W. Hence x ∗ y = ([a,Q(e)] · b)Q(e). If Q(e) 6= 0 we may always
find a, b such that [a,Q(e)] · b = 1, and then Q(e) = x ∗ y. This proves that
Q(e) is totally isotropic with defining pair {x, y}.

2. Let e · f = 0. By Lemma 3.1–2 we have [e, f ]2 = 0 and therefore [e, f ] is
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isotropic and Q([e, f ]) is well-defined. We compute

[[a,E], F ] · b = [x,Q(f)] · b = [f,X ] · [f,B]

= [f, e ∗ [e, A]] · [f,B]

= [[e, f ], [e, A]] · [f,B] + ([e, A] · f)(e · [f,B])

= [[f,B], [e, A]] · [e, f ] + ([e, A] · f)(e · [f,B])

= [[[f,B], e], A] · [e, f ] + [[[f,B], A], e] · [e, f ] + ([e, A] · f)(e · [f,B])

= [[[f,B], e], A] · [e, f ] + [[f,B], A] · [[e, f ], e] + ([e, A] · f)(e · [f,B])

= [[[f,B], e], A] · [e, f ] + ([e, A] · f)(e · [f,B])

and hence, adding the same formula with the roles of e and f inter-
changed,

[a, [E,F ]] = [[[f,B], e], A] · [e, f ] + [[[e,B], f ], A] · [e, f ]

= [[[e, f ], A], B] · [e, f ]

= [[e, f ], A] · [[e, f ], B] = [a,Q([e, f ]] · b.

This is true for all a, b ∈W, hence [Q(e), Q(f)] = Q([e, f ]).

3. Note that e+f is isotropic and henceQ(e+f) is well-defined. Let a, b ∈W.
Applying the definition of Q(·), we find

[a,Q(e+ f)] · b− [a,Q(e)] · b− [a,Q(f)] · b
= [e+ f,A] · [e+ f,B]− [e, A] · [e,B]− [f,A] · [f,B]

= [e, A] · [f,B] + [e,B] · [f,A]

= [[f,B], A] · e+ e · [[B, [f,A]]

= e · [f, [A,B]] = 〈e ∗ f, [A,B]〉
= µ−1(e ∗ f) · [a, b] = [a, µ−1(e ∗ f)] · b.

This is true for all a, b ∈W, hence Q(e+ f)−Q(e)−Q(f) = µ−1(e ∗ f).

4. Let c, d ∈W. Then

[c,Q([e, A])] · d = [[e, A], C] · [[e, A], D] (82)

Also

[c, a ∗ [a,Q(e)]] · d = [c, a ∗ x] · d
= [c, a] · [x, d] + (c · x)(a · d) + (c · a)(x · d)

= [[a, c], d] · x+Eaca · d+Eada · c
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Now

[[a, c], d] · x = [e, [[A,C], D]] · [e, A]

= e · [[e, A], [D, [A,C]]]

= e · [[[e, A], D], [A,C]] + e · [[[e, A], [A,C]], D]

(83)

Because A is totally isotropic, we may apply Lemma 3.3–2 to reduce the
second term of this result to

e · [[[e, A], [A,C]], D] = e · 〈A,C〉[[e, A], D]

= (a · c)[e,D] · [e, A] = Eada · c.
(84)

The first term in the result of (83) can be simplified as follows :

e · [[[e, A], D], [A,C]] = [e, [A,C]] · [[e, A], D]

= [[e, C], A] · [[e, A], D] + [[e, A], C] · [[e, A], D]

= [e, C] · [[[e, A], D], A] + [[e, A], C] · [[e, A], D]

= Eaca · d+ [[e, A], C] · [[e, A], D]

Adding (84) yields the same result as (82).

Lemma 6.3. Let e be an isotropic element of W. Then the coordinates ofQ = Q(e)

are given by

Q[t] = e[t]2, when t ∈ ΦL , Q[t] =
∑

{u,v}⊂ΦS

u+v=t

e[u]e[v], when t ∈ ΦS ,

Q[1] = e[4]2, Q[3] =
∑

u∈ΦS
〈r1,u〉=−1

e[u]e[−u],

Q[2] = e[3]2, Q[4] =
∑

u∈ΦS
〈r2,u〉=−1

e[u]e[−u].

(85)

Proof. Let r, s ∈ ΦS . We have

[e, er] =
∑

u∈ΦS
〈r,u〉=−1

e[u]er+u, [e, es] =
∑

v∈ΦS
〈s,v〉=−1

e[v]es+v,

and hence, by (79),

[er, Q(e)] · es = [e, er] · [e, es] =
∑

u,v

′
e[u]e[v],
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where the sum ranges over all pairs u, v ∈ ΦS such that 〈r, u〉 = 〈s, v〉 = −1

and u + v + r + s = 0. We consider different cases, according to the value of
〈r, s〉 = 〈r, s〉.

1. 〈r, s〉 = 〈r, s〉 = 0 and then t = −r − s ∈ ΦL. Without loss of general-
ity (because of the transitivity properties of the Weyl group W ) we may
choose r = 1100, s = 0011. The following table lists the corresponding
values of u, v ∈ ΦS for which 〈r, u〉 = 〈s, v〉 = −1.

u 1̄000 01̄00 ---- ---+ --+- --++

v 001̄0 0001̄ ---- +--- -+-- ++--

Of these, the only pair satisfying u + v + r + s = 0 is u = v = ----, i.e.,
u = v = − 1

2 (r + s).

This is equivalent to the condition u = v = t. Applying (20) then yields
the left hand formula for Q[t].

2. 〈r, s〉 = 〈r, s〉 = −1 and then t = −r− s ∈ ΦS . Choose r = 1100, s = 1̄010

(and hence t = −r − s = 01̄1̄0), yielding the following table of values for
u, v :

u 1̄000 01̄00 ---- ---+ --+- --++

v 1000 001̄0 +--- ++-- +--+ ++-+

Of these, there are three pairs (u, v) satisfying u+ v + r + s = 0 :

(----, +--+), (---+, +---), (01̄00, 001̄0),

and taken together with the corresponding pairs (v, u) we find exactly the
six pairs of short roots that add up to the long root t. This yields the right
hand formula for Q[t].

3. When s = −r the conditions are satisfied whenever u = −v and 〈r, u〉 =

−1. We find
[er, Q(e)] · e−r =

∑

u∈ΦS
〈r,u〉=−1

e[u]e[−u].

We shall abbreviate this expression to Q(r). By (20) Q(r) is also equal to∑
i〈ri, r〉Q[i].

Because 〈r3, rj〉 = 0, except when j = 4 (and then it equals 1), we find
Q(r3) = Q[4], and likewise Q[3] = Q(r4), giving the values listed in (85).

Finally, take r, s such that r+s = t ∈ ΦL. ThenQ(r)+Q(s) =
∑

i〈ri, t〉Q[i].
By choosing t = r1 and r2 we may use this equality to obtain values for
Q[2] and Q[1].
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By the above, we have

Q(r) +Q(s) =
∑

u

′
e[u]e[−u],

where the sum ranges over all {u,−u} such that either 〈r,±u〉 = ±1 or
〈s,±u〉 = ±1, but not both. Note that r + s = 2t, and hence 2〈t, u〉 =

2〈u, t〉 = 〈u, r〉+ 〈u, s〉, and therefore 〈t, u〉 = 〈r, u〉+ 〈s, u〉. It follows that
the sum ranges exactly over all {u,−u} for which 〈t,±u〉 = ±1. Hence

Q(r) +Q(s) =
∑

u∈ΦS

〈u,t〉=−1

e[u]e[−u] =
∑

{u,−u}⊂ΦS

〈u, t〉e[u]e[−u]. (86)

Now, e2 = 0 and in particular e2[3] = e2[4] = 0. Using (14) this translates
to

0 = e[3]2 +
∑

{u,−u}⊂ΦS

〈u, r4〉e[u]e[−u],

and similarly for e[4]2.

Comparing this result with (86) applied to t = r1 and t = r2, we obtain
the formulae for Q[1] and Q[2].

Let r, s ∈ Φs. We may use (85) to compute the following example values of
Q(e) :

Q(er) = e r,

Q(er + es) = e r + e s, when 〈r, s〉 = 1,

Q(er + es) = e r + e s + e r+s, when 〈r, s〉 = 0,

Q(er + e−r + hr) = e r + e−r + h r,

(87)

We extend the Frobenius morphism k 7→ kfrob def
= k2 over K to F by applying

it to the coordinates with respect to the Chevalley basis. When K is a perfect
field this map is nonsingular and then ·frob is a field automorphism of F.

The three left hand equations of (85) imply

Q(e) = µ(efrob) mod W, for isotropic e ∈W. (88)

Proposition 6.4. Let e, f ∈W be such that e2 = f2 = 0. Then

1. 〈Q(e), Q(f)〉 = (e · f)2.

2. Q([e,Q(f)]) = f frob ∗ [Q(e), f frob] .
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3. [e,Q(f)] = 0 if and only if [f frob, Q(e)] = 0.

4. e ∈ [W, Q(f)] if and only if f frob ∈ [W, Q(e)] .

Proof. 1. Using (78) and (88) we obtain

〈Q(e), Q(f)〉 = 〈µ(efrob), µ(f frob)〉 = efrob · f frob = (e · f)frob = (e · f)2.

2. Apply Proposition 6.2–4 to A = Q(f) and then a = f frob, by (88).

3. By the above, [Q(e), f frob] = 0 clearly implies Q([e,Q(f)]) = 0 and hence
[e,Q(f)] = 0. Substituting f frob for e and e for f in this result, we obtain
that [Q(f), e]frob = 0 implies [f frob, Q(e)] = 0.

4. Let a ∈ W be such that e = [w,Q(f)]. By Lemma 4.8 we can always
choose w to be isotropic. Then by the above {f frob, [f frob, Q(w)]} is a
defining pair for Q(e), and then by the same lemma f frob ∈ [W, e]. The
converse can be obtained by substituting f frob for e and e for f in this
result.

Proposition 6.5. Let g be an automorphism of W (and F). Define g def
= µgµ−1.

Then g is an automorphism of W (and F).

When e is an isotropic element of W, we have

x(e) = x(Q(e)), x(Q(e)) = x(efrob). (89)

Proof. We check the definition of automorphism. Let a ∈W and choose A ∈ F

such that A = µ(a) mod W. Then g maps a2 onto

µ−1((A2)g) = µ−1((Ag)2) = (µ−1(Ag))2,

and hence (a2)g = (ag)2. Also note that g−1 = µg−1µ−1 is the inverse of g,
hence g is nonsingular.

Let e be as stated. Then x(e) maps a onto µ−1(A + e ∗ [A, e]). (Note that
[A, e] = 0 mod W.) And this is equal to a+ [a,Q(e)], by (80). Similarly x(Q(e))

maps a to µ−1(A+ [A,Q(e)]) = a+ [a, efrob], by (88).

As a particular case of (89) we find

xr(k) =

{
xr(k

2), when r ∈ ΦS ,

xr(k), when r ∈ ΦL.
(90)

Note that by definition gh = g h for any two automorphisms g and h of W.
Also (89) implies

g = gfrob, for g ∈ F̂4(K), (91)
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and hence F̂4(K) = F̂4(K) when K is a perfect field. In that case the map g 7→ g

is an automorphism of the group F̂4(K) (called a graph automorphism).

Let e, f be isotropic elements of W. From Proposition 6.4 it follows that
e · f = 1 if and only if 〈Q(e), Q(f)〉 = 1. Hence n(Q(e), Q(f)) is well-defined
whenever n(e, f) is. Proposition 6.5 then implies

n(e, f) = n(Q(e), Q(f)), N(Q(e), Q(f)) = n(e, f)frob.

In particular

nr(k) =

{
nr(k

2), when r ∈ ΦS ,

nr(k), when r ∈ ΦL,
(92)

and then

hr(k) =

{
hr(k

2), when r ∈ ΦS ,

hr(k), when r ∈ ΦL.
(93)

Using Lemma 5.1 the case k = 1 of (92) can easily be generalized to

n(w) = n(w), for all w ∈ W . (94)

Proposition 6.6. Let e be an isotropic element of W. Let g be an automorphism
of W (and F). Then

Q(eg) = Q(e)g . (95)

Proof. Let a, b ∈W, g ∈ F̂4(K). We have

[ag , Q(e)g] · bg = [a,Q(e)] · b
= [e, µ(a)] · [e, µ(b)]

= [eg , µ(a)g ] · [eg, µ(b)g ]

= [eg , µ(ag)] · [eg, µ(bg)] = [ag, Q(eg)] · bg

7 Octagonality

From now on we shall require that K has a Tits automorphism, i.e., a field
automorphism σ with the property

(kσ)σ = k2, for every k ∈ K. (96)

Note that we require σ to have an inverse σ−1, and consequently, that K is a
perfect field.
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For finite fields a Tits automorphism exists if and only if the order of the field
is an odd power 22m+1 of 2, and then kσ def

= k2m+1

.

As with the Frobenius automorphism, we shall extend σ to F by setting eσr
def
=

er, hσr
def
= hr, for r ∈ Φ. We have Afrob = (Aσ)σ for every A ∈ F. As before,

when g is an automorphism of W, we shall write gσ = σ−1gσ. Note that σ = σ

and hence gσ = gσ. By Lemma 4.5 we have x(e)σ = x(eσ) and x(E)σ = x(Eσ),
when e (resp. E) is isotropic (resp. totally isotropic).

For a, e ∈W such that e is isotropic we define the operator q(·, ·) as follows :

q(a, e)
def
= [a,Q(eσ

−1

)]. (97)

We write q(W, e) for the set of elements q(a, e) with a ∈ W, i.e., q(W, e) =

[W, Q(eσ
−1

)].

(This is the last operator which we shall need to introduce in this text. It
serves an important purpose in the definition of the Ree group and the Ree-
Tits octagon and, as shall be shown in Theorem 10.1, also has an interesting
geometric interpretation.)

An element e ∈W shall be called semi-octagonal if and only if it is isotropic
and q(e, e) = 0. An element e ∈ W shall be called octagonal if and only if
it is isotropic and e ∈ q(W, e), or equivalently (by Lemma 4.8) if and only if
q([e,W], e) = 0. All octagonal elements are semi-octagonal, but not conversely.

Proposition 7.1. Let e, f be isotropic elements of W. Then

1. Q(q(e, f)σ
−1

) = f ∗ q(f, e),

2. q(e, f) = 0 if and only if q(f, e) = 0,

3. e ∈ q(W, f) if and only if f ∈ q(W, e),

4. q(e, e) is octagonal and e ∈ q(W, q(e, e)).

Proof. Statements 1–3 are immediate consequences of Proposition 6.4 with fσ
−1

substituted for f . Setting f = e in the first statement of this proposition, we see
that {e, q(e, e)} is a defining pair for Q(q(e, e)σ

−1

). Hence both e and q(e, e)

belong to [W, Q(q(e, e)σ
−1

)] and therefore q(e, e) is octagonal.

To study the (semi-)octagonal elements of W, we first look at elements of the
form er with r ∈W. Table 1 lists the 24 short roots r ∈ ΦS , the corresponding
long roots r and the value of r + r when it belongs to ΦS .
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〈r, r〉 = 1

r r

0100 0110

01̄00 01̄1̄0

0001 1001

0001̄ 1̄001̄

++++ 0101

+--+ 01̄01

-++- 0101̄

---- 01̄01̄

〈r, r〉 = 0

r r

+++- 1̄100

++-+ 0011

+-++ 001̄1

+--- 1̄1̄00

-+++ 1100

-+-- 0011̄

--+- 001̄1̄

---+ 11̄00

〈r, r〉 = −1

r r r + r

1000 1̄001 0001

1̄000 1001̄ 0001̄

0010 011̄0 0100

001̄0 01̄10 01̄00

++-- 1̄010 -++-

+-+- 1̄01̄0 ----

-+-+ 1010 ++++

--++ 101̄0 +--+

Table 1: Short roots r ∈ ΦS and the corresponding long roots r.

The leftmost list corresponds to octagonal elements er, the middle list corre-
sponds to those er that are semi-octagonal but not octagonal and for the right-
most list elements are not even semi-octagonal. In the last case the third column
corresponds to the value of q(er, er).

Lemma 7.2. Consider Weyl group elements w,w′ of the form w = wrwr, where
r ∈ ΦS such that 〈r, r〉 = 0, and w′ = (wsws)

2 with s ∈ ΦS such that 〈s, s〉 = 1.

Then w = w and w′ = w′. The elements of this form generate a subgroup W ′ of
W which is isomorphic to the dihedral group of order 16. This group has 3 orbits
on ΦS which correspond to the three lists of 8 roots given in Table 1.

Proof. When 〈r, r〉 = 0 the Weyl group elements wr and wr commute. Then
w = wrwr = wr wr = wrwr = w.

When 〈s, s〉 = 1 we have w′ = (wsws)
2 = wwss ws = wws(s)ws = ws−sws. Also

s− s = s−2s, hence w′ = ws−2sws = wswsws−2sws = wsw
ws
s−2s = wsws−2s+s =

wsws−s. But also w′ = (wsws)
2 = wsw

ws
s = wsws−s.

For example, with s = 0100 we obtain w′ which maps roots (x, y, z, t) to
(x,−y,−z, t). With r = +++- we obtain w, which maps (x, y, z, t) to 1

2 (−x+ y−
z + t, x − y − z + t,−x− y + z + t, x + y + z + t). We leave it to the reader to
compute W ′ and prove that it has the stated properties.

8 The Ree group 2F̂4(K)

Proposition 8.1. Let g be an automorphism of W satisfying g = gσ , i.e.,

(ag)σ = (aσ)g , for all a ∈W. (98)
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Let e, f be isotropic elements of W. Then

1. q(eg , fg) = q(e, f)g .

2. e ∈ q(W, f) if and only if eg ∈ q(W, fg).

Therefore g maps octagonal elements of W onto octagonal elements of W and
semi-octagonal elements onto semi-octagonal elements.

Proof. We have q(eg , fg) = [eg, Q(fg)σ
−1

] = [eg, Q(f)gσ
−1

] = [eg, Q(f)σ
−1g ] =

q(e, f)g by (95), proving the first statement. Also, if e ∈ q(W, f), then eg ∈
q(W, f)g = q(W, fg), by the above.

A first example of an element g that satisfies (98) is given by nw where w is
a Weyl group element such that w = w. Examples of such w are provided by
Lemma 7.2.

Also, when h ∈ F̂4(K) is such that hσ and h commute, then g = hhσ−1

satisfies (98). Indeed

g = hhσ−1 = hhσ−1 = hhσ = hσh = (hhσ−1)σ = gσ

For example, consider h = hr(k) as in (70), with r ∈ ΦS . Then h = hr(k
2)

commutes with hσ, and therefore ir(k)
def
= hr(k)hr(k

σ) satisfies (98). We have

e
ir(k)
s = k〈r,s〉k〈r,s〉σes,

h
ir(k)
s = hs, for all s ∈ Φ.

(99)

If q(e, e) = 0 then x(eσ) and x(Q(e)) commute and y(e) = x(Q(eσ
−1

))x(e) =

x(e)x(Q(eσ
−1

)) satisfies (98). This is generalized in the following

Lemma 8.2. Let e be an isotropic element of W. Define

y(e)
def
= x(Q(eσ

−1

))x(e)x(q(e, e)). (100)

Then y(e) satisfies (98).

Proof. Write f = q(e, e). Note that Q(f) = eσ ∗ fσ by Proposition 7.1–1. Then

x(eσ)x(Q(e)) = x(Q(e))x(eσ)x([eσ , Q(e)])x(eσ ∗ [eσ , Q(e)])

= x(Q(e))x(eσ)x(fσ)x(Q(f)).
(101)
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We have

y(e) = x(Q(eσ−1)) x(e)x(f)

= x(eσ)x(Q(e))x(Q(f)), by (89)

= x(Q(e))x(eσ)x(fσ)x(Q(f))x(Q(f)), by (101)

= x(Q(e))x(eσ)x(fσ) = y(e)σ .

The group generated by all elements nw with w = w, all elements ir(k) and
all elements y(e) as defined in (100) shall be denoted by 2F̂4(K). This is a so-
called Ree group or twisted Chevalley group of type 2F4. For further details we
refer to [2].

For k ∈ K, r ∈ ΦS , we write

yr(k)
def
= y(ker) =

{
xr(k

σ)xr(k), when 〈r, r〉 6= −1,

xr(k
σ)xr(k)xr+r(k

1+σ), when 〈r, r〉 = −1.
(102)

It can be proved that the set of all elements yr(k) with k ∈ K, r ∈ ΦS generate
the group 2F̂4(K). This is often taken as the definition of 2F̂4(K) (cf. [2]).

Lemma 8.3. Let e be an isotropic element of W, let k1, k2 ∈ K. Then

y(k1e)y(k2e) = y(kσ1 k2 q(e, e))y((k1 + k2)e). (103)

In particular y(e)2 = 1 when e is semi-octagonal, and y(e)4 = 1 when it is not.

Proof. Write d = q(e, e), D = Q(dσ
−1

) and E = Q(eσ
−1

). Note that [d, e] =

[d,E] = 0 and [e, E] = d. By Proposition 7.1–1 d is octagonal, implying [d,D] =

0, and d ∗ e = D, implying [e,D] = 0. From (65) it then follows that x(d)

commutes with x(e), x(D) and x(E), while x(D) commutes with x(d) and x(e).
From this we obtain

y(k1e)y(k2e) = x(kσ1E)x(k1e)x(k1k
σ
1 d)x(kσ2E)x(k2e)x(k2k

σ
2 d)

= x(kσ1E)x(k1e)x(kσ2E)x(k2e)x(k1k
σ
1 d)x(k2k

σ
2 d).

Also by (65) we find x(e)x(E) = x(E)x(e)x([e, E])x(e ∗ [e, E]) which is equal to
x(E)x(e)x(d)x(D). Hence x(k1e)x(kσ2E) = x(kσ2E)x(k1e)x(k1k

σ
2 d)x(k2

1k
σ
2D).
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This yields

y(k1e)y(k2e)

= x(kσ1E)x(kσ2E)x(k1e)x(k1k
σ
2 d)x(k2

1k
σ
2D)x(k2e)x(k1k

σ
1 d)x(k2k

σ
2 d)

= x((k1 + k2)σE)x((k1 + k2)e)x(k1k
σ
2 + k1k

σ
1 d+ k2k

σ
2 d)x(k2

1k
σ
2D)

= y((k1 + k2)e)x((k1 + k2)1+σ + k1k
σ
2 + k1k

σ
1 d+ k2k

σ
2 d)x(k2

1k
σ
2D)

= y((k1 + k2)e)x(k2k
σ
1 d)x(k2

1k
σ
2D)

= y((k1 + k2)e)y(k2k
σ
1 d).

where we use Propositions 4.3 and 4.4 to simplify the products of the form
x(ke)x(k′e) and x(kE)x(k′E).

Lemma 8.4. Let e be an octagonal (isotropic) element of W. Let g ∈ 2F̂4(K).
Then

y(eg) = y(e)g. (104)

Proof. We have y(eg) = x(Q(eg)σ
−1

)x(eg). Using (98) we obtain Q(eg)σ
−1

=

Q(e)gσ
−1

= Q(e)σ
−1g and hence y(eg) = x(Q(eσ

−1

)g)x(eg), which by (64) is
equal to x(Q(eσ

−1

))gx(e)g = y(e)g.

The remainder of this section shall be devoted to show transitivity of 2F̂4(K)

on the set of octagonal elements of W. In order to do this we shall make use of a
‘reduction process’ which can be summarized as follows : we choose an element
of the form yt(k) to map a given a ∈ W onto a′ ∈ W with the property that
a′ has one more coordinate that is ‘known’ to be zero. Successive reductions
reduce the number of non-zero coordinates of a while staying in the same orbit
of F̂4(K), until the final image of a has a sufficiently simple structure.

In general, when it is known that a[r] 6= 0 for some r ∈ ΦS , we choose
s ∈ ΦS such that 〈r, s〉 = 1 and then apply an element of the form yt(k) with
t = s− r. From (63) and (102) it follows that the coordinate of the image a′ of
a at position s is now equal to a′[s] = a[s] + ka[r]. Hence, setting k = a[s]/a[r]

we obtain a′[s] = 0. When 〈r, s〉 = 0 we obtain a similar effect when we use t
such that t = s− r. Now a′[s] = a[s] + kσa[r] and we take k = (a[s]/a[r])σ

−1

.

This transformation does however also affect other coordinates a[s] of a, and
when performing successive reductions, we should make sure that earlier anni-
hilations are not ‘undone’ by later actions.

Consider how the action of xr(k) affects coordinates a[s] of a, with s ∈ ΦS .
(Coordinates a[3] and a[4] will turn out not to be important). It follows from
(63) that only those coordinates are affected that satisfy 〈r, s〉 > 0. As a conse-
quence, the action of yr(k) will only affect those coordinates for which 〈r, s〉 > 0
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or 〈r, s〉 > 0. (When 〈r, r〉 = −1, the extra condition 〈r + r, s〉 does not impose
an additional constraint.)

Let us now use these techniques to determine the various orbits of 2F̂4(K) on
the (non-zero) octagonal elements of W. Consider such an element a. Because
a is isotropic (and 6= 0) it cannot belong to I (cf. the proof of Theorem 4.7).
Hence a has at least one non-zero coordinate a[r] for r ∈ ΦS .

We shall first prove that we can choose r = 0100. Indeed, if a has coordinate
a[r] 6= 0 for some r such that 〈r, r〉 = 1, then by Lemma 7.2 there exists w ∈W

such that n(w) ∈ 2F̂4(K) and rw = 0100. In that case a′ = an(w) is in the
same orbit as a and a′[0100] 6= 0. We may therefore use a′ instead of a in the
subsequent argument.

If a[r] = 0 for all r satisfying 〈r, r〉 = 1 but a has a non-zero coordinate
for some r ∈ ΦS with 〈r, r〉 = 0, then we proceed as follows. Using the same
argument as above we may assume that r = -+--. We then apply y

++++
(1) to

create a non-zero coordinate at position 0100. A similar technique can be used
when 〈r, r〉 = −1, taking r = ++-- and applying y

-+++
(1).

Henceforth we may assume that a[r] = a[0100] 6= 0. We proceed in several
stages.

Stage 1. Apply the reductions yt(k) in the top part of Table 2 (and in the order
given) to annihilate subsequent coordinates a[s].

s t t t+ t

++++ 001̄1 +-++

-+++ 101̄0 --++ +--+

+++- 1̄01̄0 +-+- ----

-++- 001̄1̄ --+-

++-+ 01̄01 +--+

-+-+ 11̄00 ---+

++-- 1̄1̄00 +---

-+-- 01̄01̄ ----

0010 01̄10 001̄0 01̄00

001̄0 01̄1̄0 01̄00

Table 2: Reductions used in the proof of Theorem 8.5.

We have listed s, t, t and t + t (when it belongs to ΦS) for each step. The
table is ordered in such a way that each group element yt(k) does not affect
coordinates a[s] for each s from the previous rows. We leave it to the reader
to verify that indeed 〈s, t〉 ≤ 0 and 〈s, t〉 ≤ 0 in each of these cases. Note that
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〈r, s〉 = 1 and t = s − r for all entries (in the top part), hence 〈r, t〉 = −1 and
therefore yt(k) never ‘accidentally’ makes a[r] zero.

After applying the stated reductions, we end up with an image b of a for
which b[r] 6= 0 and b[s] = 0 whenever 〈r, s〉 = 1. Now, for such s we compute
b2[s] using (14). Note that u+ v = s implies 〈r, u〉+ 〈r, v〉 = 1 and hence either
u = r, v = r or 〈r, u〉 = 1 (and then b[u] = 0) or 〈r, v〉 = 1 (and b[v] = 0).
Hence b2[s] = b[r]b[s − r], and because b is isotropic and b[r] 6= 0, we find that
b[s− r] = 0. When s runs through all short roots that satisfy 〈r, s〉 = 1, v = s− r
runs through all short roots that satisfy 〈r, v〉 = −1.

In other words, the eight remaining roots s for which a coordinate is (possi-
bly) non-zero, are the 8 short roots s satisfying 〈r, s〉 = −2, 0 or 2, which for our
particular choice of r, correspond to the roots with integral coordinates, i.e., the
cyclic permutations of 1000 and 1̄000.

Note that roots s, s′ of this form satisfy 〈s, s′〉 = −2, 0 or 2 and that also
〈r3, s〉 = −2, 0 or 2 for each s. This implies b[4] = 0, whenever b2 = 0.

As a final step we may use the reductions in the bottom part of Table 2 to
annihilate two more coordinates. (Note that this time s = r + t).

Stage 2. Let e denote the image of a obtained at this point. We now have to
consider several cases.

1. Assume that e[0001] 6= 0. Then we use
the transformations on the right, this
time with r = 0001 and s = r + t, to
end up with a an element of the follow-
ing form :

s t t t+ t

1000 1001̄ 1̄000 0001̄

1̄000 1̄001̄ 0001̄

e = k1e0100
+ k2e01̄00

+ k3e0001
+ k4e0001̄

+ k5hr3 ,

with k1 6= 0 and k3 6= 0. We easily compute that e2 = 0 implies k2
5 =

k1k2 + k3k4.

We shall now express the fact that e is semi-octagonal in terms of k1, . . . , k5.
We use (85) to compute

Q(e) = k2
1e0110

+ k2
2e01̄1̄0

+ k2
3e1001

+ k2
4e1̄001̄

+ k1k3e++++
+ k1k4e-++-

+ k2k3e+--+
+ k2k4e----

+ k2
5hr2 + k1k2hr3 + k3k4hr4 .

When e is semi-octagonal, we have q(e, e) = 0 and hence

0 = q(e, e)σ · e
0010

= [eσ, Q(e)] · e
0010

,
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which by (20) is equal to

kσ1Q(e)[01̄1̄0] + kσ2Q(e)[011̄0] + kσ3Q(e)[001̄1̄] + kσ4Q(e)[001̄1] = kσ1 k
2
2 .

Because k1 6= 0, this implies k2 = 0.

Similarly, computing q(e, e)σ · e
1000

we find kσ3 k
2
4 = 0 and hence k4 = 0,

so e = k1e0100
+ k3e0001

.

Finally, because e is octagonal, we must have q([e, e
+---

], e) = 0. This

expression evaluates to k3k
σ
1 e++++

= 0, contradicting the assumptions

k1 = e[0100] 6= 0 and k3 = e[0001] 6= 0.

2. Assume e[0001̄] 6= 0. By Lemma 7.2 the group W ′ contains an element
w that interchanges 0001 and 0001̄ and leaves 0100 invariant. The corre-
sponding element n(w) ∈ 2F̂4(K) then reduces this to the previous case.

3. If e[0001] = e[0001̄] = 0 we have an element of the form

e = k1e0100
+ k2e01̄00

+ k3e1000
+ k4e1̄000

+ k5hr3 ,

with k1 6= 0. Again we easily compute that e2 = 0 implies k2
5 = k1k2+k3k4.

Now

Q(e) = k2
1e0110

+ k2
2e01̄1̄0

+ k2
3e1̄001

+ k2
4e1001̄

+ k1k3e-+++
+ k1k4e+++-

+ k2k3e---+
+ k2k4e+---

+ k2
5hr2 + k2

5hr3 + k3k4hr4

and

q(e, e)σ · e
0010

= kσ1 k
2
2 , q(e, e)σ · e

0001̄
= kσ3 k

2
3 ,

q(e, e)σ · e
0001

= kσ4 k
2
4 .

As e is semi-octagonal, this implies e = k1e0100
(and hence e is octago-

nal).

Stage 3. Finally we apply an element is(k) with the property 〈0100, s〉 = −1

and 〈0100, s〉 = 0. By (99) this element is mapped onto e
0100

. We may take

s = --+- (and s = 001̄1̄).

This proves that every non-zero octagonal element can be mapped onto the
same element by a suitable transformation of the group 2F̂4(K).This completes
the proof of
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Theorem 8.5. The group 2F̂4(K) acts transitively on the non-zero octagonal ele-
ments of W.

9 Pairs of octagonal elements

The proof technique of Theorem 8.5 can be extended to provide more informa-
tion on the orbit structure of 2F̂4(K) on pairs of (non-zero) octagonal elements.
The main result shall be stated in Theorem 9.5. The proof of that theorem is
subdivided into several lemmas.

Lemma 9.1. Let k ∈ K − {0}. Then 2F̂4(K) acts transitively on all ordered pairs
(e, f) of octagonal (isotropic) elements e, f ∈W such that e · f = k.

Proof. By Theorem 8.5 we may choose e = e
01̄00

without loss of generality.

From e · f 6= 0 it follows that the coordinate f [0100] is non-zero. We shall again
apply the reductions yt(k) of Table 2 to map f onto an element of the form
k1e0100

. This time however, we are only allowed to use group elements yt(k)

that leave e invariant.

From (102) it follows that yt(k) leaves er invariant (with r ∈ ΦS) whenever
〈r, t〉 ≥ 0 and 〈r, t〉 ≥ 0. It is now easily verified that all reductions yt(k) from
the table indeed satisfy 〈t, 01̄00〉 ≥ 0 and 〈t, 01̄00〉 ≥ 0. Note that the argument
of Stage 2 of Theorem 8.5 can again be applied to prove that the octagonality
of f implies that Stage 1 will result in an element of the form k1e0100

. (The

reductions used in that argument need not leave e untouched.)

Finally, because the group 2F̂4(K) leaves the dot product invariant, we must
have k1 = k. (Note that Stage 3 of Theorem 8.5 cannot be applied in this
case.)

Lemma 9.2. The group 2F̂4(K) acts transitively on all ordered pairs (e, f) of
octagonal (isotropic) elements e, f ∈W such that e · f = 0 and [e, f ] 6= 0.

Proof. This proof will use the same techniques as the proofs of Theorem 8.5
and Lemma 9.1. By Theorem 8.5 we may choose e = e

----
without loss of

generality.

The main argument of this proof will rely on the assumption that the coordi-
nate f [0100] is non-zero. We shall therefore first prove that it is always possible
to map f onto f ′ such that f ′[0100] = 0, by means of element of 2F̂4(K) that
leaves e = e

----
invariant.
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From [e, f ] = [e
----

, f ] 6= 0 we easily deduce that either f [3] + f [4] 6= 0 or

at least one of the coordinates f [r] 6= 0, with r = 1000, 0100, 0010, 0001, -+++,
+-++, ++-+ or +++-.

Below we give a list of group elements yt(1) which can be used to map f

onto f ′ with the required properties, whenever f [r] 6= 0 for one of the given r

r s t t t+ t

1000 +++- 0101̄ -++-

0100 none needed
0010 +++- 1̄010 ++-- -++-

0001 0100 0101̄ -++-

-+++ 0100 1̄010 ++-- -++-

+-++ +++- 0101̄ -++-

++-+ 0100 0101̄ -++-

+++- 0100 101̄0 --++

For example, the last row of the table tells us that, when f [0100] = 0 but
f [+++-] 6= 0, we may apply y

--++
(1) to create a non-zero coordinate at po-

sition 0100. Similarly, the first row of the table indicates that when f [0100] =

f [+++-] = 0 but f [1000] 6= 0 we may first apply y
-++-

(1) to obtain an image

with a non-zero coordinate at position +++-, bringing us back to the first exam-
ple. We leave it to the reader to verify that each of the listed group elements
indeed leaves e = e

----
invariant.

Only the case where f [r] = 0 for each r in the table, remains. It turns out
that now f2 = 0 implies f [3] + f [4] = 0, contradicting [e, f ] = 0. Indeed, we
may use (14) to compute f2[3] + f2[4] = f [3]2 + f [4]2 = (f [3] + f [4])2.

Henceforth we may assume that the coordinate f [0100] is non-zero. We can
map f onto ke

0100
using the reductions yt(k) of Table 2, except the first re-

duction (which corresponds to s = ++++). We have no need for this reduction
because e · f = e

----
· f = 0 implies f [++++] = 0. It is easily verified that

all other reductions in the table satisfy 〈t, ----〉 ≥ 0 and 〈t, ----〉 ≥ 0 and
therefore leave e

----
invariant.

This proves that f can be mapped onto an element of the form ke
0100

. We

get rid of the scalar k by applying is(k) with s = --++ and s = 101̄0. Indeed

〈--++, 0100〉 = −1, 〈101̄0, 0100〉 = 0, 〈--++, ----〉 = 0, 〈101̄0, ----〉 = 0,

and hence is(k) leaves e invariant and maps ke
0100

to e
0100

.
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Lemma 9.3. The group 2F̂4(K) acts transitively on all ordered pairs (e, f) of
octagonal (isotropic) elements e, f ∈ W such that e · f = 0, [e, f ] = 0 and
e ∗ f 6= 0.

Proof. This proof will use the same techniques as the proofs of the previous
lemmas in this section. Without loss of generality we may choose e = e

0001
.

As in the proof of Lemma 9.1 we first need to prove that f can be mapped
onto an element f ′ for which f ′[0100] is non-zero, using only group elements
from 2F̂4(K) that leave e invariant. (In this case this turns out to be slightly
more complicated.)

Because [e, f ] = 0 and e · f = 0, we must have f [r] = 0 whenever 〈0001, r〉 =

−1 or −2. By Lemma 3.1–4, f cannot belong to the set

S
def
= {[a, e] | a ∈W, a · e = 0} .

It is easily computed that S is precisely the subspace of W generated by all er
such that 〈0001, r〉 = 2 or 1. Therefore either f [3] 6= 0, f [4] 6= 0 or f [r] = 0 for
one of the 6 short roots r for which 〈0001, r〉 = 0. We list these roots below,
together with the group elements yt(1) which can be used to map f onto f ′

with the required properties, whenever f [r] 6= 0. These group elements leave
e invariant. We refer to the proof of Lemma 9.2 for an explanation of how this
table should be interpreted.

r s t t t+ t

0100 none needed
0010 0100 011̄0 0010 0100

1̄000 0100 1100 -+++

01̄00 0100 0110 0100

001̄0 0100 0110 0100

Unfortunately, the short root r = 1000 cannot be handled in the same way. This
means that we still need to treat the situation where f [r] = 0 for all roots r
listed above, while f [1000] 6= 0, f [3] 6= 0 or f [4] 6= 0.

Expanding f2[3] = f2[4] = 0 for this case results in f [3] = f [4] = 0. Likewise,
f2[++++] = f2[++-+] = f2[+-++] = f2[+--+] = 0 lead to f [-+++] = f [-+++] =

f [-+++] = f [-+++] = 0, and hence f must be of the following form

f = k1e1000
+ k2e0001

+ k3e++++
+ k4e+--+

+ k5e+-++
+ k6e++-+

.



Algebraic structure of the perfect Ree-Tits octagons 119

We may compute

Q(f) = k2
1e1̄001

+ k2
2e1001

+ k2
3e0101

+ k2
4e01̄01

+ k2
5e001̄1

+ k2
6e0011

+ (k1k2 + k3k4 + k5k6)e
0001

,

and from this result we obtain that q(f, f)σ = [fσ, Q(f)] is equal to kσ1 k
2
1e0001

.

Hence f cannot be (semi-)octagonal when k1 = f [1000] 6= 0.

Henceforth we may assume that f [0100] 6= 0. We again apply the reductions
of Table 2 except those that do not leave e invariant, i.e., those corresponding
to s = +++-, -++-, ++-- and -+--. Luckily, the corresponding coordinates f [s]

are already zero, because [e, f ] = 0.

This proves that we can map f onto an element of the form e
0100

. We use

is(k
σ−1

) with s = 001̄0 and s = 01̄10 to get rid of the final scalar k. Indeed,

〈001̄0, 0100〉 = 0, 〈01̄10, 0100〉 = −1, 〈001̄0, 0001〉 = 0, 〈01̄10, 0001〉 = 0,

and hence is(kσ
−1

) leaves e invariant and maps ke
0100

onto e
0100

.

Lemma 9.4. The group 2F̂4(K) acts transitively on all ordered pairs (e, f) of
octagonal (isotropic) elements e, f such that e · f = 0, [e, f ] = 0, e ∗ f = 0, but
f /∈ Ke.

Proof. This proof will use the same techniques as the proofs of the other lemmas
in this section. Without loss of generality we may choose e = e

++++
.

From the proof of the previous lemma we know that f must have f [3] =

f [4] = 0 and f [r] = 0, whenever 〈r, ++++〉 ≥ 0, and because f /∈ Ke it follows
that at least one coordinate f [r] 6= 0 with 〈r, ++++〉 = 1. These are the same
roots r as in the proof of Lemma 9.2, and in fact we can use the same trans-
formations as in that lemma to ensure that we may choose r = 0100. (The
transformations of Lemma 9.2 happen to also leave ++++ invariant, not entirely
by coincidence.)

We may now apply the following reductions to f (taken from Table 2) in
order to annihilate three of its coordinates :

s t t t+ t

++++ 001̄1 +-++

-+++ 101̄0 --++ +--+

++-+ 01̄01 +--+
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This reduces f to the form

f = k1e1000
+ k2e0100

+ k3e0010
+ k4e0001

+ k5e+-++
+ k6e+++-

.

We compute

Q(f) = k2
1e1̄001

+ k2
2e0110

+ k2
3e011̄0

+ k2
4e1001

+ k2
5e001̄1

+ k2
6e1̄100

+ k1k2e-+++
+ k1k4e0001

+ k2k3e0100
+ k2k4e++++

+ k3k4e++-+

+ (k1k3 + k5k6)e
-+-+

.

Now, as f is octagonal, we have 0 = [[fσ, a], Q(f)] · b = [fσ , a] · [Q(f), b] for all
a, b ∈W. Setting a = e

--+-
and b = e

++--
we obtain

[fσ, e
--+-

] = kσ1 e+-+-
+ kσ2 e-++-

+ kσ4 e--++
,

[Q(f), e
++--

] = k2
1e-+-+

+ k1k2e0100
+ k1k4e++-+

,

and therefore [fσ, e
--+-

] · [Q(f), e
++--

] = kσ1 k
2
1 .

Likewise,

[fσ, e
+---

] · [Q(f), e
--++

] = kσ3 k
2
3 ,

[fσ, e
-++-

] · [Q(f), e
0001̄

] = kσ5 k
2
5 ,

[fσ, e
+--+

] · [Q(f), e
01̄00

] = kσ6 k
2
6 ,

proving that k1 = k3 = k5 = k6 = 0 when f is octagonal. Hence we are left with
f = k2e0100

+ k4e0001
, with k2 6= 0. In the proof of Theorem 8.5 (Stage 2)

it was already shown that an element of this form can only be octagonal when
k4 = 0.

In a final step we get rid of the constant k2 by applying is(k2) with s = --++

and s = 101̄0, the same element we used in the proof of Lemma 9.2.

We combine Lemmas 9.1–9.4 into the following

Theorem 9.5. The following is an exhaustive list of all orbits of 2F̂4(K) on ordered
pairs (e, f) of non-zero octagonal (isotropic) elements e, f ∈W.

1. For each k ∈ K − {0} an orbit with representative (e
0100

, ke
01̄00

).
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2. An orbit with representative (e
0100

, e
----

).

3. An orbit with representative (e
0100

, e
0001

).

4. An orbit with representative (e
0100

, e
++++

).

5. For each k ∈ K − {0} an orbit with representative (e
0100

, ke
0100

).

The following table lists several properties of the corresponding pairs (e, f).

Case 1 Case 2 Case 3 Case 4 Case 5

e · f k 0 0 0 0

[e, f ] not isotr. semi-oct.† 0 0 0

q(e, f) isotr.‡ 6= 0, oct. 0 0 0

f ∈ [e,F] no no yes yes yes

[e,W] · f 6= 0 6= 0 0 0 0

e+ f not isotr. not isotr. semi-oct.† octag. octag.

µ−1(e∗f)σ
−1

undef. undef. 6= 0, oct. 0 0

f ∈ [e,W] no no no yes yes

f ∈ q(W, e) no no no yes yes

[e,F] · f 6= 0 6= 0 6= 0 0 0

f ∈ Ke no no no no f = ke

q(W, e) ∩
q(W, f)

{0} {0} Kµ−1

(e∗f)σ
−1 dim=3

q(W, e) =

q(W, f)

† semi-octagonal, but not octagonal ‡ isotropic, but not semi-octagonal

Proof. Only the table of properties remains to be checked. Note that all prop-
erties are ‘invariant’ for 2F̂4(K), for example, when g ∈ 2F̂4(K), then [e, f ]g =

[eg , fg], q(e, f)g = q(eg, fg), etc. The only invariant which has not yet been
proved elsewhere in this text is µ−1(e ∗ f)σ

−1

. We find

µ−1(eg ∗ fg)σ−1

= µ−1((e ∗ f)g)σ
−1

= µ−1(e ∗ f)gσ
−1

= µ−1(e ∗ f)σ
−1g ,

using (98) and the definition of g.

As a consequence it is sufficient to check all listed properties only for a single
(representative) pair in each orbit. We shall discuss the most difficult cases here
and leave the rest to be verified by the reader.
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Table 3 lists the relevant values for f = er and Q(f) = er and the six cor-
responding base elements es1 , . . . , es6 of q(W, f). The last row corresponds to
f = e. From this table we easily derive the results for q(W, e) ∩ q(W, f). Note

r r s1 s2 s3 s4 s5 s6

01̄00 01̄1̄0 01̄00 001̄0 +--+ +--- ---+ ----

---- 01̄01̄ 01̄00 0001̄ +-+- +--- --+- ----

0001 1001 1000 0001 +--+ +-++ ++-+ ++++

++++ 0101 0100 0001 ++++ ++-+ -+++ -+-+

0100 0110 0100 0010 ++++ +++- -+++ -++-

Table 3: Auxiliary table for the proof of Theorem 9.5

that in the third case the intersection is generated by the single element e
++++

.

In that case e ∗ f = e
0101

and indeed µ−1(e ∗ f)σ
−1

= e
++++

.

Consider the value of e+ f . When e = e
0100

and f = e
0001

it was already

shown in the proof of Theorem 8.5 (Stage 2) that e + f is semi-octagonal but
not octagonal. When f = e

++++
we obtain Q(e + f) = Q(e

0100
+ e

++++
) =

e
0110

+ e
0101

, and then [e
0001̄

+ e
+--+

, Q(e + f)] = (e + f)σ , proving that

e+ f is octagonal.

10 The Ree-Tits octagon

Because scalar multiples of octagonal elements are again octagonal, it is natural
to define a new geometry O whose points are the one dimensional subspaces
Ke of F (i.e., the points of the 25-dimensional projective space associated with
W) for which e is octagonal (and isotropic).

Let Ke,Kf ∈ O be such that Ke 6= Kf . As an immediate consequence of
the properties listed in Theorem 9.5, we find that the following are equivalent :

• Every 1-dimensional subspace K(k1e+ k2f) of Ke+Kf belongs to O.

• f ∈ q(W, e).

• f ∈ [e,W].

• [e,F] · f = 0.

• dim q(W, e) ∩ q(W, f) = 3.
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• e · f = 0, [e, f ] = 0 and e ∗ f = 0.

Two different points Ke, Kf of O that satisfy one of these statements shall
be called collinear. In this case, the 2-dimensional subspace Ke + Kf of O is
called a line of O.

We shall also introduce the following terminology, borrowed from [5]. Let
Ke, Kf be different points of O.

• If Ke, Kf are not collinear, and [e, f ] = 0, then Ke and Kf are said to be
cohyperlinear.

• If [e, f ] 6= 0 and e · f = 0, then Ke and Kf are said to be almost opposite.

• If e · f 6= 0, then Ke and Kf are said to be opposite.

The next and most important theorem of this text proves that the point-line
geometry O satisfies the axioms of a generalized octagon, where ‘collinear’,
‘cohyperlinear’, ‘almost opposite’ and ‘opposite’ correspond to distance 2, 4, 6
and 8 in the incidence graph of O.

Theorem 10.1. Let Ke,Kf be different points of O.

1. If Ke and Kf are collinear then every point of the line Ke+Kf belongs to
O. Apart from the points ofKe+Kf there are no other points of O collinear
to both Ke and Kf .

2. If Ke and Kf are cohyperlinear, then there is a unique point of O that is
collinear to both Ke and Kf . This point is Kµ−1(e∗f)σ

−1

. In the incidence
graph of O, Ke and Kf are at mutual distance 4.

3. If Ke and Kf are almost opposite then there are no points of O that are
collinear to both Ke and Kf . There is a unique point of O that is collinear
to Ke and cohyperlinear to Kf . This point is Kq(f, e). In the incidence
graph of O, Ke and Kf are at mutual distance 6.

4. If Ke and Kf are opposite, then there are no points of O that are collinear
to both Ke and Kf , or that are collinear to Ke and cohyperlinear to Kf
(or vice versa). Every line of O through Kf contains exactly one point of O
that is almost opposite to Ke. In the incidence graph of O, Ke and Kf are
at mutual distance 8.

These are the only possible relations between different points of O.

Proof. The different cases of this theorem correspond to 4 different cases of
Theorem 9.5, but numbered the other way round. (The fifth case of Theorem
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9.5 occurs when Ke = Kf .) Without loss of generality we may set e = e
0100

and set f to one of the representatives listed in Theorem 9.5.

1. (Case 4 of Theorem 9.5.) We take f = e
++++

. If Kd is a point collinear

to both Ke and Kf then d ∈ q(W, e) ∩ q(W, f). Using Table 3 we easily
derive that d must be of the form

d = k1e0100
+ k2e++++

+ k3e-+++
,

and then
Q(d) = k2

1e0110
+ k2

2e0101
+ k2

3e1100
.

From this we compute

[[d, e
01̄00

], Q(dσ
−1

)] = [k1hr3 +k2e+-++
+k3e--++

, Q(dσ
−1

)] = k3k
σ
3 e++++

and hence k3 = 0 when d is octagonal, i.e, d ∈ Ke+Kf .

2. (Case 3 of Theorem 9.5.) A point collinear to both Ke and Kf must
belong to the intersection q(W, e) ∩ q(W, f), which by Theorem 9.5 is
exactly Kµ−1(e ∗ f)σ

−1

. Note also that µ−1(e ∗ f)σ
−1

is octagonal by the
same theorem.

3. (Case 2 of Theorem 9.5.) We have q(W, e) ∩ q(W, f) = {0}, hence there
are no points collinear to both Ke and Kf .

We take f = e
----

. If Kd ∈ O is collinear to e and cohyperlinear to f , we

must have d ∈ q(W, e) and [d, f ] = 0. From Table 3 it easily follows that
d ∈ Ke

-++-
. Also q(f, e) = [e

----
, e
0110

] = e
-++-

.

4. (Case 1 of Theorem 9.5.) We have q(W, e) ∩ q(W, f) = {0}, hence there
are no points collinear to both Ke and Kf .

Take f = e
01̄00

. As before, ifKd ∈ O is collinear toKe and cohyperlinear

to Kf , we must have d ∈ q(W, e) and [d, f ] = 0. Table 3 than proves that
d ∈ Ke

0010
, but then d is not even semi-octagonal.

Finally, consider the hyperplane of elements w ∈ W such that e · w = 0.
Because f does not belong to this hyperplane, every line of O through f

intersects this hyperplane in a single pointKw ∈ O. By definition e·w = 0,
hence Kw is either almost opposite to Ke, cohyperlinear to Ke, collinear
to Ke or equal to Ke. The last possibility is easily ruled out, and the
second and third possibility have been disproved above.
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The following theorem provides some insight into the ‘local structure’ of O.

Theorem 10.2. Let Ke be a point of O. Then the points of O collinear with
Ke form a cone with vertex Ke and a Suzuki-Tits ovoid as a base. The semi-
octagonal elements of q(W, e) form a 5-dimensional subspace which is generated
by the elements of this cone.

Proof. By Theorem 9.5 all points collinear with Ke must lie in q(W, e). We may
set e = e

0001
without loss of generality. Then f ∈ q(W, e) is of the form

f = k1e1000
+ k2e0001

+ k3e++++
+ k4e+--+

+ k5e+-++
+ k6e++-+

,

with k1, . . . , k6 ∈ K.

In the proof of Lemma 9.3 we have already established that f is semi-octa-
gonal if and only if k1 = 0, and then

Q(f) = k2
2e1001

+ k2
3e0101

+ k2
4e01̄01

+ k2
5e001̄1

+ k2
6e0011

+ k2
∗e0001

with k∗
def
=
√
k3k4 + k5k6.

To find out in what cases f is octagonal we establish a set of generators
for the 6-dimensional space q(W, f). Proposition 2.4 already shows that e =

e
0010

belongs to this space because f ∈ q(W, e). Now, consider the following

elements of q(W, f) :

v0
def
= q(e

0001̄
, f) = kσ2 e1000

+ kσ3 e0100
+ kσ4 e01̄00

+ kσ5 e001̄0
+ kσ6 e0010

+ kσ∗h0001,

v1
def
= q(e

++--
, f) = kσ4 e+--+

+ kσ6 e++++
+ kσ∗ e++-+

,

v2
def
= q(e

+---
, f) = kσ3 e++-+

+ kσ6 e+-++
+ kσ∗ e+--+

,

v3
def
= q(e

+++-
, f) = kσ4 e+-++

+ kσ5 e++-+
+ kσ∗ e++++ ,

v4
def
= q(e

+-+-
, f) = kσ3 e++++

+ kσ5 e+--+
+ kσ∗ e+-++ ,

v5
def
= q(e

-+--
, f) = kσ4 e---+

+ kσ6 e-+++
+ kσ∗ e-+-+

,

v6
def
= q(e

----
, f) = kσ3 e-+-+

+ kσ6 e--++
+ kσ∗ e---+

,

v7
def
= q(e

-++-
, f) = kσ4 e--++

+ kσ5 e-+-+
+ kσ∗ e-+++ ,

v8
def
= q(e

--+-
, f) = kσ3 e-+++

+ kσ5 e---+
+ kσ∗ e--++ .
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Note that v1, . . . , v4 belong to the space generated by e
++++

, e
++-+

, e
+-++

and

e
+--+

. Similarly, v5, . . . , v8 belong to the space generated by e
-+++

, e
-+-+

,

e
--++

and e
---+

.

Not all of these vectors are linearly independent. For example, we see that
kσ3 v1 = kσ∗ v2+kσ6 v4 and kσ3 v3 = kσ5 v2+kσ∗ v4, and hence, when k3 6= 0 the vectors
v1, . . . , v4 generate a space of dimension 2. This is also the case when k4 6= 0,
k5 6= 0 or k6 6= 0, and with a similar argument we can prove that also v5, . . . , v8

generate a space of dimension 2. We may conclude that, unless f ∈ Ke, the
elements e, v0, . . . , v8 generate q(W, f).

To determine which of the elements f /∈ Ke is octagonal, i.e., whether f ∈
q(W, f), we need to consider two different cases :

Case 1. Assume k3 6= 0. By the above we must have that

f = k6e++-+
+ k4e+--+

+ k3e++++
+ k5e+-++

+ k2e0001

is a linear combination of e
0001

and

v2 = kσ3 e++-+
+ kσ∗ e+--+

+ kσ6 e+-++
,

v4 = kσ5 e+--+
+ kσ3 e++++

+ kσ∗ e+-++.

This yields no condition on k2, proving that the resulting solutions form a cone
with vertex Ke = Ke

0001
. We obtain the following conditions on k3, . . . , k6 :

k4k
σ
3 + k6k

σ
∗ + k3k

σ
5 = 0, k5k

σ
3 + k6k

σ
6 + k3k

σ
∗ = 0.

Applying σ to these equations, and expanding k2
∗, yields :

kσ4 k
2
3 + kσ6 k3k4 + kσ6 k5k6 + kσ3 k

2
5 = 0, kσ5 k

2
3 + kσ6 k

2
6 + kσ3 k3k4 + kσ3 k5k6 = 0.

These equations are not independent and will be satisfied if and only if

k4 = k−1−σ
3 k2+σ

6 + k−1
3 k5k6 + k1−σ

3 kσ5 . (105)

Case 2. Let k3 = 0. We find that k6e++-+
+ k4e+--+

+ k5e+-++
now must

belong to the space generated by

v1 = kσ∗ e++-+ + kσ4 e+--+
+ kσ6 e++++

v2 = kσ∗ e+--+
+ kσ6 e+-++

v3 = kσ5 e++-+
+ kσ∗ e++++ + kσ4 e+-++

v4 = kσ5 e+--+
+ kσ∗ e+-++
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with k2
∗ = k5k6. This is equivalent to

k3 = k5 = k6 = 0. (106)

(105) and (106) together describe the well-known parameter equation of the
Suzuki-Tits ovoid in a 3-dimensional projective space (cf. [5]).

We end this section by establishing the two types of root groups for O.

Proposition 10.3. Let Ke,Kf be points of O that are almost opposite. Then
y([e, f ]) fixes all elements (points and lines) on the shortest path joining Ke and
Kf and all elements incident to (at least) one of those elements.

Let L be any line of O through Ke and not on this path. Then the subgroup of
2F̂4(K) of all y(k [e, f ]) with k ∈ K acts transitively on the points of L different
from Ke.

Proof. By Lemma 8.4 and Theorem 9.5 we may choose e = e
0001

and f =

e
----

without loss of generality. Then [e, f ] is the semi-octagonal element e
---+

and Q([e, f ]σ
−1

) = e
11̄00

.

The points on the shortest path joining Ke and Kf are Ke′ and Kf ′ with
e′ = q(f, e) = e

+--+
and f ′ = q(e, f) = e

01̄00
and they are easily seen to be left

invariant by y([e, f ]). Hence also the lines on that path are left invariant, and
all points on those lines.

Consider a line M through Ke′. M lies entirely inside the space q(W, e′) =

[W, e
01̄01

] which is generated by the following vectors :

e
01̄00

, e
0001

, e
+-++

, e
+--+

, e
--++

, e
---+

.

It is easily seen that each of these vectors is left invariant by y([e, f ]), hence so
is M . (By symmetry, the same holds for lines through f ′.)

Finally, let L be a line through Ke, not equal to Ke + Ke′. From the proof
of Theorem 10.2 we know that L lies on the cone with vertex Ke and a base
belonging to the 4-dimensional space generated by e

++++
, e
+--+

, e
+-++

, e
++-+

.

Of these four vectors, the only one not left invariant by y(k [e, f ]) is e
++++

which

maps to e
++++

+ ke
0001

= e
++++

+ ke.

Now consider a point Kg of L. Using the notation of the proof of Theorem
10.2 we assign ‘coordinates’ k2, . . . , k5 to the element g. It is easily seen that
the case k3 = 0 occurs only when g ∈ Ke+ Ke′. Because k3 is the ‘coordinate’
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that corresponds to e
++++

, we find that g is mapped by y(k [e, f ]) to g + kk3e,

which lies on the same line L. Also, when k runs through K, the image of g
encounters all points of the line L, except e.

Note that the elements y(k [e, f ]) form a subgroup isomorphic to the additive
group of K, by Lemma 8.3.

The elements y([e, f ]) of the proposition above are called point-elations of
O and the group of elements y(k [e, f ]) is a root group [5]. In [2, Proposition
13.6.3] this root group is listed as of ‘type (v)’.

Proposition 10.4. Let Ke,Kf be opposite points of O and let Kg be a point of O
at distance 4 of both Ke and Kf . Then

1. The subset of elements c of q(W, g) that satisfy [c, e] = [c, f ] = 0 is a 2-
dimensional subspace of the form Kg + Kd where d is isotropic but not
semi-octagonal and g = q(d, d).

2. Let k, k′, `, `′ ∈ K. Then

y(kg)y(`d)y(k′g)y(`′d) = y((k + k′ + `σ`′) g)y((`+ `′)d), (107)

which makes X def
= {y(kg)y(`d) | k, ` ∈ K} a subgroup of 2F̂4(K).

3. X fixes all points and lines on the unique path of length 8 joining Ke to Kg
and then to Kf .

4. X fixes all lines incident with any of the three ‘middle’ points of that path
(i.e. Kg and the two points collinear to Kg).

5. X acts transitively on the set of lines through Ke which are not on this path.

Proof. We shall first prove the proposition for the special case e = e
0001

, f =

e
0001̄

and g = e
01̄00

. Then Q(gσ
−1

) = e
01̄1̄0

and it is easily computed that

statement 1 of this proposition is satisfied by d = e
001̄0

.

By (102) we have

y(kg) = x(kσe
01̄1̄0

)x(ke
01̄00

), y(`d) = x(`σe
01̄10

)x(`e
001̄0

)x(``σe
01̄00

).

From this we compute dy(kg) = d and hence, using (104),

y(`d)y(k′g) = y(k′g)y(`d)y(k′g) = y(k′g)y(`dy(k′g)) = y(k′g)y(`d). (108)
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Also, by (103),

y(kg)y(k′g) = y((k + k′)g), y(`d)y(`′d) = y(`σ`′g)y((`+ `′)d). (109)

Combining (108) and (109) yields (107).

The three ‘middle’ points on the unique path of length 8 joining Ke to Kg

to Kf correspond to e
+--+

, e
01̄00

and e
----

. For each of these three vectors

er, the following table lists the generators er, es1 , . . . , es4 of the corresponding
5-dimensional subspace of semi-octagonal elements of q(W, er). (These results
were obtained by applying an appropriate element of W ′ to the example com-
puted in the proof of Theorem 10.2.)

r s1 s2 s3 s4

+--+ 0001 01̄00 ---+ +-++

01̄00 +--+ ---- +--- ---+

---- 01̄00 0001̄ --+- +---

Note that each of the listed vectors er, esi is left invariant by x(e
01̄1̄0

),

x(e
01̄10

), x(e
01̄00

) and x(e
001̄0

), and hence also by y(kg)y(`d), except for

e
+-++

and e
--+-

. In the these two cases we find

e
y(kg)y(`d)

+-++
= e

+-++
+ `e

+--+
, e

y(kg)y(`d)

--+-
= e

--+-
+ `e

----
.

This proves statements 3 and 4.

Now consider the line L joining Ke with Ke
++++

. The vector e = e
0001

is

left invariant by y(kg)y(`d), while e
++++

is mapped to

e
y(kg)y(`d)

++++
= e

y(`d)

++++
+ kσe

y(`d)

+--+
+ ke

y(`d)

+-++

=e
++++

+ `e
++-+

+ ``σe
+-++

+ `2`σe
+--+

+ kσe
+--+

+ ke
+-++

+ k`e
+--+

=e
++++

+ (kσ + k`+ `2`σ)e
+--+

+ (k + ``σ)e
+-++

+ `e
++-+

.

In terms of the ‘coordinates’ of the proof of Theorem 10.2 the resulting image
has k3 = 1, k4 = kσ + k`+ `2`σ , k5 = k + ``σ and k6 = `. So, when (k, `) runs
through K×K, the images of L range over all lines through Ke, except the line
joining e and e

+--+
(which corresponds to k3 = 0). This proves statement 5.

We still need to prove that the proposition also holds for general e, f and g
in the stated configuration. Denote by Ke′ (resp. Kf ′) the unique points of O



130 Coolsaet

collinear to Ke and Kg (resp. Kf and Kg). By Lemma 8.4 and Theorem 9.5
we may choose e′ = e

0001
and f = e

----
without loss of generality (e′ and

f are almost opposite). This implies g = e
+--+

and f ′ = e
01̄00

. The special

case used in the first part of this proof can now be applied to show that the
line through Ke

0001
and Ke can be chosen to be the line connecting Ke

0001

and Ke
++++

. Proposition 10.3 then further allows us to choose Ke = Ke
++++

.

Finally, an appropriate element of W ′ enables us to map the sequence of points
e, e′, g, f ′, f thus obtained, to the sequence e

0001
, e

+--+
, e

01̄00
, e

----
, e

0001̄

of the first part of this proof.

The group X defined in this proposition is again a root group and the ele-
ments y(kg)y(`d) are called line-elations of O. When ` = 0 these are the central
elations with center Kg. In [2, Proposition 13.6.3] X is listed as of ‘type (vi)’.

Propositions 10.3 and 10.4 imply that O is a Moufang polygon [5] and there-
fore none other than the classical Ree-Tits generalized octagon O(K,σ).
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