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Abstract

The affine derivation of a generalized quadrangle is the geometry in-
duced on the vertices at distance 3 or 4 of a given point. We characterize
these geometries by a system of axioms which can be described as a modi-
fied axiom system for affine planes with an additional parallel relation and
parallel axiom. A second equivalent description which makes it very easy to
verify that, for example, ovoids and Laguerre planes yield generalized quad-
rangles is given. We introduce topological affine quadrangles by requiring
the natural geometric operations to be continuous and characterize when
these geometries have a completion to a compact generalized quadrangle.
In the connected case it suffices to assume that the topological affine quad-
rangle is locally compact. Again this yields natural and easy proofs for the
fact that many concrete generalized quadrangles such as those arising from
compact Tits ovoids are compact topological quadrangles. In an appendix
we give an outline of the theory of stable graphs which is fundamental to
this work.

Keywords: generalized quadrangle, affine quadrangle, parallel axiom, topological ge-
ometry, completion
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1 Introduction

In [25] Jacques Tits introduced generalized polygons. These objects can be
regarded as graphs or a as incidence geometries. A graph (V,E) is just a set V ,
the vertex set, together with a set E of subsets of V with precisely two elements,
the edge set. The graph (V,E) is called bipartite if it has a part, which is a subset
P ⊆ V of the vertex set such that all edges of (V,E) contain one vertex from P
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and one vertex form V \ P . These parts come in pairs, because if P is a part,
then, of course, L := V \ P is also a part. This leads us to the notion of an
incidence geometry (P,L, I), which consists of two sets P and L usually called
points and lines as well as an incidence relation I ⊆ P × L between points and
lines; if I is given by the element relation, we also write (P,L). If (V,E) is
a bipartite graph with parts P and L = V \ P , then (P,L, {(p, l) ∈ P × L :

{p, l} ∈ E}) is an incidence geometry, and conversely, if (P,L, I) is an incidence
geometry, then ((P × {1}) ∪̇ (L × {2}), {{(p, 1), (l, 2)} : (p, l) ∈ I}) defines a
bipartite graph. These two processes are inverse to each other, so basically
bipartite graphs and incidence geometries are the same thing. We will freely
use notions introduced for graphs also for incidence geometries and vice versa.
It is tempting to dispense with incidence geometries altogether and formulate
all theorems for graphs, but whenever points and lines play different roles this
approach is not very practical nor intuitive.

Let G = (V,E) be a graph. The distance d(v, w) between vertices v and w is
the smallest k ∈ N0 such that there is a path (v0, . . . , vk), i.e. vertices vi such
that {vi−1, vi} ∈ E for all i = 1, . . . , k and such that v0 = v and vk = w; if there
is no such path then we set d(v, w) := ∞. A path (v0, . . . , vk) is called reduced
if d(v0, vk) = k. For k ∈ N0 ∪ {∞} let Dk := d−1(k) be the relation of having
distance k. We also set Dl,k := Dl ∪Dk and D≤k := D0 ∪D1 ∪ · · · ∪Dk, and so
on. The sets D1(v) = {w ∈ V : (v, w) ∈ D1} are called panels. The maximum of
d(V × V ) ⊆ N0 ∪ {∞} is called the diameter of G and the minimal k ≥ 3 such
that there is a path (v1, . . . , vk, v1) with k distinct vertices is called the girth of
G. Now, a generalized polygon, or a generalized n-gon for n ∈ N is a bipartite
graph with diameter n and girth 2n; we will also assume that the graph is thick;
i.e. all panels contain at least three vertices. This is not a severe restriction as
all other generalized polygons can be obtained from thick ones; see [26, 1.6.2].
It is easy to show that a generalized 3-gon (regarded as an incidence geometry)
is a projective plane. In this work we are mainly concerned with generalized
quadrangles, i.e. generalized 4-gons. If the incidence geometry Q = (P,L, I)

is a generalized quadrangle, then the distance between points and lines being
odd is 1 or 3. Thus, if p ∈ P and l ∈ L are not incident, then there is a point
π(p, l) and a line λ(p, l) such that (p, λ(p, l), π(p, l), l) is a path. Moreover π(p, l)

and λ(p, l) are uniquely determined, because the girth of Q is 8. Thus π and
λ are functions defined on (P × L) \ I = (P × L) \ D1. Similarly we define
∨ : (P × P ) ∩ D2 → L and ∧ : (L × L) ∩ D2 → P such that p ∨ q is the
unique line incident with p and q and dually for ∧. For further information
about generalized polygons and examples see [26].
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2 Affine quadrangles

Affine quadrangles were defined by Pralle and by B. Stroppel. Pralle’s aim was
to give a characterization (in terms of axioms) for the geometry obtained by re-
moving a geometric hyperplane from a generalized quadrangle; see [14]. There
are three types of geometric hyperplanes. We are only interested in the case
where this hyperplane is a point star; i.e. the set of points at distance 0 or 2

from a given point. Here only structures of this kind will be called affine quad-
rangles, because the analogy to affine planes is only given in this case. Stroppel
gives another axiom system for this type; see [24]. She calls her objects point-
affine quadrangles. The two relations used in her description are basically our
two parallel relations, whereas our axiom system is somewhat closer to Pralle’s.
It stresses the analogy to affine planes and makes it straightforward to define
topological affine quadrangles.

Definition 2.1. Let A = (P,L, I) be an incidence geometry, and define the
relations

g | h :⇐⇒ ∀ a ∈ D1(g), b ∈ D1(h) : d(a, h) = d(b, g) and

g ‖ h :⇐⇒ d(g, h) ∈ {0, 6}

for g, h ∈ L. The relations | and ‖ are regarded as subsets of L2 and we set
- := L2 \ | and ∦ := L2 \ ‖. We call ‖ strong parallelism and | weak parallelism or
simply parallelism. The incidence geometry A is called an affine quadrangle, if
the following axioms (A1) to (A4) hold.

(A1) Some point row has at least 2 and some line pencil at least 3 elements.

(A2) The girth of A is greater than 6, and we have d(L× L) ≤ 6.

(A3) For every (p, h) ∈ P × L there is a unique l ∈ D1(p) such that l | h.

(A4) For every (g, h) ∈ - there is a unique l ∈ D2(g) such that l ‖ h.

For later use we record a significant weakening of (A2).

(A2′) The girth of A is greater than 4; i.e. there are no digons.

Note the similarity between (A3) and (A4) and that (A3) is just the parallel
axiom for affine planes. The motivation of the above definition is given by
the following observation, which is an easy consequence of the definition of
generalized quadrangles.
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Definition and Observation 2.2. LetQ = (P ,L, I) be a generalized quadrangle
and fix p ∈ P . The geometry Qp = (P,L, I) defined by P := D4(p), L := D3(p)

and I := I ∩ (P ×L) (whereD denotes distance in Q) is called the derived affine
quadrangle of Q at p. Define relations | and ‖ on L by

g | h :⇐⇒ λ(p, g) = λ(p, h) and

g ‖ h :⇐⇒ π(p, g) = π(p, h).

Then the relations | and ‖ satisfy the defining conditions of the relations with the
same names from Definition 2.1, and the conditions (A1) to (A4) hold; i.e.Qp is an
affine quadrangle. Furthermore the relations | and ‖ are equivalence relations such
that ‖ is contained in | (regarded as subsets of L2), and the following condition is
satisfied.

(A5) For every (p, h) ∈ (P × L) \ D1 there is a unique l ∈ D1(p) such that
d(l, h) = 2 or l ‖ h,

where D denotes distance in the derived affine quadrangle Qp.

Our aim is to prove a certain converse of the above observation; that is, given
an affine quadrangle A, we want to construct a generalized quadrangle Q such
that A is the derivation of Q.

Definition 2.3. Let A = (P,L, I) be an incidence geometry with relations | and
‖ on L satisfying (A2), (A3), (A4) and (A5). We define the following geometric
operations.

∨ : P 2 ∩D2 → L, (p, q) 7→ l ∈ D1(p) ∩D1(q),

∧ : L2 ∩D2 → P, (g, h) 7→ p ∈ D1(g) ∩D1(h),

π : (P × L) ∩D3 → P, (p, g) 7→ q ∈ D1(g) ∩D2(p),

λ : (P × L) \D1 → L, (p, g) 7→ h ∈ D1(p) with h ∈ D2(g) or h ‖ g,
ι : P × L→ L, (p, h) 7→ l ∈ D1(p) with l | h and

ιι : -→ L, (g, h) 7→ l ∈ D2(g) with l ‖ h.

Of course, if A is a derivation of a generalized quadrangle, then the first four
maps are restrictions of the corresponding maps of the generalized quadran-
gle, and furthermore we have ι(p, h) = λ(p, λ(∞, h)) for (p, l) ∈ P × L and
ιι(g, h) = λ(π(∞, h), g) for (g, h) ∈ - where π and λ are the geometric maps in
the generalized quadrangle. Here are some easy consequences of the axioms.

Lemma 2.4. Let A = (P,L, I) be an affine quadrangle.

(a) We have d(P × L) ≤ 5 .
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(b) The relation ‖ is contained in | (regarded as subsets of L2) .

(c) The relations ‖ and | are equivalence relations.

(d) The condition (A5) holds.

Proof. (a) Let (p, h) ∈ P × L. By (A3) there is a line l ∈ D1(p) such that
d(p, h) = d(q, l) for all q ∈ D1(h). Thus d(p, h) = d(h, l)− 1 ≤ 5 by (A2).

(b) Let g and h be two strongly parallel lines. If g = h, then trivially g | h; so
let d(g, h) = 6. Then d(p, h) equals 5 or 7 for all p ∈ D1(g), and the second case
does not occur by (a).

(c) Let a, b, c ∈ L. We show that a ‖ b ‖ c implies a ‖ c. If d(a, c) < 6, then
there is an h ∈ D2(a) ∩ D2(c) (in the case d(a, c) = 2 we have |D1(a ∧ c)| ≥ 3

by (A1) and the uniqueness part from (A3)). If h were parallel to b, then the
uniqueness part from (A3) and (b) would imply h = ι(h∧a, h) = a. So we have
h - b. Hence the uniqueness part from (A4) implies a = ιι(h, b) = c.

Now we show that a ‖ b | c implies a | c. Assume a - c. Then ιι(c, a) ‖ a ‖ b.
Thus by what we have shown already and (b) we have ιι(c, a) | b | c, and the
uniqueness part from (A3) implies that ιι(c, a) = c, a contradiction.

Finally we show that a | b | c implies a | c. Assume a - c. Then ιι(c, a) ‖ a | b.
Thus by what we have just shown we have ιι(c, a) | b | c, and we get the
contradiction ιι(c, a) = c again.

By definition the relations | and ‖ are reflexive and symmetric; so they are
equivalence relations.

(d) If d(p, l) = 3, then d(g, l) ≤ 4 for any g ∈ D1(p) and there is a line
g ∈ D1(p) with d(g, l) = 2. It is unique, because there are no cycles of length 6.
If d(p, l) = 5, then d(ι(p, l), l) = 6, and no other line in D1(p) has distance 6

from l by (b) and the uniqueness part from (A3).

We have collected the necessary properties of an affine quadrangle to con-
struct a generalized quadrangle whose derivation is the given affine quadran-
gle.

Lemma 2.5. Let A = (P,L, I) be an incidence geometry, and let | and ‖ be equiv-
alence relations on L such that (A1), (A2′), (A3), (A4) and (A5) are satisfied.
Choose a singleton {∞} and assume that P , L, L/|, L/‖ and {∞} are pairwise
disjoint. We define

P := P ∪̇ L/‖ ∪̇ {∞}, L := L ∪̇ L/| and

I := I ∪
{(

[[l]], l
)
,
(
[[l]], [l]

)
,
(
∞, [l]

)
: l ∈ L

}
,

where the equivalence classes of | and ‖ are denoted by [ · ] and [[ · ]] respectively.
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Then A := (P ,L, I) is a generalized quadrangle, and the derivation at ∞ sat-
isfies A∞ = A. If Q is a generalized quadrangle and p a point of Q, then Qp is
isomorphic to Q.

Proof. We will use the symbol d for the distance function in A and begin with
collecting some facts about A.

(a) The relation ‖ is contained in |: If there were lines g and h with g ‖ h
and g - h, then by (A4) there would be a line g′ ∈ D2(g) with g′ ‖ h, and
we would have g′ ‖ g. If g ∧ g′ ∈ D1(h) this leads to the contradiction g =

ιι(h, g) = g′ by the uniqueness part from (A4) and otherwise to the contradiction
g = λ(g ∧ g′, h) = g′ by the uniqueness part from (A5).

(b) If we have |D1(g)| ≥ 2 and g - h for lines g and h, then |D1(h)| ≥ 2 and
d(g, h) ≤ 4: If d(g, h) = 2, we can choose by (A1) and (A3) a line g′ ∈ D2(g)

not incident with g ∧ h and not parallel to h. Then we have ιι(h, g′) ∧ h 6= g ∧ h
by the uniqueness part from (A5). If d(g, h) > 2, we apply (A5) to two distinct
points incident with g and to the line h. The lines obtained are distinct, and one
of them must intersect h by the uniqueness part from (A4). Thus d(g, h) = 4,
and the intersection point on h is not equal to ιι(h, g) by the uniqueness part
from (A5).

(c) We have d(p, h) ≤ 5 for p ∈ P and h ∈ L: By (A1) there is a line g with at
least two points on it. By (A1) and (A3) we can choose a line l ∈ D1(p) which
is neither parallel to g nor h. Now applying (b) to g and l as well as to l and h
we obtain d(l, h) ≤ 4 and therefore d(p, l) ≤ 5.

We can now prove that A is a generalized quadrangle. Let p ∈ P and l ∈ L
with (p, l) 6∈ I . We begin with showing the existence of joining paths (p,m, q, l).
We need to treat 3 times 2 cases two of which have two subcases; see (c). Here
is a table for (m, q) in all 8 cases; we write m, q instead of (m, q) to make the
table more readable.

l ∈ L l = [g]

p ∈ P
d(p, l) = 3: λ(p, l), π(p, l)

ι(p, g), [[ι(p, g)]]
d(p, l) = 5: λ(p, l), [[λ(p, l)]]

p = [[h]]
h | l: [l], [[l]]

[h],∞
h - l: ιι(l, h), ιι(l, h) ∧ l

p =∞ [l], [[l]] not applicable

It remains to show that there are no digons and no triangles in A. Of course,
for two points in P there is at most one joining line by (A2′). Every line in L

contains only one point not in P , and the only line not in L through [[l]] is the
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line [l] by (a); thus for two points both not in P there is at most one joining
line. For p ∈ P and l ∈ L any line through p and [[l]] is parallel to l by (a); so the
uniqueness part from (A3) assures that there is only one line through p and [[l]].

Now assume there is a triangle, i.e. three distinct points a, b, c and three
distinct lines α, β, γ such that (a, γ, b, α, c, β, a) is a path. Because there are
no digons in A, none of the points is incident with all three of the lines. We
consider three cases.

Case a = ∞: Then β, γ 6∈ L and thus b, c 6∈ P . This implies α 6∈ L, which
contradicts∞ = a 6∈ D1(α).

Case∞ 6∈ {a, b, c} and α = [l] for l ∈ L: Then b, c 6∈ P ∪{∞}, and, as there is
only one line not in L through such points, we have β, γ ∈ L, which contradicts
(A3).

Case α, β, γ ∈ L: The uniqueness part from (A5) implies that none of the
points a, b, c is in P , which is a contradiction, because the lines of L contain
only one point not in P .

From the definition of I we infer that the distance from ∞ to [l], [[l]], l or
p for l ∈ L and p ∈ P is less than or equal to 1, 2, 3 and 4 respectively. It
cannot be strictly less, because A has girth 8; so we have A∞ = A. Finally we
get an isomorphism α from Qp to Q by extending the identity on the vertex set
of Qp by α(∞) = p, α([l]) = λ(p, l) and α([[l]]) = π(p, l), which follows from
Observation 2.2.

Theorem 2.6. For an incidence geometry A = (P,L, I) the following conditions
are equivalent.

(a) The geometry A is an affine quadrangle, i.e. satisfies (A1), (A2), (A3) and
(A4) for | and ‖ as in Definition 2.1.

(b) There are equivalence relations | and ‖ on L such that the conditions (A1),
(A2′), (A3), (A4) and (A5) are satisfied.

(c) There is a generalized quadrangle Q and a point p such that the derived affine
quadrangle Qp is isomorphic to A.

Furthermore the respective weak and strong parallelisms | and ‖ given in all three
cases agree; see Definition 2.2 for (c).

Proof. The implication (a)⇒(b) follows from Lemma 2.4(c) and (d), the im-
plication (b)⇒(c) is Lemma 2.5 and the implication (c)⇒(a) as well as the
supplementary statement follow from Observation 2.2.
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In the above theorem Condition (b) can be seen as an intermediate step in the
proof of (c) from (a). On the other hand Condition (b) is also interesting in its
own right, because in applications the parallel relations | and ‖ are sometimes
directly given, and often it is easy to verify the conditions from (b) for them
(see Theorem 5.1 and Theorem 6.1 as well as a forthcoming paper about Moul-
ton quadrangles), whereas it is tedious to show that they satisfy the distance
properties from the definition of affine quadrangles. Nevertheless it is impor-
tant that the parallel relations can be defined intrinsically from the derivation
and no further structure has to be added in order to reconstruct the ambient
generalized quadrangle. This is false for polygons in general: it can be shown
that for every n ≥ 6 there are non-isomorphic generalized n-gons Q and Q′ and
points p and p′ such that Qp and Q′p′ are isomorphic.

Corollary 2.7. For any generalized quadrangle the derivation at any vertex is an
affine quadrangle, and all affine quadrangles can be obtained in this way.

As an example we construct the symplectic quadrangle associated to a com-
mutative field K without using forms. For p = (x, y, z) ∈ K3 and d = (r, s) ∈
K2 \ {0} define lp,d := p+ (r, s, sx− ry)K. We show by verifying Condition (b)
of Theorem 2.6 that (K3, {lp,d : p ∈ K3, d ∈ K2 \ {0}}) is an affine quadrangle
and therefore yields a generalized quadrangle. For lines l = lp,d and l′ = lp′,d′

define the parallel relations by l | l′ if and only if dK = d′K and l ‖ l′ if and only
if l and l′ are parallel in the affine space K3. Now (A1) and (A2′) are inherited
from the corresponding properties for the affine space K3 and (A3) to (A5) can
be verified by easy computations in the field K.

3 Topological affine quadrangles

In this section we define topological affine quadrangles and prove simple prop-
erties of these geometries. We require that all geometric operations are con-
tinuous; more precisely, a topological affine quadrangle is an affine quadrangle
(P,L, I) with Hausdorff topologies on P and L such that the maps π, λ|D3 , ι,
and ιι from Definition 2.3 are continuous.

We will see in the next proposition that topological affine quadrangles are a
special kind of stable quadrangles, which are defined in Section 8. A collection
of properties of these graphs can also be found there. We say that an affine
quadrangle is stable if it is a stable quadrangle. We have the following simple
facts about topological and stable affine quadrangles.

Proposition 3.1. Let A = (P,L, I) be an affine quadrangle, and assume that P
and L are disjoint. If A is topological we have the following.
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(a) The parallelisms | and ‖ are closed subsets of L2.

(b) A is a stable quadrangle.

If A is stable (or topological), then the following assertions hold.

(c) The subsets I ⊆ P × L and D1 ⊆ (P ∪̇ L)2 and all panels are closed.

(d) The subsets D3 and D4 are open in (P ∪̇ L)2.

(e) The geometric operations ∨ and ∧ are open and continuous maps.

Proof. (a) Choose p ∈ P , and define

α : L2 → D1(p)2, (g, h) 7→
(
ι(p, g), ι(p, h)

)
.

Because | is an equivalence relation by Lemma 2.4(c), we have that g | h is
equivalent to ι(p, g) | ι(p, h), which is equivalent to ι(p, g) = ι(p, h) by (A3),
so | = α−1(idL). This set is closed, because L is a Hausdorff space and α is
continuous.

Let (g, h) ∈ ∦. Since pencils have at least three elements, there is an l ∈ L
with l - g, h. By what we have shown already U := -(l) = {l′ ∈ L : l′ - l} is open
in L. Define

β : U2 → L2, (g′, h′) 7→
(
ιι(l, g), ιι(l, h)

)
.

As above we have that g′ ‖ h′ is equivalent to ιι(l, g′) = ιι(l, h′) by Lemma 2.4(c)
and (A4); so β−1(L2 \ idL) is an open neighbourhood of (g, h) contained in ∦.

(b) For (p, l) ∈ P×Lwe have d(p, l) ∈ {1, 5} if and only if ι(p, l) ‖ l; this fact is
easily checked in a completion ofA. SoD3∩(P×L) = {(p, l) ∈ P×L : ι(p, l) ∦ l}
is open by the continuity of ι and (a). Thus D3 is open, because it is the union
of this set and its inverse regarded as a relation. Thus A is a stable quadrangle,
because the openness of the end-point map is here simply the continuity of π
and λ|D3 .

(c) This is a general fact about stable graphs whose vertex set is a Hausdorff
space and whose diameter is bounded by the girth minus 2; see [17, Proposi-
tion 5.8]. IfA is topological we can also proceed directly: the incidence relation
I = {(p, l) ∈ P × L : ι(p, l) = l} is closed, because L is a Hausdorff space. The
sets {p} × L and P × {l} are closed in P × L; so panels are closed.

For (d) and (e) see Theorem 8.1(c) and (a).

Our next aim is to construct a compact completion of a topological affine
quadrangle with locally compact point and line spaces. In order to define this
notion, let Q = (P,L, I) be a topological generalized quadrangle; i.e. P and L
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carry Hausdorff topologies such that π and λ are continuous. Choose a vertex
∞ ∈ V , and let A be the derivation of Q at ∞ as defined in Section 2; then
A is a topological affine quadrangle with the topologies on the point and line
spaces induced from P and L, because the geometric operations of A can be
expressed by the geometric operations π and λ of Q as we will see below; in
this situation Q is called a topological completion of A. Consider the following
geometric compactness condition for a stable affine quadrangle.

(C-) For any compact set C1 × C2 ⊆ - of non-parallel line pairs the line set
D0,2,6(C1) ∩D0,2,6(C2) is compact.

The line set required to be compact in (C-) is defined by a closed relation, so
it is closed in any topological affine quadrangle. This line set can be expressed
by D0,2(C1) ∩ D0,2(C2) in a compact completion of an affine quadrangle, and
using this fact we will see below that the condition (C-) is satisfied in an affine
quadrangle which has a compact topological completion. The converse is also
true:

Theorem 3.2. An affine quadrangle has a completion to a compact topological
generalized quadrangle if and only if it is a topological affine quadrangle with
locally compact point and line spaces satisfying condition (C-).

Proof. Note that every affine quadrangle is the derivation of a generalized quad-
rangle by Corollary 2.7. So let Q = (P,L, I) be a generalized quadrangle with
disjoint point and line spaces, and set V := P ∪̇ L. Let ∞ ∈ P , and let
A = (Paff, Laff, Iaff) be the derivation at ∞, i.e. Paff = D4(∞), Laff = D3(∞)

and Iaff = D1∩ (Paff×Laff); set Vaff := Paff ∪̇Laff. All distances we specify will be
relative toQ. In this setting the set which is required to be compact in condition
(C-) is then simply D0,2(C1) ∩D0,2(C2).

Note that the geometric operations π, λ, ∨ and ∧ are defined for the general-
ized quadrangle Q as well as for the affine quadrangle A; however, in this proof
we will use the above symbols for the operations of Q only and refer to those
for A as restrictions.

First of all, if Q is a topological generalized quadrangle, then the geometric
maps π and λ are continuous. Thus the restrictions to the set (Paff × Laff) ∩
π−1(Paff) of point-line pairs at affine distance 3 are also continuous. Further-
more we have ι(p, h) = λ(p, λ(∞, h)) for (p, l) ∈ Paff × Laff and ιι(g, h) =

λ(π(∞, h), g) for (g, h) ∈ -; so A is a topological affine quadrangle. Using that
V is compact it is easy to conclude the closedness of D≤2 from that of D1. So
the relation D0,2 = D≤2 ∩ (L2 ∪ P 2) is closed. Thus for a compact set of non-
parallel line pairs C1×C2 ⊆ - the line set D0,2(C1)∩D0,2(C2) is closed, and the
condition (C-) follows, because V is compact.
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Figure 1: Compactness of L

Now assume that A is a topological affine quadrangle such that (C-) holds
and the topological sum Vaff = Paff ∪̇ Laff is locally compact. Then A is a stable
quadrangle by Proposition 3.1(b). It suffices to show that there is a compact
Hausdorff topology on V such that the adjacency relation D1 is a closed subset
of V 2 and such that on Vaff the given topology is induced (see [8, 2.1(a)]). We
have that ι, ιι and the restrictions of π and λ to (Paff × Laff) ∩ π−1(Paff) are
continuous. By Proposition 3.1(e) the affine restrictions of ∧ and ∨ are open
and continuous.

We introduce a topology on V \ {∞}. This topology is generated by three
types of subsets:

(a) the open subsets of Vaff,

(b) the sets D1(U) \ C for open U ⊆ Laff and compact C ⊆ Paff and

(c) the sets D2(U) \ C for open U ⊆ Laff and compact C ⊆ Laff.

(1) V \ {∞} is a Hausdorff space and induces the original topology on Vaff:
Taking U = Laff and C = ∅ in (b) and (c) we see that P \ {∞} and L are open
subsets of V \ {∞}. Furthermore P \ {∞} and L are Hausdorff spaces, because
D4 ∩L2

aff and - are open in L2
aff by Proposition 3.1. Thus V \ {∞} is a Hausdorff

space, which induces the original topology on Vaff, becauseD1 andD2 restricted
to V 2

aff are open relations by Theorem 8.1(b).

(2) D1(C) is a compact subset of Laff for any compact subset C ⊆ Paff: Let
g and h be two lines which meet in a point of C, and choose a compact neigh-
bourhood C1×C2 ⊆ - of (g, h). We have D2∩(C1×C2) = (L2

aff\D4)∩(C1×C2);
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∞

h

g

p

C2

g′

ιι(g′, C2) ⊆ W

Figure 2: Local compactness of P

so ∧ is defined on a closed subset of C1 × C2, and C1 ∧ C2 is a compact neigh-
bourhood of g ∧ h ∈ C in Paff, because ∧ is continuous and open. Thus the
compact set C is covered by finitely many such sets, and D1(C) is compact by
(C-), since D1(C1∧C2) is a closed subset of the compact set D0,2(C1)∩D0,2(C2)

by Proposition 3.1(c).

(3) L is compact: Let (lσ) be a net in Lwithout a cluster point in Laff. Choose
q ∈ Paff. We have that finally lσ 6∈ D1(q), because otherwise (lσ) would have
a cluster point in the set D1(q) ⊆ Laff, which is compact by (2). Let g be a
cluster point of λ(q, lσ) ∈ D1(q); see Figure 1. By passing to a subnet (lσ) we
can assume that g is a limit. In order to show that (lσ) converges to λ(∞, g) let
h ∈ Laff ∩D2(λ(∞, g)) and let U be an open neighbourhood of h as well as C a
compact subset of Laff. Choose r ∈ Paff∩D1(h). We show that λ(r, lσ) converges
to h. Otherwise some cluster point h′ ∈ D1(r) of this net would not be parallel
to g, because there are no triangles. Then (lσ) would have a cluster point in the
compact setD0,2(C1)∩D0,2(C2) ⊆ Laff for a compact neighbourhoodC1×C2 ⊆ -
of (g, h′), which we excluded. Thus λ(r, lσ) converges to h and (lσ) is finally in
D2(U) \ C, because otherwise (lσ) would have a cluster point in C ⊆ Laff.

(4) The sets D1(U) \ C form a neighbourhood basis of p ∈ D2(∞) for neigh-
bourhoods U of a fixed g ∈ D1(p) ∩ Laff and compact subsets C of Paff: Let W
be an open neighbourhood of h ∈ D1(p) \ {g, p∨∞} and K ⊆ Paff be compact;
see Figure 2. Choose g′ ∈ -(g) ∩ D2(h). Then d(g′, g) = 4 and ιι(g′, g) = h,
so we can choose a compact neighbourhood C2 of g in -(g′) ∩ D4(g′) such that
ιι(g′, C2) ⊆ W . Then M := D0,2(g′) ∩ D0,2(C2) ⊆ D2(C2) is compact by (C-).
We have C2 ∧M = D1(C2) and D1(C2) ⊆ Paff ∪D1(ιι(g′, C2)) ⊆ Paff ∪D1(W ).
Since C2 is compact and W is open, the set D1(C2) \D1(W ) ⊆ Paff is closed by
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Proposition 3.1(c) and Theorem 8.1(b). Thus it is compact as a subset of the
compact set C2∧(M \W ). Now the compactness ofD1(C2)\D1(W ) implies that
D1(C2)\

(
(D1(C2)\D1(W ))∪K

)
= (D1(C2)∩D1(W ))\K is a neighbourhood

of p contained in the given neighbourhood D1(W ) \K.

(5) The set D1(C) is compact for a compact subset C of Laff: Let (pσ) be a
net in D1(C) without a cluster point in Paff. Choose lσ ∈ D1(pσ) ∩ C, and let
l ∈ C be a cluster point of the net (lσ). By passing to subnets we can assume
that l is a limit. In order to show that (pσ) converges to π(∞, l) let U ⊆ Laff be
an open neighbourhood of l and K ⊆ Paff be compact. Then (lσ) is finally in U
and (pσ) is finally in P \K, because otherwise (pσ) would have a cluster point
in K ⊆ Paff. Thus (pσ) is finally in D1(U) \ K, and we have shown that (pσ)

converges to π(∞, l) by (4). Thus D1(C) is compact.

(6) The one-point compactification V of V \ {∞} is a compact Hausdorff
space and induces the original topology on Vaff: As V \{∞} is a Hausdorff space,
V induces the original topology on V \{∞} and therefore on Vaff; see (1). By (3)
and (5) the set V \ {∞} is locally compact; so V is a compact Hausdorff space.

(7) D1 is a closed subset of V 2: It is enough to show that (P × L) \ D1 is
open in P × L, because P and L are open in V . Let (p, l) ∈ (P × L) \D1. We
need to find a neighbourhood of (p, l) which does not intersect D1. There are
6 = 3 · 2 cases according to P = Paff ∪̇D2(∞) ∪̇ {∞} and L = Laff ∪̇D1(∞). Let
p ∈ Paff. The case l ∈ Laff is clear, because the incidence relation Iaff is closed,
so let l ∈ D1(∞). Choose g ∈ D2(l) \ D1(p) and a relatively compact open
neighbourhood U×W of (p, g) in (Paff×Laff)\D1. ThenD1(U) ⊆ Laff is compact
by (3) and U × (D2(W ) \D1(U)) is a neighbourhood of (p, l) disjoint from D1.
Now let p ∈ D2(∞) and l ∈ Laff. Choose g ∈ Laff ∩D4(l) ∩D1(p) and an open
neighbourhood U1×U2 ⊆ D4 of (g, l). Then D1(U1)×U2 is a neighbourhood of
(p, l) disjoint from D1. Let l ∈ D1(∞). Choose g ∈ D1(p) ∩ Laff and h ∈ D2(l).
Then g - h and we can choose a compact neighbourhood C1 × C2 ⊆ -. The set
C := D0,2(C1) ∩ D0,2(C2) is compact by (C-), and D1(C1) × (D2(C2) \ C) is a
neighbourhood of (p, l) disjoint from D1. If p = ∞, then l ∈ Laff. Let C be a
compact neighbourhood of l in Laff. Then (P \D1(C)) × C is a neighbourhood
of (p, l) by (5).

In the next section we will show that for connected locally compact topologi-
cal affine quadrangles the condition (C-) is automatically satisfied. For the sake
of completeness we mention the following result.

Theorem 3.3. A locally compact stable affine quadrangle with closed weak and
strong parallelisms that satisfies (C-) has a compact completion.

A proof can be found in [17, Corollary 7.9]. There is an analogous result
for affine planes: a locally compact affine stable plane has a compact comple-
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tion if and only if for any compact point set C the line set D1(C) is compact;
see [15]. In this case the closedness of the parallel relation is automatically
satisfied because of stability. The above mentioned result about affine stable
planes was first proved by Grundhöfer in [5] assuming that pencils are compact
and drawing parallels is continuous (which is easily seen to be equivalent to the
above compactness condition involving D1(C)) and also by Löwen assuming
local connectedness; see [10]. The proof in [15] uses different methods: usu-
ally a geometric completion is endowed with a topology; by contrast, in [15] a
suitable quotient of the Stone-Čech compactification is made into a geometry.

4 Pseudo-isotopic contractions and completion

In the previous section we have shown that a topological locally compact affine
quadrangle has a compact completion to a generalized quadrangle if and only if
the condition (C-) is satisfied. In this section we show that this condition follows
if the affine quadrangle has connected point and line spaces. The crucial point
in the proof is to show that for non-parallel lines g and h at distance 4 the line set
R := D2,6(g)∩D2,6(h) is compact (in the case of a symplectic quadrangle such a
set would be a regulus). The set R has two distinguished lines, namely the lines
ιι(g, h) and ιι(h, g), which play a special role, because they only meet one of the
lines g and h. This makes it hard to show that R is homeomorphic to the one-
point compactification of either of the point rows D1(g) or D1(h). To see that R
is compact we will use more geometric properties of the affine quadrangle than
was necessary for the completion theorem of the previous section.

Let G = (V,E) be a generalized quadrangle regarded as a graph, and let
(u, v) ∈ D4. Then the map

[u, v] : D1(u)→ D1(v), x 7→ y ∈ D2(x) ∩D1(v)

is a well-defined bijection (with inverse [v, u]), a so-called projectivity. This
map can also be defined if (u, v) ∈ D2 but only on D1(u) \ D1(v); then it is
constant, and its value is the vertex in D1(u)∩D1(v). If u,w ∈ D4(v) we define
[u, v, w] := [v, w] ◦ [u, v]. As above this map is defined on D1(u) \ D1(v) and
constant if d(u, v) = 2.

Now let (v0, . . . , v8 = v0) be an ordinary quadrangle in G, and choose e ∈
D1(v1) \ {v0, v2}. Then we can define a multiplication on

(
D1(v0) \ {v7}

)
×
(
D1(v1) \ {v2}

)
→ D1(v0) \ {v7} by

x ◦ y := [e, v4, v0] ◦ [y, v6, e] ◦ [v0, v4, y](x).
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x′ ◦′ y

Figure 3: The multiplications ◦ and ◦′

This is the multiplication given in [6, 4.1(ii)] conjugated with [v0, v4] in order
to make it more suitable for the affine case. It is well known and easy to show
that the right multiplication x 7→ x ◦ y by y is bijective for y 6= v0 with inverse
[y, v4, v0] ◦ [e, v6, y] ◦ [v0, v4, e]; furthermore it is the identity for y = e, and we
have v1 ◦ y = x ◦ v0 = v1 for all x, y so that v1 and v0 play the role of zero-
elements.

Now let∞ ∈ V , and letA = A∞ = (P,L, I) be the affine derivation of G with
respect to∞. We will express the above multiplication in terms of the geometric
operations of the affine quadrangle in the cases v5 = ∞ and v4 = ∞; see
Figure 3. Only the perspectivities [u, v, w] in the three cases v =∞, v ∈ D1(∞)

and v ∈ D2(∞) and u,w ∈ P ∪̇ L occur in these two multiplications, and in the
respective cases the perspectivities have the form

[u, v, w](x) =





ι(w, x),

ιι(w, ι(x, l)) ∧ w for some l ∈ L ∩D2(v) and

λ(w, ιι(x, l)) for some l ∈ L ∩D1(v).

This means we have two multiplications

◦ : R×R′ → R and ◦′ : R′ ×R→ R′,

where o ∈ P is an arbitrary point of A, o′, e′, u′ ∈ D1(o) are three distinct lines
of A and R := D1(o′) and R′ := D1(o) \ {u′}; see Figure 3. If A is a topologi-
cal affine quadrangle, then the multiplications ◦ and ◦′ are continuous, because
all the defining perspectivities can be expressed by the geometric operations of
the affine quadrangle A, as we have seen; furthermore the right multiplications
by elements different from o′ or different from o, respectively, are homeomor-
phisms.

We can now prove the following lemma. For a topological space X a pseudo-
isotopic contraction onto x ∈ X relative to x is a continuous map Λ : [0, 1]×X →
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X such that Λ(1, ·) = idX , Λ(0, X) = {x} and Λ(t, · ) is a homeomorphism
fixing x for every t ∈ (0, 1).

Lemma 4.1. In a topological affine quadrangle with locally arcwise connected
and non-discrete line pencils and point rows the line pencils minus one line and the
point rows are pseudo-isotopically contractible to any of their elements relative to
that element. In particular the panels are path-connected and connected.

Proof. Choose o, o′, e′, u′ and define ◦ : R × R′ → R as above. Then the multi-
plication ◦ is continuous and for all y′ ∈ R′ \ {o′} the right multiplication · ◦ y′
is a homeomorphism. We can choose e′ and an arc λ : [0, 1] → R′ such that
λ(0) = o′ and λ(1) = e′. Then Λ : [0, 1]× R → R, (t, x) 7→ x ◦ λ(t) is a pseudo-
isotopic contraction of the point row D1(o′) = R to o relative to o. Analogously
the statement for line pencils follows using the multiplication ◦′.

The conclusion of the above lemma is true for every topological affine quad-
rangle with locally compact point and line spaces which are not both totally
disconnected; see Theorem 8.5(b). Thus it follows that in this case all panels
and the point and line spaces are connected and locally arcwise connected.

We can now prove the main result of this section, which says that any locally
compact connected affine quadrangle has a compact completion. In order to get
a compact completion we need to verify condition (C-). In a first step we prove
that the sets D0,2,6(g) ∩ D0,2,6(h) for (g, h) ∈ - are compact. This is done with
the aid of Theorem 7.1. In a second step we show using Proposition 7.2 that
this implies (C-) for all compact sets C1 and C2.

Theorem 4.2. Every topological affine quadrangle with locally compact and con-
nected point and line spaces has a compact completion.

Proof. Let (P,L, I) be such an affine quadrangle, and let D1(p) be a line pencil
and g and h be two of its lines. By Lemma 4.1 and the following remark the set
D1(p) \ {g} is pseudo-isotopically contractible to h relative to h and vice versa
D1(p)\{h} to g. Thus D1(p) is connected and also compact by Theorem 7.1. As
a result the line set D1(C) is compact for every compact point set C by the con-
tinuity of ι and Proposition 7.2. Because λ has a closed graph, this implies that
λ is continuous. Furthermore ∧ is continuous by Proposition 3.1(e). Thus for
(g, h) ∈ -∩D4 the sets R \ {ιι(g, h)} and R \ {ιι(h, g)} for R := D2,6(g)∩D2,6(h)

are homeomorphic to point rows which are pseudo-isotopically contractible to
any point by Lemma 4.1 and the following remark. This implies that R is con-
nected and also compact by Theorem 7.1. (Note the special role of the two lines
ιι(g, h) and ιι(h, g) of R; all other lines meet g and h in affine points. This means
that a priori we have precisely two pseudo-isotopic contractions as required by
Theorem 7.1.)
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Let C1 × C2 ⊆ - be compact and (g, h) ∈ C1 × C2. If d(g, h) = 2, then
D0,2,6(g)∩D0,2,6(h) = D1(g∧h). So in any case D0,2,6(g)∩D0,2,6(h) is compact
and connected. The relation

R := {((g, h), l) ∈ -× L : (g, l), (h, l) ∈ D0,2,6}

is a closed subset of - × L, because D0,2,6 is closed, as D4 is open. Because of
the fact that ιι ⊆ R we can apply Proposition 7.2 and obtain that R(C1 ×C2) =

D0,2,6(C1) ∩ D0,2,6(C2) is compact. Thus (C-) holds and there is a compact
completion by Theorem 3.2.

5 Tits quadrangles

In this section we show that Tits quadrangles constructed from a topological
ovoid are topological. Let P = (P,L) be a projective space. For point sets A and
B with A ∩ B = {p} we set A ∧ B := p. If A is a line, then A is called a tangent
of B through p. A line is called a secant of B if it intersects B in precisely two
points. An ovoid O of P is a non-empty set of points such that l ∩ O contains
at most two points for all lines l and such that for every p ∈ O the union of
all tangents through p is a hyperplane Tp, i.e. a maximal proper subspace of
P; the hyperplanes Tp are called the tangent hyperplanes of O. By definition
ovoids only exist in projective spaces of dimension at least 2. For example, an
ovoid in a 2-dimensional projective space, i.e. in a projective plane, has a unique
tangent through every point, because the hyperplanes are the lines. Thus ovoids
in projective planes are just ovals.

Ovoids in Desarguesian projective spaces are special kinds of fourgonal fam-
ilies; see [1] for definitions. Out of any fourgonal family an affine quadrangle
and therefore a generalized quadrangle can be constructed, in fact an elation
generalized quadrangle; see [24]. Using Theorem 2.6 we give a different proof
here (in the case of ovoids).

Theorem 5.1. Let H be a hyperplane of a projective space (P0, L0), and let O be
an ovoid of H . Then the incidence geometry

AO := (P,L) with P := P0 \H and L := {l ∈ L0 : l 6⊆ H and l ∧H ∈ O}

is an affine quadrangle.

Proof. For lines g, h ∈ L let g | h if and only if g∧H = h∧H and g ‖ h if and only
if (g + h) ∩ O is a single point. We verify Condition (b) from Theorem 2.6. For
(A1) note that lines of a projective space and ovoids contain at least 3 points.
The unique line l required by (A3) is p+ (h ∧H) and the one required for (A4)
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is ((Th∧H + h) ∧ g) + (h ∧H). And finally, if (p+ h) ∩ O = {r, h ∧H} with the
notation of (A5), then the required line is p+ r.

Let P = (P,L) be a projective space of finite projective dimension. The
projective space P is called topological if P and L carry Hausdorff topologies
such that the geometric operations + of joining subspaces and ∩ of intersecting
subspaces are continuous for subspaces with fixed dimensions (more precisely
for k1, k2, k3 ∈ N the map + restricted to pairs (U1, U2) of subspaces of P with
dimU1 = k1, dimU2 = k2 and dim(U1 + U2) = k3 is continuous, and analo-
gously for ∩). For more details see [7] or [4]. For an ovoid O of P let LO :=

{l ∈ L : l ∩ O 6= ∅} be the set of all lines meeting O, and let HO be the set of all
hyperplanes meeting O. The ovoid O is called topological if the maps

∧O : LO → O ∗O, l 7→ l ∩ O and

T : O → HO, p 7→ Tp

are continuous, where O ∗ O denotes the symmetric product, i.e. the quotient
space of O ×O under the map (p, q) 7→ {p, q}.

Proposition 5.2. Let H be a hyperplane of a topological projective space, and
let O be a topological ovoid of H . Then the geometry AO is a topological affine
quadrangle. Furthermore the geometric operation λ is continuous on its whole
domain.

Proof. Note that π(p, l) = λ(p, l) ∧ l for point-line pairs (p, l) at distance 3. By
the proof of Theorem 5.1 we have ι(p, h) = p + (h ∧ H), ιι(g, h) = ((Th∧H +

h) ∧ g) + (h ∧H) and λ(p, l) = p + ϕ((p + h) ∩H,h ∧H) where ϕ(g, r) := s if
g ∩ O = {r, s} for a line g and points r and s of H . So we only need to show
that ϕ is continuous, which follows from the continuity of ∧O , because for every
Hausdorff space X the map {({x, y}, x) ∈ (X ∗X)×X} → X, ({x, y}, x) 7→ y is
continuous.

Theorem 5.3. Let H be a hyperplane of a compact topological projective space,
and let O be a topological ovoid of H . Then the affine quadrangle AO has a
compact completion to a generalized quadrangle.

Proof. Let P = (P0, L0) be a projective space as above. In this proof the symbols
D and d refer to distances in A := AO = (P,L) and the symbol ∧ denotes inter-
section in P . The hyperplaneH is compact. Thus the ovoid O is compact, which
can be seen using the map introduced at the end of the proof of Proposition 5.2
as O ∗ {p} = ∧O({l ∈ L : p ∈ l ⊆ H}) for p ∈ O. Let C1 × C2 be a compact
subset of -. By Theorem 3.2 we need to show that D0,2,6(C1) ∩ D0,2,6(C2) is a
closed subset of the compact set L0. Let (lσ) be a net in this set converging to
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a line l ∈ L0. We need to show that l ∈ L, because L2 ∩ D0,2,6 = L2 \ D4 is
closed in L by Proposition 3.1(d). There are lines giσ ∈ Ci meeting lσ in a point
of P0 for i = 1, 2. Since the sets C1 and C2 are compact, we can assume that
(giσ) converges to some gi ∈ Ci, and since O is compact, we can assume that
pσ := lσ ∧H converges to some point p ∈ O. Note that the lines l and gi meet in
P0; we can assume that they are not equal. Thus the net (lσ ∧ giσ) converges to
l∧gi. We consider two cases. If p 6∈ {l∧g1, l∧g2}, then l = 〈p, l∧g1, l∧g2〉 is not
contained in H , because otherwise l would meet O in three points, since g1 - g2.
Thus l ∈ L. Now assume p = l ∧ g1. The net tσ := (lσ + g1

σ) ∩H converges to a
line t := (l + g1) ∩ H . Thus the set ∧O(tσ) = {lσ ∧ H, g1

σ ∧H} = {pσ, g1
σ ∧H}

converges to {p, g1∧H} = {p}, since p = l∧g1 = g1∧H . Thus by the continuity
of ∧O we have ∧O(t) = {p}. If l ⊆ t+ g1 were contained in H , then l = t would
not meet g2, because O ∩ t = ∧O(t) = {p}. Thus l ∈ L.

There are many known topological ovals in the compact projective planes
over local fields; see [27]. These ovals are continuously differentiable, which
means in the compact case that they are topological in our sense. Thus the
above theorem yields that the Tits quadrangles constructed from these ovals
are compact totally disconnected topological generalized quadrangles.

The following theorem is a generalization of a theorem of Buchanan, Hähl
and Löwen; see [3].

Theorem 5.4. Every closed ovoid of a compact connected topological projective
space with finite small inductive dimension is a topological ovoid which is homeo-
morphic to a sphere. Furthermore the set of all secants is open in the space of lines,
and the set of all tangents as well as the set of all tangent hyperplanes is compact.

Proof. Let O be a closed ovoid of a projective space (P,L) as above. Any com-
pact connected projective space of projective dimension greater than 2 is finite-
dimensional and in particular locally Euclidean; see [7, 2.10]. This implies that
P is locally Euclidean: if the space is a projective plane, then the ovoid O is
a topological oval and it is shown in [3, 3.5] that topological ovals only exist
if the panels have small inductive dimensions 1 or 2; so the projective plane is
locally Euclidean by [18, 53.7]. Thus for any p ∈ O the image of the continuous
map O \ {p} → L, q 7→ q + p is homeomorphic to some Rn, and it follows with
Buchanan’s theorem (see [18, 55.10]) that O is homeomorphic to Sn.

The set LO is compact as a closed subset of a compact set. Let S be the
set of secants of O. Note that the line space L is locally homeomorphic to the
product of two hyperplanes and therefore to the product of two line pencils.
Thus L is locally homeomorphic to ∧O(S), because this set is locally homeo-
morphic to O×O. The inverse of the restriction ∧O : S → ∧O(S) is continuous,
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because the map of joining points is continuous. Thus by domain invariance
(see [18, 51.19]) the map ∧O : S → ∧O(S) is a homeomorphism, and the set S
of secants is an open subset of the line space L. Thus the set LO \ S of tangents
of O is compact.

Let (lσ) be a net in LO converging to l ∈ LO. For the continuity of ∧O we
need to show (sσ) −→ ∧O(l) for sσ := ∧O(lσ). This net has a cluster point s
in O ∗ O, since O ∗ O is compact. In order to show that s = ∧O(l) we consider
three cases. If |∧O(l)| = 2, then (lσ) consists finally of secants, because the set
of secants is open, and the continuity of ∧O : S → ∧O(S) finishes this case. If
|s| = 2, then (sσ) finally consists of sets with two elements, and the continuity of
joining proves this case. If finally |∧O(l)| = |s| = 1, then s ⊆ l, since incidence
is closed, so again s = ∧O(l).

Since the set of secants is open, the set of all hyperplanes containing a secant
is open by [4, 4.6]. The set of all hyperplanes meeting the compact set O is
compact. Thus the set TO of all tangent hyperplanes is compact, which implies
that the map T is continuous, since its graph is closed as the incidence relation
is closed.

The next result follows from the previous two theorems.

Corollary 5.5. Let H be a hyperplane of a compact connected topological projec-
tive space, and let O be a closed ovoid of H . Then the affine quadrangle AO has a
compact connected completion to a generalized quadrangle.

This result was first proved in [12]. It is also contained in [9], but the proof
of Proposition 2.21 which is part of our Theorem 5.4 is not convincing. Both
approaches use the same techniques which were used in [20] in order to con-
struct topological generalized quadrangles out of locally Euclidean topological
Laguerre planes; cf. the next section.

As we have seen above the compact Tits quadrangles from Corollary 5.5 are
locally Euclidean (like all known compact connected examples). Furthermore
the point rows of the affine quadrangle AO are homeomorphic to R or to R2,
and in the second case the line pencils are also 2-dimensional: compact ovoids
only exist in projective spaces over the reals or the complex numbers, and in
the case of the complex numbers these ovoids are ovals, i.e. the projective space
has dimension 2; see [3, 3.4]. In fact, Buchanan has shown that all compact
ovals of the Desarguesian complex projective plane are conic sections; see [2].
Because every projective plane which is embedded in a three-dimensional pro-
jective space is Desarguesian, this implies that the compact Tits quadrangles
with 2-dimensional panels are classical orthogonal quadrangles. In the next
section we will see that there are also numerous non-classical examples with
2-dimensional panels.
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6 The Lie geometry of a Laguerre plane

In this section we describe how affine quadrangles can be constructed from
Laguerre planes. For the definitions of Laguerre planes and properties of topo-
logical Laguerre planes see the excellent overview in [23]. Let L = (S,C) be a
Laguerre plane with point set S and circle set C, and let F := {(s, c) ∈ S × C :

s ∈ c} denote the set of flags of L. The equivalence relation ∼ on F of touching
is defined by (s, c) ∼ (t, d) if and only if s = t and either c ∩ d = {s} or c = d.
The equivalence class of (s, c) is denoted by [s, c]. Consider the following condi-
tion, which says that there is a unique circle in the class [s, c] touching a given
circle not containing s.

(B) For all (s, c) ∈ F and d ∈ C with s 6∈ d there is a unique flag (s, e) ∈ [s, c]

such that |e ∩ d| = 1.

If condition (B) is satisfied, a function βB(s, c, d) := e is defined. The condi-
tion is satisfied for finite Laguerre planes if the cardinality of the circles is even
(see [13]) and for finite- and positive-dimensional locally compact topological
Laguerre planes; see [20, 3.3].

Theorem 6.1. For a Laguerre plane L = (S,C) with flag set F define the incidence
geometry

AL := (C,F/∼, I) where I := {(c, [s, c]) : (s, c) ∈ F}.

If condition (B) is satisfied, then AL is an affine quadrangle.

Proof. In order to prove that AL is an affine quadrangle we verify Condition (b)
from Theorem 2.6 for the equivalence relations | and ‖ on L given by [s, c] | [t, d]

if and only if s ‖ t (here ‖ is the parallel relation in L) and [s, c] ‖ [t, d] if and
only if s = t.

Now (A1) follows from the corresponding axiom for Laguerre planes, (A2′)
is just the fact that two distinct touching circles meet in only one point, (A3)
follows from the axiom about parallel projection onto a circle, (A4) from the
existence and uniqueness of touching circles and (A5) from condition (B).

Theorem 6.2. Let L be a topological Laguerre plane such that condition (B) is
satisfied and βB is continuous. Then AL is a topological affine quadrangle.

Proof. Let q : F → F/∼ be the quotient map. For an open subset U of F let
(s, c) ∈ q−1(q(U)). Then there is a flag (s, d) ∈ U such that (s, c) ∼ (s, d).
Choose t ∈ d \ {s}, and define the continuous map f : F → F, (s, c) 7→
(s, β(s, c, t)). Then we have f(s, c) = (s, d) ∈ U and f−1(U) ⊆ q−1(q(U)). Thus
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the quotient map q is open, and we conclude that F/∼ is a Hausdorff space,
since ∼ is closed. As hinted at in the proof of Theorem 6.1 the geometric op-
erations of AL are given by ι(c, [t, d]) = [‖(t, c), c], ιι([s, c], [t, d]) = [t, β(s, c, t)],
π(c, [t, d]) = βB(t, d, c) and λ(c, [t, d]) = [s, c] with s ∈ βB(t, d, c) ∩ c. Thus they
are continuous by the universal property of the quotient topology.

By Theorem 4.2 we have the following result.

Corollary 6.3. Let L be a topological Laguerre plane with connected locally com-
pact point and line spaces such that condition (B) is satisfied and βB is continuous.
Then the affine quadrangle AL has a compact connected completion.

As mentioned earlier compact connected ovals only exist in 1- and 2-dimen-
sional projective planes, which are always locally Euclidean. This has the con-
sequence that finite-dimensional Laguerre planes are locally Euclidean and that
the circles are either homeomorphic to S1 or to S2. By [20, 3.11] the condition
(B) is satisfied and βB is continuous for locally Euclidean topological Laguerre
planes; this yields the following result, which was first proved by A. E. Schroth
with different techniques; see [19, 4.15] or [20, 3.13]. A version for Laguerre
spaces was obtained by M. Margraf in [12].

Corollary 6.4. Let L be a topological locally Euclidean Laguerre plane. Then the
affine quadrangle AL has a compact connected completion.

Topological Laguerre planes have been intensively studied by Steinke; see the
overview in [23] for more details. For a long time no non-classical 4-dimensio-
nal Laguerre planes were known. In [21] Steinke gave the first such examples.
Some of these examples can be obtained by gluing together two halves of a
classical Laguerre plane; see [22]. Thus the above results give many examples
of generalized quadrangles with 1- or 2-dimensional panels.

Only recently the connection of circles planes and generalized quadrangles
was used to give the first non-classical example of a 4-dimensional Minkowski
plane; see [11].

7 Two compactness criteria

The following theorem is taken from [16], and it roughly says that a space is
compact if it admits two points such that the complement of each of these points
is pseudo-isotopically contractible to the other point. This theorem is the crucial
ingredient in our proof of the fact that every connected locally compact affine
quadrangle has a compact completion to a generalized quadrangle.
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Theorem 7.1. Let X be a locally compact Hausdorff space. Assume that there
are elements x, y ∈ X such that X \ {x, y} is locally connected and X \ {y} is
pseudo-isotopically contractible to x relative to x and X \ {x} to y. Then X is
compact.

The next proposition says that the compact union of compact connected
spaces is compact.

Proposition 7.2. Let X be a compact space, and let Y be a locally compact Haus-
dorff space. Let f : X → Y be a continuous map and R ⊆ X × Y be closed such
that f ⊆ R. If R(x) is compact and connected for every x ∈ X , then R and the
projection R(X) are compact.

Proof. We need to show that any net (xσ , yσ) in R has a cluster point in R.
By the compactness of X we can assume that (xσ) converges to some x ∈ X .
Since Y is a locally compact Hausdorff space and R(x) is compact, there is
a compact neighbourhood U of R(x) in Y . In order to show that R(xσ) is
finally contained in U we assume the contrary. Because f(xσ) converges to
f(x) ∈ R(x), we know that R(xσ) finally meets U ; so we can assume that there
are uσ ∈ ∂U ∩ R(xσ), because the sets R(xσ) are connected and U is closed as
a compact subset of a Hausdorff space. Since the boundary ∂U is compact, the
net (uσ) has a cluster point u ∈ ∂U ⊆ U which satisfies (x, u) ∈ R, because R
is closed. This contradicts the fact that R(x) is contained in the interior of U .
Thus R(xσ) is finally contained in U and the net (yσ) has therefore a cluster
point y ∈ U . Again by the closedness of R we have (x, y) ∈ R. Thus R and the
continuous image R(X) of the projection to Y are compact.

Without the connectedness assumption on R the above proposition is false.

8 Facts about stable polygons

In this appendix we collect results about stable polygons which are unpublished
so far. Theorem 8.1 is basic to the theory of topological affine quadrangles;
so we sketch its proof here. The only other result used in this article is Theo-
rem 8.5(b) (which relies on some of the other facts). We do not prove it here,
because it is merely used to give the full strength of Theorem 4.2, where we
would otherwise have to assume local arcwise connectedness; compare the re-
mark after the proof of Lemma 4.1. The other results are given for the sake of
completeness.
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A thick bipartite graph (V,E) with girth at least 2n and with a topology on
the vertex space V is called a stable n-gon or simply a stable polygon if the end-
point map

{p ∈ V n : p a reduced path} → V 2, (v1, . . . , vn) 7→ (v1, vn)

is an open map. If (V,E) is a graph with girth at least 2n, then functions

fl,i : Dl → V, (v, w) 7→ x ∈ Di(v) ∩Dl−i(w)

can be defined for integers l and i with 0 ≤ i ≤ l < n. A thick bipartite graph
with girth at least 2n and with a topology on V is a stable n-gon if and only
if Dn−1 is an open subset of V 2 and fn−1,1 is continuous; see [17, Proposi-
tion 5.2].

Theorem 8.1. Let (V,E) be a stable n-gon and i, l ∈ Z with 0 ≤ i ≤ l < n.

(a) The geometric operation fl,i is a continuous and open map.

(b) The relationDl is an open relation; i.e. Dl(U) is open in V for all open subsets
U ⊆ V .

(c) The set Dn is an open subset of V 2.

(d) The parts and the graph-components of (V,E) are open in V .

Proof. For detailed proofs of these statements see [17, Proposition 1.8] and
[17, Lemma 5.4] together with [17, Proposition 2.10]. We sketch a proof here.
Set k := n − 1, and note that the maps fk,i are continuous for i = 0, . . . , k and
that their domain Dk is open. Furthermore, we can prolong any reduced path
to a path (v0, . . . , vm+k) of arbitrary length such that all paths (vj , . . . , vj+k) for
j = 0, . . . ,m are reduced, because (V,E) is thick and has girth at least 2k (even
2n); we call such paths k-reduced.

(a) Choose a k-reduced path (v0, . . . , vl+k). Then there is an open neigh-
bourhood U × W of (v0, vl) such that fk,i(x, fk,l(vl+k, y)) is defined for all
(x, y) ∈ U ×W . On Dl ∩ (U ×W ) this function equals fl,i which is therefore
continuous.

Choose a k-reduced path (vi−k, . . . , vi+k). Then there is an open neighbour-
hood U of vi such that fl,i(fk,i(x, vi−k), fk,l−i(x, vi+k)) = x for all x ∈ U (here
U has to be chosen so small that all paths occurring in the definition of this map
are k-reduced). Thus fl,i is open.

(b) The subset Dl(U) = fl,l(Dl ∩ (U × V )) is open by (a).

(c) Choose a k-reduced path (v0, . . . , vk+2). Then there is a neighbourhood
U×W of (vk, vk+2) such that the map fk,1(fk,2(v0, x), y) is defined for all (x, y) ∈
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U ×W , and it follows that U and W are disjoint. (This also shows part of Theo-
rem 8.3, namely that vertices at distance 2 can be separated, which implies that
panels are Hausdorff spaces.) Now there is a neighbourhoodX×Y of (v1, vk+2)

such that Y ⊆ W and fk,1(x, fk,1(y, v2)) is defined for all (x, y) ∈ X × Y
and maps into U . Then for z := fk,1(y, v2) the path (fk,0(x, z), fk,1(x, z), . . . ,

fk,k(x, z), y) is reduced, and we have X × Y ⊆ Dn.

(d) For (v, w) ∈ Dk the subset Dk(v) is an open neighbourhood of w, all of
whose vertices have finite and even distance from w.

Either all panels and the vertex space are discrete topological spaces or none
of these spaces is discrete:

Theorem 8.2. The vertex space and all panels of a graph-connected stable polygon
are discrete topological spaces if and only if some panel has an isolated element. If
a stable n-gon is not discrete then its girth equals 2n and n is uniquely determined.

Proof. See [17, Proposition 2.9 and 2.10].

Stable polygons automatically satisfy some separation properties:

Theorem 8.3. The panels of a stable n-gon are Hausdorff spaces; vertices at dis-
tance less than 2n − 1 can be separated. If the adjacency relation D1 is a closed
subset of V 2, then also the vertex space is a Hausdorff space.

Proof. See [17, Theorem 2.17] (or the proof Theorem 8.1(c)).

Stable polygons satisfy strong local homogeneity properties:

Theorem 8.4. In a graph-connected stable n-gon all panels and its two parts are
locally homogeneous, the parts are locally homeomorphic to a product of n − 1

panels and the panels D1(v) and D1(w) are locally homeomorphic if d(v, w) is
even.

Proof. The proofs of these statements are local versions of the ones for gener-
alized polygons and depend on local coordinates and local perspectivities; see
[17, Proposition 2.3] and [17, Theorem 2.7].

The next theorem shows that the vertex space and the panels of a locally
compact stable polygon are topological spaces which share many properties of
topological manifolds.

Theorem 8.5. Let (V,E) be a stable n-gon such that V is locally compact.

(a) Then V is metrizable and the graph components are second countable.
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(b) The vertex space and the panels are all totally disconnected or they are all
locally arcwise connected and locally contractible.

(c) If the vertex space has positive finite small inductive dimension, then the
graph-components and all panels are ENRs and cohomology manifolds over
any countable principal ideal domain with a unit.

Proof. These results are proved using a local addition and a local multiplication,
which can be defined in stable polygons; see [17, Theorem 4.12 and 4.13].
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