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Gauge theory on Aloff–Wallach spaces

GAVIN BALL

GONCALO OLIVEIRA

For gauge groups U.1/ and SO.3/ we classify invariant G2–instantons for homo-
geneous coclosed G2–structures on Aloff–Wallach spaces Xk;l . As a consequence,
we give examples where G2–instantons can be used to distinguish between different
strictly nearly parallel G2–structures on the same Aloff–Wallach space. In addition
to this, we find that while certain G2–instantons exist for the strictly nearly parallel
G2–structure on X1;1 , no such G2–instantons exist for the 3–Sasakian one. As
a further consequence of the classification, we produce examples of some other
interesting phenomena, such as irreducible G2–instantons that, as the structure varies,
merge into the same reducible and obstructed one and G2–instantons on nearly
parallel G2–manifolds that are not locally energy-minimizing.

53C07, 53C29, 53C38, 57R57

1 Introduction

A 3–form ' on an oriented 7–dimensional manifold X7 is called a G2–structure
if it takes values in a certain open subbundle ƒ3

C
� ƒ3 . Such 3–forms ' deter-

mine (in a nonlinear way) a Riemannian metric g' . In the case when the holonomy
of g' lies inside the exceptional Lie group G2 , the pair .X7; '/ is called a G2–
manifold, or equivalently ' is said to be torsion free. A G2–instanton is a solution
to a gauge theoretical equation that can be written in an oriented 7–dimensional
manifold X7 equipped with a G2–structure ' . Even though G2–instantons have been
part of the mathematical literature for over 30 years now (see Corrigan, Devchand,
Fairlie and Nuyts [12]), it was only in the past few years that the first nontrivial
examples appeared, namely from Sá Earp and Walpuski [25; 26; 27], Clarke [11] and
Lotay and Oliveira [22; 24]. This and recent interest in G2–instantons is mostly due to
the suggestion by Donaldson, Segal and Thomas [14; 15] that it may be possible to
use G2–instantons to construct an enumerative invariant of G2–manifolds. However,
adding to the scarcity of examples there are substantial difficulties in constructing such
an invariant. In fact, it is conceivable that in order to overcome some of these difficulties
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one may need to consider G2–structures that are not torsion free. Indeed, there is a
larger class of G2–structures, other than just the torsion-free class, with respect to
which the G2–instanton equation still lies in an elliptic complex. All of this leads
us to investigate G2–instantons for these more general G2–structures. For example,
one may ask to what extent G2–instantons are persistent under deformations of the
G2–structure. In this paper we classify homogeneous (invariant) G2–instantons on an
infinite family of 7–manifolds admitting many such G2–structures. As a consequence
we find many examples of new phenomena and are able to investigate what happens to
the G2–instantons when the G2–structure varies.

1.1 Preliminaries

Let .X7; '/ be a compact, oriented, 7–manifold equipped with a G2–structure ' .
Let g' be the induced Riemannian metric, �' the associated Hodge star, and  the
4–form �' ' . If G is a compact, semisimple Lie group and P ! X is a principal
G–bundle, a connection A on P is called a G2–instanton if

(1-1) FA ^ D 0;
where FA denotes the curvature of A. When the G2–structure is coclosed, ie d D 0,
the G2–instanton equation lies in an elliptic complex and we shall restrict to this case.
The torsion-free G2–structures correspond to the special case when ' is harmonic. One
other special class of coclosed G2–structures are the so-called nearly parallel ones, for
which d'D� for some �¤0. If ' is nearly parallel, then g' is Einstein with positive
scalar curvature. Another perspective on nearly parallel G2–structures is that they are
exactly those G2–structures for which the metric cone .RC �X7; gC D dr2C r2g'/
has holonomy contained in Spin.7/.

One other interesting class of connections on a principal bundle over an oriented
Riemannian manifold are the Yang–Mills connections. These are defined as the critical
points of the Yang–Mills energy

E.A/D 1

2

Z
X

jFAj2;

where we use an Ad–invariant inner product to compute the norm jFAj. If the G2–
structure is either torsion free or nearly parallel, then G2–instantons are also Yang–Mills
connections. Moreover, in the torsion-free case a simple computation (see (2-4)) shows
that any G2–instanton actually minimizes the Yang–Mills energy.
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1.2 Summary of the main results

The Aloff–Wallach space Xk;l is defined as the quotient of SU.3/ by a U.1/ subgroup,
whose embedding in SU.3/ is determined by two integers k and l . On each Xk;l we
consider a real 4–dimensional family C of G2–structures, which contains exactly two
nearly parallel G2–structures. As proved by Cabrera, Monar and Swann [9], for most1

k and l this family completely exhausts all homogeneous, coclosed G2–structures.
In fact, for k ¤ l , k ¤ 2l , l ¤�2k , the two nearly parallel G2–structures are strict,
meaning that the holonomy of the cone metric gC D dr2 C r2g' on RC � Xk;l
is exactly Spin.7/. These and other facts regarding the geometry of Aloff–Wallach
spaces are recalled, with more detail, in Section 3. In Section 3.2, we classify invariant
connections on each Xk;l . These results are then used in Section 4 to investigate
G2–instantons on the Aloff–Wallach spaces Xk;l , for k ¤ l , k ¤ 2l , l ¤�2k . The
remaining cases are analyzed separately in Section 5. We now summarize the main
results of those sections starting with the more general situation. In Section 4.2 we
classify invariant abelian G2–instantons with respect to all ' 2 C ; see Theorem 42.
Here we only state a corollary, which is proved in the third item of Remark 43:

Theorem 1 Let k ¤ l , k ¤ 2l , l ¤ �2k . For the generic ' 2 C there is a unique
invariant G2–instanton on any homogeneous complex line bundle over Xk;l . However,
for any such k and l , there do exist ' 2 C so that any such bundle has a 1–parameter
family of invariant G2–instantons.

Then, in Section 4.3, we focus on invariant G2–instantons with gauge group SO.3/.
Any homogeneous SO.3/–bundle on Xk;l can be constructed as

P�n
D SU.3/�U.1/k;l ;�n

SO.3/;

where �nW U.1/k;l ! SO.3/ is a group homomorphism and the integer n 2Z denotes
the degree of the induced map between maximal tori. We construct explicit maps
�i W C!R, for i D 1; 2; 3, whose significance is given in Theorem 44. Below we give
a summarized version of that result, when combined with Theorem 46.

Theorem 2 Let k ¤ l , k ¤ 2l , l ¤ �2k , and let ' be a homogeneous coclosed
G2–structure on Xk;l . Then invariant and irreducible G2–instantons on P�n

with
respect to ' exist if and only if one of the following holds:

1k ¤˙l , k ¤ 0 , l ¤ 0 , k ¤ 2l , l ¤�2k .
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(1) nD k� l and �1.'/ > 0,

(2) nD 2l C k and �2.'/ > 0,

(3) nD�l � 2k and �3.'/ > 0.

Moreover, if f'.s/gs2R�C is a continuous family of G2–structures with f�1.'.s//gs2R

crossing zero once from above, then as �1.'.s//& 0, two irreducible G2–instantons
on Pk�l merge and become the same reducible and obstructed G2–instanton for
�1.'.s//� 0. Similar statements hold for �2 and �3 .

To better visualize the content of the last part of this theorem we refer the reader to
Examples 48 and 49, together with their respectively accompanying Figures 1 and 2.
Recall that for k ¤ l , k ¤ 2l , l ¤ �2k , the Aloff–Wallach space Xk;l admits two
strictly nearly parallel G2–structures. As an application of Theorem 2, in Section 4.4,
we use G2–instantons to distinguish these for many values of k and l . Here we will
simply state the following:

Corollary 3 The are many examples of k and l as in Theorem 2 such that the two
inequivalent strictly nearly parallel G2–structures on Xk;l always admit invariant and
irreducible G2–instantons, but on topologically different SO.3/–bundles.

In Section 4.6 we consider a particular example, namely X1;�1 . As one other applica-
tion of Theorem 2, we show in Section 4.6.1 that X1;�1 admits nonabelian, irreducible
G2–instantons for a strictly nearly parallel G2–structure. These G2–instantons are also
Yang–Mills, as the G2–structure is nearly parallel, but contrary to the torsion-free case
we show in Section 4.6.2 that they are not energy-minimizing (not even locally). We
refer the reader to Figure 3 for a contour plot of the invariant Yang–Mills functional.
The results quoted above can be combined into the following:

Theorem 4 There is a strictly nearly parallel G2–structure ' on X1;�1 such that:

� For gauge group SO.3/, there is an irreducible G2–instanton A with respect
to ' .

� As a Yang–Mills connection, A is not locally energy-minimizing.

We now turn to the case when either kD l or kD 2l or l D�2k , which was excluded
from the previous results. Using the action of the Weyl group of SU.3/, and up to
coverings, we may assume k D l D 1, so that we are working on X1;1 . This case is
analyzed in Section 5. As already remarked before, on X1;1 the G2–structures we
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consider, ie those in C , are not all the homogeneous, coclosed ones. Nevertheless,
C does contain nearly parallel G2–structures, inducing two different metrics, one of
which is 3–Sasakian and the other strictly nearly parallel. There is however, one other
homogeneous nearly parallel G2–structure not in C , which a Sasaki–Einstein metric.
Our first result for X1;1 is Theorem 62, which classifies invariant abelian G2–instantons
with respect to the ' 2 C . The statement is similar to the case k ¤ l in Theorem 1. As
in that case, the generic ' admits a unique invariant G2–instanton on any line bundle,
however there do exist ' 2 C so that the space of invariant G2–instantons on any
complex line bundle is 3–dimensional. In fact, this can be interpreted in light of a more
general phenomenon explained in Proposition 17. Then, in Theorem 64, we consider
SO.3/–bundles over X1;1 , and for all ' 2C classify irreducible invariant G2–instantons
on them. The statement is however very similar to that of Theorem 2 and we shall omit
it in this introduction. Instead, we state here Corollary 73, which is a direct application
of that result. Its content is that the existence of invariant G2–instantons, with gauge
group SO.3/, distinguishes between the G2–structures inducing the 3–Sasakian and
the strictly nearly parallel metrics.

Theorem 5 Let 'ts and 'np be respectively the G2–structures inducing the 3–Sasakian
and the strictly nearly parallel metrics on X1;1 . Then there are no irreducible invariant
G2–instantons with gauge group SO.3/ for 'ts , but such G2–instantons do exist
for 'np .

Acknowledgements

We would like to thank Robert Bryant, Mark Haskins, Jason Lotay, Henrique Sá Earp,
Mark Stern, and Thomas Walpuski for conversations. In particular, we thank Thomas
Walpuski for having kindly suggested the interpretation given in Theorem 46 and its
visualization through the figures accompanying Examples 48 and 49.

2 Gauge theory and coclosed G2–structures

2.1 Background

We begin, in Section 2.1.1, with some basic facts about G2–structures2 and their torsion.
In Section 2.1.2 we recall some background on G2–gauge theory. In particular, we
identify the coclosed G2–structures, ie those for which d D 0, as the ones for which
the G2–instanton equation lies in an elliptic complex. Then, in Section 2.1.3, we derive

2See [8] for more on this and other aspects of G2–structures.
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some general results on the deformation theory of G2–instantons. These will be used
to give an abstract result, Proposition 13, yielding a criterion for when a G2–structure
has the property that any circle bundle processes a G2–instanton. As a consequence, in
Corollary 14 this result is applied in the strictly nearly parallel setting.

2.1.1 Coclosed G2–structures

Torsion of a G2–structure Fernández and Gray first classified the torsion of G2–
structures in [16] by decomposing r' into irreducible G2–representations. The
components of d' and d D d.�'/ can then be written in terms of those of r' .
What is nontrivial, but easily checked using the representation theory of G2 , is that the
converse is also true. Recall that the 2–forms and 3–forms decompose into irreducible
G2–representations as ƒ2Šƒ27˚ƒ214 and ƒ3Dƒ31˚ƒ37˚ƒ327 , where the subscript
denotes the dimension of the representation. The Hodge star is an isomorphism of
representations and so induces isomorphic decompositions in ƒ4 and ƒ5 . Using these
decompositions the Fernández–Gray classification can be recast as follows. Given a
G2–structure ' , we have

d' D �0 C 3�1 ^'C��3 and d D 4�1 ^ C �2 ^'
for some uniquely determined �02�0.X/, �12�1.X/, �22�214.X/ and �32�327.X/.
Of special interest to us will be the case when the G2–structure is coclosed, ie when
d D d.�'/D 0. Then �1 D �2 D 0 and d' D �0 C��3 .

For future reference we shall use �i , for i D 1; 7; 14; 27, to denote the projection onto
an i–dimensional irreducible representation. For example, if ! is a 2–form we shall
denote by �7.!/ the component of ! 2ƒ27 .

Nearly parallel G2–structures We now turn to the definition of nearly parallel G2–
structures. Given a closed, oriented, 7–manifold .X7; '/ equipped with a G2–structure,
its metric cone .RC�X7; gC Ddr2Cr2g'/ comes equipped with a Spin.7/–structure
determined by �D r3 dr ^'C r4 . From the Riemannian holonomy point of view,
if gC is nonsymmetric its holonomy is one of the groups in the ascending chain

f1g � Sp.2/� SU.4/� Spin.7/� SO.8/:

Equivalently, thinking of G2 as the group stabilizing a nonvanishing spinor in seven
dimensions, the groups above are possible stabilizers of spinors in eight dimensions
and each is determined by the number of linearly independent spinors fixed. In the
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language of spinors, the condition that the holonomy reduces to one of the groups
above is then that the respective spinors are parallel. Given a metric g on X7 , the cone
metric gC D dr2C r2g has holonomy contained in Spin.7/ if and only if there is a
compatible G2–structure ' such that the 4–form �D r3 dr^'Cr4 is closed. That
is the case if and only if d' D 4 , which up to scaling and changing the orientation
can be written as

(2-1) d' D � ;
for some � 2Rnf0g.

Definition 6 A Riemannian manifold .X7; g'/ is said to be nearly parallel if, after
possibly scaling the metric g' and changing the orientation, the holonomy of the
metric cone satisfies Hol.gC / � Spin.7/. A metric g' is said to be 3–Sasakian,
Sasaki–Einstein, or strictly nearly parallel if, again after possibly scaling the metric g'
and changing the orientation, Hol.gC / is Sp.2/, SU.4/, or Spin.7/, respectively. A
G2–structure ' is said to be nearly parallel, 3–Sasakian, Sasaki–Einstein, or strictly
nearly parallel if the induced metric g' is nearly parallel, 3–Sasakian, Sasaki–Einstein,
or strictly nearly parallel, respectively.

Equivalently, nearly parallel G2–structures are exactly those satisfying (2-1). Notice
that, as  is exact, (2-1) implies d D 0 so that ' is coclosed, meaning that, from the
point of view of torsion of G2–structures, �1 , �2 and �3 all vanish and �0D� is the only
nonzero component. As �0 is the torsion component living in the smallest irreducible
representation, this is the sense in which we think of nearly parallel G2–structures as
close to being parallel.

Remark 7 In fact, if we require that d D 0 separately and allow � to vanish, then
(2-1) also includes the torsion-free case. This shall be useful as some arguments used
for nearly parallel G2–structures also work in the torsion-free case.

In [18], the authors classify homogeneous nearly parallel G2–manifolds, and give a con-
struction of strictly nearly parallel G2–structures starting from 3–Sasakian manifolds.
We shall recall and use this construction in Section 2.2.

2.1.2 Gauge theory Let G be a compact semisimple Lie group and P a principal G–
bundle over a manifold X, equipped with a G2–structure ' . Recall that a connection A
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on P is called a G2–instanton if FA ^ D 0, equivalently if �7.FA/D 0, or if the
following analogue of anti-self-duality holds:

(2-2) �FA D�FA ^':
On the other hand, a connection A is said to be Yang–Mills if it is a critical point of
the Yang–Mills energy

(2-3) E.A/D 1

2

Z
X

jFAj2 dvolg ;

and so satisfies the Yang–Mills equation d�AFA D 0, which together with the Bianchi
identity dAFA D 0 forms a second-order elliptic system for the connection (up to
gauge). G2–instantons satisfy a first-order equation which in this generality need not
imply they are Yang–Mills connections. Nevertheless we have the following folklore
result, which in the nearly parallel case is due to Harland and Nölle [19].

Proposition 8 [19] If the G2–structure is either parallel or nearly parallel, then any
G2–instanton is a Yang–Mills connection.

Proof If the G2–structure is either parallel or nearly parallel, d D 0 and d' D � 
for some � 2R, as in Remark 7. Then, if A is a G2–instanton, �FA D FA^' and so

dA�FA D dA.FA ^'/D �FA ^ D 0;
where in the last equality we use the Bianchi identity and d' D � .

The Yang–Mills energy can be equivalently written as

(2-4) E.A/D�1
2

Z
X

hFA ^FAi ^'C 1
2
kFA ^ k2L2 :

In particular, if ' is torsion free, then the first term is topological and G2–instantons
minimize the Yang–Mills energy. It is then a natural question to ask if the same
must hold for nearly parallel G2–structures. We shall show in Example 28 that is not
the case, by providing an example of a nearly parallel G2–structure, together with a
G2–instanton which is unstable as a Yang–Mills connection.

Remark 9 The variation of the Yang–Mills functional at a connection A is

(2-5) ı2EA.a/D
d2

ds2

ˇ̌̌̌
sD0

E.AC sa/D
Z
X

jdAaj2� hŒa^ a�; FAi;

and so we may instead think of the second-order operator H D d�AdAa��Œa^�FA�.
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When the G2–structure ' is coclosed the G2–instanton equation lies on the elliptic
complex

(2-6) �0.X; gP /
�dA ����!�1.X; gP /

dA � ^ ����!�6.X; gP /
dA�!�7.X; gP /:

Hence, in the coclosed case the G2–instanton equation is elliptic modulo gauge (rather
than overdetermined). From now on we shall suppose this is the case.

Remark 10 (1) The reason the G2–instanton equation is consistent in the torsion-
free case can be interpreted as follows. The G2–monopole equation

�rAˆD FA ^ 
is always elliptic modulo gauge. Moreover, if ' is coclosed, then the monopole
equation, d D 0, and the Bianchi identity, dAFA D 0, give �AˆD 0. We can
then compute �jˆj2D�2jrAˆj2 � 0, and the maximum principle implies that
jˆj2 is constant. Then jrAˆj2 must vanish, and the monopole equation reduces
to the G2–instanton equation. Furthermore, the fact that rAˆD 0 implies that
if ˆ¤ 0, and G is semisimple, then A must be reducible.

(2) If the G2–structure ' is not coclosed one may ask questions similar to those
answered in this paper, but for G2–monopoles rather than G2–instantons.

In particular, if .X; '/ is a compact irreducible G2–manifold, ie the holonomy of the
metric g' induced by ' is equal to G2 , any harmonic 2–form can be shown to be
of type ƒ214 and so if F 2�2.X/ is harmonic and has integer periods, it defines the
curvature of a connection on a line bundle whose first Chern class is ŒF �=2�i . Still in
the torsion-free case, Thomas Walpuski [26; 27], using the results of [25], constructed
the only known examples of nonabelian G2–instantons on compact, irreducible, G2–
manifolds. There are also examples in the noncompact case; see [11; 24; 22].

2.1.3 Deformation theory and abelian G2–instantons The main idea for this ap-
proach to the deformation theory comes from Remark 10. This suggests that given a
coclosed G2–structure, instead of studying the deformation theory of an irreducible
G2–instanton A we may instead study that of a G2–monopole .A;ˆ/ with ˆ D 0.
Before restricting to that case suppose for now that ˆ¤ 0. Then the relevant elliptic
complex is

(2-7) �0.X; gP /
d1�!�1.X; gP /˚�0.X; gP / d2�!�1.X; gP /;
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with d1.�/D .�dA�; Œ�;ˆ�/ and d2.a; �/D�.dAa^ /�Œa;ˆ��dA� . Equivalently,
we can consider the elliptic operator

d�1 ˚ d2W �1.X; gP /˚�0.X; gP /!�1.X; gP /˚�0.X; gP /
given by

.d�1 ˚ d2/.a; �/D .�.dAa^ /� dA�;�d�Aa/C .Œˆ; a�; Œˆ; ��/;

which is self-adjoint when ' is coclosed. The following result, which is a consequence
of Remark 10, shows that in the coclosed case any infinitesimal monopole deformation
of a G2–instanton is actually an infinitesimal instanton deformation. This fully justifies
studying the deformation theory of the complex (2-7).

Proposition 11 Let A be an irreducible G2–instanton with respect to a coclosed G2–
structure on a closed manifold. Then, if .a; �/ 2 ker.d2/, where d2 is the operator
associated with .A; 0/, we have � D 0.

Proof Let .a; �/ 2 ker.d2/. Then dA� D �.dAa ^  / and d�Aa D 0. Combining
these and using that  is closed, we compute

d�AdA� D��dA.dAa^ /D��ŒFA ^ a�^ :

This vanishes as A is a G2–instanton and so FA^ D 0. Then taking the inner product
with � gives dA� D 0 and so � must vanish as A is assumed to be irreducible.

Next we shall study the operator d�1 ˚ d2 for the trivial connection AD d . It will be
used later to give an existence result for G2–instantons in the abelian case.

Lemma 12 Let L be the operator

LW L2;1.ƒ0˚ƒ1/! L2.ƒ0˚ƒ1/;

given by L.f; a/ D .�d�a;�df C�.da ^ //. Its cokernel can be identified with
those .g; b/ 2 �0.X/˚�1.X/ such that g is constant and b is a coclosed 1–form
satisfying d.b ^ /D 0.

In particular, if .X; '/ has the property that there are no coclosed 1–forms b such that
d.b ^ /D 0, then L is surjective onto �00.X/˚�1.X/, where �00.X/ denotes the
functions with zero average on X.
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Proof We shall identify the cokernel of L with the kernel of its formal adjoint L� ,
using the L2 inner product. Then one computes L�.g; b/D .�d�b;�dgC�d.b^ //,
and so

LL�.g; b/D .�g; dd�b/C �0;��d.�d.b ^ //^ ��:
By taking the L2 inner product with .g; b/ and using Stokes’ theorem we obtain

h.g; b/; LL�.g; b/iL2 D kdgk2L2 Ckd�bk2L2 C
˝
b;��d.�d.b ^ //^ �˛

L2

D kdgk2
L2 Ckd�bk2L2 C

Z
X

b ^ d.�d.b ^ //^ 

D kdgk2
L2 Ckd�bk2L2 C

Z
X

d.b ^ /^�d.b ^ /

D kdgk2
L2 Ckd�bk2L2 Ckd.b ^ /k2L2 :

Hence if .g; b/ is in the kernel of L� , then also LL�.g; b/D 0 and the computation
above shows that dg D d�b D d.b ^ /D 0.

The next result gives a criterion for an abstract construction of abelian G2–instantons.

Proposition 13 If .X; '/ has no nonzero coclosed 1–forms b such that d.b^ /D 0
and B is a complex line bundle over X, then there is a monopole .�; A/ on B .

Moreover, if ' is coclosed, then any such monopole is actually a G2–instanton and it is
unique.

Proof We start with any connection A0 on B and look for .�; a/ 2�0.X/˚�1.X/
such that .�; A0C a/ solves the monopole equation d� D �.FA0Ca ^ /. This can
be rewritten in the form

�d�C�.dA0
a^ /D��.FA0

^ /;
and so, together with the gauge-fixing condition �d�A0

a D 0, it suffices to solve the
equation L.�; a/ D .0;��.FA0

^ //. Since 0 certainly has vanishing average, by
Lemma 12 this right-hand side lies in the image of the operator L and we can find
.�; a/ such that .�; A0C a/ is a monopole on B .

The fact that in the coclosed case the monopoles are actually instantons follows from
the discussion in Remark 10. The uniqueness follows from the fact that in this case the
operator L is formally self-adjoint. However, since once restricted to �00.X/˚�1.X/
it has no kernel, it is an isomorphism from L2;1 to L2 .
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As a particular example of how to apply the previous result we shall now consider the
strictly nearly parallel case.

Corollary 14 Let .X; '/ be a nearly parallel G2–manifold. For any ˛ 2H 2.X;Z/,
there is a unique G2–instanton on the complex line bundle B with c1.B/D ˛ .

Proof We start by showing that in the nearly parallel case we are in the setup of
Proposition 13. Suppose b2�1.X/ is such that d�bD0 and d.b^ /D0. First notice
that in this case  is exact, so the second equation can be written db^ D0. This shows
that 3d7bD�.�.db^ /^ /D0, which we can rewrite as 0D3d7bDdb��.db^'/.
Hence, taking d� of this equation, we find

0D 3d�d7b D d�db��.db ^ d'/D d�db��.�.db ^ //D d�db;
where we have used that d'D� and db^ D 0 by hypothesis. Putting this together
with d�b D 0, we conclude that �b D 0 and so b is a harmonic 1–form. However,
nearly parallel G2–structures are Einstein with positive constant, and so have positive
Ricci curvature. It then follows from the Bochner formula and Myers theorem that
b D 0. We are then in position to apply Proposition 13 and conclude that there is a
G2–instanton on any line bundle over X.

Remark 15 (1) One may wonder if the previous corollary extends from nearly
parallel to a more general class of G2–structures. We will see in the second
bullet of Theorem 67 examples of coclosed G2–structures where we do not have
uniqueness of abelian G2–instantons. See also the second item in Remark 68.

(2) The previous proof works equally well for torsion-free, irreducible G2–manifolds,
ie those with holonomy equal to G2 . In that case, �D 0 and RicD 0, but the
irreducibility shows that there are no harmonic 1–forms.

(3) In fact, the previous corollary has the following consequence. Any harmonic
2–form on a strictly nearly parallel G2–manifold must lie on ƒ214 . As proved
by Lorenzo Foscolo [17, Theorem 3.23], a similar result holds for nearly Kähler
manifolds.

2.1.4 S 1–invariant G2–instantons In Section 3 we will be interested in studying
G2–instantons that are invariant under the action of a group which acts transitively.
Here we make a detour into U.1/–invariant G2–instantons, on U.1/–invariant G2–
structures. We include this section so we can refer to its main computation in the proof
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of Proposition 57. Let V be the infinitesimal generator of a U.1/–action preserving a
coclosed G2–structure, ie LV ' D 0 and so LV D 0 as well. Now let � 2�1.X7/
be the unique connection form on the circle bundle X7!M 6 D X7=S1 such that
�.V /D 1 and �jV? D 0. Then the equation LV D 0, together with d D 0, shows
that both �V and  � �^ �V are V –basic, and so are pulled back from M 6 . We
may then write

 D��^�1C �;

where �1 and � are ��V and  � �^ �V , respectively. Moreover, the equations
LV D 0 and d D 0 further imply

d�1 D 0 and d�^�1 D d�:

In fact, since  D �' is the 4–form associated with the G2–structure ' , there must
further exist V –semibasic forms ! 2�2.X/ and �22�3.X/ such that 'D�^!C�2
and �D 1

2
!2 . In the setting we will be interested in, all the relevant principal bundles P

over X can actually be regarded as bundles pulled back from M. Hence, if A is a
connection on P over X and a0 a connection pulled back from M to X, we have that
A� a0 2�0.X;ƒ1˝ gP /. Then, using the splitting ƒ1 D h�i˚ h�i? , we can write
A� a0 D a00C �˝ �, where a00 2�0.X; h�i?˝ gP / and � 2�0.X; gP /. Defining
now a D a0 C a00, the connection A may written as A D aC � ˝ �. Its curvature
may then be computed to be FA D FaCda� ^�C�˝d�, and Fa D F?a �LV a^�
with F?a semibasic. However, as the connection is assumed to be invariant under the
action generated by V , LV aD 0 and Fa DF?a is actually V –basic. We then compute

FA ^ D .FaC da� ^ �C�˝ d�/^ .��^�1C �/
D��^ .Fa ^�1C�˝ d�^�1C da� ^ �/C .FaC�˝ d�/^ �;

and so the G2–instanton equation amounts to

(2-8) .FaC�˝ d�/^�1C da� ^ � D 0 and .FaC�˝ d�/^ � D 0:

2.2 Examples from 3–Sasakian geometry

We start this subsection with a brief discussion of 3–Sasakian geometry, following
the nice review paper [6]. Then, starting from a 3–Sasakian manifold, we construct a
family of coclosed G2–structures containing a strictly nearly parallel structure, and
give some existence results for G2–instantons; see Propositions 17, 18, and 22.
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A 3–Sasakian 7–manifold may be equivalently defined as a Riemannian 7–manifold
.X7; g7/ equipped with a 3–orthonormal vector field f�ig3iD1 satisfying Œ�i ; �j � D
�ijk�k . Any 3–Sasakian X is quasiregular in the sense that the vector fields f�ig3iD1
generate a locally free SU.2/–action. The space of leaves Z4 , equipped with the
Riemannian metric gZ such that � W X7!Z4 is an orbifold Riemannian submersion,
has the structure of a self-dual, Einstein orbifold with scalar curvature s > 0. Let g7
be the 3–Sasakian metric on X7 and regard � W X7! Z4 as an SU.2/– or SO.3/–
(orbi)bundle of frames of ƒ2�Z

4 . The Levi-Civita connection of Z4 equips it with a
connection �D �i ˝Ti 2�1.X7; so.3//, where the Ti form a standard basis of so.3/
satisfying ŒTi ; Tj � D 2�ijkTk . This has the property that the �–horizontal forms !i
defined by

F� D d�C 1
2
Œ�^ ��D s

24
!i ˝Ti

form an orthogonal basis of .ƒ2� ker.�/; g7jker.�// with j!i j D
p
2 and s 2RC . We

further remark that the metric g7 can be written as

g7 D �i ˝ �i C��gZ :

Remark 16 To make a connection with the holonomy point of view used in Definition 6
we remark that the 2–forms x!i D r dr ^�i C 1

2
r2 d�i equip the cone .RCr �X; gC D

dr2C r2g7/ with a compatible, torsion-free Sp.2/–structure.

The strictly nearly parallel G2–structure ' constructed in [18] determines a Riemannian
metric g' which is a squash of the 3–Sasakian metric g7 . We shall consider the 1–
parameter family of G2–structures f'tgt2Rn0 such that

(2-9) 't D t3�1 ^ �2 ^ �3C t s
48
.�1 ^!1C �2 ^!2C �3 ^!3/;

which determines g't
D t2.�21C �22C �23/C��gZ and

 t D 1

6

�
s

48

�2
!i ^!i C t2 s

48
.�1 ^ �2 ^!3C �2 ^ �3 ^!1C �3 ^ �1 ^!2/:

Recall that, up to scaling, the condition that 't be nearly parallel can be written
as d't D � t for some constant � > 0. In our case we can easily compute from
s
24
!i D d�i C �ijk�j ^ �k that

d't D t .t2C 1/ s
24
.�1 ^ �2 ^!3C �2 ^ �3 ^!1C �3 ^ �1 ^!2/

C 2t
�
s

48

�2
.!1 ^!1C!2 ^!2C!3 ^!3/:
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Then the equation d't D � t becomes the system 12t D � and t2C 1D 2�t , which
has the solutions t D 1p

5
, � D 12p

5
and t D � 1p

5
, � D � 12p

5
. Note that we can

scale � by scaling the metric and change the sign of � by changing the orientation.
Conversely, it is possible to show that given a positive Einstein, anti-self-dual orbifold
.Z; gZ/ there is an SO.3/– or SU.2/–bundle � W X7!Z equipped with a 3–Sasakian
structure [6], so having a strictly nearly parallel G2–structure as above. We further
remark that this converse statement may however produce nonsmooth X7 . We are now
in position to give some examples of G2–instantons, starting first with SU.2/–invariant
instantons and then with S1–invariant examples.

Proposition 17 For any b1; b2; b3 2R the 1–form �D b1�1C b2�2C b3�3 equips
the trivial complex line bundle over X7 with a G2–instanton with respect to '1=

p
2 .

Moreover, if L is a complex line bundle over X7 admitting a G2–instanton with respect
to '1=

p
2 , then L actually has a real 3–parameter family of G2–instantons.

Proof The connection � D b1�1 C b2�2 C b3�3 is not only S1–invariant but also
SU.2/–invariant. Its curvature is d� and to show that d�^ 1=p2 D 0 it is enough to
show that d�1 ^ 1=p2 D 0. The d�2 and d�3 equations are dealt with similarly. So
we compute

d�1 ^ t D
�
s

24
!1� 2�23

�
^
�
1

6

�
s

48

�2
!i ^!i C t2 s

48
.�23 ^!1C � � � /

�
D 2

�
s

48

�2�
t2� 1

2

�
�23 ^!1 ^!1;

which vanishes if and only if t D 1p
2

.

The second part of the theorem follows immediately from the fact that the G2–instanton
equation is linear in the abelian case.

Proposition 18 Let A be a self-dual connection on a bundle over a positive, self-dual,
Einstein orbifold .Z; gZ/. Then, for all t > 0, the G2–structure 't is coclosed and:

� ��A is a G2–instanton on X7 with respect to 't . In particular, ��A is a
G2–instanton for the strictly nearly parallel G2–structure '1=

p
5 .

� ��A is Yang–Mills with respect to 't .

Proof The fact that the G2–structure 't is coclosed for any t > 0 follows from
computing that d t D 0. This follows easily from the fact that �1 ^ �2 ^ �3 is closed
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(in fact exact) and that each !i ^!i is closed as well, since d!i D 2�ijk!j ^ �k and
!i ^!j D 0 for i ¤ j . This shows that 't is coclosed.

We start by proving the first bullet in the statement, ie that A pulls back to a G2–
instanton. Let FA denote the curvature of A, which is self-dual by hypothesis. Hence,
as � is a Riemannian submersion with respect to all g't

, ��FA^!i D0 for iD1; 2; 3.
It is then easy to check that ��FA ^ t D 0.

Now we prove the second bullet in the proposition. To ease notation denote by A the
pullback of such a self-dual connection. Then FA takes values in ƒ2

C
˝ gP and we

compute

(2-10) dA.�g't
FA/D dA.FA ^'t /D FA ^ d't :

However, d't D t3d.�123/C t d�i ^ !i C t�i ^ d!i and it is easy to check that
d.�123/ D !1 ^ �23 C cp and �i ^ d!i D 2.�13 ^ !2 � �12 ^ !3/C cp, where cp
denotes cyclic permutations. Putting all these together we have

d't D t!i ^!i C .t2� 6t/.!1 ^ �23C!2 ^ �31C!3 ^ �12/:
As FA is self-dual, FA ^!i D 0, and hence, inserting d't into (2-10), we conclude
that dA.�FA/D 0 and A is Yang–Mills.

Remark 19 One may also consider the G2–structures obtained by scaling differently
each of the �i , while keeping them orthonormal, ie

'a;b;c D abc�1 ^ �2 ^ �3C a�1 ^!1C b�2 ^!2C c�3 ^!3:
It is easy to check that any such G2–structure is coclosed if and only if aD b D c .

We now change the point of view on .X7; g7/ equipped with its 3–Sasakian structure,
and regard it as a Sasakian manifold with respect to any of the Reeb vector fields
�q D q1�1C q2�2C q3�3 , for a unit quaternion q D q1i C q2j C q3k 2 Im.H/. In
fact, the resulting Sasakian manifold is always quasiregular and does not depend on q .
Take � D �1 for example, ie .X7; �1; g7/, then the leaf space

�
Y 6; !KE D 1

2
d�1

�
is

a Kähler–Einstein Fano orbifold. In fact Y 6 is the twistor space associated with the
quaternionic Kähler structure on Z . Moreover, Y is smooth if and only if Z is. In fact,
the twistor space also comes equipped with a nearly Kähler structure; see [23]. The
next result relates this nearly Kähler structure with the G2–structure '1=

p
2 on X. We

came across it after a conversation with Mark Haskins, so it may be known to experts.
However, we were unable to locate a reference.
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Proposition 20 Let .X7; g7/ be a 3–Sasakian manifold. Then .��1=t't ;���1=t t /

are basic with respect to �1 and equip the twistor space with a nearly Kähler structure
if and only if t D˙ 1p

2
.

Proof The forms ! D ��1=t't , �1 D���1=t t and �2 D 't � t�1 ^ ��1=t't are all
basic with respect to �1 and so they are the pullback of forms on the twistor Y . We
denote these also by ! , �1 and �2 , respectively, and we must check these equip Y 6

with a nearly Kähler structure. Back in X7 these can be written as

!D t2�23C s

48
!1; �1D st

48
.�2^!3��3^!2/; �2D� st

48
.�2^!2C�3^!3/:

Then we compute that d! D �3��1 and d�2 D 2�!21 for some � if and only if
t D ˙ 1p

2
, in which case � D �p2 and so .!;�1/ does equip Y 6 with a nearly

Kähler structure.

Remark 21 In particular, using the notation introduced in the proof of the previous
proposition, we can recover the G2–structure 't by

't D t�1 ^!C�2 and  t D�t�1 ^�1C 1
2
!2:

As a consequence, we have:

Proposition 22 Let A be a pseudo-Hermitian Yang–Mills (pHYM) connection for
the nearly Kähler structure .!;�1/ on Y 6 . Then its pullback is a G2–instanton with
respect to '1=

p
2 .

Proof If A is pHYM, its curvature F satisfies F ^!2 D 0D F ^�1 . Then, writing
'1=
p
2 in terms of .!;�1/ as in Remark 21, we have F ^ 1=p2 D 0 and so A is a

G2–instanton with respect to '1=
p
2 .

Remark 23 (1) Every nearly parallel G2–manifold carries a metric-compatible
connection A, in the tangent bundle whose holonomy is in G2 . Therefore, by
the Ambrose–Singer theorem, FA takes values in ƒ2˝ g2 . This connection is
metric-compatible and has antisymmetric torsion, and then one can show that FA
takes values in S2.ƒ2/; see Proposition 3.1 in [19] for example. Putting all this
together we see that actually FA takes values in S2.ƒ214/, as g2 Šƒ214 , and so
is a G2–instanton.

(2) A similar statement to Proposition 22 holds for the pullback of an HYM connec-
tion on Y 6 with respect to its Kähler–Einstein structure !KE D 1

2
d�1 . Namely,

the pullback of such an HYM connection yields a G2–instanton for 'ts .
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2.3 Deformation theory revisited

In this subsection we shall restrict to the case where .X7; '/ is a nearly parallel G2–
manifold and prove some rigidity results regarding G2–instantons on them. Then, in
Section 2.3.2, we prove that on nearly parallel manifolds there are G2–instantons which
are not locally energy-minimizing. Recall, from formula (2-4), that the analogous
statement for torsion-free G2–structures is always false.

2.3.1 Rigidity The fact that nearly parallel manifolds are Einstein with positive
Einstein constant gives some hope of obtaining higher regularity for the moduli space
of G2–instantons than on torsion-free G2–manifolds. In this direction we have:

Proposition 24 Let .X7; '/ be a nearly parallel G2–manifold and A be a G2–
instanton with the property that all the eigenvalues of the endomorphism of �1.X/
given by b 7! �14.�Œ�.F 14A /^ b�/ are smaller than s' , where s' > 0 is the scalar
curvature of g' . Then A is rigid as a G2–instanton and .A; 0/ unobstructed as a
monopole. Moreover, if A is irreducible, then .A; 0/ is also rigid as a monopole.

Proof Let A be a connection as in the statement. Then we shall consider the operators
d1 and d2 from the complex (2-7), associated with .A; 0/. As ' is coclosed these can
be written as

d2.a; �/D �.dAa^ /� dA� and d�2 b D .�dAb ^ ;�d�Ab/;

while d1. /D .�dA ; 0/ and d�1 .a; �/D�d�Aa . Then the operator d�1 ˚ d2 which
controls the deformation theory of the G2–instanton equation is

.d�1 ˚ d2/.a; �/D .�.dAa^ /� dA�;�d�Aa/;

which is self-adjoint. In order to study its infinitesimal deformations we must therefore
study its kernel. So let A be as in the statement and .a; �/ 2 ker.d�1 ˚ d2/. Then
�.dAa^ /D dA� and d�AaD 0, and moreover as ' is coclosed we have that

0D .d�1 ˚ d2/2.a; �/
D .�A�C�.ŒFA ^ a�^ /;�dA.�.dAa^ /^ /C dAd�Aa/:

Then, if A is an irreducible G2–instanton, the first entry gives �A�D 0. Hence, taking
the inner product with � and integrating by parts we get dA� D 0. From the second
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entry above and using that d' D � we compute

0D 3�dA�d7AaC dAd�Aa
D �dA�.dAa��.dAa^'//C dAd�Aa
D�Aa��.ŒFA ^ a�^'/C�.�.dAa^ //
D�Aa��.ŒFA ^ a�^'/;

where in the last equality we used that �.dAa^ /D dA� D 0. Putting this together
with the Weitzenböck formula �AaDr�ArAaC�Œ�FA ^ a�CRic.a/, we obtain

r�ArAaC�Œ.�FACFA ^'/^ a�CRic.a/D 0:
As FA ^ ' D �2.�F 7A /C �F 14A , and g' is Einstein with positive scalar curvature
s' > 0, ie RicD s

7
id, we have

r�ArAaC�Œ�.2F 14A �F 7A /^ a�C
s'

7
aD 0:

If A is as in the hypothesis of the statement, then taking the inner product with b , the
sum of the last two terms is positive and so we have

krAak2L2 C�kak2L2 � 0;
for some � > 0. We conclude that a must vanish identically and as we have already
seen dA� D 0. Hence, any infinitesimal monopole deformation of .A; 0/ is of the
form .0; �/ for some � satisfying dA� D 0. These can obviously be integrated as
the path f.A; t�/gt2R and so this is a purely monopole deformation which keeps the
connection A the same G2–instanton.

Exactly the same proof shows that d2 is surjective (by showing that ker.d�2 / D 0),
proving that .A; 0/ is unobstructed as a monopole. Moreover, if A is irreducible, then
dA� D 0 implies that � must vanish and so .A; 0/ is also rigid as a monopole.

Corollary 25 Let .X7; '/ be a nearly parallel G2–manifold. Then

(1) abelian G2–instantons are rigid;

(2) flat connections are rigid as G2–instantons.

One may wonder if the rigidity of abelian G2–instantons extends from strictly nearly
parallel G2–structures to a more general class, say coclosed ones. We will see a
counterexample to this in the second bullet of Theorem 67; see also the second item
in Remark 68.
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We shall now comment on the relation of Proposition 24 to the G2–instantons we
constructed earlier in this section.

Remark 26 (1) Through Corollary 14 we know that there is a unique G2–instanton
on every complex line bundle L over a nearly parallel G2–manifold. This actually
supersedes Corollary 25.

(2) A similar result to Corollary 25 holds for nearly Kähler manifolds; see Theorem 1
in [10]. In fact, also in that case any complex line bundle admits a unique
pseudo-Hermitian Yang–Mills connection. See Theorem 3.23 and Remark 3.25
in [17].

It is also possible to find examples of G2–instantons on strictly nearly parallel G2–
manifolds for which Proposition 24 does not apply:

Example 27 Consider a self-dual, Einstein 4–orbifold .Z; gZ/, with positive scalar
curvature admitting a family of self-dual connections (eg S4 ). Then, by Proposition 18,
these connections lift to a family of G2–instantons for a strictly nearly parallel G2–
structure constructed on the principal SO.3/–bundle associated with ƒ2�Z . Therefore,
in this case G2–instantons have nontrivial moduli and so the hypothesis in Proposition 24
must fail.

2.3.2 Yang–Mills unstable G2–instantons Let A be a G2–instanton for a nearly
parallel G2–structure ' such that d' D � . We have seen, in Proposition 8, that
such G2–instantons are actually Yang–Mills connections. Moreover, (2-4) and the
subsequent discussion show that in the torsion-free case a G2–instanton minimizes the
Yang–Mills energy. That need not be the case for strictly nearly parallel G2–structures
as we now show with a counterexample.

Example 28 Equip the 7–dimensional sphere, S7 , with the nearly parallel G2–
structure 'ts induced from the 3–Sasakian one, as in Remark 19. Then g'ts is the
round metric. Now consider the Hopf bundle �H W S7! S4 . A verbatim repetition of
the proof of Proposition 18 shows that the pullback, via �H , of a self-dual connection
on S4 is also a G2–instanton with respect to 'ts . Hence, if A is the pullback of a
charge 1 self-dual connection on S4 , it is a G2–instanton for 'ts . As d'tsD 4 ts , we
have that A is also a (nonflat) Yang–Mills connection. However, it is shown in [5] that
any nonflat Yang–Mills connection on Sn , where n > 4, is Yang–Mills unstable.
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Remark 29 We have also proved in Proposition 18 that the pullback of a Yang–Mills
connection on a quaternion-Kähler manifold is both a G2–instanton and a Yang–Mills
connection, with respect to any of the G2–structures 't , for t > 0 . Hence, the example
above also works also for any 't with t in a neighborhood of 1.

3 Aloff–Wallach spaces

We begin, in Section 3.1, by summarizing some facts about the geometry of homo-
geneous, coclosed G2–structures on Aloff–Wallach spaces. Then in Section 3.2 we
determine all the invariant connections on homogeneous SO.3/–bundles over the Aloff–
Wallach spaces and use them in Sections 4 and 5 to classify invariant G2–instantons
on the Aloff–Wallach spaces. As a consequence, we discover that G2–instantons
can distinguish between different strictly nearly parallel G2–structures on the same
Aloff–Wallach space. We also produce examples of some interesting phenomena, for
instance, irreducible G2–instantons that merge into the same reducible G2–instanton as
the G2–structure varies. This particular phenomenon was expected to occur, but these
are the first examples. In Section 4.6 we shall also give examples of G2–instantons for
a nearly parallel G2–structure in X1;�1 . Some of these are then shown to not be locally
energy-minimizing. In fact, they are saddles of the invariant Yang–Mills functional.
Further, in Section 5.3 we show that the existence of G2–instantons distinguishes
between a 3–Sasakian and a strictly nearly parallel G2–structure on X1;1 .

3.1 Geometry of coclosed G2–structures

Let k; l 2 Z, and let U.1/k;l be a circle subgroup of SU.3/ consisting of elements of
the form 0@eik� 0 0

0 eil� 0

0 0 eim�

1A ;
where kC lCmD 0. The Aloff–Wallach space Xk;l D SU.3/=U.1/k;l is the quotient
of SU.3/ by this circle subgroup. We shall now recall some basic facts about the
geometry and topology of the Aloff–Wallach spaces. Aloff–Wallach spaces inherited
their name from [1], where they were shown to admit homogeneous metrics with
positive curvature, for klm ¤ 0 (see also page 18 of the survey paper [30]). Later,
Wang showed in [29] that Aloff–Wallach spaces admit homogeneous Einstein metrics
with positive scalar curvature, not all of which are the ones considered by Aloff
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and Wallach. In [4, page 116], the authors show that each Xk;l admits at least two
homogeneous Einstein metrics. The authors further show, that for Xk;k (and those
related to it through the action of the Weyl group of SU.3/; see Remark 34) one
of these is 3–Sasakian and the other strictly nearly parallel, while on the other Xk;l
they are both strictly nearly parallel. As a side remark, we mention that there are
examples of different pairs .k; l/ such that the corresponding Aloff–Wallach spaces
are homeomorphic, but not diffeomorphic [21].

Regarding coclosed G2–structures, Aloff–Wallach spaces were shown to admit a real
4–dimensional family of homogeneous, coclosed G2–structures as described in [9]. We
now give details of this family of homogeneous coclosed G2–structures on Xk;l . Let

s D
p
k2C l2Cm2p

6
;

and write the canonical left-invariant form on SU.3/ as

�D 1p
2

0BB@
i
s

�
kp
3
�C l�m

3
!4
�

!1C i!5 –!3C i!7
–!1C i!5 i

s

�
lp
3
�C m�k

3
!4
�

!2C i!6
!3C i!7 –!2C i!7 i

s

�
mp
3
�C k�l

3
!4
�
1CCA :

Let .feig7iD1;H/ be the vector fields dual to .f!ig7iD1; �/; using the SU.3/–invariant
metric !21 C!22 C!23 C!24 C!25 C!26 C!27 C �2 . Then

p
6sH is the infinitesimal

generator of the u.1/k;l–action.

Let A, B , C and D be nonzero constants. The G2–structures under consideration are
given by

(3-1) 'DABC.!123�!167C!257�!356/�D!4^ .A2!15CB2!26CC 2!37/:

The metric g' and the 4–form  D �' ' associated to the G2–structure are

g' D A2.!21 C!25/CB2.!22 C!26/CC 2.!23 C!27/CD2!24 ;
 D ABCD.!4567�!2345C!1346�!1247/CB2C 2!2367CA2C 2!1357

CA2B2!1256:
Here we fixed the orientation induced by the volume form vol'D7A2B2C 2D!1234567 .
Also, notice that this family of G2–structures is, up to scaling, only 3–dimensional. The
exterior derivatives of the f!ig7iD1 and � may be computed using the Maurer–Cartan
formula d�D��^�. Here we use these formulas to compute the exterior derivatives
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of ' and  , to get information about the torsion of these G2–structures. We find
p
2 d' D D.A2CB2CC 2/.�!4567C!2345�!1346C!1247/

C
�
D

s
.kA2CmB2/� 4ABC

�
!1256C

�
D

s
.lB2C kC 2/� 4ABC

�
!2367

C
�
D

s
.mC 2C lA2/� 4ABC

�
!1357;

d D 0:
From these we can extract the torsion component �0 :

7p
2
�0 D�4

�
A

BC
C B

AC
C C

AB

�
C D
s

�
l

C 2
C k

B2
C m

A2

�
:

Definition 30 Let C denote the spaces of G2–structures of the form (3-1).

Lemma 31 Let k ¤ ˙l , l ¤ ˙m, m ¤ k . Then the space of homogeneous co-
closed G2–structures C may be identified with .RC/2 � .Rnf0g/2 . Moreover, given
.A;B; C;D/ 2 C , the corresponding G2–structure can be written as in (3-1).

Proof It follows from the analysis in [9] that for k ¤ ˙l , l ¤ ˙m, m ¤ k , any
homogeneous, coclosed G2–structure is one of those considered above. These are
precisely those with s0 D 0, in that reference. Now notice that the G2–structures (3-1)
are parametrized by .A;B; C;D/ 2 .Rnf0g/4 minus the coordinate hyperplanes.
Moreover, (3-1) stays invariant by any of the following maps: .A;B/ 7! .�A;�B/,
.B; C / 7! .�B;�C/ and .A; C / 7! .�A;�C/. These discrete symmetries give rise
to a .Z2�Z2/–action on .Rnf0g/4 , generated by the first two symmetries. Hence, the
G2–structures in (3-1) are parametrized by .Rnf0g/4=.Z2�Z2/. Taking a fundamental
domain for the .Z2�Z2/–action we may equally well regard the space of G2–structures
as in (3-1) as RCA �RCB � .RCnf0g/� .RDnf0g/.

Remark 32 (1) Up to a cover, and the action of the Weyl group (see Remark 34), the
restrictions in the lemma above can be simply written as .k; l/… f.1; 1/; .1;�1/g.

(2) In the case when .k; l/ 2 f.1; 1/; .1;�1/g we will continue to use C to denote
the G2–structures as in (3-1). However, in that case there are homogeneous
coclosed G2–structures that can not be written as in (3-1) and so are not in C .

(3) We know that �1 D �2 D 0 because the G2–structure is coclosed, and we can
compute �3 by �3 D �.d' � �0 /.
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A G2–structure of the form (3-1) is nearly parallel, ie d' D � , when .A;B; C;D/
satisfy

(3-2)

A2CB2CC 2C
p
2�ABC D 0;

D.kA2CmB2/� 4sABC �
p
2�sA2B2 D 0;

D.lB2C kC 2/� 4sABC �
p
2�sB2C 2 D 0;

D.lA2CmC 2/� 4sABC �
p
2�sA2C 2 D 0:

By fixing an orientation we can suppose that � > 0. Then, in [9], it is shown that
for k ¤ ˙l , l ¤ ˙m, m ¤ ˙l , the system (3-2) admits precisely eight solutions.
Moreover, up to the action of Z2 �Z2 alluded to in the proof of Lemma 31, these
eight solutions give only two nonequivalent solutions ' 2 C , which are in fact strictly
nearly parallel. The following result completely determines the connected component
in C in which each of these structures lives.

Lemma 33 Let k ¤˙l , l ¤˙m, m¤˙l , and let 'np1 ; 'np2 2 C denote the two
strictly nearly parallel G2–structures. Then C.'np1/ and C.'np2/ have the same sign,
while those of D.'np1/ and D.'np2/ are opposite. Moreover, sign.C / is constrained
by �C < 0 and determines the orientation.

Proof Fix an orientation and suppose that � > 0. Then the first equation in (3-2)
implies that ABC must be negative for any such ' . On the other hand, it follows
from the analysis in the bottom of page 413 in [9] that the two solutions have different
signs of ABCD and so they must in fact have different signs of D. Choosing ' 2 C ,
we have A > 0 and B > 0, so we must also have C < 0 (as ABC < 0), which then
implies each of the solutions has a different sign of D.

Remark 34 (1) The Weyl group of SU.3/ moves the U.1/k;l subgroup inducing
an action in the set of Aloff–Wallach spaces. In fact, this action is generated
by Xk;l 7! Xl;k and Xk;l 7! Xk;m , which can be combined to generate the
order 3 element � W Xk;l ! Xl;m , ie cyclic permutations of .k; l;m/. Hence,
up to coverings and this action, there is no loss in supposing that k and l are
coprime and that k � 0 and �l � k � 2l .

(2) Consider the U.2/–subgroup of SU.3/ generated by the image of the homomor-
phism SU.2/�U.1/! SU.3/ given by

.A; ei� / 7! diag.Aei� ; det.Aei� /�1/:
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As CP2 Š SU.3/=U.2/, we obtain a canonical fibration

�1W Xk;l !CP2;

whose fibers one can check to be the lens spaces U.2/=U.1/k;l Š S3=ZjkClj , if
kCl ¤ 0, or S1�S2 , if kCl D 0. In fact, using the order 3 element � , we may
obtain two more fibrations �2 D �1 ı � and �3 D �1 ı �2 of Xk;l over CP2 .
At least two of these have fibers S3=Zp for a nonzero p 2 fjkj; jl j; jmjg.

3.2 Invariant connections

Given a Lie group G, a principal G–bundle P over Xk;l D SU.3/=U.1/k;l is said to
be SU.3/–homogeneous (or just homogeneous) if there is a lift of the SU.3/–action
on Xk;l to the total space which commutes with the right G–action on P. In general,
homogeneous SO.3/–principal bundles over Xk;l are determined by their isotropy
homomorphisms �nW U.1/! SO.3/, and are constructed via

Pn D SU.3/�.U.1/k;l ;�n/ SO.3/;

where the possible group homomorphisms �n are parametrized by n 2 Z. Explicitly
we can think of SO.3/ as SU.2/=Z2 , where Z2 acts via multiplication by minus the
identity matrix, �1, then �n is given by

�n.�/D
�
ei.n=2/� 0

0 e�i.n=2/�

�
.mod �1/:

Definition 35 Let fT1; T2; T3g be a basis for su.2/ such that ŒTi ; Tj � D 2�ijkTk .
Then the canonical invariant connection on Pn is

Anc D
n

2

�p
6s
˝T1:

Using the Maurer–Cartan equations, the curvature of the canonical invariant connec-
tion Anc is found to be

F nc D�
n

12s2
..k� l/!15C .l �m/!26C .m� k/!37/:

Wang’s theorem [28] classifies invariant connections on homogeneous bundles. In our
situation, Wang’s theorem says that SU.3/–invariant connections on Pn are in bijection
with morphisms of U.1/–representations

ƒW .m;Ad/! .so.3/;Ad ı�n/;
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where m is the U.1/k;l –Ad complement to hH i in su.3/. If .k; l/ is not in the Weyl
orbit of .1; 1/ and n¤ 0, these split into irreducible real representations as

mD hX1; X5ik�l ˚hX2; X6il�m˚hX3; X7im�k˚hX4i;
so.3/D hT1i˚ hT2; T3in;

where the weight of each 2–dimensional irreducible representation is indicated by a
subscript. It will be useful to use the notation V1 D hX1; X5i, V2 D hX2; X6i and
V3 D hX3; X7i (these are simply the real root spaces of su.3/). Applying Schur’s
lemma and Wang’s theorem [28] we have:

Lemma 36 (.k; l/¤ .1; 1/) Let An 2�1.SU.3/; so.3// be the connection 1–form
of an invariant connection on Pn over Xk;l , for .k; l/ not in the Weyl orbit of .1; 1/.
Then it is left-invariant and can be written as AnDAnc C .An�Anc /, where .A�Anc / 2
m�˝ so.3/, extended as a left-invariant 1–form with values in so.3/, is given by

A�Anc D a1 1C a2 2C a3 3C b!4˝T1:
Here the  i denote isomorphisms  i W Vi ��!hT2; T3i with j j 2 f0; 1g with respect
to the fixed basis, and the ai ; b 2 R are constants. Moreover, each ai must vanish if
the weight of Vi is not equal to n, ie

a1 D 0 if n¤ k� l;
a2 D 0 if n¤ l �m;
a3 D 0 if n¤m� k:

Remark 37 (1) The order 3 element of the Weyl group W permutes the different
roots and so the different root spaces. In particular, there is no loss in considering
the Aloff–Wallach spaces up to the action of W . Hence, in the previous lemma
when we consider the case k ¤ l , it is implicit that also l ¤m or m¤ k .

(2) Since it is not possible to have k � l D l �m D m� k D n without forcing
k D l DmD nD 0, we must have a1a2a3 D 0. This splits us into seven cases
to be analyzed below.

Lemma 38 (.k; l/D .1; 1/) Let An 2�1.SU.3/; so.3// be the connection 1–form
of an invariant connection on Pn over X1;1 . Then it is left-invariant and can be written
as An D Anc C .An�Anc /, where .A�Anc / 2m�˝ so.3/, extended as a left-invariant
1–form with values in so.3/, is given by

A�Anc D a1�C a2 2C a3 3:
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Here the  i denote isomorphisms  i W Vi ��!hT2; T3i with j j D 1 with respect to
the fixed basis, and �W hX1; X5; X4i ! so.3/ denotes a linear map, which in the case
n¤ 0 must take values in hT1i � so.3/. Moreover,

a2 D 0 if n¤ 3;
a3 D 0 if n¤�3:

Proof The proof in this case is similar and we simply give the main steps. As before
the proof amounts to using Wang’s theorem [28] to find the invariant connections. One
must split the corresponding representations into irreducibles as

mD hX1i˚ hX5i˚ hX4i˚ hX2; X6i3˚hX3; X7i�3;

so.3/D
�hT1i˚ hT2; T3in if n¤ 0;
hT1i˚ hT2i˚ hT3i if nD 0:

Then the conclusion follows from a similar application of Schur’s lemma.

3.2.1 Case splitting, for k ¤ l We shall now consider the case when Xk;l is such
that .k; l/ is not in the Weyl orbit of .1; 1/; the other case will be investigated separately.
Here we use Lemma 36 in order to write down all the possible connection 1–forms, up
to invariant gauge transformations. We shall analyze the different cases corresponding
to the different values of n.

Case 0 (n ¤ k � l; l �m; m � k ) In this case a1 D a2 D a3 D 0 and so every
connection is reducible, with

An D
�
n

2

�p
6s
C b!4

�
˝T1:

Case 1 (nD k� l ) In this case a2 D a3 D 0 and we may use our gauge freedom to
write the isomorphism  1W V1 ��!hT2; T3i as  1 D !1˝T2C!5˝T3 . Then

Ak�l D
�
k� l
2

�p
6s
C b!4

�
˝T1C a1.!1˝T2C!5˝T3/:

Case 2 (nD l �m) Now we must have a1 D a3 D 0 and as in Case 1 we may use
our gauge freedom to fix the form of  2 . We can write the connection form as

Al�m D
�
l �m
2

�p
6s
C b!4

�
˝T1C a2.!2˝T2C!6˝T3/:
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Case 3 (n D m � k ) Similarly, in this case a1 D a2 D 0 and we can write the
connection form as

Am�k D
�
m� k
2

�p
6s
C b!4

�
˝T1C a3.!3˝T2C!7˝T3/:

Case 4 (nD m� k D l �m, ie nD l D �k ) In this case a1 D 0 and we exhaust
our gauge freedom in fixing  2 D !2˝T2C!6˝T3 , so that

 3 D !3˝ .cos.ˇ/T2C sin.ˇ/T3/C!7˝ .�sin.ˇ/T2C cos.ˇ/T3/

is dependent on an angle parameter ˇ . The connection form is

Al D
�
l

2

�p
6s
C b!4

�
˝T1C a2.!2˝T2C!6˝T3/

C a3
�
!3˝ .cos.ˇ/T2C sin.ˇ/T3/C!7˝ .�sin.ˇ/T2C cos.ˇ/T3/

�
:

Case 5 (nD l�mDk�l , ie nDkD�m) This is similar to Case 4, but with a2D0.
The connection form is

Ak D
�
k

2

�p
6s
C b!4

�
˝T1C a1.!1˝T2C!5˝T3/

C a3
�
!3˝ .cos.ˇ/T2C sin.ˇ/T3/C!7˝ .�sin.ˇ/T2C cos.ˇ/T3/

�
:

Case 6 (a3 D 0 and n D k � l D m� k , so that n D m D �l ) This is similar to
Cases 4 and 5, except that we use ˛ for the angle parameter. The connection form is

Am D
�
m

2

�p
6s
C b!4

�
˝T1C a1.!1˝T2C!5˝T3/

C a2
�
!2˝ .cos.˛/T2C sin.˛/T3/C!6˝ .�sin.˛/T2C cos.˛/T3/

�
:

3.2.2 Case splitting, for k D l D 1 Now we use Lemma 38 to write down the
possible connection 1–forms for an invariant connection on Pn over X1;1 , splitting
into cases depending on the value of n.

Case 0 (n¤ 3;�3; 0) In this case,

An D
�
n

2

�p
6
C b!4C a1!1C a5!5

�
˝T1;

where a1; a5; b 2R.
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Case 1 (nD 0) In this case,

A0 D !1˝ c1C!4˝ c4C!5˝ c5;

where c1; c4; c5 2 so.3/.

Case 2 (nD 3) In this case,

A�3 D
�
3

2

�p
6
C b!4C a1!1C a5!5

�
˝T1C a2.!2˝T2C!6˝T3/;

where a1; a2; a5; b 2R.

Case 3 (nD�3) In this case.

A3 D
�
�3
2

�p
6
C b!4C a1!1C a5!5

�
˝T1C a3.!3˝T2C!7˝T3/;

where a1; a3; a5; b 2R.

3.2.3 Topology of the homogenous bundles Pn Recall from the beginning of
Section 3.2 that given a group homomorphism �nW U.1/! SO.3/ we may construct
the homogeneous bundle

Pn D SU.3/�.U.1/k;l ;�n/ SO.3/

over Xk;l . In this section we compute the first Pontryagin and second Stiefel–Whitney
classes of the associated vector bundle En with respect to standard action of SO.3/
on R3 . To compute its characteristic classes it will be convenient to use a lift
of En to a Spinc.3/DU.2/–bundle Wn . Then the adjoint bundle gWn

of Wn splits
as gWn

ŠR˚En , where R denotes the trivial bundle. We can then compute the
characteristics of En via the Chern classes of Wn as

w2.En/D c1.Wn/ .mod 2/ and p1.En/D c1.Wn/2� 4c2.Wn/:

To state the result we recall some facts about the cohomology ring of Xk;l [21],
namely, that H 2.Xk;l ;Z/ Š Z and that the square of its generator is the generator
of H 4.Xk;l ;Z/Š Zk2Cl2Ckl . We now state and prove:

Lemma 39 The associated homogeneous SO.3/–bundle En has

w2.En/D n .mod 2/ and p1.En/D n2 .mod k2C kl C l2/:
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Proof The first step towards the computation is to notice that, for any n 2 Z,
there is actually a homogeneous lift of Pn to a Spinc.3/DU.2/–bundle. To see
this, we make the identification SU.2/ � U.1/=Z2 Š U.2/ by the isomorphism
Œ.A; ei� /� 7! diag.ei� ; ei� /A, and it is easy to see that there is a group homomorphism
� W U.2/! SO.3/ which is simply �.ŒA; ei� �/D A 2 SU.2/=Z2 Š SO.3/.

Remark 40 One other way to describe this is by considering the adjoint action of U.2/
on its Lie algebra. This decomposes as u.2/DR˚so.3/, and U.2/ acts on so.3/ŠR3

via SO.3/.

Then the bundle Pn can be homogeneously lifted to a U.2/–bundle if and only if there
is a group homomorphism �nW U.1/! U.2/ such that �n D � ı�n . That is indeed
the case, as we can simply check that

�n.e
i� /D

��
ein�=2 0

0 e�in�=2

�
; ein�=2

�
2 SU.2/�U.1/=Z2

does the job. Then the canonical invariant connection on WnDSU.3/�.U.1/k;l ;�n/U.2/

is Anc D n�=.
p
6s/ ˝ diag.i; 0/ and its curvature F nc D n d�=.

p
6s/ ˝ diag.i; 0/.

Then c1.Wn/ D Œi tr.F cn /� D �nŒd��=.
p
6s/ with Œd��=.

p
6s/ being the generator

of H 2.Xk;l ;Z/, and so w2.En/ D n .mod 2/. We now turn to the computation
of p1.En/, which besides c1.Wn/ also requires c2.Wn/, which we can check to
be zero using the formula 1

2
Œtr.F cn ^ F cn / � tr.F cn /

2�. Therefore, we conclude that
p1.En/D n2 2 Zk2Cl2Ckl , finishing the proof of Lemma 39.

A short computation also yields:

Corollary 41 Let n1 D k� l , n2 D l �m, n3 Dm� k . Then

w2.En1
/D k� l .mod 2/; p1.En1

/D�3kl .mod k2C kl C l2/;
w2.En2

/D k .mod 2/; p1.En2
/D�3k2 .mod k2C kl C l2/;

w2.En3
/D l .mod 2/; p1.En3

/D�3l2 .mod k2C kl C l2/:

4 Gauge theory on Xk;l , with .k; l/ ¤ .1; 1/

This section is concerned with stating and proving the main results of our paper,
namely Theorems 42 and 44, which classify all invariant G2–instantons with gauge
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groups U.1/ and SO.3/, for any G2–structure ' 2 C as in Definition 30. Recall that,
as proved in [9], for k¤˙l , l ¤˙m, m¤˙k , these are in fact all the homogeneous
coclosed G2–structures on Xk;l . Then, in Theorem 46, we use the classification to show
that in any Aloff–Wallach space as above, there are irreducible G2–instantons, with
gauge group SO.3/, which as the G2–structure varies merge into the same reducible
and obstructed G2–instanton. This phenomenon was expected to be possible and
Theorem 46 gives plenty of explicit examples; see for instance Examples 48 and 49,
together with their accompanying Figures 1 and 2, representing the merge of the
G2–instantons. As a consequence of Theorem 44 we give in Section 4.4 examples of
Aloff–Wallach spaces where G2–instantons can be used to distinguish between the
two inequivalent strictly nearly parallel G2–structures. More precisely, we show that
in these examples there always exist invariant and irreducible G2–instantons, which
however live on topologically different SO.3/–bundles.

In Section 4.6, we fix .k; l/D .1;�1/ and a nearly parallel G2–structure on X1;�1 .
After finding the corresponding invariant G2–instantons we show that any irreducible
such G2–instanton is not a local minimum of the Yang–Mills functional. In fact, they
are saddles of the invariant Yang–Mills functional.

4.1 G2–instantons

Before stating the main results we introduce some quantities which will simplify the
notation later on:

� D A2B2.m� k/CA2C 2.l �m/CB2C 2.k� l/;
�D A2B2l CA2C 2kCB2C 2m:

Note that for a given Aloff–Wallach space Xk;l each of these quantities only depends
on the G2–structure (3-1) and varies continuously with it.

4.2 Abelian case

We start below by stating the result classifying G2–instantons with gauge group U.1/.
In this abelian case, some particular examples of the instantons appearing in our
classification are already present in [20, Equation (3.29)]. In this case, the possi-
ble homogeneous bundles are parametrized by n 2 Z, which denotes the degree
of the homomorphism �nW U.1/k;l ! U.1/ used to constructed the bundle Qn D
SU.3/�.U.1/k;l ;�n/ U.1/.
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Theorem 42 (abelian case) Let .k; l/¤ .1; 1/ and A be a G2–instanton on a line
bundle over Xk;l equipped with the G2–structure (3-1). Then one of the following
holds:

(1) �¤ 0, in which case there is a unique G2–instanton in any homogeneous line
bundle. For instance, if A lives on the bundle associated with �n , its connection
1–form is

AD n

2

�
1p
6s
�C �

3
p
2s�

!4

�
:

(2) � D 0, but � ¤ 0, in which case A lives in the trivial homogenous bundle
(ie that associated with �0 ), and A is simply one of the 1–forms b!4 , for some
b 2R.

(3) � D 0 and � D 0, in which case there is a real 1–parameter family of such
instantons on any homogeneous line bundle.

Proof Any abelian G2–instanton can also be interpreted as a reducible SU.2/–
instanton. Hence, we can use the formula for the connection in the previous section.
More precisely, for the instanton to be reducible we must have a1 D a2 D a3 D 0, so

An D n

2
p
6s
�C b!4:

Its curvature is
F n D F nc C b d!4;

where
F nc D�

n

12s2
..k� l/!15C .l �m/!26C .m� k/!37/;

d!4 D 1p
2s
.m!15C k!26C l!37/:

Then we write  D�D!4 ^�2C 1
2
!2 , with �2 and !2 the pullbacks of differential

forms on the flag manifold F2 D SU.3/=T 2 , and determined by this relation. As
in Section 2.1.4, more precisely, (2-8), we compute that the G2–instanton equation
reduces to the equations

.F nc C b d!4/^�2 D 0 and .F nc C b d!4/^!2 D 0:
It is easy to check that F nc ^�2 D 0D d!4 ^�2 always. We are, therefore, reduced
to the second equation, which turns into

�n�C 6
p
2s�b D 0;
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where � and � are as in the beginning of this section. In particular we see that
F nc ^�2D 0 if and only if � D 0 and d!4^�2D 0 if and only if �D 0. Therefore,
if �¤ 0 there is exactly one SU.3/–invariant instanton, whose connection form is

An D n

2

�
1p
6s
�C �

3
p
2s�

!4

�
˝T1:

However, if �D 0 there are no instantons unless n� D 0 as well, in which case there
is a 1–parameter family of instantons as we can chose b arbitrarily.

A few remarks are in order, related to how the existence of invariant abelian G2–
instantons varies with the G2–structure.

Remark 43 (1) For a fixed Aloff–Wallach space Xk;l both � and � vary smoothly
with the G2–structure, and generically �¤ 0. Note that �D 0 defines a hypersurface
in the space of coclosed homogeneous G2–structures.

(2) Suppose that we vary the G2–structure always keeping � ¤ 0, but crossing the
hypersurface defined by �D0. We see that the instantons on the bundles Qn , for n¤0,
“disappear” when �D 0 and “reappear” on the other side of the hypersurface.

(3) For any .k; l/ it is easy to find examples where the situation �D 0D � occurs.
These equations, ie �D 0 and � D 0, can also be written as

A2.B2�C 2/l D B2.C 2�A2/k;
C 2.A2�B2/.l � k/D A2.B2�C 2/.kC l/:

For example, it is easy to see that any G2–structure having A2 D B2 D C 2 satisfies
these equations.

(4) The conditions �D 0 and �D 0 are independent of scaling the metric as expected.

(5) Both � and � are independent of D. This can be understood directly from
the proof, as follows. Recall that .!;�2/ induces an SU.3/–structure on the flag
F2 D SU.3/=T 2 . Then it follows from the proof of Proposition 57 that

F nc ^�2 D 0D d!4 ^�2
always. Notice that both F nc and d!4 are the pullback of 2–forms from F2 . Hence
F nc ^�2 and d!4^�2 measure the components of these 2–forms in ƒ2;0 with respect
to the complex structure on F2 induced by �2 . In particular, the canonical connec-
tion Anc , which is induced from a connection on F2 , is always pseudoholomorphic.
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Furthermore, the proof also shows that F nc ^!2 and d!4 ^!2 are proportional to �
and � respectively. Given that F nc and d!4 , as 2–forms on F2 , are of type .1; 1/, the
constants � and � measure the components of these 2–forms along ! . Thus, Anc is
pHYM with respect to .!;�2/ if and only if � D 0.

(6) Any abelian connection can be written as a direct sum of connections with gauge
group U.1/, so there is no loss of generality in working with gauge group U.1/ when
investigating abelian connections.

4.3 Nonabelian case

In this section we prove Theorem 44, which classifies invariant and irreducible G2–
instantons on SO.3/–bundles, with respect to the G2–structures ' 2 C on the Xk;l ,
for k ¤˙l , l ¤ ˙m, m ¤ ˙k . Recall that in these cases, the G2–structures in C
are in fact all the homogeneous coclosed G2–structures on Xk;l . Then we prove
Theorem 46, which yields examples of irreducible G2–instantons that, as the G2–
structure varies, merge into the same reducible and obstructed G2–instanton (see also
Examples 48 and 49).

The reason for focusing our attention on irreducible G2–instantons is that any reducible
one is already taken into consideration by Theorem 42. Recall, from the previous
section, that the homogenous SO.3/–bundles are also parametrized by an integer n2Z

and we denote them by Pn .

Theorem 44 (nonabelian case) Let .k; l/ ¤ .1; 1/ and Xk;l be an Aloff–Wallach
space equipped with one of the G2–structures ' in (3-1) and n 2 Z. Then irreducible
and invariant G2–instantons on Pn exist if and only if:

(1) nD k� l and �1.'/D 3
�
m=2�s.AD/=.BC/��C ..k� l/=2/� > 0, in which

case the instantons have a2 D a3 D 0,

a21D
1

12B2C 2s2

�
3

�
m

2
�sAD
BC

�
�C k�l

2
�

�
and bD 1p

2

�
�m
2s
CAD
BC

�
I

(2) nD l�m and �2.'/D 3
�
k=2�s.BD/=.AC/��C..l�m/=2/� > 0, in which

case the instantons have a1 D a3 D 0,

a22D
1

12A2C 2s2

�
3

�
k

2
�sBD
AC

�
�C l�m

2
�

�
and bD 1p

2

�
� k
2s
CBD
AC

�
I
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(3) nDm�k and �3.'/D 3
�
l=2�s.CD/=.AB/��C..m�k/=2/� > 0, in which

case the instantons have a1 D a2 D 0,

a23D
1

12B2A2s2

�
3

�
l

2
�sCD

AB

�
�Cm�k

2
�

�
and bD 1p

2

�
� l
2s
CCD
AB

�
:

Proof Let An be an irreducible, invariant G2–instanton on Pn over Xk;l . In order to
compute the instanton equations we must compute the curvature F n first. This may be
found by the formula

F n D F nc C dAn
c
.An�Anc /C 1

2
ŒAn�Anc ; An�Anc �;

and the Maurer–Cartan equations. Our strategy for finding instantons will be simply to
solve the equations F n ^ D 0 for the ai and b in each of the cases listed above.

Case 0 (n¤ k�l; l�m; m�k ) Here a1D a2D a3D 0, so An is always reducible
and we immediately deduce that for A to be irreducible we are reduced to one of the
items in the statement. We also remark that the G2–instantons arising from this case
are precisely those from Theorem 42.

Case 1 (nD k� l ) Here a2 D a3 D 0, and

Ak�l D
�
k�l
2
p
6s
�C b!4

�
˝T1C a1.!1˝T2C!5˝T3/;

whose curvature F l�k is

1

12s2

���.k� l/2C 6p2smbC 24s2a21�!15C ��.k� l/.l �m/C 6p2skb�!26
C ��.k� l/.m� k/C 6p2slb�!37�˝T1

C a1p
2

�
!23�!67�

�
m

s
C 2
p
2b

�
!45

�
˝T2

C a1p
2

�
�!27C!36�

�
m

s
C 2
p
2b

�
!14

�
˝T3:

The equations resulting from F k�l ^ D 0 are

6
p
2s�bC 24B2C 2s2a21 � .k� l/� D 0;
a1BC.2ADs�BC.2

p
2sbCm//D 0:
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Hence, if a1 D 0 we obtain the same reducible instanton as in Case 0 and Theorem 42,
while if a1 ¤ 0, the solutions satisfy

a21 D
1

12B2C 2s2

�
3

�
m

2
� sAD

BC

�
�C k�l

2
�

�
;

b D 1p
2

�
�m
2s
C AD
BC

�
:

Therefore, in this case the existence of SU.3/–invariant irreducible instantons depends
on the sign of �1 D 3

�
m=2� s.AD/=.BC/��C ..k� l/=2/� .

Case 2 (nD l �m) As this case is very similar to Case 1, we will omit the details.
We must have a1 D a3 D 0 and if a2 ¤ 0, solutions to F l�m ^ D 0 must satisfy

a22 D
1

12A2C 2s2

�
3

�
k

2
� sBD

AC

�
�C l�m

2
�

�
;

b D 1p
2

�
� k
2s
C BD
AC

�
:

The sign of �2D3
�
k=2�s.BD/=.AC/��C..l�m/=2/� determines whether solutions

exist.

Case 3 (nDm�k ) Again, we will omit the details. Now a1Da2D 0 and if a3 ¤ 0,
the equation Fm�k ^ D 0 gives

a23 D
1

12B2A2s2

�
3

�
l

2
� sCD

AB

�
�C m�k

2
�

�
;

b D 1p
2

�
� l
2s
C CD
AB

�
:

The sign of �3D3
�
l=2�s.CD/=.AB/��C..m�k/=2/� determines whether solutions

exist.

Case 4 (nDm� k D l �m, and so nD l D�k ) Recall that in this case we have
an angle parameter ˇ . Then the equation F l ^ D 0 becomes

6
p
2s�bC 24A2s2.B2a23CC 2a22/� l� D 0;

a2.2BDsCAC.�2
p
2sbC l//D 0;

a3 sin.ˇ/.2CDs�AB.2
p
2sbC l//D 0;

a3 cos.ˇ/.2CDs�AB.2
p
2sbC l//D 0:

Squaring and summing the last two equations we are left with

a3.2CDs�AB.2
p
2sbC l//D 0:
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This together with the second equation then implies that either a3 D 0 or a2 D 0,
in which case we can then use an invariant gauge transformation to set ˇ D 0. We
have then reduced this case to Cases 2 and 3 above. In particular, the existence of
G2–instantons is determined by the signs of �3 and �2 (note that here we have lD�k ).

Cases 5 and 6 These cases exhibit the same phenomena as in the last one and so
reduce to Cases 1, 2 and 4 above.

Remark 45 Fix Xk;l and the bundle Pk�l . Then Theorem 44(1) shows that for
a G2–structure ' such that �1.'/ > 0 there are two irreducible G2–instantons. In
addition, we also have a reducible G2–instanton given by Theorem 42 (with nD k� l ).
Varying ' so that �1.'/& 0, the two irreducible, invariant G2–instantons existent
when �1 >0 merge with the reducible abelian G2–instanton from Theorem 42. Indeed,
it is easy to check that if �1D 0 (and �¤ 0) then a1D 0 and bD n�=.6p2s�/. We
shall see below that the resulting G2–instanton is obstructed. From Theorem 44(2)–(3),
a similar phenomena holds on the bundles Pl�m and Pm�k .

Theorem 46 Let nD k� l , and suppose f'.s/gs2R is a continuous family of homo-
geneous, coclosed G2–structures such that �1.'.s// > 0 for s < 0 and �1.'.s// < 0
for s > 0. Then, as s% 0, the two irreducible G2–instantons on Pn from Theorem 44
merge and become the same reducible and obstructed G2–instanton when s � 0.

Proof Recall that an invariant connection on Pk�l can be written as

AD Ak�lc C b!4˝T1C a1.!1˝T2C!5˝T3/:
Similarly, an invariant 1–form with values in the adjoint bundle can be written as

aD x!4˝T1Cy.!1˝T2C!5˝T3/;
for some x; y 2R. Using these it is easy to compute

dAaD .x d!4C 4a1y!1 ^!5/˝T1
C
�
y

�
d!1� k�lp

6s
�^!5

�
C 2.byC xa1/!5 ^!4

�
˝T2

C
�
y

�
d!5C k�lp

6s
�^!1

�
� 2.byC xa1/!1 ^!4

�
˝T3:

We are now ready to find the invariant Lie algebra valued 1–forms a which lie in the
cokernel of the deformation operator of the G2–instanton equation L. � /D�.dA � ^ /.
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As the G2–structure is coclosed L is self-adjoint and we can identify the cokernel with
its own kernel. Hence a 2 ker.L/ if and only if dAa^ D 0, which we compute to
be equivalent to

p
2�xC 8B2C 2sa1y D 0;(4-1)

�4BCsa1xC
�p

2

�
2
AD

BC
s�m

�
� 4sb

�
BCy D 0:(4-2)

Hence, there is a nonzero solution .x; y/ if and only if the linear operator in the
left-hand side of (4-1)–(4-2) is not invertible, ie its determinant vanishes:

(4-3) 32B3C 3s2a21C .4ADs� 2BCm� 4
p
2BCbs/�D 0:

Inserting into (4-3) the formulas in Theorem 44 for the reducible instantons when
nD k� l we obtain

8
3
BCs2�1 D 0;

which holds if and only if �1 D 0. We have thus proved that as the instantons from
Theorem 44 on Pk�l merge, when �1 D 0 they become reducible and obstructed
before disappearing.

Remark 47 A similar statement to Theorem 46 holds for nD l �m and nDm� k ,
with �1 replaced by �2 and �3 respectively.

Here are two examples of this phenomenon.

Example 48 On the Aloff–Wallach space X1;�1 consider the G2–structures given by
B D 1, C D 1 and D D 1 with A allowed to vary freely in order to make �1 change
sign. Then, as A varies, the condition for irreducible G2–instantons on P2 to exist is
that �1.'/D 2.1�A2/ be positive, which happens if and only if A2 < 1. See Figure 1
for a plot of a1 (the “irreducible part” of the connections) as A varies. There one
can clearly see that the irreducible G2–instantons merge into the same reducible and
obstructed (by Theorem 46) G2–instanton.

Example 49 Similarly we consider G2–instantons on P6 over X1;�5 , equipped with
the G2–structures having B D C DD D 1. In this case the existence of irreducible
G2–instantons is controlled by the positivity of �1.'/D .A2�1/.12

p
7A�42/, which

is positive if and only if A2 < 1 or A >
p
7
2

. Figure 2 illustrates the two irreducible
G2–instantons merging into the same reducible and obstructed G2–instanton.
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Figure 1: Instantons on P2 over X1;�1
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Figure 2: Instantons on P6 over X1;�5

Remark 50 The phenomenon described above can be interpreted as the G2 analogue
of a family of stable holomorphic bundles in a Kähler manifold, that become polystable
as either the Kähler metric or the complex structure varies; see for example [2] and [3].3

3We thank Mark Stern for these references.
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4.4 Distinguishing strictly nearly parallel structures

Suppose that k¤˙l , l ¤˙m, m¤˙k . As remarked in Section 3, it is shown in [9]
that the system (3-2) yields two inequivalent solutions 'np1 ; 'np2 2 C , which are strictly
nearly parallel. In this section we will give examples of Xk;l where the G2–instantons
can be used to distinguish between 'np1 and 'np2 . More precisely, we shall prove
that in many examples of k and l the structures 'np1 and 'np2 do admit invariant and
irreducible G2–instantons with gauge group SO.3/. However, the G2–instantons live
on topologically different SO.3/–bundles.

To fix notation, let 'C denote the solution of (3-2) that satisfies C.'C/ > 0 and
D.'C/ > 0, and let '� denote the solution satisfying C.'�/ > 0 and D.'�/ < 0. Let
A˙; : : : ;D˙ denote the parameters determining the nearly parallel G2–structures '˙ .
While it is possible to solve equations (3-2) symbolically, the resulting formulas are
extremely unwieldy, so we will instead just give approximations.

Example 51 (k D 1, l D 2) On X1;2 ,

AC D 2:822; BC D 2:296; CC D 1:797; DC D 2:496;
�1.'

C/D�694:918; �2.'
C/D�357:130; �3.'

C/D 102:969;
while

A� D 1:699; B� D 2:639; C� D 2:720; D� D�1:727;
�1.'

�/D 257:213; �2.'
�/D�623:289; �3.'

�/D�676:142:
Hence, Theorem 44 implies that for 'C, irreducible, invariant G2–instantons exist only
on the bundle P�4 , while for '�, irreducible, invariant G2–instantons exist only on the
bundle P�1 . These bundles are topologically distinct: indeed using the formulas from
Corollary 41 we find that w2.E�4/ D 0 .mod 2/ and p1.E�4/ D 2 .mod 7/, while
w2.E�1/D 1 .mod 2/ and p1.E�1/D 1 .mod 7/.

Example 52 (k D 1, l D 3) On X1;3 ,

AC D 2:813; BC D 2:385; CC D 1:760; DC D 2:304;
�1.'

C/D�1304:737; �2.'
C/D�794:177; �3.'

C/D 286:314;
while

A� D 1:702; B� D 2:615; C� D 2:737; D� D�1:764;
�1.'

�/D 468:212; �2.'
�/D�1124:808; �3.'

�/D�1272:289:
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Hence, for 'C, irreducible, invariant G2–instantons exist only on the bundle P�5 , while
for '�, irreducible, invariant G2–instantons exist only on the bundle P�2 . The bundles
are topologically distinct: w2.E�5/D 1 .mod 2/ and p1.E�5/D 12 .mod 13/, while
w2.E�2/D 0 .mod 2/ and p1.E�2/D 4 .mod 13/.

Example 53 (k D 1, l D 4) On X1;4 ,

AC D 2:806; BC D 2:425; CC D 1:746; DC D 2:208;
�1.'

C/D�2113:761; �2.'
C/D�1378:207; �3.'

C/D 526:442;

while

A� D 1:011; B� D 2:425; C� D 1:746; D� D�1:792;
�1.'

�/D 349:253; �2.'
�/D�1593:714; �3.'

�/D�823:167:

Hence, for 'C, irreducible, invariant G2–instantons exist only on the bundle P�6 , while
for '�, irreducible, invariant G2–instantons exist only on the bundle P�3 . The bundles
are topologically distinct: w2.E�6/D 0 .mod 2/ and p1.E�6/D 15 .mod 21/, while
w2.E�3/D 1 .mod 2/ and p1.E�3/D 9 .mod 21/.

Example 54 (k D 2, l D 3) On X2;3 ,

AC D 2:827; BC D 2:197; CC D 1:848; DC D 2:668;
�1.'

C/D�1857:936; �2.'
C/D�753:703; �3.'

C/D 107:336;

while

A� D 1:698; B� D 2:658; C� D 2:707; D� D�1:708;
�1.'

�/D 705:209; �2.'
�/D�1726:540; �3.'

�/D�1812:541:

Hence, for 'C, irreducible, invariant G2–instantons exist only on the bundle P�7 , while
for '�, irreducible, invariant G2–instantons exist only on the bundle P�1 . The bundles
are topologically distinct: w2.E�7/D 1 .mod 2/ and p1.E�7/D 11 .mod 19/, while
w2.E�1/D 1 .mod 2/ and p1.E�1/D 1 .mod 19/.

Example 55 (k D 2, l D 11) On X2;11 ,

AC D 2:800; BC D 2:456; CC D 1:736; DC D 2:132;
�1.'

C/D�14809:573; �2.'
C/D�10158:191; �3.'

C/D 4009:812;
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while
A� D 1:706; B� D 2:584; C� D 2:755;E� D�1:823;

�1.'
�/D 5116:368; �2.'

�/D�12243:994; �3.'
�/D�14559:716:

Hence, for 'C, irreducible, invariant G2–instantons exist only on the bundle P�15 ,
while for '�, irreducible, invariant G2–instantons exist only on the bundle P�9 .
The bundles are topologically distinct: w2.E�15/ D 1 .mod 2/ and p1.E�15/ D
78 .mod 147/, while w2.E�9/D 1 .mod 2/ and p1.E�9/D 81 .mod 147/.

Remark 56 We did not find any Aloff–Wallach space for which one of the strictly
nearly parallel G2–structures does not admit irreducible, invariant G2–instantons with
gauge group SO.3/.

4.5 Yang–Mills connections

It is interesting to consider the question: what conditions on a G2–structure ensure that
a G2–instanton is a Yang–Mills connection? Proposition 8 says that this is the case
for parallel and nearly parallel G2–structures. In this section we shall characterize the
homogeneous coclosed G2–structures ' 2 C for which an abelian G2–instanton is a
critical point for the Yang–Mills energy.

Proposition 57 Equip Xk;l with a G2–structure (3-1) such that �¤ 0. Let An be
the unique G2–instanton on the line bundle associated with �n . Then A is a critical
point for the Yang–Mills energy if and only if the G2–structure satisfies

(4-4) A2B2.A2�B2/l CA2C 2.C 2�A2/kCB2C 2.B2�C 2/mD 0:

Proof From the proof of Theorem 42 we have

An D n

2

�
1p
6s
�C �

3
p
2s�

!4

�
˝T1:

The Yang–Mills energy for an invariant abelian connection

An D
�

n

2
p
6s
�C b!4

�
˝T1

is

E.b/D 1

144s4

�
1

A4
.6
p
2bms�n.k� l//2C 1

B4
.6
p
2bms�n.l �m//2

C 1

C 4
.6
p
2bms�n.m� k//2

�
:
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Then we require that at the G2–instanton, ie when bDn�=.6p2s�/, there be a critical
point of E.b/, which immediately yields (4-4).

For completeness we also remark that, in general, the critical points of E have

b D� n

6
p
2s

A4B4l.k�m/CA4C 4k.m� l/CB4C 4m.l � k/
A4B4l2CA4C 4k2CB4C 4m2 :

Remark 58 (1) If �D 0 then only one of the G2–instantons in the 1–parameter
family described in Theorem 42 is a critical point for the Yang–Mills energy.

(2) For a given Xk;l condition (4-4) describes a hypersurface in the space of homo-
geneous coclosed G2–structures, containing the nearly parallel G2–structures.

(3) One can carry out a similar analysis to determine conditions on the G2–structure
so that the irreducible G2–instantons described in Theorem 44 are Yang–Mills.
The space of such G2–structures is cut out in C by two real algebraic equations.

4.6 For a nearly parallel structure on X1;�1

We shall now see an example of a nearly parallel G2–structure on an Aloff–Wallach
space, namely X1;�1 , for which instantons do exist and do not minimize the Yang–
Mills–Higgs energy.

4.6.1 G2–instantons The precise statement we shall prove in this section is:

Theorem 59 Let ' be the nearly parallel G2–structure on X1;�1 .

(1) For each n, there is a unique, invariant, G2–instanton on the line bundle
Ln D SU.3/�U.1/1;�1;�n

C .

(2) Let A be an irreducible and invariant G2–instanton, with gauge group SO.3/
on X1;�1 . Then A lives on the bundle P�1 . Moreover, such instantons do exist.

The rest of this section is dedicated to proving this result. First we must obtain the
strictly nearly parallel G2–structure on X1;�1 . This is of the form (3-1), with

AD�4
q
2
5
; B D 4

15

p
75C 15

p
5; C D� 4

15

p
75� 15

p
5; D D�16

45

p
30;

as a straightforward computation shows. We shall now compute G2–instantons for
this structure, starting with abelian ones on the bundles Ln D SU.3/ ��n

C . The
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invariant connections are of the form n
2
� C a4!4 and the G2–instanton equation�

n
2
d�C a4 d!4

�^ D 0 gives

256
135

p
6
�p
3n� 18p

5
a4
�
!1234567 D 0:

Hence, we must have a4 D n
p
15
18

and the resulting G2–instanton has curvature

F D 1p
2
n
��!15C 1

2
.!26C!37/C

p
5
6
.!26�!37/

�
:

We turn now to nonabelian G2–instantons, namely those with gauge group SO.3/ that
we constructed before. We start by considering the case nD k� l D 2, ie instantons
on the bundle on P2 D SU.3/��2

SO.3/. Inserting the A, B , C and D associated
with the nearly parallel G2–structure into our general formula one can check that the
quantity inside the square root is negative and so there are no invariant, irreducible,
G2–instantons on P2 . In fact, to be a little more explicit we shall explain all the steps
underlying that computation in this case. First, the more general invariant connection
on P2 has a2 D a3 D 0 and so is of the form

AD � 1p
6
�C a4!4

�˝T1C a1.!1˝T2C!5˝T3/:
We compute its curvature FA as before and set FA^ D 0, which yields the equations

3
p
30a4� 20a21 � 5D 0;(4-5)

a1.2
p
2C
p
15a4/D 0:(4-6)

From (4-6) we see that either a1 D 0, in which case the connection is reducible,
or a4 D�2

q
2
15

. Inserting this into (4-5) we then have to solve �20a21 � 17 D 0,
which has no real solutions. Alternatively we could have just found that �1 D�14336225

,
whose being negative shows that there are no irreducible instantons on P2 .

We analyze now the case when n D l �m or n D m� k as in both these cases we
have nD�1. In this case an invariant connection must have a1 D 0, while a2 and a3
can be nonzero. However, as we have seen in our analysis of the general case, the
G2–instanton equations imply that at least one of these vanishes. In fact, after inserting
the values of A, B , C and D into the formulas of Theorem 44, we can check that
�2<0 and �3>0. Hence, there are irreducible G2–instantons and any such has a2D0,

a3 D˙16
p
�21C 12

p
5 and a4 D�

p
6
36
.4
p
5� 13/:
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The quantities appearing inside the square root are positive and so these solutions do
correspond to genuine G2–instantons for the nearly parallel G2–structure on X1;�1 .
For completeness we write the curvature of such an instanton in the usual way with

F1 D 1
2
!15C

�
5
6
� 1
3

p
5
�
!26C

��5
2
C
p
5
�
!37;

F2 D˙
p
2
12

p
�21C 12

p
5
�
!12�!56C 4

p
3
9
.�1C

p
5/!47

�
;

F3 D˙
p
2
12

p
�21C 12

p
5
��!16C!25C 4

p
3
9
.�1C

p
5/!34

�
:

4.6.2 Yang–Mills unstable G2–instantons Let A be a G2–instanton for a nearly
parallel or torsion-free G2–structure ' , ie such that d' D � for � 2 R. We have
seen, in Proposition 8, that such G2–instantons are actually Yang–Mills connections.
Moreover, (2-4) and the subsequent discussion show that in the torsion-free case a
G2–instanton minimizes the Yang–Mills energy, and so is Yang–Mills stable. That need
not be the case for nearly parallel G2–structures as we now show with a counterexample
on the nearly parallel X1;�1 .

Proposition 60 The irreducible G2–instantons constructed in the second item of
Theorem 59, over the nearly parallel X1;�1 , are unstable as Yang–Mills connections.

Proof In order to demonstrate instability, it will be sufficient to consider the Yang–
Mills energy only for invariant connections with a2 D 0. We will denote a3 simply
by a . The Yang–Mills energy for the connection

A�1 D
�
� �

2
p
6
C b!4

�
˝T1C a.!3˝T2C!7˝T3/

on P�1 is

E.a; b/D 25
4096
C 15
65536

.3�
p
5/.12b�

p
6/2C 45

32768
.3C
p
5/.8a2� 2

p
6b� 1/2

C 15
1024

a2.5�
p
5/C 405

65536
a2.5C

p
5/.4b�

p
6/2:

A routine calculation shows that, as expected from Proposition 8, the G2–instantons at

aD˙1
6

p
�21C 12

p
5 and b D�

p
6
36
.4
p
5� 13/

are critical points for this energy. For both of these G2–instantons the determinant and
trace of the Hessian of E.a; b/ are

det.Hess.E//D 196425
524288

� 83025
262144

p
5 < 0 and tr.Hess.E//D 735

8192
C 4155
8192

p
5 > 0:

Thus they are critical points of index one, hence unstable as Yang–Mills connections.
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Figure 3: Level sets of the invariant Yang–Mills functional with a2D 0 . One
can see three local minima. The global minimum is on top and is a reducible
G2–instanton. There are also two saddles which lie on straight lines from
the reducible G2–instanton to the other local minima. Those saddle points
correspond to the irreducible G2–instantons.

Remark 61 (1) It is not difficult to check that the reducible G2–instanton is the
global minimum for the Yang–Mills energy among all invariant connections on
the bundle P�1 (ie even when a2 ¤ 0).

(2) When restricting to the a2 D 0 case there are three local minima of the Yang–
Mills energy: the reducible G2–instanton, and a pair of Yang–Mills connections
that are not G2–instantons; see Figure 3. The two irreducible G2–instantons are
the two saddles in that figure.

5 Gauge theory on X1;1

In this section we study G2–instantons on X1;1 , with respect to the G2–structures (3-1).
This case was excluded from the previous section, since here the existence result for
invariant connections, Lemma 38, requires a separate analysis. We further remark that
in the case .k; l/D .1; 1/, the form (3-1) for the G2–structure does not yield the most
general homogeneous coclosed G2–structure. We start by proving Theorems 62 and 64,
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which are the analogues of Theorems 42 and 44, classifying abelian and nonabelian
G2–instantons on X1;1 . Then, in Theorem 65, we prove that the same phenomenon as
in Theorem 46 occurs in the case of X1;1 . Namely, we prove that on X1;1 there are
irreducible invariant G2–instantons, with gauge group SO.3/, that as the G2–structure
varies merge into the same reducible and obstructed one.

Then, in Section 5.3, we specialize to a certain subfamily of G2–structures in C and
write down the explicit formulas for the G2–instantons in this subfamily. The main
results here are Theorems 67 and 69. In particular, this last one proves that there are
two bundles (one of which is the trivial one) carrying irreducible G2–instantons, with
gauge group SO.3/, for a continuous family of G2–structures. Also, we prove in
Theorem 71 that as the fibers of a projection � W X1;1!CP2 collapse, the irreducible
G2–instantons in the trivial bundle converge to the pullback of a connection from CP2 .
We also show this cannot be true for the G2–instantons in the other bundle. Finally,
in Corollary 73 we prove that while there are no invariant irreducible G2–instantons
with gauge group SO.3/ for the 3–Sasakian structure on X1;1 , these do exist for the
strictly nearly parallel one.

5.1 Abelian case

The following theorem is the analogue of Theorem 42, classifying invariant G2–
instantons on X1;1 with gauge group U.1/. Note that for .k; l/D .1; 1/,

� D 3A2.C 2�B2/ and �D A2B2CA2C 2� 2B2C 2:

Theorem 62 Equip X1;1 with the G2–structure (3-1). Let An be an invariant G2–
instanton on the line bundle Qn over X1;1 . Then:

(1) If ADCBC ¤ 0, then one of the following holds:

(a) �¤ 0, in which case An is the unique G2–instanton on Qn . Its connection
1–form is

An D n

2

�
1p
6
�C �

3
p
2�

!4

�
:

(b) � D 0, but � ¤ 0, in which case n D 0 and so A lives in the trivial
homogenous bundle (ie that associated with �0 ), and An is simply one of
the 1–forms b!4 , for some b 2R.

(c) �D 0 and � D 0, in which case there is a real 1–parameter family of such
instantons on each Qn .
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(2) If ADCBC D 0, then one of the following holds:

(a) � ¤ 0, in which case there is a real 2–parameter family of such G2–
instantons on Qn , and An is given by

An D n

2

�
1p
6
�C �

3
p
2�

!4C a1!1C a5!5
�
;

for some a1; a5 2R.

(b) � D 0, but � ¤ 0, in which case n D 0 and so A lives in the trivial
homogenous bundle (ie that associated with �0 ), and A is simply one of the
1–forms b!4C a1!1C a5!5 , for some a1; a5; b 2R.

(c) �D 0 and � D 0, in which case there is a real 3–parameter family of such
instantons on each Qn .

Proof Any abelian G2–instanton can be interpreted as a reducible SO.3/–instanton.
Hence, we can use the formulas from Section 3.2.2 for the connection form

An D n

2

�p
6
C b!4C a1!1C a5!5:

For this connection the 6–form F n ^ becomes
p
2BC.ADCBC/.a1!234567C a5!123467/C

�
1p
2
�a4� 1

12
n�
�
!123567:

If we equate this to zero, then the result follows from splitting into the various possible
cases and simple algebraic manipulations.

Remark 63 � The condition that �D 0D� and ADCBC D 0 can occur. Take
for example a G2–structure with AD B D C and D D�A. In this case there
is a 3–parameter family of invariant G2–instantons on any complex line bundle
over X1;1 .

� The existence of this real 3–parameter family for these G2–structures can be
understood in light of Proposition 17.

5.2 Nonabelian case

Next we have the analogue of Theorem 44, classifying invariant, irreducible G2–
instantons over X1;1 with gauge group SU.2/.
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Theorem 64 Equip X1;1 with the G2–structure (3-1). Then invariant, irreducible
G2–instantons exist on the bundle P�n

if and only if:

(1) n D 0 and ��.1C .AD/=.BC// > 0, in which case the G2–instanton has
connection 1–form

A0 D a4!4˝T1C a1.!1˝T2C!5˝T3/;

where the ai satisfy

a21 D ��
4B2C 2

�
1C AD

BC

�
and a4 D 1p

2

�
1C AD

BC

�
I

(2) nD 3 and �2.'/D 3
�
1
2
�.BD/=.AC/��C 3

2
� >0, in which case a1D a5D 0,

a22 D 1

12A2C 2

�
3

�
1

2
� BD
AC

�
�C 3

2
�

�
and b D 1p

2

�
�1
2
C BD
AC

�
I

(3) nD�3 and �3.'/D3
�
1
2
�.CD/=.AB/��� 3

2
� >0, in which case a1Da5D0,

a23 D 1

12A2B2

�
3

�
1

2
� CD
AB

�
�� 3

2
�

�
and b D 1p

2

�
�1
2
C CD
AB

�
:

Proof We follow the same strategy as in the proof of Theorem 44, splitting into the
cases described above.

Case 0 (n¤ 0; 3;�3) Here An is always reducible so there cannot be an invariant,
irreducible instanton. We note that the reducible G2–instantons arising from this case
are exactly those appearing in Theorem 62.

Cases 2 and 3 (n D 3;�3) These cases can be handled in the same way as the
second and third items in Theorem 44, so we omit the details.

Case 1 (n D 0) Here any invariant connection is simply a left-invariant, and
Ad.U.1/1;1/–invariant, 1–form with values in so.3/. We write it as

A0 D !1˝ c1C!4˝ c4C!5˝ c5;

where c1; c4; c52 so.3/. We compute the curvature of this connection using the formula
F 0 D dA0C 1

2
ŒA0 ^A0�. This gives

F 0Dd!1˝c1Cd!4˝c4Cd!5˝c5C!14˝Œc1; c4�C!15˝Œc1; c5�C!45˝Œc4; c5�:
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The equation F 0 ^ D 0, after a small amount of simplification, yields

BCŒc1; c4�D�
p
2.ADCBC/c5;

BC Œc4; c5�D�
p
2.ADCBC/c1;p

2 B2C 2Œc1; c5�D��c4:
Bracketing the third equation with c4 gives us ŒŒc1; c5�; c4�D 0. We first assume that
Œc1; c5�¤ 0, which by the third equation implies c4 ¤ 0. This being the case, we may
change gauge to require that

c1 D r1T2; c4 D r4T1 and c5 D r5T3
for some nonzero real constants r1 , r4 and r5 . With this choice, the system becomes

2BCr1r4 D
p
2.ADCBC/r5;

2BCr4r5 D
p
2.ADCBC/r1;

2
p
2B2C 2r1r5 D��r4:

Since we have assumed that the ri are nonzero, we must have �¤0 and ADCBC ¤0.
The solutions to these equations are readily found to be

r21 D ��
4B2C 2

�
1C AD

BC

�
; r5 D˙r1 and r4 D˙ 1p

2

�
1C AD

BC

�
;

which seems to yield four solutions, provided

�
�
1C AD

BC

�
> 0:

However, the solutions differing only by the ˙ sign are gauge equivalent: we can
change gauge to send T1 to �T1 , and T3 to �T3 . At this point we set a1 D r1 and
a4 D r4 yielding the result in the statement.

If Œc1; c5� D 0 then we may by change of gauge fix c1 D �1T1 and c5 D �5T1

for some (possibly zero) constants �1 and �5 . Then, considering the first equation
BCŒc1; c4�D�

p
2.ADCBC/c5 , we must have Œc1; c4�D 0. Therefore the connec-

tion is reducible, and the solutions will correspond to abelian G2–instantons already
described in Theorem 42.

With exactly the same method as in Theorem 65 we can prove that when the G2–
instantons merge they become reducible and obstructed.
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Theorem 65 Let f'.s/gs2R be a continuous family of G2–structures as in (3-1) such
that �1.'.s// > 0 for s < 0 and �1.'.s// < 0 for s > 0. Then, as s % 0, the two
irreducible G2–instantons on P�0

from Theorem 44 merge and become the same
reducible and obstructed G2–instanton when they disappear for s � 0.

Remark 66 A similar statement holds for the G2–instantons on P�˙ with �1 replaced
by �2 and �3 respectively.

5.3 An example of merging G2–instantons on X1;1

We may think of �1W X1;1!CP2 as in Remark 34, ie as an SO.3/–bundle over CP2 ,
which is a quaternion-Kähler 4–manifold (self-dual, Einstein) with positive scalar
curvature. The discussion before Proposition 18, in Section 2.2, shows that X1;1
carries two nearly parallel G2–structures, one inducing a 3–Sasakian metric and the
other inducing a strictly nearly parallel one. This last one will be contained in the family
of G2–structures we consider in this section. Proposition 18 gives some examples of
G2–instantons on X1;1 by pulling back self-dual connections on CP2 . In fact, on any
line bundle over CP2 there is one such connection that is SU.3/–invariant, namely the
canonical connection n

2
p
6
� on the degree n–bundle. In what follows we shall confirm

this fact and we will also obtain other examples of G2–instantons that are not pulled
back from CP2 .

In this subsection we will consider the G2–structures in the family (3-1) that satisfy
C D B and D D A. This is, up to scaling, the 1–parameter family in the hypothesis
of Proposition 18 with t proportional to A=B . For completeness we note that the
G2–structure in (3-1) gives

 D B4
�
!2367� A

2

B2
.!15 ^�1C!45 ^�2�!14 ^�3/

�
;

where �1 D !26�!73 , �2 D !23�!67 and �3 D !27�!36 form an orthonormal
basis for the pullback of the space of anti-self-dual 2–forms on CP2 . One can then
check that this family contains one of the homogeneous nearly parallel G2–structures
on X1;1 . In fact, one can check that AD�2p2=� and B D 2=� satisfy d' D � .

For the structures we are considering,

ADCBC D A2CB2 ¤ 0; �D 2B2.A2�B2/ and � D 0;
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and thus Theorem 62(1)(a) tells us that for � ¤ 0, ie A2 ¤ B2 , there is a unique
G2–instanton on Qn . This has b D 0 and so is precisely the canonical invariant
connection n

2
p
6
�. Its curvature is

n

2
p
6
d�D�n

4
.!26C!73/;

and as remarked before, is actually the pullback from CP2 of a self-dual 2–form. On
the other hand, Theorem 62(1)(c) shows that when A2 D B2 there is a 1–parameter
family of G2–instantons, namely any of the connections n

2
p
6
�C b!4 , for b 2R. We

state these conclusions as:

Theorem 67 Let A;B 2RC and equip X1;1DSU.3/=U.1/1;1 with the G2–structure

'A;B D A3!145CAB2.!123�!167C!257�!356�!426�!437/:
If L is a complex line bundle over X1;1 with c1.L/D n 2 ZŠH 2.X1;1;Z/, then:

� If A2¤B2 , the canonical connection n

2
p
6
� is the unique invariant G2–instanton

on L.

� If A2DB2 , then the connections n

2
p
6
�Cb!4 are G2–instantons for any b 2R.

These are the unique invariant G2–instantons on L.

Remark 68 (1) The canonical connection n

2
p
6
� is the pullback of a self-dual

connection on CP2 . Therefore, the fact that it is a G2–instanton with respect
to 'A;B also follows from Proposition 18. Its uniqueness for the nearly parallel
structure is also a consequence of Corollary 14, however uniqueness amongst
invariant ones for other structures in the family f'A;BgA¤B is not.

(2) The abelian instantons constructed for A D B show that the uniqueness part
of Corollary 14 does not extend from nearly parallel to general coclosed G2–
structures. In fact, not even the rigidity stated in Corollary 25 holds.

We turn now to invariant, irreducible, nonabelian G2–instantons. We start with the
case nD k� l D 0. Theorem 64 tells us that G2–instantons on P0 exist if and only if

�2B2.A2�B2/
�
1C A2

B2

�
> 0;

or in other words if and only if B2 > A2 . In this case we have

A0 D a4!4˝T1C a1.!1˝T2C!5˝T3/;
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where the ai must satisfy

a1 D˙
r
B4�A4
2B4

and a4 D A2CB2p
2B2

:

The curvature of these connections is

F D F1˝T1CF2˝T2CF3˝T3;
with

F1 D�
�
A2

B2
C 1

��
A2

B2
!15� 1

2
.!26�!73/

�
;(5-1)

F2 D�
r
1� A

4

B4

�
A2

B2
!45� 1

2
.!23�!67/

�
;(5-2)

F3 D�
r
1� A

4

B4

�
A2

B2
!14� 1

2
.!36�!27/

�
:(5-3)

The other cases in which there exist nontrivial invariant connections are when nD˙3.
Notice that P3 and P�3 are interchanged by the automorphism of SU.3/ given by
g 7! g�1 . This automorphism preserves U.1/1;1 and so descends to a diffeomorphism
of X1;1DX�1;�1 . We shall therefore consider only the case nD 3 where a1D a3D 0.
Also in this case, our work above gives that there are irreducible, invariant G2–instantons
on P3 (resp. P�3 ) if and only if

�2 D �3 D 3B2.B2�A2/� 0;
ie B2 > A2 . In that case we have

a2 D˙1
2

r
�1C B

2

A2
and a4 D 1

2
p
2
;

and their curvature is such that

F1 D�1
2
!15�

�
1� B2

2A2

�
!26C!37;(5-4)

F2 D� 1p
2

r
�1C B

2

A2

�
!46C 1

2
.!13�!57/

�
;(5-5)

F3 D˙ 1p
2

r
�1C B

2

A2

�
�!24C 1

2
.!17�!35/

�
:(5-6)

As before these are clearly irreducible and not pulled back from CP2 via � . We have
thus proved:
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Theorem 69 For A;B 2RC , let 'A;B be the G2–structure on X1;1DSU.3/=U.1/1;1
from Theorem 67. Let rA be an SU.3/–invariant, irreducible G2–instanton for 'A;B ,
with gauge group SO.3/. Then either:

(1) rA lives on P0 , the trivial SO.3/–bundle over X1;1 , in which case the following
hold:

� If A < B , then rA is one of two G2–instantons on P0 , having curvature as
in equations (5-1)–(5-3).

� If A� B , there is no invariant, irreducible G2–instanton on P0 .

(2) rA lives on one of the bundles P3 or P�3 , in which case the following hold:

� If A<B , then rA is one of two invariant, irreducible G2–instantons on P˙3 .
If rA lives on P3 , its curvature is as in equations (5-4)–(5-6).

� If A� B , there is no invariant, irreducible G2–instanton on either P˙3 .

Remark 70 � Both in P0 and P3 , the G2–instantons .rA/A;B constructed above
become abelian when AD B .

� None of the irreducible G2–instantons on P0 and P3 constructed for A < B is
pulled back from CP2 and so none follows from Proposition 18.

The instantons on P0 and P3 constructed above are quite different. In fact, looking at
the expressions for the curvature of these, we see that by metrically collapsing the fibers
of � W X1;1!CP2 by sending A to 0, the instantons constructed on P0 converge to
the pullback of a connection on CP2 . However, this property does not hold for those
constructed on P3 . More precisely, we have:

Theorem 71 Let .rA/A;B be the G2–instanton associated with 'A;B on P0 . Then
there is an SO.3/–connection r on CP2 such that as A! 0, .rA/A;B converges
uniformly with all its derivatives to ��r .

Let .zrA/A;B be the G2–instanton associated with 'A;B on P3 . There is no connec-
tion r on CP2 such that .rA/A;B ! ��r uniformly with respect to '1;1 as A! 0.

Proof Let P D SU.3/�U.2/;� SO.3/ be the bundle constructed from

�W SU.2/�U.1/=Z2! SO.3/ with �.g; ei� /D g mod �1:
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The canonical invariant connection r associated with this bundle is

1p
2
.!4˝T1C!1˝T2C!5˝T3/ 2�1.SU.3/; so.3//:

Its curvature is F D T1˝T1CF2˝T2CF3˝T3 such that

F1 D 1
2
.!26�!73/; F2 D 1

2
.!23�!67/ and F3 D�12.!27�!36/;

so it is a anti-self-dual connection. In fact notice that the components F1 , F2 and F3 of
the curvature pull back respectively to �1 , �2 and �3 on X1;1 . We now let .rA/A;B
be our G2–instanton on 'A;B , which has connection 1–form

1p
2

�
A2

B2
C 1

�
!4˝T1C 1p

2

r
1� A

4

B4
.!1˝T2C!5˝T3/;

seen as an element of �1.SU.3/; so.3//. Hence the difference of the two connections
aA;B D .rA/A;B ���r is a 1

2
p
6
�–horizontal 1–form in SU.3/ given by

aD 1p
2

A2

B2
!4˝T1C 1p

2

�r
1� A

4

B4
� 1

�
.!1˝T2C!5˝T3/:

Using the fixed metric associated with the G2–structure '1;1 to take norms we compute
that for any k 2 ZC ,

kaA;BkCk � ck
A2

B2
;

for some positive constant ck independent of A and B . Taking A to 0 we see that aA;B
converges uniformly to 0 with all derivatives, proving the first assertion in the statement.

We turn now to the proof of the second assertion, namely, that the same phenomena
cannot happen for the instantons we constructed on P�3

. If such a statement was to
be true, the curvatures zFA;B of .zrA/A;B should converge to an so.3/–valued 2–form
on SU.3/ that is basic with respect to the projection SU.3/ ! CP2 . Any linear
combination V of the vector fields e1 , e4 and e5 is vertical with respect to this
projection. Taking V D e1 we have

�e1
zFA;B D 1

2
!5˝T1� 1

2
p
2

r
�1C B

2

A2
.!3˝T2�!7˝T3/

and clearly limA!0k�e1
zFA;BkCk DC1 for all k 2N0 . Hence, zFA;B cannot converge

to a basic form.
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Remark 72 The SO.3/–connection r on CP2 appearing in the previous theorem
is in fact anti-self-dual. However, we do not want to emphasize this fact too much,
as it may be misleading. Indeed, we expect that in other similar situations the same
phenomena can occur with the corresponding r not being anti-self-dual.

There is one other homogeneous nearly parallel G2–structure on X1;1 . In fact, the
equations for homogeneous nearly parallel G2–structures in the case .k; l/D .1; 1/
yield eight solutions, which give rise to two different metrics. The solutions are
completely determined by C 2 D B2 , D2 D A2 and these two cases:

� A2 D 2B2 and ABCD > 0, which fits into the family just described and in
which case the corresponding metric is 3–Sasakian.

� A2 D 2B2=5 and ABCD < 0, and so the G2–structure is obtained from the
above through the squashing construction in Section 2.2. In this case, the corre-
sponding metric is a strictly nearly parallel G2–metric; see [18, Theorem 5.5].

Notice that Theorem 69 does not yield any irreducible G2–instanton for the nearly
parallel G2–structure contained in the family we are analyzing, which is the one
inducing the 3–Sasakian structure. However, as we shall now show, the theorem does
yield irreducible G2–instantons for the strictly nearly parallel structure.

Corollary 73 � There are no irreducible, invariant G2–instantons with gauge
group SO.3/ for the nearly parallel G2–structure on X1;1 inducing the 3–
Sasakian metric.

� There are irreducible, invariant G2–instantons with gauge group SO.3/ for the
strictly nearly parallel G2–structure on X1;1 .

Proof Any homogeneous nearly parallel G2–structure on X1;1 satisfies A2 D D2
and B2 D C 2 . There are two cases:

� A2 D 2B2 and ABCD > 0. In fact, for ABCD > 0 we compute

�1.'/D 6.B4�A4/ and �2.'/D �3.'/D 3B2.B2�A2/:
As the nearly parallel G2–structure in this case has A2D 2B2 >B2 we see that all �i ,
for i D 1; 2; 3, are negative and so there are no G2–instantons.

� A2 D 2B2=5 and ABCD < 0. In this case we compute that for ABCD < 0,

�1.'/D 6.A2�B2/2 and �2.'/D �3.'/D 9B2.A2�B2/:
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The nearly parallel G2–structure has A2 D 2B2=5 < B2 , so both �2 and �3 are
negative. On the other hand �1 is positive and thus irreducible G2–instantons on this
nearly parallel G2–structure do exist. Any such must live in the trivial bundle P�0

.

Remark 74 � The previous result shows the G2–structures inducing the 3–
Sasakian and the strictly nearly parallel G2–structures on X1;1 can be dis-
tinguished by the existence of an irreducible, invariant G2–instanton with gauge
group SO.3/.

� We further remark that we are not analyzing the most general homogeneous and
coclosed G2–structures on X1;1 . In fact, for .k; l/ D .1; 1/ there is a larger-
dimensional family, containing in particular a nearly parallel G2–structure whose
associated metric is Sasaki–Einstein; see [7] and [9].

� G2–instantons with gauge group SU.3/ for the 3–Sasakian structure on X1;1
have been considered in [20].

6 Questions for further work

The following are natural directions for further work:

(1) Similar methods can be used in many other cases where homogeneous G2–
structures exist. Of particular interest would be the cases admitting nearly
parallel G2–structures; see [18] for the classification of homogeneous nearly
parallel G2–manifolds.

(2) Carry on a general analysis of the following question: for which .k; l/ do
Theorems 42 and 44 provide irreducible G2–instantons for the nearly parallel
G2–structures in Xk;l ? We intend to address this in the future.

(3) Compute the Crowley–Nordström invariants [13] for the G2–structures ' 2 C
and check if this distinguishes the two disconnected components in C . If that
is the case, then for k ¤ l , l ¤ m, m ¤ k these invariants can be used to
distinguish the two strictly nearly parallel G2–structures.

(4) Given a G2–instanton A for a G2–structure on Xk;l such that A is also Yang–
Mills, in which cases is A stable as a Yang–Mills connection? Here, it would be
interesting to understand better how the answer to this question depends on the
G2–structure.

Geometry & Topology, Volume 23 (2019)
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