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The classification of Lagrangians nearby
the Whitney immersion

GEORGIOS DIMITROGLOU RIZELL

The Whitney immersion is a Lagrangian sphere inside the four-dimensional symplec-
tic vector space which has a single transverse double point of Whitney self-intersection
number C1 . This Lagrangian also arises as the Weinstein skeleton of the complement
of a binodal cubic curve inside the projective plane, and the latter Weinstein manifold
is thus the “standard” neighbourhood of Lagrangian immersions of this type. We
classify the Lagrangians inside such a neighbourhood which are homologically
essential, and which are either embedded or immersed with a single double point;
they are shown to be Hamiltonian isotopic to either product tori, Chekanov tori, or
rescalings of the Whitney immersion.
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3368 Georgios Dimitroglou Rizell

1 Introduction

In the following .CP 2; !FS/ is taken to denote the complex projective plane endowed
with the Fubini–Study symplectic form, where the latter has been normalised so that a
line is of symplectic area equal to

R
` !FS D � . Our main result concerns classification

up to Hamiltonian isotopy of embedded Lagrangian tori and immersed Lagrangian
spheres inside the open symplectic manifold

V WDCP 2 n .`1[C/� .CP
2; !FS/;

where `1 �CP 2 denotes the line at infinity and where C WD fz1z2 D 1g �CP 2 is a
smooth conic. In other words, V is the complement of the binodal cubic curve `1[C.
The fact that .V; !FS/ is a Liouville manifold for a family of inequivalent Liouville
forms �r , d�r D !FS , parametrised by r 2

�
0; 3
2

�
will play an important role in our

proof; see Section 6.1 for their construction. (In fact, it is well known that V even
admits the structure of a Weinstein manifold, but this will not be needed.)

In Section 1.3 we give an explicit description of a one-parameter family

…sW V ! .�1; 1/� .0;C1/ for s 2
�
0;
�

2

�
of Lagrangian fibrations, the fibres of which project to simple closed curves in C

that encircle the value 1 2C under the standard Lefschetz fibration .z1; z2/ 7! z1z2 .
All fibres of …s are embedded Lagrangian tori except …�1s .0; 1/, which is singular;
it consists of a Lagrangian sphere having one transverse double point of Whitney
self-intersection number equal to C1, and for which the symplectic action classZ

Œ � �

!FSW H2.CP
2
n `1;…

�1
s .0; 1//!R

assumes precisely the values ns for n 2 Z. This singular fibre is a Lagrangian
incarnation of the so-called Whitney immersion, which becomes exact inside V for
the aforementioned Liouville form �3s=� ; see Lemma 6.2(1).

All the Lagrangian fibres of …s are well-studied objects, going back to work by
Y V Chekanov [6] and by Y Eliashberg and L Polterovich [15]; for that reason we call
them standard. The embedded Lagrangian tori are of two different types: product tori,
including the monotone Clifford torus, and monotone Chekanov tori. (Monotonicity
here refers to the tori when considered inside .CP 2 n `1; !FS/.) Our main result can
be roughly stated as follows: any Lagrangian inside .V; !FS/ with the same classical
properties as those of a fibre …�1s .u1; u2/ is actually Hamiltonian isotopic to a fibre.
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The classification of Lagrangians nearby the Whitney immersion 3369

The Lagrangian fibrations …s can be well understood by using the theory of almost
toric systems as developed by M Symington [34]; the unique singular fibre corresponds
to the unique node of the base diagram (corresponding to a singularity of “focus-focus”
type), while varying the parameter s is equivalent to performing a so-called “nodal
slide”. The almost toric systems whose singularity consists of one single such node
constitute the simplest examples of nontrivial Lagrangian torus fibrations, and they
have therefore been an important example when studying the SYZ conjecture in mirror
symmetry; see eg D Auroux [4].

The Hamiltonian classification results for Lagrangian submanifolds are scarce (except,
of course, when the symplectic manifold is of dimension two and the Lagrangian thus
is a curve). The only known results for closed Lagrangians exist in the present setting
of four-dimensional symplectic manifolds, where strong results have been obtained for
embedded discs by Eliashberg and Polterovich [14], spheres by R Hind [20], and tori
by the author together with E Goodman and A Ivrii [12]. These three works all utilise
the technique of positivity of intersection in different ways; recall that positivity of
intersection for pseudoholomorphic curves is a purely four-dimensional phenomenon.

In higher dimensions the only currently known Hamiltonian isotopy classifications hold
for Lagrangians on the flexible side of symplectic topology, by the work of Eliashberg
and E Murphy [13]. These results apply to Lagrangians with conical singularities over
loose Legendrians. Without going into the details concerning these flexible Lagrangians,
we would just like to point out that their singularities are more complicated than a
transverse double point, which is the only type of singularity that we consider here.

One of the results proven in [12] was the nearby Lagrangian conjecture for T �T2 ;
this is a Weinstein manifold with skeleton that is an embedded Lagrangian torus.
Since .V; !FS/ can be endowed with a Weinstein structure for which the Lagrangian
Whitney immersion is the skeleton, our result can be interpreted as a result in line
with the nearby Lagrangian conjecture for a generically immersed Lagrangian sphere.
Namely, our result in particular provides the following Hamiltonian classification of,
for example, the Lagrangian tori which are homologically essential in some small
neighbourhood of such an immersed Lagrangian.

1.1 Preliminaries

We begin by swiftly covering the notions needed to formulate our results. The experi-
enced reader can safely skip this subsection.
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3370 Georgios Dimitroglou Rizell

For convenience, we will often utilise the standard symplectic identification

'W .CP 2 n `1; !FS/
Š
�! .B4; !0/; Œz1 W z2 W 1� 7!

1p
1Ckz1k2Ckz2k2

.z1; z2/;

with inverse

.zz1; zz2/ 7!
1p

1�kzz1k2�kzz2k2
.zz1; zz2/;

in order to realise V as an embedding

V Š zV WD B4 n'.C /� .B4; !0/

into the standard symplectic unit ball. The linear symplectic form

!0 D dx1 ^ dy1C dx2 ^ dy2

is exact with primitive �std D x1 dy1C x2 dy2 , which thus is a Liouville form for the
symplectic form on V as well. (This Liouville form does not, however, make V into a
Liouville domain.) We will often switch between these two realisations of .V; !FS/ in
order to work with the description which is most suitable for our different needs.

Recall that a two-dimensional immersion �W L ,! V is Lagrangian if ��!FS � 0. A
Lagrangian immersion is weakly exact if

R
˛ !FS D 0 for all ˛ 2 �2.V; L/. Given a

choice of Liouville form � for !FS D d�, we say that the Lagrangian is exact in the
case when ��� is an exact one-form, and strongly exact if the primitive moreover can be
chosen to be constant when restricted to each preimage set ��1.pt/ for pt 2 �.L/. Note
that exact Lagrangian embeddings, as well as strongly exact Lagrangian immersions,
necessarily also are weakly exact. More generally, the symplectic action class is given
by Œ�jTL� 2H 1.L;R/; this class also depends on the choice of Liouville form.

Another important class associated to a Lagrangian submanifold is the Maslov class

�LW H2.V; L/! Z

which takes values in the even integers for an oriented Lagrangian; see eg McDuff and
Salamon [29] for more details. For general closed curves on L there is also a notion
of Maslov class induced by the trivialisation of C2 � B4 � zV ; this Maslov class will
be denoted by �C2

L W H
1.L/! Z. Note that the equality �C2

L ı @D �L holds, where
@W H2.V; L/!H1.L/ is the connecting homomorphism.

The classification that we are pursuing is that of Lagrangians up to a Hamiltonian
isotopy �tHt , ie a smooth isotopy whose infinitesimal generator satisfies �Xt!FSD�dHt
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The classification of Lagrangians nearby the Whitney immersion 3371

for a smooth family of functions Ht W V ! R; this function is called the generating
Hamiltonian. A standard result shows that a smooth path of Lagrangian embeddings
Lt � .V; !FS D d�/, also called a Lagrangian isotopy, is generated by a global
Hamiltonian isotopy if and only if the symplectic action is constant for the path relative
an arbitrary choice of Liouville form �. The difference

Flux.fLsgs2Œa;b�/ WD Œ�jTLb �� Œ�jTLa � 2H
1.T2/

of symplectic action classes (suitably identified) is called the symplectic flux of the La-
grangian isotopy fLtgt2Œa;b� . A Lagrangian isotopy Lt for t 2 Œ0; 1� is thus generated
by a Hamiltonian if and only if the corresponding symplectic flux-path, defined as

t 7! Flux.fLsgs2Œ0;t�/ 2H
1.T2/;

vanishes for all t 2 Œ0; 1�.

1.2 Result

The result that we show here is a classification of the Lagrangians inside .V; !FS/ up to
Hamiltonian isotopy under the assumption that they satisfy properties similar to those
of the fibres of …s . Our main result is as follows.

Theorem A Let L� .V; !FS/ be either an embedded Lagrangian torus or an immersed
Lagrangian sphere with a single transverse double point. Assume that at least one of
the following two conditions is satisfied :

(1) The class ŒL� 2H2.V /Š Z is nonzero in homology.

(2) (a) If L is an embedded torus, then for any homotopy class ˛ 2 �2.V; L/ the
implication

�L.˛/D 2 D)

Z
˛

!0 � 0

holds.

(b) If L is an immersed sphere, then property (a) holds for any Lagrangian torus
resulting from a Lagrangian surgery applied to its double point.

Then L is Hamiltonian isotopic inside .V; !FS/ to a standard Lagrangian. In other
words, there exists a nonempty subset of values s 2 .0; �=2/ (possibly the entire
interval) such that L is Hamiltonian isotopic to a unique fibre of the Lagrangian
fibration …sW V ! .�1; 1/� .0;C1/.
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It is not difficult to see that both of the conditions in Theorem A are satisfied for
standard Lagrangians, ie the fibres of the fibrations …s ; we refer to Section 1.3 for
more details.

Remark 1.1 We point out the following, with more details given in Proposition 1.4:

(1) Condition (2) of Theorem A is automatically satisfied in the case when the
Lagrangian (embedded or immersed) is weakly exact, or if the Lagrangian is embedded
and has vanishing Maslov class. Further, note that all fibres …�1s .u1; u2/ have vanishing
Maslov class when considered inside .V; !FS/, while they are weakly exact if and only
if u1 D 0.

(2) The Hamiltonian isotopy classes of the strongly exact immersed spheres …�1s .0; 1/

are all different, with each uniquely determined by the parameter s 2 .0; �=2/. Contrary
to this, every fixed torus fibre …�1s0 .u1; u2/ that is not weakly exact (ie u1 ¤ 0) is
Hamiltonian isotopic to a unique fibre …�1s .u1; u

0
2/ for any other choice of s 2 .0; �=2/

as well. For the weakly exact tori the situation is more complicated. A given weakly
exact torus fibre of Clifford type is Hamiltonian isotopic to a fibre of the fibrations …s
only for a certain strict subinterval of parameters s 2 .0; s0/ ¨ .0; �=2/, while for a
torus of Chekanov type the corresponding subinterval is of the form .s0; �=2/.

Theorem A gives conditions for when a Lagrangian torus inside .CP 2; !FS/ is Hamil-
tonian isotopic to a torus of either Clifford or Chekanov type in terms of the linking
properties with a binodal cubic. In particular, Theorem A shows there are precisely
two different monotone Lagrangian tori which are exact in the complement of the
binodal cubic up to Hamiltonian isotopy. It has been shown by R Vianna [36] that there
are infinitely many different Hamiltonian isotopy classes of monotone Lagrangian tori
inside .CP 2; !FS/ which, moreover, can be realised as exact Lagrangians inside the
complement of the smooth cubic curve.

The central technique used in the proof of Theorem A is to consider the limit of
pseudoholomorphic foliations by conics when stretching the neck around the Lagrangian
torus. Note that there is a natural holomorphic conic fibration on V , which is the
restriction of the Lefschetz fibration z1z2 on CP 2 n `1 to the complement of the
smooth fibre C above 1 2C . Here we study the foliations given by such conics that
satisfy an additional tangency to C at `1 for arbitrary almost complex structures
(which are still required to be standard near `1 ).
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The idea to use pseudoholomorphic foliations and neck stretching to classify Lagrangian
tori goes back to H Hofer and K M Luttinger. This program was carried out in the recent
work of the author together with Goodman and Ivrii [12], where foliations by degree-one
spheres were considered; see [12, Section 1.2] for more details concerning the history
of the problem. One notable result obtained using these techniques was the positive
answer to the so-called nearby Lagrangian conjecture for T2 ; see [12, Theorem B]. In
the course of proving Theorem A we also need to provide a sharpening of this result:

Theorem B Suppose that L� .T �T2; d�T2/ is a Lagrangian embedding which is
either weakly exact, homologically essential, or a Lagrangian torus of vanishing Maslov
class. In all these cases, L is Hamiltonian isotopic to the graph of a closed one-form
in �1.T2/. Moreover, for any convex subset U �R2 :

(1) If L � T2 � U � T �T2 , then the Hamiltonian isotopy can be taken to be
supported inside T2 �U .

(2) For any � 2 S1 consider the properly embedded Lagrangian disc

PDp0.�/ WD .S
1
� f�g/� .fp01g � .�1; p

0
2 �/� T2

�R2 D T �T2;

p0 WD .p01 ; p
0
2/;

with one interior point removed. If

L\ PDp0.e
is/D @ PDp0.e

is/D S1 � feisg � fp0g

holds for all jsj<� , then the Hamiltonian isotopy can be assumed to be supported
outside of the subset[

jsj<ı

PDp0.e
is/D S1 � eiŒ�ı;ı� � fp01g � .�1; p

0
2 �

for some 0< ı < � sufficiently small (note that for symplectic action reasons, we
may not be able to Hamiltonian isotope the Lagrangian to the constant section
T2 � fp0g).

(3) If L�T2�U holds in addition to the assumptions of (2), then the Hamiltonian
isotopy produced there can moreover be taken to have support contained inside
T2 �U.

We prove this result in Section 9. Note that (1) is a fairly straightforward consequence
of [12, Theorem 7.1], while (2) requires a more careful study of its proof. Part (3)
finally follows without too much additional work by simply combining (1) and (2).
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In Section 3 we show that .V; !FS/ is a Liouville domain with completion . yW ; d�/,
which is a Liouville manifold whose skeleton is the Whitney sphere itself. A version of
the Weinstein neighbourhood theorem shows that yW serves as a standard neighbourhood
for any immersed Lagrangian sphere having a single self-intersection point of positive
sign. The classification given by Theorem A can thus be interpreted as a result in line
with the nearby Lagrangian conjecture for such an immersed Lagrangian sphere. In
addition, note that .V; !FS/ is a Weinstein manifold that, in some sense, is not too distant
from the cotangent bundle of a torus, since it can obtained from .DT �T2; d�T2/ by
attaching a single Weinstein two-handle along the conormal lift of a simple closed
geodesic.

The complete Liouville manifold . yW ; d�/ admits a surjective Lagrangian almost toric
fibration y� W yW !R2 with a single nodal fibre in the sense of Symington [34]. The
nodal fibre is an immersed Lagrangian sphere, while all other fibres are embedded tori.
The process of a nodal slide introduced in the aforementioned work can be applied
to the node, thereby producing a one-parameter family y�s of almost toric fibrations
of the same type. The Hamiltonian isotopy class of the nodal fibres for different
values of s 2R live in distinct Hamiltonian isotopy classes. We fix our convention so
that y��10 .0/ is a strongly exact immersed Lagrangian sphere for the Liouville form �.
Recall that since the fibration is assumed to be almost toric, the map y�0 is determined
up to an affine transformation by the corresponding Lagrangian foliation.

Corollary 1.2 A Lagrangian L� . yW ; d�/ that satisfies either of the assumptions in
Theorem A is Hamiltonian isotopic to a fibre of y�s for some s 2R. If L moreover is
strongly exact with respect to the Liouville form �, and if y�0.L/ is contained inside
a subset O � R2 which is star-shaped with respect to the origin (in the above affine
coordinates), then the Hamiltonian isotopy may be taken to have support inside the
preimage y��10 .O/.

Remark 1.3 We do not know whether it is possible to confine the above Hamiltonian
isotopy to the preimage of the star-shaped subset O �R2 without the assumption of L
being strongly exact. A direct consequence of Theorem A tells us that this stronger
result is true at least when the preimage ��10 .O/ is symplectomorphic to .V; c!FS/

for some c > 0.

Proof Consider the fibre of y�s that has the same classical invariants as those of L,
and observe that

Geometry & Topology, Volume 23 (2019)
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� when L is a sphere, this is the nodal fibre for a uniquely determined value
of s 2R,

� when L is an embedded torus which is not weakly exact, there is a unique such
representative up to Hamiltonian isotopy, which moreover appears as fibres in
the fibrations y�s for any choice of s 2R, and

� when L is a weakly exact embedded torus, there are precisely two such Hamil-
tonian isotopy classes, and both can be assumed to be obtained by appropriate
action-preserving Lagrangian surgeries on the immersed sphere y��1s .0/ for a
uniquely determined value of s 2R.

Using Proposition 3.8 one constructs a symplectic embedding �sW .V; c!FS/ ,! . yW ; d�/

for some c� 0 satisfying the properties that both L and the Lagrangian fibre of y�s
pinpointed above are contained inside the image of �s . Theorem A finally implies
that L is Hamiltonian isotopic inside V to a fibre of …s0 for some s0 2 .0; �=2/. Since
the same is true also for the aforementioned fibre of y�s , we have thereby managed to
produce our Hamiltonian isotopy contained entirely inside �s.V /.

For the last point, it is sufficient to apply the negative Liouville flow of � to the
Hamiltonian isotopy, to make sure that it stays inside the required subset. To that
end, note that the Liouville form preserves exact Lagrangian submanifolds, and that
it retracts the subset y��10 .O/ onto the immersed Lagrangian sphere y��10 .0/. See
Section 3.2 for more details.

1.3 A family of Lagrangian fibrations

Since the work of Chekanov [6] it has been known that .B4; !0/ admits two types
of monotone Lagrangian tori that live in different Hamiltonian isotopy classes but
whose classical invariants agree; these are the so-called Clifford and Chekanov tori.
These two types of Lagrangian tori can also be realised as weakly exact Lagrangian
tori inside .V; !FS/; see Eliashberg and Polterovich [15] and Auroux [4]. Furthermore,
as shown in the latter article, these tori arise as the leaves of Lagrangian torus fibra-
tions on CP 2 , which also were studied by J Pascaleff [32] and by Vianna [35]. In
particular, [35] makes use of the convenient language of almost toric fibrations and
their deformations as introduced by Symington [34].

In this subsection we recall an explicit description of a one-parameter family of such
Lagrangian fibrations on .V; !FS/. Alternatively, this fibration can be constructed by
using the language of almost-toric base diagrams. More precisely, one can deform
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the standard moment polytope of B4 (ie the standard fibration by product tori) by a
so-called nodal trade, followed by a nodal slide; the parameter of the slide induces the
parameter in our family of fibrations. The reason for instead choosing the more explicit
approach is as follows. First, we want the Lagrangian fibrations to be compatible with
the standard Lefschetz fibration

f W .CP 2 n `1; !FS/!C; .z1; z2/ 7! z1 � z2;

by holomorphic conics in the following sense: the restriction of f to a smooth fibre L of
the Lagrangian fibration is a smooth S1–bundle over the simple closed curve f .L/�C .
Second, we want the fibration to restrict to a fibration on V DCP 2 n .`1[C/; ie we
want the smooth Lagrangian fibres to be disjoint from the smooth conic C.

Before starting, we say a few more words about the Lefschetz fibration f . Note that it
has a unique singular fibre

Cnodal WD f
�1.0/D `1[ `2

consisting of a union

`1 WDC � f0g and `2 WD f0g �C

of two lines. All conic fibres of f pass through the two points qi WD `i \ `1 while
being tangent to vi WD Tqi `i . We will call f a symplectic Lefschetz fibration, even if
we make no claims concerning the symplectic triviality outside of a compact subset.

Now we are ready to commence with the construction of the Lagrangian fibrations …s .
For convenience we will work with the identification zV � .B4; !0/ of .V; !FS/, where
the fibration takes the form

zf WD f ı'�1W B4!C; .zz1; zz2/ 7!
zz1zz2

1�kzz1k2�kzz2k2
;

where .zz1; zz2/ are the standard complex coordinates on B4 � C2 . (This notation is
useful for distinguishing the two different complex coordinates zzi ; zi W V !C .)

Begin by constructing a smooth one-parameter family of diffeomorphisms

‰sW C!C for s 2
�
0;
�

2

�
that satisfy

‰s.t/D t for t 2 Œ0; 1� and ‰s.z/D‰s.xz/;

and which all are equal to the identity outside of some compact subset (that necessarily
depends on the parameter s ). We moreover demand that they satisfy the following.
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Let �c WD fkz� 1k D cg �C be the foliation of C n f1g by concentric circles centred
at 1 2C , where �1 is the leaf passing through the origin. Then:

(1) The curve
.‰s ı zf /

�1.�1/\fzz1 D zz2g � zV � B
4

is an immersion of the form .˛s; ˛s/ for an immersed figure-8 curve ˛s�D21=
p
2

satisfying �˛s D ˛s . We require that the symplectic area of either of the two
bounded components of ˛s � .D21=

p
2; dx ^ dy/ be equal to s=2 2 .0; �=4/

(ie the symplectic area inside B4 bounded by .˛s; ˛s/ is equal to s 2 .0; �=2/).

(2) There is a smooth extension of the family to include also diffeomorphisms

‰0W C n Œ0; 1�
Š
�!C nD2.1/ and ‰�=2W C n .�1; 0�

Š
�!B2.1/�C;

where ‰0 is the identity outside of some compact subset, and ‰�=2 is the
identity near 1 2C .

The dependence of the curves c WD‰�1s .�c/ on the parameter s 2 .0; �=2/ is exhibited
in Figure 1.

0 0

1Cı

0 1

s D �

1

1

1
1

1Cı

1Cıı 1

ı

1 1 1

s D 1 s D �=2� �

Figure 1: The image c WD‰�1s .�c/ of the leaves in the foliation of C by the
concentric circles �c D fkz� 1k D cg for different values of the parameter
s 2 .0; �=2/ .

We can finally define the smooth one-parameter family of Lagrangian fibrations to be

z…sW zV ! .�1; 1/� .0;C1/; .zz1; zz2/ 7! .kzz1k
2
�kzz2k

2; k‰s. zf .zz1; zz2//� 1k
2/:

We also write …s WD z…s ı' for the corresponding fibration on V .

It is immediate by the construction that these fibrations are compatible with the standard
symplectic Lefschetz fibration f ; see Figures 2, 3 and 4, for a schematic depiction of
this. The fibres …�1s .u1; u2/ with u2 > 1 and u2 < 1 will be called tori of Clifford
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type and Chekanov type, respectively. Note that a torus of Clifford type is fibred over a
curve whose winding number around 0 2C is equal to one, while a torus of Chekanov
type is fibred over such a curve with zero winding.

Later we will also make use of the limit case when s D 0. In this case, by property (2)
above, we obtain an induced Lagrangian fibration

…0W V nf
�1Œ0; 1�! .�1; 1/� .1;C1/;

whose fibres all will turn out to be embedded Lagrangian tori.

We summarise the important properties of the Lagrangian fibres of …s in the following
proposition, the proof of which we postpone to Section 2.2.

Proposition 1.4 All fibres of …s are compact Lagrangian immersions contained
inside .V; !FS/. Furthermore:

(1) The fibres LWh.s/ WD …
�1
s .0; 1/ for s 2 .0; �=2/ constitute a one-parameter

family of weakly exact Lagrangian immersions of the sphere, each having a
single transverse double point and Whitney self-intersection number equal to C1.
It is the case that ŒLWh.s/� 2H2.V /ŠZ is a generator. Moreover, the primitive
of the pullback �stdjTLWh.s/ has potential difference equal to �.LWh.s//D s at
the double point; two different such spheres are hence not Hamiltonian isotopic.

(2) A fibre …�1s .u1; u2/ for .u1; u2/ ¤ .0; 1/ is an embedded Lagrangian torus
which is homologous to the generator ŒLWh.s/� 2H2.V /, and its Maslov class
evaluates to zero on any element in H2.V; L/. Such a fibre is weakly exact (and
hence also monotone) if and only if u1 D 0. Moreover:
(a) A weakly exact torus of Clifford type (resp. Chekanov type) is Hamiltonian

isotopic inside B4 � zV to a Clifford torus (resp. Chekanov torus).

(b) Any fibre …�1s .u1; u2/ with u1 ¤ 0 (that is, any fibre that is not weakly
exact) is Hamiltonian isotopic inside V to a unique fibre of the form
.…1/

�1.u1; u
0
2/ for some appropriate u01 2 .0;C1/.

The nonzero homology groups for this space are Hi .V / D Z for i D 0; 1; 2. By
Proposition 1.4(2)(a) combined with the classical result of Chekanov [6] we deduce the
following: weakly exact (or monotone) tori of Clifford and Chekanov types are never
Hamiltonian isotopic, while such tori that are not weakly exact (or are nonmonotone)
are all Hamiltonian isotopic to product tori.

Finally, we make the following comment regarding the apparent nonsymmetry that
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f �1.2C �/f �1.0/

iy

1
2 x

f .LCl/

Figure 2: A Clifford torus LCl WD…
�1
s .0; u2/ with u2 > 1 is fibred over a

curve in the base of the Lefschetz fibration which encircles the critical value.

holds between the tori of Clifford and Chekanov types when considered in conjunction
with the Lefschetz fibration f ; this nonsymmetry disappears when one considers the
Liouville completion of V as constructed in Section 3.2.

Proposition 1.5 (Propositions 3.8 and 3.5) The Liouville completion . yW ; d�/ of
.V; !FS/ admits a global symplectomorphism I W . yW ; d�/ ! . yW ; d�/ which is of
order two and fixes the Whitney immersion setwise, while interchanging the two sheets
at the double point. Moreover, the involution I interchanges the Hamiltonian isotopy
classes of the Clifford and Chekanov tori.

As shown by Chekanov [6], we cannot find a similar symplectomorphism defined on
all of .CP 2; !FS/ or .B4; !0/; the Clifford and Chekanov tori cannot be interchanged
by a globally defined symplectomorphism there.

f �1.2� �/f �1.0/

iy

1 2
x

f .LCh/

Figure 3: A Chekanov torus LCh WD…
�1
s .0; u2/ with u2 < 1 is fibred over a

curve in the base of the Lefschetz fibration which does not encircle the critical
value.
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f �1.2/f �1.0/

iy

1 2
x

f .LWh/

Figure 4: A Whitney immersion LWh WD…
�1
s .0; 1/ is fibred over a curve in

the base of the Lefschetz fibration which passes though the critical value.
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2 Properties of the Lagrangian fibration

Here we investigate crucial properties of the family of fibrations

…sW zV ! .�1; 1/� .0;C1/ for s 2
�
0;
�

2

�
:

We will see that the unique singular fibre is the immersed Lagrangian sphere LWh.s/ WD

…�1s .0; 1/, while all other fibres are smoothly embedded Lagrangian tori.

We start by treating the Lagrangian condition of the fibres, which will turn out to be a
direct consequence of the following statement.

Lemma 2.1 For any embedded path  �C and u1 2 .�1; 1/, the intersection

zf �1./\fkzz1k
2
�kzz2k

2
D u1g � .B

4; !0/

is a Lagrangian submanifold outside of the origin. (The origin is in general a singular
point.)
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Proof The characteristic distribution of the hypersurface fkzz1k2�kzz2k2Du1g, ie the
line field that is the kernel of the restriction of !0 , is generated by the vector field
.d=dt/.eitzz1; e

�itzz2/. (This can be checked, for example, by computing the Euclidean
gradient of the function kzz1k2�kzz2k2 , which is equal to �2i.d=dt/.eitzz1; e�itzz2/.)
Since zf �1./\fkz1k2�kz2k2Du1g is foliated by closed integral curves of the afore-
mentioned characteristic distribution away from the origin, the claim now follows.

Below we will see that the fibres are compact subsets of CP 2 n `1 . The topology of
the fibres can then be investigated by hand without too much difficulty; LWh.s/ is an
immersed sphere having a transverse self-intersection whose Whitney self-intersection
number is equal to C1, while the smooth fibres all are tori. (Recall that any smooth
Lagrangian foliation by closed surfaces must consist of torus leaves by a version of the
Arnold–Liouville theorem.)

Lemma 2.2 � The fibre …�1s .u1; u2/ with .u1; u2/ ¤ .0; 1/ is a smooth and
compact Lagrangian torus living inside zV � .B4; !0/. In fact these tori with
fixed u1 D u01 ¤ 0 provide a smooth foliation of the noncompact hypersurface
†u01
\ zV , where

†u01
WD fkzz1k

2
�kzz2k

2
D u01g\B

4

is an open solid torus.

� The fibre LWh.s/D…
�1
s .0; 1/ is a Lagrangian sphere with a single transverse

double point with Whitney self-intersection number equal to C1.

Proof The Lagrangian condition was proven in Lemma 2.1.

The fibres are compact subsets of B4 , since the Lefschetz fibration zf .zz1; zz2/ D
zz1zz2=.1�kzz1k

2 �kzz2k
2/ is proper when restricted to any subset †u01 . Indeed, any

sequence z.k/ WD .zz1.k/; zz2.k// 2 B4 inside †u01 which converges to a point in @D4

must satisfy the positive lower bounds

� < kzz1.k/k
2 and kzz2.k/k

2 < 1 for k� 0

for some � > 0 (here we use u01 2 .�1; 1/). However, such a sequence is now seen
to map to an unbounded sequence zf .z.k// 2C , since the numerators of zf .z.k// are
positive and bounded from below while the denominators tend to 0.
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2.1 Action properties

Recall that �std D x1 dy1C x2 dy2 is the standard Liouville form defined on

.B4; !0 D d�std/� zV :

We start with the following action computation for the immersed sphere.

Lemma 2.3 The Lagrangian sphere LWh.s/ D …
�1
s .0; 1/ has an action difference

equal to �D s 2 .0; �=2/ at the two preimages of its double point, where the action is
computed by taking a primitive of the pullback of the Liouville form �std .

We proceed to investigate the symplectic action of the torus fibres. But first, we need
to fix the choice of a basis of each such fibre.

Lemma 2.4 (1) For any Lagrangian torus fibre LD…�1s .u1; u2/ there is a canon-
ical choice of generator e0 2H1.L/ of ker.H1.L/!H1.V //ŠZ induced by
the inclusion of a fibre, which is determined uniquely by the requirement thatZ

e0

�std D � �u1:

Moreover, the Maslov class evaluates to �C2
L .e0/D 0 on this element.

(2) When L� V nCnodal moreover is satisfied, ie when u2 ¤ 1, any relative cycle
.D; @D/! .V; L/ with Œ@D�D e0 has the property that D � `i D .�1/i for each
of the two lines f �1.0/D `1[ `2 in the nodal conic.

Proof These statements are easily checked. We simply note that
R

e0
�std D � � u1

holds if we represent the class e0 by a closed curve of the form � 7! .ei�a; e�i�b/2B4

for suitable a; b 2C satisfying .a; b/ 2 L, and thus kak2�kbk2 D u1 .

The choice of the homology class e0 can be seen to vary continuously with the fibres.
In the following manner, we then proceed to extend e0 to a (not globally defined)
basis he0; e1i DH1.L/ for the fibres, where �C2

L .e1/D 2. Recall that, as shown in
[34, Section 4.3], the bundle of standard tori is nontrivial due to the presence of the
fibre with a nodal singularity. For that reason, no global and continuous choice of basis
exists; also see Remark 2.6.

Lemma 2.5 We can uniquely specify classes e1 2 H1.L/ of the torus fibres such
that he0; e1i is a basis by requiring, for any relative cycle .D; @D/! .B4; L/ with
Œ@D�D e1 , that :
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(1) D � C D 1.
(2) (a) In the case u2 < 1 D � `i D 0 for each of the two lines `i � f �1.0/,

i D 1; 2, in the nodal conic.

(b) In the case u2 > 1 and u1 � 0 D � `1 D 1 and D � `2 D 0.

(c) In the case u2 > 1 and u1 < 0 D � `2 D 1 and D � `1 D 0.

The Maslov class satisfies �C2
L .e1/D 2 in all cases above.

Proof The proof, which consists of an explicit verification, is left to the reader.

An immediate consequence of the above two lemmas is that a Lagrangian torus fibre
…�1s .u1; u2/ is monotone if and only if u1 D 0.

Remark 2.6 In the complement of the ray …�1s .0; u2/ for u2 > 1 of torus fibres, the
bases determined by the above lemmas can be seen to coincide and vary continuously.
However, the basis vector e1 is not unambiguously defined over the monotone tori
…�1s .0; u2/ for u2>1 of Clifford type; for these tori there are the two choices induced
by the continuous extension for the tori with u1 > 0, and another one which is the
continuous extension of the basis for the tori with u1 < 0. Nevertheless, since these are
monotone tori, and since the two different choices of basis differ by a cycle of Maslov
index zero, this ambiguity is irrelevant as far as computations of the symplectic action
are concerned.

Using the basis constructed above we are now ready to describe the global behaviour
of the symplectic actions of the different fibres.

Lemma 2.7 The symplectic action of a torus …�1s .u1; u2/ satisfiesZ
e0

�std D � �u1 and
Z

e1

�std D As.u1; u2/

for a function
AsW .�1; 1/� .0;C1/!

�
0;
�

2

�
which is smooth in all variables .s; u1; u2/ and which satisfies:

(1) For each fixed s and u1 , we have

As.fu1g � .0;C1//D
�
0; 1
2
�.1� ju1j/

�
�R:

(2) @u2As > 0 away from .u1; u2/D .0; 1/.
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(3) As has a continuous extension to the compactification Œ�1; 1�� Œ0;C1� with
the properties

(a) As.u1;C1/D
1
2
�.1� ju1j/,

(b) As.u1; 0/D 0,

(c) As.˙1; u2/D 0.

(4) lims!0As.u1; 1/D 0 while lims!�=2As.u1; 1/D 1
2
�.1� ju1j/.

See Figure 5.

As

�=2

�u1
�� �

Figure 5: The image of the values .�u1; As/ of the symplectic action class
evaluated on the pair .e0; e1/ of basis vectors of H1.…�1s .u1; u2// .

Proof By continuity, it suffices to establish the claims whenever u1 ¤ 0. In fact, the
case u1D 0 is easy to check by hand since the fibration is sufficiently explicit for those
parameters. Furthermore, one can argue by symmetry and restrict to the case u1 > 0.
We continue to exhibit these torus fibres with additional care.

Recall that the one-parameter family of tori for fixed s 2 .0; �=2/ and u1¤ 0 provides
a foliation of the hypersurface

†u1 WD fkzz1k
2
�kzz2k

2
D u1g\ zV

by Lemma 2.2, where †u1 is a solid torus. Further, we exhibit an explicit foliation of
this solid torus by symplectic discs

D� .u1/ WD f.e
i�
p
u1Ckzk2; z/ W 2kzk

2
Cu1 < 1g � B

4

of total symplectic area equal to .�=2/.1�u1/. (Recall that we here are considering the
case u1>0.) Also, note that the smooth conic zC WD zf �1.1/ intersects each symplectic
disc D� .u1/ transversely in a single point .ei�

p
u1C t2; e

�i� t / for a unique value
of t 2 .0;

p
.1�u1/=2/.

The one-parameter family of Lagrangian torus fibres …�1s .u1; � / for fixed s and u1 can
be seen to foliate the solid torus, and also to intersect each symplectic disc D� .u1/ in a
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foliation by simple closed curves encircling the unique intersection point D� .u1/\ zC D
fp� .u1/g � D� .u1/. (A Lagrangian obviously cannot have a full tangency to a
symplectic leaf, and hence it is automatically transverse to each such symplectic disc
when considered inside the solid torus.) Since As.u1; u2/ simply is the area inside the
symplectic disc bounded by the curve D� .u1/\…�1s .u1; u2/, properties (1), (2) and (3)
can now be seen to follow.

Property (4) is a consequence of the satisfaction of property (2) by the family ‰s of
diffeomorphisms in the construction of …s given in Section 1.3. We argue as above by
considering the symplectic area inside the discs foliating the solid torus †u1 . To that
end we note that, for any � > 0, there exists a sufficiently small neighbourhood U �C

of either of the subsets Œ0; 1� (the case sD 0) or .�1; 0� (the case sD �=2) such that
the discs D� .u1/ intersected with f �1U may be assumed to be of symplectic area
bounded from above by � > 0 independently of u1 2 .�1; 1/.

2.2 Proof of Proposition 1.4

The Lagrangian property for the fibres was shown in Lemma 2.2. The claims concerning
the action in Proposition 1.4(1) are a consequence of Lemma 2.3. The topological
considerations can be investigated by hand.

For property (2)(a) we refer to the work of A Gadbled [17] concerning the different
guises of the Chekanov torus.

Property (2)(b) is finally shown with the below lemma, which finishes the proof.

Lemma 2.8 Consider any Lagrangian torus fibre …�1s .u1; u2/ which is not weakly
exact, ie with u1 ¤ 0. For any s0 2 .0; �=2/ this Lagrangian torus is Hamiltonian
isotopic inside .V; !FS/ to a unique torus fibre of the form …�1s0 .u1; u

0
2/.

Proof The Hamiltonian isotopy is constructed by hand, by considering a suitable
family of Lagrangian tori contained inside the solid torus,

†u1 D fkzz1k
2
�kzz2k

2
D u1g\ zV with u1 ¤ 0;

all of which can be taken to be standard fibres for different values of s 2 .0; �=2/.

For the uniqueness, it is sufficient to note that any Hamiltonian isotopy must preserve the
basis element e0 as constructed in Lemma 2.4; recall that this is a preferred generator
of ker.H1.T2/! H1.V // Š Z induced by the inclusion of the torus. The action
computation in Lemma 2.7 thus implies that any Hamiltonian isotopy connecting two
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fibres …�1s .u1; u2/ and …�1s0 .u
0
1; u
0
2/ must satisfy u1 D u01 . The uniqueness of the

parameter u02 is also a consequence of Lemma 2.7.

3 Standard neighbourhood of a sphere with self-intersection
number C1

In this section we give a careful description of the symplectic geometry of the standard
neighbourhood of a Lagrangian sphere with a single transverse double point. In
dimension 2k there are two different such Lagrangian spheres up to diffeomorphism;
the two cases are determined by their Whitney self-intersection number I, which can
be either C1 or �1. Note that the situation is different in odd dimensions, where the
local model for a Lagrangian sphere with a single transverse self-intersection is unique.
Here we are only interested in the case when k D 1 and the self-intersection number is
equal to C1. This is the only sphere which appears as an isolated singular fibre in a
Lagrangian torus fibration.

We present the neighbourhood of the immersed sphere as a self-plumbing of the
cotangent bundle of an embedded sphere. We moreover show that it naturally carries
the structure of a Liouville domain, which thus can be completed to a Liouville manifold.
We also construct a Lagrangian torus fibration on this space, together with an induced
symplectic embedding of .V; !FS/ that preserves the torus fibres.

3.1 The self-plumbing of the cotangent bundle of a sphere

We commence with construction of the symplectic manifold of interest. First, consider
the standard symplectic unit cotangent bundle

DT �D2 WD fkqk � 1; kpk � 1g � .T �R2; d�R2/

of the unit disc. This is a smooth manifold with boundary with corners, where

@DT �D2 D@VDT
�D2[ @HDT

�D2;

@VDT
�D2 WDDT �

@D2
D2 D fkqk D 1; kpk � 1g;

@HDT
�D2 WDST �D2 D fkqk � 1; kpk D 1g:

It is also convenient to use the canonical identification

DT �D2 ,!C2; .q;p/ 7! iqCp;

with the corresponding subset of the complex plane.
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We also need the unit cotangent bundle

DT �.S1 � Œ�1; 1�/ WD fkp�;qk � 1g �
�
T �.S1 � Œ�1; 1�/; d�S1�Œ�1;1�

�
of the cylinder, with the coordinates p�;qD .p� ; pq/ on the cotangent fibres induced by
the standard coordinates .�; q/2S1�Œ�1; 1�. Note that we here have made implicit use
of the flat product metric on S1 � Œ�1; 1� when speaking about the unit codisc bundle.

For some small � > 0 we consider the open neighbourhoods

fq D .q1; q2/D r.cos �; sin �/ W r 2 Œ1� �; 1C ��g �DT �D21C�;

fp D .p1; p2/D r.cos �; sin �/ W r 2 Œ1� �; 1C ��g �D1C�T �D2

of the pieces @VDT �D2 and @HDT �D2 of the boundary, respectively. There are
symplectic inclusions

�V W fq D r.cos �; sin �/ W r 2 Œ1� �; 1C ��g ,!D2T
�.S1 � Œ�1� �;�1C ��/

defined by

.q;p/ 7!
�
.�; �1C .r � 1//; .p� D r.� sin �; cos �/ �p; pq D .cos �; sin �/ �p/

�
;

and

�H W fp D r.cos �; sin �/ W r 2 Œ1� �; 1C ��g ,!D2T
�.S1 � Œ1� �; 1C ��/

defined by

.q;p/ 7!
��
�C 1

2
�; 1�.r�1/

�
; .p� D�r.� sin �; cos �/ �q; pqD .cos �; sin �/ �q/

�
:

Note that the restrictions

�V j@VDT �D2
Š
�!DT �

fqD�1g.S
1
� Œ�1; 1�/;

�H j@HDT �D2
Š
�!DT �

fqD1g.S
1
� Œ�1; 1�/

are diffeomorphisms.

Using the above symplectomorphisms it is possible to perform the gluing

W D
DT �D2 tD�T

�.S1 � Œ�1; 1�/

x � �V .x/; x � �H .x/
for 0 < �� 1;

producing a symplectic manifold .W; !/. This symplectic manifold is naturally identi-
fied with the self-plumbing of a two-sphere. In Section 3.2 we will exhibit a natural
primitive of the symplectic form, giving it the structure of a Liouville domain.
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Observe that
L0 WD 0D2 [DT

�
.0;0/D

2
[ 0S1�Œ�1;1� � .W; !/

is the Lagrangian immersion of a sphere with one transverse double point

fq D 0D pg D 0D2 \DT
�
.0;0/D

2:

The Whitney self-intersection number of this sphere can be computed to be C1.

There is a symplectomorphism

I1W .DT
�D2; d�R2/

Š
�! .DT �D2; d�R2/;

I1..q1; q2/; .p1; p2//D ..�p2; p1/; .q2;�q1//;

that satisfies I 21 D IdDT �D2 . Likewise, the symplectomorphism

I2W .DT
�.S1 � Œ�1; 1�/; d�S1�Œ�1;1�/

Š
�! .DT �.S1 � Œ�1; 1�/; d�S1�Œ�1;1�/;

I2..�; q/; .p� ; pq//D ..�;�q/; .p� ;�pq//;

is of order two, ie I 22 D IdDT �.S1�Œ�1;1�/ . Since one can check that

I2 ı�V D �H ı I1 and I2 ı�H D �V ı I1

are satisfied, we obtain an induced symplectomorphism I of .W; !/ whose unique
fixpoint is the origin .0; 0/ 2DT �D2 . To summarise:

Proposition 3.1 The induced symplectomorphism

I W .W; !/! .W; !/

is of order two and fixes the immersed Lagrangian sphere L0 setwise (ie I.L0/DL0 ),
while reversing its orientation and interchanging the two sheets at its unique double
point.

Weinstein’s symplectic neighbourhood theorem [37] (also see [29]) shows that any
Lagrangian submanifold L has a neighbourhood symplectomorphic to a neighbour-
hood of the zero section of .T �L; d�L/ of the cotangent bundle equipped with the
standard symplectic form, while moreover identifying the Lagrangian with the zero
section. It is well known that the result generalises to establish a standard symplectic
neighbourhood also of a Lagrangian immersion with transverse double points; see
eg [34, Proposition 4.8]. In particular, it is the case that:
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Proposition 3.2 For any two-dimensional Lagrangian immersion L� .W 0; !0/ of a
sphere with a single transverse double point whose Whitney self-intersection number
equals C1, there is a symplectic embedding

�W .U; !0/ ,! .W; !/

of a neighbourhood U �W 0 of L which moreover satisfies �.L/D L0 .

Later in Proposition 3.8 this result is extended to also preserve locally defined La-
grangian torus fibrations.

3.2 Extending the neighbourhood to a complete Liouville manifold

Here we construct a suitable Liouville form defined on all of .W; !/ by interpolating
between natural Liouville forms on the pieces DT �D2 and DT �.S1� Œ�1; 1�/. First,
consider the Liouville form

�0 WD
1

2

2X
iD1

.pi dqi � qi dpi /D �R2 �
1

2
d

� 2X
iD1

qipi

�
defined on T �R2 and which clearly satisfies I�1 �0 D �0 .

Fix a smooth function hW Œ�1; 1�!R that satisfies

� h.�q/D�h.q/,

� h.q/D 2C q near q D�1 and h.q/D�2C q near q D 1,

� h0.q/ < 2 for q 2 Œ�1; 1�, h0.q/� 0 for q ��2
3

, h0.q/D 0 for q 2
�
�
2
3
;�1

3

�
,

and h0.q/� 0 for q 2
�
�
1
3
; 0
�
.

In particular, we note that h.q/ is necessarily nonvanishing outside the subset
�
�
1
3
; 1
3

�
,

while it is constant on
˚
q W 1

3
� jqj � 2

3

	
.

Then, using the function h, we construct the Liouville form

� WD �S1�Œ�1;1��
1
2
d.h.q/pq/D pq dqCp� d� �

1
2
d.h.q/pq/

defined on T �.S1 � Œ�1; 1�/, which also clearly satisfies I�2 �S1�Œ�1;1� D �S1�Œ�1;1� .
The Liouville vector field induced by � can be seen to be given by

(3-1) �� WD p�@p� Cpq
�
1� 1

2
h0.q/

�
@pq C

1
2
h.q/@q;

and we use �t
�

to denote the corresponding Liouville flow. (This flow is well defined
at least for negative times t � 0.)
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Lemma 3.3 We have
��V �D �0 and ��H�D �0;

and these Liouville forms thus combine to a smooth Liouville form � on all of
.W; ! D d�/ invariant under the symplectomorphism I.

Proof Observe that

dq D dr D
q1 dq1C q2 dq2q

q21 C q
2
2

D cos � dq1C sin � dq2;

d� D
�q2 dq1C q1 dq2

q21 C q
2
2

D r�1.� sin � dq1C cos � dq2/;

from which we deduce that

��V �S1�Œ�1;1� D

2X
iD1

pi dqi D �R2 :

Combining this with the relation h.q/pq ı�V D
P2
iD1 qipi we deduce that

��V �D �R2 �
1

2
d

� 2X
iD1

qipi

�
D �0:

Since both �0 and � are invariant under I1 and I2 , respectively, and since I2 ı�H D
�V ı I1 , it is also a direct consequence that

��H�D �0:

Next we construct the smooth function

�W W !R�0

specified by the following:

� Inside DT �D2 , the function � is given by

�.q;p/D .p1q1Cp2q2/
2
C .q1p2� q2p1/

2:

� Inside DT �.S1 � Œ�1; 1�/, it is given by

�..�; q/; .p� ; pq//D g.q/
2p2q Cp

2
�

for a smooth function g.jqj/ > 0 defined as follows: g.q/D jh.q/j outside of�
�
1
3
; 1
3

�
, while g.q/� h

�
�
2
3

�
is constant for q 2

�
�
2
3
; 2
3

�
. Observe that g.q/

thus in particular is nonvanishing.
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The function � is smooth on W . Furthermore, it is the case that:

Lemma 3.4 The Liouville vector field �� on .W; ! D d�/ corresponding to the
primitive � satisfies the following properties in a neighbourhood of L0 :

(1) The Liouville form � vanishes on TL0 , and its backward flow satisfies\
n2Z�0

��n� .W /D L0:

(2) The form �, and hence �� , as well as the function � , are all preserved by the
symplectomorphism I.

(3) ��1.0/DL0 , and the vector field �� satisfies d�.��/D f �� for some function
f W W !R>0 which is identically 2 outside the set˚

.�; q; p� ; pq/ W q 2
�
�
1
3
; 1
3

�	
�DT �.S1 � Œ�1; 1�/:

In particular, for all a > 0 sufficiently small, the level set Ya WD ��1.a/� .W; d�/ is
a smooth contact-type hypersurface with induced contact form ˛a WD �jTYa , and the
restriction

I jYa W .Ya; ˛a/
Š
�! .Ya; ˛a/

is a strict contactomorphism.

Proof (1) This follows from property (3) (to be proven below).

(2) We leave this to the reader to check.

(3) First we establish the claim ��1.0/D L0 . Inside DT �.S1 � Œ�1; 1�/, it is clear
that � vanishes precisely along the zero section. Further, by the definition of � ,
inside DT �D2 we have �D 0 if and only if the two vectors .q1; q2/; .p1; p2/ 2R2

are simultaneously orthogonal and collinear. In other words �D 0 if and only if either
.q1; p2/D 0 or .p1; p2/D 0 in that subset. This shows the claim.

The computation of d�.��/ is left to the reader. Inside the subset DT �D2 we use the
expression

�� D
1

2

2X
iD1

.qi@qi Cpi@pi /;

while in DT �.S1 � Œ�1; 1�/ we use (3-1).

Geometry & Topology, Volume 23 (2019)



3392 Georgios Dimitroglou Rizell

Finally, we use the Liouville flow �t
�

generated by �� in order to produce the following
completion of the symplectic manifold .W; d�/. Consider the sublevel set Wa WD
��1Œ0; a�, which is a Liouville manifold with a contact boundary by Lemma 3.4.
Attaching half of the corresponding symplectisation, ie

.Œ0;C1/�Ya; d.e
t˛a//;

along its boundary, there is a smooth extension of the Liouville form � on Wa by et˛a
on this cylindrical end. This produces a smooth Liouville form with a complete Liouville
flow, and we denote by

. yW ; d�/D .Wa; �/[ .Œ0;C1/�Ya; d.e
t˛a//

the resulting complete Liouville manifold which contains .Wa; !/ as a subdomain.
Recollecting the previously established results, we can conclude that:

Proposition 3.5 (1) The Liouville form � vanishes along TL0 of the immersed
sphere L0 � . yW ; d�/, and thus is exact, and its backward flow satisfies\

n2Z�0

��n� . yW \ft �N g/D L0

for any N � 0.

(2) There is a smooth function y�W yW nL0!R>0 uniquely defined by the property
that y��1.a/D Ya together with y� ı�t

�
D et � y� for all t 2R (in particular, the

level sets .y��1.a/; �jT.y��1.a/// are hypersurfaces of contact type for �).

(3) The symplectomorphism I W .Wa; d�/! .Wa; d�/ extends to an exact symplec-
tomorphism of . yW ; d�/ of order two which fixes L0 setwise, preserves the
Liouville form �, and preserves each level set y��1.s/, s 2 Œa;C1/ (where it
consequently acts by contactomorphism preserving the contact form �jT.y��1.s// ).

Proof The properties follow more or less directly from Lemma 3.4, and by construction.
For property (3) we have to use that the Liouville flow of � is invariant under I
on Wa � yW by Lemma 3.4(2), and that y��1.a/D ��1.a/D @Wa is fixed by I. Hence
we can smoothly extend I to all of . yW ; d�/ by requiring that I commute with the
Liouville flow of �, ie that

I ı�t� D �
t
� ı I

be satisfied.
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3.3 A singular Lagrangian torus fibration

Following Symington’s construction in [34, Section 4.2] we consider the map

� D .�1; �2/W Wa!R2

which is defined by

�.q;p/D .q1p2� q2p1; q1p1C q2p2/;

�..�; q/;p.�;q//D .p� ; g.jqj/pq/

for .q;p/ 2DT �D2 and ..�; q/;p.�;q// 2DT �.S1� Œ�1; 1�/, respectively. Here we
have used the previously defined smooth function g.q/>0 that satisfies g.q/Dj�2Cqj
near q D˙1, and we further assume that a > 0 is sufficiently small.

Lemma 3.6 The map � is smooth, inducing a singular Lagrangian torus fibration,
the unique singular fibre of which is given by our previously constructed Lagrangian
immersion

��1.0; 0/D L0

of a sphere. Moreover, denoting the reflection of the second coordinate in R2 by
R.u1; u2/DR.u1;�u2/, we have

� ı I DR ı�

and in particular I preserves the fibres of � setwise.

Proof We show that the fibres of .q1p2� q2p1; q1p1C q2p2/ 2R2 are Lagrangian
inside T �R2 . The remaining claims are straightforward to check.

The Lagrangian condition is most easily seen by using the fact that any complex curve
inside C2 becomes Lagrangian for the symplectic form

Re.dz1 ^ dz2/D dx1 ^ dx2� dy1 ^ dy2:

Indeed, we can set z1 D q1� iq2 and z2 D p1C ip2 , thus turning

�.q;p/D z1z2

into a holomorphic Lefschetz fibration.

Proposition 3.7 There exists a Lagrangian torus fibration y� W yW ! R2 , where y� is
onto R2 and submersive outside of the origin, and for which y��1.0/ D L0 is the
unique singular fibre. Furthermore, the fibration can be taken to satisfy:
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(1) y�jYa D � , and for any v 2 �.Ya/D fu21Cu
2
2 D ag we have

y�
�
�t�.y�

�1.v//
�
D et=2 � v for t � 0;

and in particular y�D ky�k2 holds inside y��1.a;C1/D yW nWa .

(2) y� D � in some neighbourhood of L0 .

(3) The Liouville flow �t
�

applied to any fibre of y� is again Hamiltonian isotopic to
a fibre of y� .

Proof Recall that a � �jYa � k�k
2jYa is satisfied by construction. In view of

Proposition 3.5(2), the Liouville flow applied to the family of tori ��1.v/ � Ya for
v 2 fk.u1; u2/k

2� ag produces a smooth torus fibration f W yW nL0!R2nf0g which
coincides with � when restricted to the hypersurface Ya . This torus fibration (defined
only in the complement of L0 ) can thus be made to satisfy property (1) by construction.

What suffices is then to perform a suitable interpolation between these two fibra-
tions. To that end, we argue as follows. First, using the fact that the two fibra-
tions coincide along Ya by construction, we can use the classical Arnold–Liouville
theorem [34, Theorem 2.3] in order to find a symplectomorphism �0 defined inside
WaC� nWa�� such that

� �0 is the identity along Ya , and

� � ı�0 D f .

The construction of �0 is standard; see the proof of Proposition 3.8 for more details.

The fact that �0 is a symplectomorphism that restricts to the identity along Ya implies
that the differential must satisfy D�0 D Id

T yW
along TYa yW . Hence, after shrinking

� > 0, a standard argument shows that �0 D �1Ht holds for a Hamiltonian isotopy that
again can be taken to satisfy �tHt jYa D Id.

After an appropriate cutoff of this Hamiltonian isotopy, we construct a symplectomor-
phism �1 that satisfies

� �1 D Id inside WaC� nWa , and

� �1 D �0 inside Wa��=2 nWa�� .

This provides us with the sought interpolation of the two torus fibrations.

To show (3), note that one can readily find a path of Lagrangian fibres of y� realising
the same symplectic flux-paths as that induced by the Liouville flow applied to the

Geometry & Topology, Volume 23 (2019)



The classification of Lagrangians nearby the Whitney immersion 3395

given fibre. (In fact, above the subset fu21Cu
2
2 � ag, the positive Liouville flow maps

fibres to fibres by construction.) The result is then a consequence of Lemma 6.11.

Recall that Lagrangian fibrations with a unique singular fibre were constructed for the
symplectic manifold .V; !FS/ in Section 1.3. The fact that the fibration constructed here
has similar properties gives us a convenient way to construct a symplectic embedding
of .V; !FS/Š .CP 2 n .`1[C/; !FS/ by utilising the Arnold–Liouville theorem.

Proposition 3.8 Given any s 2 .0; �=2/ and c > 0, there is a symplectic embedding

�sW .V; c!0/ ,! . yW ; d�/; �s.…
�1
s .0; 1//D L0;

for which the following is satisfied :

(1) Given an arbitrarily small neighbourhood U � .�1; 1/� .0;C1/ of .0; 1/ 2
.�1; 1/�.0;C1/ (ie the unique critical value of …s ), we may moreover assume
that �s maps fibres …�1s .p/ for p … U n f.0; 1/g to fibres of y� .

(2) For c� 0 sufficiently large, the image �s.V / projects to a star-shaped subset
y�.�.Vs//�R2 .

Proof The Arnold–Liouville theorem [34, Theorem 2.3], together with its generalisa-
tion [34, Proposition 4.8] to Lagrangian fibrations with nodal singular fibres, shows the
existence of the embeddings.

More precisely, the generalised version of the Arnold–Liouville theorem provides us
with a symplectomorphism �sW .O; c!0/ ,! . yW ; d�/ from a neighbourhood O � V
of the singular Lagrangian fibre …�1s .0; 1/� V to a neighbourhood �.O/ 3 ��1.0; 0/,
which moreover maps

� the singular fibre …�1s .0; 1/ to the singular fibre ��1.0; 0/, and

� all fibres of …s to fibres of � outside of some neighbourhood …�1s .U nf.0; 1/g/,
as required.

Here we use the fact that the unique singular fibres …�1s .0; 0/ and ��1.0; 0/ of the
two fibrations are “nodes” as defined in [34, (4.3)]. (Observe that it is not possible
to find a symplectomorphism that preserves also the fibres near the singular fibre in
general; see [34, Remark 3.9].)

Next we must extend the map �s from O � V to all of V . This is a simple matter of
applying the classical Arnold–Liouville theorem. Namely, for sufficiently small and
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simply connected U1 � .�1; 1/� .C1/ n f0; 1g and U2 � R2 n f.0; 0/g, it provides
us with symplectic identifications of neighbourhoods …�1s .U1/ and y��1.U2/ with
neighbourhoods of the form T2 � Ai � T

�T2 . The extension is then created by
patching together these identifications. Recall that the identification supplied by the
Arnold–Liouville theorem is canonical up to fibrewise translations in T �T2 and the
discrete action of Gl.2;Z/ by pullbacks of the corresponding linear diffeomorphisms
of T2 . (The discreteness is crucial for this argument.)

We are left with showing property (2). We show that if v 2 R2 is in the image
of y� ı �s , then necessarily e�tv for t � 0 is in the image as well, from which the
sought star-shaped property follows.

For c�0 the torus fibres above the complement of some given compact neighbourhood
of .0; 1/ 2 .�1; 1/� .0;C1/ may be assumed to map to torus fibres of y� contained
inside yW nWa . By Proposition 3.7(1), the forward Liouville flow �t

�
preserves the

fibres in the same subset. Furthermore, whenever L WD y��1.v/� yW nWa , the image
y�.�t

�
.L// is simply the radial rescaling et=2 � v by the same result.

For this reason it now suffices to show that the Liouville flow preserves also the torus
fibres of …s , at least up to Hamiltonian isotopy. Indeed, the convexity properties
satisfied by the values of the symplectic action on these fibres, as shown in Figure 5,
combined with Lemma 6.11, implies that all tori ��t

��s �
.…�1s .u1; u2// for small t � 0

again are Hamiltonian isotopic to fibres of …s . From this it then follows that the
image of y�.�s.V // is invariant under multiplication by e�t outside of the subset
y�.Wa/D fku1k

2Cku2k
2 � ag �R2 , as sought.

4 Pencils of pseudoholomorphic conics

In this section we assume that we are given a tame almost complex structure on
.CP 2; !FS/ which coincides with the standard integrable complex structure i near the
divisor `1 �CP 2 at infinity. A pseudoholomorphic line inside CP 2 is a pseudoholo-
morphic curve of degree one. One of the first examples of the power of the technique
of pseudoholomorphic curves in symplectic topology was Gromov’s result from [19]
which shows that CP 2 is foliated by pseudoholomorphic lines for any choice of tame
almost complex structure.

Theorem 4.1 [19] For any tame almost complex structure, the pseudoholomorphic
lines that pass through a given point pt 2CP 2 are embedded symplectic spheres which
form the leaves of a smooth foliation of the complement CP 2 n fptg of that point.

Geometry & Topology, Volume 23 (2019)



The classification of Lagrangians nearby the Whitney immersion 3397

A pseudoholomorphic conic inside CP 2 is a pseudoholomorphic curve of degree two.
The adjunction formula, together with positivity of intersection [28], allows us to
conclude that:

Lemma 4.2 A pseudoholomorphic conic is either a smoothly embedded sphere, a
nodal sphere consisting of the union of two different pseudoholomorphic lines, or a
two-fold branched cover of a pseudoholomorphic line.

Proof We show that the only singularities are nodes and branch points; the rest follows
from elementary applications of the adjunction formula and positivity of intersection.

Consider a line passing through a singular point as well as a smooth point on the conic
(its existence follows from Gromov’s result, Theorem 4.1, concerning the classification
of pseudoholomorphic lines). Unless the line is contained inside the conic, the singular
point contributes with at least C2 to the algebraic intersection number (see [28]), while
the intersection at the smooth point contributes with C1. Since a line and a conic
intersect with algebraic intersection number C2, positivity of intersection implies that
the line must be contained inside the conic.

Now we fix the two points q1D Œ1 W 0 W 0� and q2D Œ0 W 1 W 0�2 `1 at the line at infinity,
together with the complex tangent vectors vi � TqiCP

2 for i D 1; 2 to the two lines

`1 WD fŒZ1 W 0 WZ3� 2CP 2g and `2 WD fŒ0 WZ2 WZ3� 2CP 2g

at the two respective points. Note that there is a Lefschetz fibration

f W CP 2 n `1!C; f .z1; z2/D z1z2;

whose fibres are precisely those conics satisfying the specified tangencies vi �TqiCP
2

for i D 1; 2. This Lefschetz fibration has a unique singular fibre f �1.0/; this is the
standard nodal conic Cnodal �CP 2 given as the union of the coordinate lines.

Here we show how Gromov’s strategy for establishing a foliation by pseudoholomorphic
lines extends to give an analogous result also for conics. Namely, for an arbitrary tame
almost complex structure J which is standard at infinity, there exists a fibration fJ by
J–holomorphic conics having properties similar to the standard fibration f .

We first need to introduce a couple of notions. Denote by MJ the moduli space of
J–holomorphic conics and by MJ .v1; v2/�MJ the subspace of conics satisfying
the two tangencies vi for i D 1; 2. For a smooth family Js for s 2 I k of tame
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almost complex structures on .CP 2; !FS/, all of which are assumed to be standard
near `1 , we denote by C s

nodal � CP 2 the union of the two unique Js–holomorphic
lines satisfying the tangencies vi � TqiCP

2 . (Recall Gromov’s result, Theorem 4.1.)
The lines C s

nodal 2MJs
.v1; v2/ can of course be considered to be a nodal conic. Further,

the holomorphicity of `1 implies that C s
nodal intersects the line at infinity transversely

precisely in the two points qi . The node xs
nodal 2 CP 2 of C s

nodal , which must be
different from the two points qi , is thus contained inside CP 2 n `1 .

We are now ready to formulate the existence result for conic foliations.

Theorem 4.3 The conics in MJs
.v1; v2/ form a smooth foliation of

CP 2 n .`1[fx
s
nodalg/

with symplectic leaves, whose unique singular fibre is given by the nodal conic C s
nodal

with node xs
nodal . There is an induced family of symplectic fibrations

fJs
W CP 2 n `1!C;

which are submersions outside of the singularity of the nodal conic, and which depend
smoothly on the parameter s 2 I k .

Under the further assumption that J D i holds inside some given subset of the form
f �1.U / with U � C , one can ensure that f zJ jf �1.U / D f is satisfied there. In
particular, this can be assumed to hold above some subset U �C whose complement
is compact.

Proof The proof of the existence of the foliation relies on the well-known fact that tame
almost complex structures form a contractible space [19]. As a consequence, the tame
almost complex structures which are standard at infinity also form a contractible space.
We may thus extend the family Js for s 2 I k to a smooth family J.s;s/ parametrised
by .s; s/ 2 I � I k , where J.0;s/ � i and J.1;s/ D Js .

The transversality of the space of conics for all almost complex structures J.s;s/ and
the foliation property are then both consequences of the below automatic transver-
sality result, Lemma 4.4, together with a cobordism argument applied to the moduli
space

S
.s;s/2I�Ik MJs;s .v1; v2/ of conics satisfying the given tangencies. Note that

Lemma 4.4 implies that the evaluation map from the moduli space is a diffeomorphism
defined locally near any given conic (except at the node). The global foliation property
is then a consequence of the facts that
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� for any fixed s , we have MJ0;s .v1; v2/ n f2`1g Š C , where we use 2`1 to
denote the two-fold cover of the line at infinity branched at fq1; q2g,

� the conics MJ0;s .v1; v2/ n f2`1g foliate C2 n f0g, and

� the almost complex structures J.s;s/ are all standard near `1 , and hence there
exists a neighbourhood 2`1 2 U �MJs;s .v1; v2/ of solutions which persist
for all .s; s/ 2 I � I k .

The third point above combined with positivity of intersection also implies that no line
can satisfy both tangency conditions vi for i D 1; 2 simultaneously. Hence, the two
lines satisfying these tangency conditions join to form a nodal conic C .s;s/nodal , as sought.

To produce the symplectic fibrations fJ.s;s/ W CP
2 n `1 ! C whose fibres are the

leaves in our conic foliation, we use the fact that the evaluation map from the moduli
space is a diffeomorphism away from the node.

First, by positivity of intersection together with Œ2`1� � Œ2`1�D 4, two conics in this
family must intersect precisely in the two points fq1; q2g � `1 .

Then, we fix standard affine holomorphic coordinates Œ1 W z1 W z2� 2 CP 2 around
q1D Œ1 W 0 W 0� in which `1 is given by fz2D 0g. Since the almost complex structures
considered are standard near q1 , each conic u has a uniquely determined power series
expansion of the form

z 7! .z1; z2/D .0; z/C
X
k�2

.a
.s;s/

k
.u/zk; 0/; ak 2C;

after a suitable reparametrisation of the domain (depending smoothly on the conic C ).
The map fJ.s;s/ W C

2!C which along each J.s;s/–holomorphic conic u�C2 with
u 2MJ.s;s/.v1; v2/ takes as value the corresponding coefficient a.s;s/2 .u/ is a smooth
function by the foliation property. We end by arguing that this is a fibration of the
sought form.

First we show that
a
.s;s/
2 WMJ.s;s/.v1; v2/!C

is injective. To that end, note that two different conics would intersect with local
intersection index at least 3 at q1 if they would have the same coefficient a.s;s/2 in the
above expansion. Together with positivity of intersection, this is then in contradiction
with Œ2`1� � Œ2`1� D 4, taking into account that the local intersection index at the
other point q2 2 `1 is at least 2.
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Then we claim that, when s D 0, this construction gives back the standard fibration
f D fi . A topological argument now shows that fJ.s;s/ is surjective for all .s; s/.

It remains to show that fJ.s;s/ is submersive away from the node of the singular conic.
This is a consequence of the foliation property, together with the last statement of
Lemma 4.4, by which a.s;s/2 is submersive.

The following automatic transversality result was crucial in the above proof.

Lemma 4.4 Any smooth conic (ie a conic which is neither nodal nor a branched cover)
inside MJ .v1; v2/ is a regular solution to this moduli problem for an arbitrary tame J.
Consequently, MJ .v1; v2/ is a smooth two-dimensional manifold. Furthermore, the
section normal to some conic u 2M.v1; v2/ corresponding to a nonzero vector in
TuMJ .v1; v2/ vanishes precisely at the two points qi for i D 1; 2, where it moreover
has zeros of precisely order two.

Proof The statement is a fairly straightforward consequence of the automatic transver-
sality result in [22]; we proceed to give the argument.

Consider the space MJ of embedded J–holomorphic conics uW CP 1 ! CP 2 , to-
gether with a fixed solution u0 2 MJ .v1; v2/ satisfying the tangency conditions
Du0.T0CP 1/D v1 and Du0.T1CP 1/D v2 . Recall that these conics are embedded
by Lemma 4.2. The kernel of the linearised x@–problem disregarding reparametri-
sations is thus a complex five-dimensional space by the aforementioned automatic
transversality; indeed, the cokernel vanishes and the Fredholm index is equal to
.n� 3/�.CP 1/C 2c1.CP 2/Œu0�D�1.2/C 12D 10.

We need to show that the infinitesimal evaluation map

.u; pt1; pt2/ 7!
�
.u.pt1/;Du.Tpt1CP

1//; .u.pt2/;Du.Tpt2CP
1//
�

is transverse to the pair ..q1; v1/; .q2; v2//. Since we consider an embedded conic,
we can identify the solutions near u0 2MJ with certain sections �u 2 �.�u0/ in the
normal bundle of u0 . We make the choice of appropriate holomorphic coordinates
near the two points qi (recall that u0 is holomorphic near these two points), and
can then assume that the normal bundle is holomorphic there, and that x@J for the
sections �u actually is the standard Cauchy–Riemann operator near the two points
f0;1gD u�10 fq1; q2g �CP 1 .
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From this point of view, the problem boils down to showing that the map

MJ 3 u 7!
�
.�u.0/; �

0
u.0//; .�u.1/; �

0
u.1//

�
2 ..�u0/0/

2
� ..�u0/1/

2
Š .C2/2

is submersive to the origin for u close to u0 . The differential of this map is a linear
map

ˆW C5
Š Tu0MJ 3 � 7!

�
.�.0/; � 0.0//; .�.1/; � 0.1//

�
2C4;

where � 2Tu0MJ again can be seen as a section in the normal bundle of u0 . Moreover,

� � can be identified with a holomorphic map to C near the two points f0;1gD
u�10 fq1; q2g �CP 1 in the above coordinates;

� every geometric intersection of � with the zero section contributes positively to
the algebraic intersection number.

The second statement is the main technical result of [22].

In conclusion, when ˆ is not surjective, one can readily find a section � 2 �.�u0/
with a sufficiently high vanishing at the points f0; 1g D u�10 fq1; q2g that the algebraic
intersection index there is equal to at least C5 there. Using the aforementioned result
concerning positivity of intersection, this is in contradiction with the fact that the Euler
number of �u0 is equal to 4. In order to see the claimed vanishing, we argue as follows.
When ˆ is not surjective, then the linear subspace kerˆ�C2 is of real dimension � 3.
In this situation one thus finds a one-dimensional subspace which satisfies the vanishing
� 00.0/D 0 as well.

The claim concerning the vanishing of the section corresponding to the infinitesimal
variation in TuMJ .v1; v2/ is shown similarly, using the positivity of intersection
from [22] together with the fact Œu� � Œu� D 4. To that end, note that any section in
the normal bundle coming from a nonzero variation in TuMJ .v1; v2/ automatically
vanishes to order at least two at both points qi for iD1; 2, by the tangency condition.

4.1 Normalising the fibration

For us it is necessary to perform a further normalisation of the conic fibration supplied
by Theorem 4.3. In particular, we want to make the fibration standard outside of a
compact subset, and to make the nodal conic standard near its node.

Remark 4.5 The normalised fibration will still not define a symplectic Lefschetz
fibration in the complement of the line `1 at infinity in the normal sense; see eg [31]
for the definition. The reason is that the requirement for the fibration to be symplectically
trivial outside of a compact subset is not satisfied even for the standard fibration f .
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Theorem 4.6 Assume we are given a conic fibration fJ as produced by Theorem 4.3,
where fJ is standard inside a subset of the form f �1U with U �C , where C nU is
compact. It is possible to find a one-parameter family fJt for t 2 Œ0; 1� of such conic
fibrations, where J0 D i and fJ0 D f both are standard, for which

� the fibres of fJ1 coincide with the fibres of fJ outside some small neighbour-
hood of the form

O� WD .B
4
� .q1/[B

4
� .q2// n .`1[f

�1F / for 1� � > 0;

where F � U is an arbitrary closed subset. Moreover, the almost complex
structure J1 can be taken to coincide with J outside of the neighbourhood O�0
for some 0 < �0� � ;

� the nodal conics C Jtnodal each coincide with the standard nodal conic Cnodal

near `1 and are moreover each given as the preimage C Jtnodal D f
�1
Jt
.0/; and

� fJt D f holds outside of some compact subset of C2 .

Proof There exists a path Jt from J0D i to J1DJ with corresponding fibrations fJt
by Jt–holomorphic conics. See eg the proof of Theorem 4.3.

We start to normalise the foliations near the two points fq1; q2g, making them coincide
with the standard foliation there. Note that the smooth foliation property outside of
these two points then allows us to find a deformation J 0t of the path of almost complex
structures, where still J 00 D i , for which the deformed foliations are J 0t–holomorphic.
(Here may assume that J 0 D i still holds in a possibly smaller neighbourhood of `1 .)

The symplectic foliation is deformed by carefully replacing the coefficients in the
power series expansions near the points fq1; q2g that were described in the proof of
Theorem 4.3. For simplicity we will here consider the case of the fixed fibration fJ ;
the general one-parameter case is proven without any additional difficulty.

First we recall our choice of power series expansions near qi for the leaves. Take the
standard affine holomorphic coordinates Œ1 W z1 W z2� 2CP 2 around q1 D Œ1 W 0 W 0� in
which `1 is given by fz2 D 0g. Since the almost complex structures considered are
standard near q1 , each conic u 2MJ .v1; v2/ has a uniquely determined power series
expansion of the form

z 7! .z1; z2/D .0; z/C
X
k�2

.ak.u/z
k; 0/; ak 2C;
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after a suitable reparametrisation of the domain. In analogous affine coordinates near q2 ,
the leaves can be written as

z 7! .z1; z2/D .z; 0/C
X
k�2

.0; bk.u/z
k; 0/; bk 2C:

The coefficients bk and ak of nonminimal degree in the above power series can be
replaced by functions of the form

ˇr.kzk/ � ak.u/ and ar.kzk/ � bk.u/ for k � 3;

where ˇr is a bump function satisfying ˇ0r.t/� 0 and ˇr.t/D 1 for t � r , ˇr.t/D 0
near t D 0, and in addition jˇ0r j � 2=r . Note that such a deformation does not
deform those leaves which already are standard near the points qi . We claim that,
when t0 D r > 0 is taken to be sufficiently small, this deformation is still a symplectic
foliation, since only the higher-order terms are deformed. Here we use the facts that
the inequality

kd.ˇr.kzk/ � z
k/k � 2rk�1C krk�1 D .kC 2/rk�1 for k � 3

holds in the region D2r containing the support of ˇ0r . (Here r > 0 is sufficiently small.)
In this manner, we can make the leaves of the foliation coincide with leaves of the
standard foliation near the two points qi . This finishes the claim in the first bullet point.

For the second bullet point, we need to satisfy

a2.C
J
nodal/D b2.C

J
nodal/D 0:

We proceed as follows. Recall that all conic fibres except 2`1 are graphical over the
second and first affine coordinate around q1 and q2 , respectively, as described above.
The foliation can then readily be deformed by replacing the coefficients a2.u/ and b2.u/
by coefficients of the form

�ˇr .2kzk/.a2.u// and  ˇr .2kzk/.b2.u//

for suitable smooth and compactly supported isotopies �t ;  t W C! C which both
satisfy �t D IdC for all t � 1

2
. For the symplectic condition of the deformed foliation,

note that d��ˇr .2kzk/.a1.u// � z2�� c1.u/ � r;d� ˇr .2kzk/.b2.u// � z2�� c1.u/ � r
are satisfied inside fkzk � rg for r > 0 sufficiently small, where

c1WM.v1; v2/ n f2`1g !R�0
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is a continuous function depending on the choice of isotopy which is constant outside
of some compact subset. Since the isotopies are compactly supported, it thus suffices
to take r > 0 sufficiently small in order to guarantee the symplectic condition.

What remains is the last bullet point. We need to make each fibre of fJ coincide with
one and the same fibre of f near both points qi for i D 1; 2. This can be done by
the same method as in the proof of the second bullet point, using suitable isotopies
�t and  t of C . Once this has been done, it is a simple matter of reparametrising the
target C of the fibration in order to achieve the sought property.

In addition it will be useful to consider the following normalisation of the fibration
over a path in the base starting at the image of the nodal conic. Let

 W Œ0; 1� ,!C

be an embedded path which

� coincides with the canonical inclusion 0W Œ0; 1� ,!C near its boundary, and

� is homotopic to the canonical inclusion 0 through embeddings t with 1D  ,
all coinciding in some neighbourhood of the boundary.

Theorem 4.7 Assume that fJt W .CP
2n`1; !FS/!C is a smooth path of symplectic

conic fibrations with J0 D i and J1 D J, where fJt all are fixed outside of a compact
subset of CP 2 n .`1 [C [Cnodal/. Under the above assumptions on  , there then
exists a compactly supported Hamiltonian isotopy

�tHt W .CP
2
n .`1[Cnodal/; !FS/! .CP 2 n .`1[Cnodal/; !FS/

which maps f �1J ..x// to f �1.x/ for each x 2 Œ0; 1�.

Proof Recall that the symplectic fibrations fJt give rise to a parallel transport
along the extended curves t by integrating a suitably normalised characteristic vec-
tor field inside f �1Jt t . Using this parallel transport, starting from the conic fibre
f �1Jt .�/D f

�1.�/ for some small � > 0, we obtain a compactly supported isotopy

't W f
�1
J0
.�/� Œ�; 1C �� ,!CP 2 n .`1[Cnodal/

of hypersurfaces where

� '�t !FS is constant,

� 't .f
�1
J0
.�/� fxg/D f �1Jt .t .x//, and

� 't D '0 holds outside of a compact subset, as well as near Cnodal .
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The independence of t asserted in the last two points follows from the assumption that
the fibrations all are standard outside of a compact subset of CP 2 n .`1[C [Cnodal/.

The standard symplectic neighbourhood theorem [29] then provides us with an extension
of the family 't to a family of open symplectic embeddings

ˆt W .f
�1
J0
.�/� Œ�; 1C ��� Œ��0; �0�; !/ ,! .CP 2 n `1; !FS/;

ˆt jf �1J0 .�/�Œ�;1C���f0g
D 't ;

fixed outside of a compact subset of each f �1J0 .�/� f.x; y/g. For the last property, we
again rely on the assumption that the fibrations are standard outside of a compact subset.

Finally, since the support of the above family of symplectomorphisms is of the afore-
mentioned form, a standard fact now shows that it can be generated by a compactly
supported Hamiltonian, ie ˆt D�tGt ıˆ0 , where Gt moreover can be taken to vanish in
some neighbourhood of f �1Œ0; ��. A suitable cutoff of this Hamiltonian then generates
the sought global Hamiltonian isotopy of .CP 2 n `1; !FS/.

4.2 Hamiltonian isotopies of symplectic surfaces with smooth
self-intersection

Here we recall and establish facts concerning Hamiltonian isotopy of nodal sym-
plectic surfaces, as well as symplectic surfaces with more complicated discrete self-
intersections. First recall that a smooth family of embedded symplectic surfaces can be
generated by a Hamiltonian isotopy by the following basic result.

Proposition 4.8 [33, Proposition 0.3] Let †t � .X4; !/ be a smooth isotopy of
symplectic surfaces, where the isotopy moreover is fixed inside some (possibly empty)
subset F �X. Then there exists a Hamiltonian Ht W X!R for which †t D �tHt .†0/.
The Hamiltonian Ht can moreover be taken to vanish on any given open subset U � F .

There is no analogous results for nodal symplectic surfaces; for example, the tangent
planes at the node are not generically symplectically orthogonal. We now argue that we
still can find a Hamiltonian isotopy that generates a path of eg nodal symplectic surfaces,
albeit after an initial deformation near its nodes. First, a discrete self-intersection
locus may be assumed to remain fixed in the family after a Hamiltonian isotopy.
Proposition 4.9 then makes it possible to deform the surfaces near the self-intersection
locus in order to make the symplectomorphism class of the singularities constant.
Finally, we can apply Proposition 4.8 to this deformed family.
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Let †t � .X4; !/ be a smooth family of symplectic immersions of a finite union of
closed surfaces whose self-intersection loci each consist of precisely the k number of
points p1; : : : ; pk 2†t fixed in the family. (These points are all isolated singularities
by assumption, but they are not necessarily transverse double points.)

Proposition 4.9 After a deformation of †t through smooth paths of symplectic im-
mersions of the same kind, where the deformation can be assumed to be supported in
an arbitrarily small neighbourhood of p1; : : : ; pk , we obtain a path z†t of symplectic
immersions that satisfies z†0 D †0 and which is fixed in a neighbourhood of its
self-intersections.

(1) If, in addition, the path of immersion †t is fixed when restricted to a number of
components A�†t , then we may assume A� z†t to be fixed as well.

(2) If, in addition, pi 2 †t is a transverse double point for all t , and if the corre-
sponding sheets of †0 and †1 coincide near pi , then z†1D†1 can be assumed
to hold near pi .

Proof The deformation follows as in the proof of Corollary 3.7 in [12]. Roughly
speaking, we consider the links of the singularities of the immersions (ie the points
p1; : : : ; pk ). The singularities consist of intersections of a number of smooth sheets.
The links are thus transverse links inside the standard contact three-sphere .S3; �std/,
where each component of the link is a standard transverse unknot. The deformation is
obtained by a suitable smooth interpolation, by attaching symplectic cylinders given as
the trace of an isotopy through transverse links.

For (2), we need to use the fact that the space consisting of linear symplectic two-planes
that are transverse to another given linear symplectic two-plane is contractible.

5 Properties derived from broken conic fibrations

In this section L � V � .CP 2; !FS/ will always be used to denote an embedded
Lagrangian torus satisfying at least one of the conditions of Theorem A. Our goal here
is to establish Theorem 5.12, ie to construct a pseudoholomorphic conic fibration in the
sense of Section 4 that is compatible with L. Recall that compatibility of the fibration
with the torus implies that the latter is fibred over an embedded closed curve in the base.
In the entire section we rely heavily on the technique of stretching the neck, which is
performed on the unit normal bundle of the Lagrangian torus.
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5.1 A neck-stretching sequence

We follow [12, Section 2] in the construction of a sequence of almost complex structures
which stretch the neck around an embedding of the unit cotangent bundle of the
Lagrangian torus L� .CP 2n`1; !FS/. This is a sequence J� with � �0 of compatible
almost complex structures on .CP 2; !FS/ satisfying the following properties:

� J� D i in a neighbourhood of `1 as well as in a neighbourhood of the smooth
conic C �CP 2 .

� In a fixed Weinstein neighbourhood

�W .D3�T
�T2; d�T2/ ,! .V; !FS/; �.0T2/D L;

the almost complex structure takes the form

J�@�i D��� .kpk/@pi

for a function �� W R�0! R>0 satisfying �� .t/ D � for t � � and �� .t/ D t
for t � 2� , while

R 2�
� �.t/ dt � � .

� J� is fixed outside of the above Weinstein neighbourhood �.D3�T �T2/�CP 2 .

In Section 8 a variation of the above construction will be used, where we stretch the
neck around two disjoint Lagrangian tori simultaneously. In that case, the sequence is
constructed in the analogous manner utilising disjoint Weinstein neighbourhoods of
the two tori.

The above choices also specify the following important compatible almost complex
structures:

� The compatible almost complex structure Jstd on T �T2 which is given by
Jstd@�i D��1.kpk/@pi .

� The compatible almost complex structure Jcyl defined on

.T �T2
n 0T2 ; d�T2/D .R�ST

�T2; d.et�T2 jST �T2//

by Jcyl@�i D�kpk@pi . It is important to note that this almost complex structure
is cylindrical with respect to the contact form ˛ WD �T2 jST �T2 induced by the
flat Riemannian metric on T2 .

� The compatible almost complex structure J1 defined on CP 2 nL which coin-
cides with Jcyl inside the above Weinstein neighbourhood �.D3�T �T2/ and
with J� , where � � 0 is arbitrary, in the complement CP 2 n�.D3�T �T2/.
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Recall that the periodic Reeb orbits of ˛ correspond to lifts of closed geodesics on T2

induced by the flat metric. A basic but very crucial fact is that these geodesics all live
in Bott manifolds �˛ Š S1 , which are in bijection with the nonzero homology classes
˛ 2 H1.L/ n f0g of the corresponding geodesics. In particular, there are no closed
contractible geodesics for the flat metric.

When speaking about finite-energy pseudoholomorphic spheres we mean pseudoholo-
morphic spheres inside either .T �T2; Jstd/, .R�ST �T2; Jcyl/, or .CP 2 nL; J1/
with a finite number of punctures asymptotic to periodic Reeb orbits on .S�T2; ˛/.
By a classical result this condition is equivalent to that of having finite so-called Hofer
energy; see [24] and [23]. In the following all punctured pseudoholomorphic spheres
will tacitly be assumed to be holomorphic for one of the almost complex structures as
described above, and to be of finite Hofer energy.

A one-punctured pseudoholomorphic sphere is called a plane while a two-punctured
pseudoholomorphic sphere is called a cylinder.

By a broken pseudoholomorphic conic we mean a pseudoholomorphic building of at
least two levels whose components satisfy the following topological condition: gluing
all the domains of the components at their nodes we obtain a sphere without punctures,
on which the maps compactify to give a continuous cycle S2!CP 2 of degree two.
Of course there also exist closed J1–holomorphic curves inside CP 2 nL without
punctures; eg the conic C � CP 2 is J1–holomorphic by the assumptions made
on J1 . Such curves will be called unbroken. Similarly we also consider (un)broken
pseudoholomorphic lines inside CP 2 nL.

It is immediate from the SFT compactness theorem that the limit of a sequence of
J�–holomorphic conics (resp. lines) as � !C1 is a broken or unbroken pseudoholo-
morphic conic (resp. line); see [5] or [8].

Remark 5.1 It is not clear a priori that the converse holds, ie that all broken pseudo-
holomorphic conics or lines arise as such limits; this would require a rather strong form
of pseudoholomorphic gluing in the Bott setting under consideration. Since we do not
rely on such a result, we must instead use somewhat roundabout arguments based upon
(asymptotic) positivity of intersection of pseudoholomorphic buildings, combined with
automatic transversality for the components in the building, in order to rule out certain
unwanted broken configurations.

When considering limits of pseudoholomorphic conics or lines in the four-dimensional
setting, the following crucial property is a consequence of positivity of intersection [28].

Geometry & Topology, Volume 23 (2019)



The classification of Lagrangians nearby the Whitney immersion 3409

Lemma 5.2 The limit of pseudoholomorphic lines or conics under a neck-stretching
sequence consists of components all of which are (possibly trivial ) branched covers of
embedded punctured pseudoholomorphic spheres. In the case of a limit of lines, it is
moreover the case that two different components have disjoint interiors.

Another important technical feature of the dimension where we are working is that the
Fredholm index of a punctured sphere can be forced to be nonnegative under certain
mild assumptions; this facilitates transversality arguments and analysis significantly.
More precisely, we have:

Lemma 5.3 [12, Lemma 3.3] If all simple J1–holomorphic punctured spheres
inside CP 2 nL are of nonnegative Fredholm index, then the same is true for all J1–
holomorphic punctured spheres. Since a plane has odd Fredholm index, its index is
thus at least one in this case. Moreover, if the index of a such a punctured plane inside
CP 2 n .`1 [ L/ is equal to one, then it is simply covered with a simply covered
asymptotic. Finally, for a generic almost complex structure J1 as in Section 5.1, all
simply covered curves can indeed be assumed to be transversely cut out and hence of
nonnegative index.

Lemma 5.4 [12, Proposition 3.5] Assume that there exists no punctured pseudoholo-
morphic spheres inside CP 2 nL of negative index. After perturbing J1 inside some
compact subset of U n `1 , where U � CP 2 is an arbitrarily small neighbourhood
of `1 , we may assume that any curve which is either

� a broken line satisfying a fixed-point constraint at q 2 `1 , or

� a broken conic satisfying two fixed tangency conditions, one at each of two points
q1; q2 2 `1 ,

has a top level consisting of precisely two planes of index one, and possibly several
cylinders of index zero. (Here we take appropriate constraint(s) into account when
considering the index of a component.) Moreover, the components passing through `1
are transversely cut out when considered with the appropriate point and tangency
condition, respectively.

Remark 5.5 In the above lemma we do not assume that the broken curve is an actual
limit under a neck-stretching sequence.

Proof First we note that the Fredholm index for the corresponding nonbroken solutions
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is equal to two in both of the cases, where the moduli spaces are considered with the cor-
responding point or tangency constraint. Therefore, the proof of [12, Proposition 3.5]
carries over immediately to the current situation, once the following transversality result
has been established: for generic almost complex structures of the type considered,
the constrained moduli spaces are transversely cut out and assume their expected
dimensions.

Since we are in a very particular situation the sought transversality is not difficult to
establish. In the unbroken case, this is a consequence of automatic transversality; see
Lemma 4.4. In the case of a broken curve, positivity of intersection implies that the
component satisfying the additional constraint(s) necessarily is simply covered and
traverse to `1 . The transversality properties can now be achieved by finding explicit
deformations by hand, while using standard transversality techniques [30, Section 3].

Most work in the remaining part of this section is to sharpen the above result, by showing
that a broken conic consists of precisely two components in its top level, where each
component moreover intersects `1 , as is depicted in Figure 6. In order for this to hold,
it is crucial to use one of the two conditions in the assumptions of Theorem A.

CP 2 nL

T �L

q2q1

5

A2A1
5

2

e0 �e0

L

Figure 6: The broken conic in the generic case. The two planes Ai each
intersect `1 transversely in the point qi , where they moreover are tangent to
the smooth conic C. The two planes join to form a continuous embedding of
a sphere.

5.2 Solid tori foliated by pseudoholomorphic planes and consequences

When a broken line or conic consists of a plane that is disjoint from `1 , we can under
certain assumptions use the techniques from [12] in order to construct an embedded
solid torus with boundary equal to L, which is foliated by discs, one of which is close
to the aforementioned plane.
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Proposition 5.6 [12, Section 5] Let L � .CP 2 n `1; !FS/ be an embedded La-
grangian torus and consider any compatible almost complex structure J1 �CP 2 nL

that satisfies the properties of Lemma 5.4. Assume that there exists a pseudoholomor-
phic plane A � CP 2 n .L[ `1/ asymptotic to L which arises as a component of a
generic broken line satisfying a fixed-point constraint at one of the points qi 2 `1 .
Then there exists a smooth embedding of a solid torus

.S1 �D2; S1 �S1/ ,! .CP 2 n `1; L/

foliated by embedded J–holomorphic discs in the same homotopy class as A, where
J D J1 can be taken to be satisfied outside of an arbitrarily small neighbourhood of L.

Using the above we show that a Lagrangian torus that satisfies either of the conditions
in the assumptions of Theorem A can be disjoined from the standard nodal conic by a
Hamiltonian isotopy.

Lemma 5.7 Assume that either condition (1) or (2) of Theorem A is satisfied. For an
almost complex structure J1 that satisfies the properties of Lemma 5.4, the image of the
nodal conic is not broken. It follows that the embedded Lagrangian torus L� .V; !FS/

can be disjoined from the standard nodal conic Cnodal D `1 [ `2 by a Hamiltonian
isotopy supported inside V .

Proof Assume that the nodal conic is broken. Lemma 5.4 implies that the broken line
in the nodal conic has a component that is a plane of index one which is disjoint from `1 .
Using either condition (2), or condition (1) in conjunction with the existence of the solid
torus produced by Proposition 5.6 that bounds L (and contains a perturbation of the
pseudoholomorphic plane as a compressing disc), we conclude that the plane necessarily
intersects C. Since such a line already is tangent to C at one of the points qi 2 `1
this finally leads to a contradiction with the total intersection number, Œ`1� � C D 2,
of a line and a conic. For the last part we need positivity of intersection [28].

What remains is to construct the Hamiltonian isotopy. Start by considering a compatible
almost complex structure J for which the aforementioned broken conic `J1 [ `

J
2 as

well as C and `1 all are J–holomorphic simultaneously. Then interpolate between
J and J0 through compatible almost complex structures, all for which C [ `1

remains pseudoholomorphic. Gromov’s result, Theorem 4.1, produces a smoothly
varying family †t of symplectic immersions where †0 D `1 [ `2 [ C [ `1 and
†1 D `

J
1 [ `

J
2 [C [ `1 . Deforming this family at times t > 0 using a Hamiltonian
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isotopy constructed by hand, we may assume that the position of the node remains
fixed in the family. In particular, the node now coincides with `1\ `2 for all t � 0.

Proposition 4.9(1) applies to this family, yielding a family z†t to which Proposition 4.8
can be applied. Here z†0 D†0 , while we also have C; `1 � z†t , and z†1 � V nL is
a small perturbation of †1 . In other words, the global Hamiltonian isotopy produced
by Proposition 4.8 that generates the isotopy z†1�t of symplectic surfaces is the one
we seek.

Lemma 5.8 Assume that either condition (1) or (2) of Theorem A is satisfied for
the Lagrangian torus L � .V; !FS/. There exists a basis he0; e1i DH1.L/ with the
property that e0 generates the kernel of the canonical map H1.L/!H1.V / induced
by the inclusion L� V , while any disc .D; @D/! .CP 2 n `1; L/ with boundary in
the homology class e1 must satisfy D � C D a1 > 0.

Proof Take any basis he0; e1i D H1.L/ D Z2 for which e0 is in the kernel of
H1.L/ ! H1.V / D Z. It suffices to show that e1 satisfies the property that any
disc .D; @D/! .CP 2 n `1; L/ with boundary in the homology class e1 must satisfy
D � C ¤ 0.

Using Proposition 5.6 applied to a suitable broken line, we produce a solid torus
inside CP 2 n `1 with boundary equal to L, which is foliated by J–holomorphic
discs D.�/ of Maslov index two. The compatible almost complex structure J on CP 2

can moreover be chosen so that C [ `1 is J–holomorphic.

Under either of the assumptions of Theorem A, positivity of intersection [28] implies that
the discs foliating the above solid torus must intersect C positively. Since Œ@D.�/�D
ke0C le1 the statement follows.

Lemma 5.9 Assume that either condition (1) or (2) of Theorem A is satisfied for the
Lagrangian torus L� .V; !FS/, and consider a basis he0; e1iDH1.L/ as in Lemma 5.8.
Any broken J1–holomorphic conic satisfying the given tangency conditions at qi
consists of components all whose asymptotics are geodesics in homology classes of the
form ke0 2H1.L/ with k 2 Z n f0g.

Remark 5.10 In the above lemma we make no assumptions on the genericity of J1 .

Corollary 5.11 The same is true also for an almost complex structure J1 on CP 2 n

.L[L0/ obtained by stretching the neck also around an additional Lagrangian torus
L0 � V nL, with the only caveat that any component then also may have additional
punctures asymptotic to L0.
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Proof The statements follow by positivity of intersection with C together with topo-
logical considerations in conjunction with Lemma 5.8. Recall that, as prescribed by
the tangency conditions satisfied by the broken conic, it intersects C with algebraic
intersection index C4 at the two points qi 2 C for i D 1; 2. In other words, there
are precisely two intersections of this building and the unbroken conic C, both which
occur at the two points qi 2 `1 .

Consider a puncture p appearing as an asymptotic of a top-level component A in
the building, where the asymptotic at p corresponds to a geodesic in the homology
class ke0C le1 2H1.L/. Compactify A to a continuous chain with boundary on L
in the homology class �.ke0C le1/ 2H1.L/ (note the sign!). Choose an arbitrary
null-homology B of ke0C le1 2H1.L/ inside CP 2 n `1 , and create a cycle A[B .

In this manner we have produced a cycle in H2.CP 2/ of degree d D A � `1 ,
where d equals either 0, 1 or 2. The intersection number of the cycle and C is
precisely 2d C la1 D 2d . The first term arises from the intersections of A and `1
(these occur at fq1; q2g� `1 by positivity of intersection) while the second term arises
from the intersections of B and C. Since a1 > 0 by Lemma 5.8 we must have l D 0,
as sought.

5.3 Constructing a compatible fibration of conics

We are now ready to state the result concerning the existence of a pseudoholomorphic
conic foliation compatible with a Lagrangian torus L� .V; !FS/ that satisfies one of
the assumptions of Theorem A. We postpone its proof to Section 5.4.

Theorem 5.12 After a Hamiltonian isotopy of L� V n.`1[C [Cnodal/, there exists
a tame almost complex structure J on .CP 2; !FS/, where J D i is standard near
the divisor `1 [C [Cnodal , for which an application of Theorem 4.3 gives rise to a
fibration fJ W .V; !FS/! C by J–holomorphic conics which is compatible with the
Lagrangian torus in the following sense:

(1) The restriction fJ jL makes the torus a smooth S1–fibre bundle over the embed-
ded closed curve

� WD fJ .L/�C n f0D fJ .Cnodal/; 1D fJ .C /g;

which has winding number one around 1 2C . The fibres of fJ jL are, moreover,
closed curves inside L which are contractible inside V and of Maslov index zero.
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(2) The fibre of f �1J .s/ for any s 2 � coincides with the standard fibre f �1.s/
outside of a compact subset.

(3) The curve � is either disjoint from the curve Œ0; 1� � C or is of the form
s0C i Œ�ı; ı� in some neighbourhood of Œ0; 1�, where s0 2 .0; 1/. Furthermore,
we may assume that fJ D f holds inside the same neighbourhood.

Remark 5.13 In the case when L�CP 2 n.`1[C [Cnodal/ already is satisfied, it is
not necessary to apply a Hamiltonian isotopy to L in order to achieve parts (1) and (2)
of Theorem 5.12.

In view of Theorem 5.12(3) there are two possibilities for a Lagrangian torus: the
closed curve � �C n f0; 1g over which the torus is fibred either has winding number
around 02C equal to wD 1 (in the case when it is disjoint from Œ0; 1��C ) or wD 0
(in the case when it intersects Œ0; 1��C in a single point). When w D 1, we say that
the torus is in Clifford position (see Figure 8), and when w D 0, Chekanov position
(see Figure 7). These Lagrangian tori will later be shown to be Hamiltonian isotopic to
standard tori of the corresponding types.

1

�



x

iy

Figure 7: The image of a torus in Clifford in position under a compatible
fibration, before carrying out the deformation to make the fibration standard
above Œ0; 1��C .

We now state some consequences of Theorem 5.12.

Corollary 5.14 Under the assumption of either condition (1) or (2) of Theorem A,
the Lagrangian torus L�CP 2 n .`1[C/ is smoothly isotopic inside the same subset
to a fibre of the Lagrangian fibration …sW V ! .�1; 1/� .0;C1/ through totally real
tori. In particular, conditions (1) and (2) of Theorem A are equivalent for embedded
Lagrangian tori.
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Figure 8: The image of a torus in Chekanov position under a compatible
fibration, before carrying out the deformation in order to make the fibration
standard above Œ0; 1��C .

Proof The smooth isotopy is readily constructed by first moving the torus within the
S1–family of conic fibres � to a Lagrangian torus that lives near, say, the point q1 .
The latter Lagrangian torus can then be smoothly isotoped through Lagrangian tori
compatible with the standard Lefschetz fibration f W CP 2n.`1[C/!C to a standard
representative. The first part of the isotopy is not necessarily through Lagrangian tori,
but at least it is through totally real tori. The reason is that, since these tori all live
inside a three-dimensional hypersurface � foliated by pseudoholomorphic curves, while
they by construction have no full tangency to any of the curves, they cannot have any
complex tangencies.

We end by noting that conditions (1) and (2) of Theorem A are equivalent merely by
the existence of this formal Lagrangian isotopy; the standard tori are obviously in the
class of the generator of H2.V /, and all continuous discs of nonzero Maslov index on
them must intersect C with a nonzero algebraic intersection number.

Later we will establish that the tori actually are Lagrangian isotopic, and not just
formally Lagrangian isotopic. Recall that this already is known to be the case inside
the larger space .CP 2 n `1; !FS/ � V by the main result of [12]; constructing a
Lagrangian isotopy in the complement of the divisor C will turn out to require some
additional work.

The property of having vanishing Maslov class for a torus satisfying either assumption
of Theorem A has the following important and nontrivial consequence.

Proposition 5.15 Any Lagrangian torus inside .V; !FS/ which satisfies either of the
assumptions of Theorem A is not Hamiltonian displaceable inside V .
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Proof By Corollary 5.14 the Maslov class of the torus L vanishes when considered
inside V .

Since the expected dimension of a pseudoholomorphic disc of Maslov index zero is
equal to �1, there are no such somewhere injective discs when the almost complex
structure is generic. This follows by a standard argument; see eg [30]. Then, by
Lazzarini’s result [27], it is the case that the space of nonconstant pseudoholomorphic
discs with boundary on L is empty for such a generic almost complex structure. Indeed,
otherwise we would be able to extract a somewhere injective pseudoholomorphic disc
by appealing to Lazzarini’s result.

The Hamiltonian nondisplaceability is then a direct consequence of the main result
of [7]. In order to see that this result can be applied, we note that the complement of
a union of positive pseudoholomorphic divisors in a closed symplectic manifold is a
noncompact but tame symplectic manifold.

5.4 The proof of Theorem 5.12

We start by performing a Hamiltonian isotopy in order to disjoin L from the standard
nodal conic; this is possible by Lemma 5.7.

Now we assume that J1 is chosen generically as in Lemma 5.4, so that there are no
pseudoholomorphic planes inside CP 2 nL of negative index. We may assume that the
nodal conic `1[ `2 tangent to C at fq1; q2g � `1 is J1–holomorphic.

Proposition 5.16 Consider the basis he0; e1i DH1.L/ as in Lemma 5.8. Any broken
conic tangent to C at qi 2 `1 for i D 1; 2 which appears as the limit of pseudoholo-
morphic conics when stretching the neck satisfies the following: its top level consists of
precisely two planes Ai �CP 2 nL for i D 1; 2, where

� Ai \ `1 D fqig, where it satisfies the tangency vi � TqiCP
2 , and

� Ai is asymptotic to a geodesic on L in the class .�1/iC1e0 (after a suitable
choice of sign for the generator e0 ),

while the remaining components consists of a single cylinder contained inside T �L.
Moreover, for the above choice of sign for e0 , the disc .D; @D/ ! .V; L/ with
Œ@D�D e0 is of Maslov index zero and satisfies D � `i D .�1/i . See Figure 6.

Proof We begin by noting that a broken conic intersects the smooth conic C precisely
at the two points qi 2 `1 for i D 1; 2; this follows from positivity of intersection [28].
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First we argue that a broken conic does not contain a plane that is disjoint from `1 .
Under the assumption of condition (2) of Theorem A this is immediate from Lemma 5.4.

Under the assumption of condition (1) we must work a bit harder: By Lemma 5.9 we can
conclude that the plane appearing in the broken conic must be asymptotic to a geodesic
in the class ke0 with k ¤ 0 and that it is disjoint from C. In fact, since the plane is
of index one by Lemma 5.4, we must have k D ˙1. Positivity of intersection [28],
together with Lemma 5.8, now implies that the moduli space containing this plane
is compact, and hence homeomorphic to S1 ; if the family of planes break in the
sense of SFT compactness [5], then we can readily extract a different plane in the
compactification which is asymptotic to an orbit in the homology class k0e0C l 0e1
with l 0 ¤ 0. (The nonzero intersection number with C is then a contradiction.) We
then argue as in [11]: by appealing to automatic transversality [38] we can then use
this moduli space to construct a continuous chain inside CP 2 n `1 with boundary
equal to mŒL� for some m ¤ 0, ie to yield a null-homology of mŒL�. By positivity
of intersection, this chain is moreover disjoint from C, which is in contradiction with
condition (1).

By the above, together with Lemmas 5.4 and 5.9, we thus conclude that the broken
conic consists of precisely the two planes Ai for i D 1; 2 in its top level, where
Ai \ `1 D qi .

We then show that any disc .D; @D/! .B4; L/ with boundary in the homology class
Œ@D�D e0 2H1.L/ must satisfy D � `i D .�1/i , after an appropriate choice of sign
for the generator. Indeed, we can complete the plane Ai intersecting qi with a single
puncture asymptotic to ke0 to a cycle in the class of a line by adding a �k number of
such discs, and then use the fact that

Ai � j̀ D

�
2 if i D j;
0 if i ¤ j;

where again we have appealed to positivity of intersection. From this we also conclude
that the plane intersecting qi must be primitive and, moreover, asymptotic to a geodesic
in the class .�1/iC1e0 .

It now follows by a topological argument that the remaining top components, ie those
which are disjoint from `1 , must have total symplectic area equal toZ

e0

�std�

Z
e0

�std D 0:
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Hence, there can be no top-level components disjoint from `1 and, again by positiv-
ity of intersection, the top-level component consists of precisely the two planes Ai
for i D 1; 2.

A final index calculation shows that e0 is of Maslov index zero.

We now proceed with the proof of Theorem 5.12.

(1) We run a neck stretching with J1D i near `1[Cnodal[C. The SFT compactness
theorem [5; 8], together with Theorem 4.3, allows us to extract broken pseudoholomor-
phic conics as limits from the moduli spaces MJ� .v1; v2/. In view of Proposition 5.16
this conic consists of precisely two planes Ai for i D 1; 2 in the top level, where the
plane Ai satisfies the tangency vi at qi 2 `1 . Here we must use a generic almost
complex structure J1 .

The rest of the argument follows the same ideas as [12, Section 5.4]; we need to vary
the components in the top level of the obtained broken conic in order to produce a
whole one-parameter family of broken conics.

By the nonexistence of planes of Maslov index two inside V nL that are asymptotic
to L, as follows from Proposition 5.16 (also see Lemma 5.8), we conclude that the
planes Ai are contained inside compact components of its moduli spaces of planes
satisfying a tangency to C at fq1; q2g � `1 . Namely, a broken configuration arising
as the SFT limit of such planes would consist of at least one plane contained in the
top level CP 2 nL, which is disjoint from `1 and C by positivity of intersection.
However, since the only geodesic on L which is contractible inside V has vanishing
Maslov class by Proposition 5.16, this contradicts the genericity of the almost complex
structure chosen.

Since automatic transversality is satisfied by the main result of [38], the component of
the moduli space of planes tangent to C at qi that contains the plane Ai is diffeomorphic
to S1 for each i D 1; 2. In order to achieve automatic transversality with the tangency
condition, we must argue as in the proof of Lemma 4.4 (but for one tangency condition
instead of two). More precisely, we need to infer that the infinitesimal variations of
solutions that vanish to order two at the point qi must vanish to order precisely two
there, while vanishing nowhere else (including asymptotically at the puncture). This
is a consequence of positivity of intersection together with the computation of the
asymptotic intersection number made in the subsequent paragraph.

The argument from [12, Lemma 5.13], based upon the computations of the asymptotic
winding of the eigenvectors from [21], shows that the asymptotic evaluation map is
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a diffeomorphism onto the space of orbits. The computation is the same in this case,
despite the fact that the Fredholm index of the plane Ai is equal to five (instead of one).
To that end, we use the fact that the index of this plane again is equal to one, when we
consider it together with the tangency constraint at qi 2 `1 .

Now we recall how to exclude two planes having the same asymptotic orbit by the
aforementioned calculation: Two different planes asymptotic to the same orbit have
a new intersection point after a small holomorphic perturbation (the holomorphic
perturbation exists in view of the aforementioned automatic transversality result). In
this way, two planes with the same asymptotic and tangency at qi must coincide;
otherwise we could readily construct two cycles in degree two that intersect with
algebraic intersection number at least five by assembling suitable pseudoholomorphic
planes asymptotic to the torus which are both tangent to C at qi for i D 1; 2.

Finally, we can use the smoothing procedure from [12, Section 5.3] in order to assemble
the planes in these components of the moduli space to form a S1–family of closed
embedded pseudoholomorphic conics, each intersecting L in a closed curve, and all
being tangent to vi at qi . The claim that the Maslov index of this curve is zero when
considered on L is an immediate consequence of Proposition 5.16.

The existence of the global symplectic conic foliation is finally a consequence of
Theorem 4.3.

The claim about the winding number of � around the projection of the fibre C is
an immediate consequence of either of the conditions on L made in the assumptions
of Theorem A.

(2) This part is a straightforward consequence of the normalisation carried out by
Theorem 4.6.

(3) One can construct an embedded curve  �C which connects 0 to 1 and which

� coincides with Œ0; 1��C near its boundary,

� is isotopic to the latter standard embedding through embeddings of the same
type, and

� either is disjoint from � (when the torus is in Clifford position) or intersects it
transversely in a single point (when the torus is in Chekanov position).

An application of Theorem 4.7 finally normalises the conics above the path  .
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In order to make the fibration standard inside a whole neighbourhood of f �1.Œ0; 1�/
we perform a reiteration of the entire neck-stretching argument, while using almost
complex structures which are standard in the aforementioned neighbourhood. (Note
that the neighbourhood has been made disjoint from L by the previous application
of Theorem 4.7.)

6 Liouville forms and inflation

Here we construct a family of Liouville forms on the complement of the holomorphic
divisor D0 [D1 [D2 [D3 � CP 2 , where D0 D `1 , D1 D `1 , D2 D `2 , and
D3 D C. The main use of these different Liouville forms is to deform Lagrangian
isotopies to Hamiltonian isotopies, by applications of the corresponding Liouville
flows. This process is called inflation, and is described in Section 6.2. As a part of the
construction, we also obtain the natural one-parameter family �r of Liouville forms
on .V DCP 2 n .D0[D3/; !FS/ that we study in Section 6.1.

The Fubini–Study Kähler form normalised so that
R
`1
!FS D � can be expressed as

!FS

WD
1

4
dd c log

�
1

1Ckz1k2Ckz2k2

�
D�

1

2
i@x@ log

�
1

1Ckz1k2Ckz2k2

�
D
1

2
i@x@ log .1Ckz1k2Ckz2k2/

D
i

2.1Ckz1k2Ckz2k2/

2P
iD1

dzi ^ dxzi C
�i

2.1Ckz1k2Ckz2k2/2

P
i;j

xzizj dzi ^ dxzj

in the affine chart C2DCP 2n`1 . Here we have used the notation d cf . � / WD df .i � /.

Consider the antitautological line bundle E WD Tot.O.1// ! CP 2 with sheaf of
holomorphic sections O.1/. In other words, the line bundle E˝3 D det.TCP 2/ is
the anticanonical line bundle with sheaf of holomorphic sections O.3/ on CP 2 . We
endow E with the Hermitian metric determined by the following condition: for the
standard trivialisation over the affine chart C2 DCP 2 n `1 this metric takes the value

ksk2E D
ksk2

1Ckz1k2Ckz2k2

on the locally defined section sW C2!C . We also consider the induced metrics

ksk2
E˝n
D

ksk2

.1Ckz1k2Ckz2k2/n
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on the nth tensor power E˝n of the line bundle. Take holomorphic sections s`1 and sC
of E and E˝2 respectively, which in the trivialisation over C2DCP 2n`1 are given by

s`1.z1; z2/D 1 and sC .z1; z2/D z1z2� 1:

Similarly, there are sections s`i of E which in the trivialisation over the affine co-
ordinate chart C2 D CP 2 n `1 take the form s`1 D z2 and s`2 D z1 . Note that
.s`i /D `i .

Using the above sections and Hermitian metrics we are now ready define a family of
Liouville forms on the complement CP 2 n .`1[C [Cnodal/ of a particular singular
divisor. Let r D .r0; : : : ; r3/ 2R4 be numbers satisfying r0C� � �C r3 D 1. Using the
formula for the curvature we compute

!FS D
1
4
dd c

�
r0 log ks`1k

2
E C r1 log ks`1k

2
E C r2 log ks`2k

2
E C

1
2
r3 log ksC k2E˝2

�
;

and hence

�r WD
1
4
d c
�
r0 log ks`1k

2
E C r1 log ks`1k

2
E C r2 log ks`2k

2
E C

1
2
r3 log ksC k2E˝2

�
is a family of Liouville forms defined in the complement of the divisor

S
fi Wri¤0g

Di .

6.1 A family of Liouville forms on V D CP2 n .`1 [C/

In this subsection we endow .V; !FS/ with a family of Liouville forms. Also compare
to the construction in Section 3.2, where the Liouville form is more carefully adapted
to the Lagrangian fibrations considered. Setting r1 D r2 D 0, r0 D 1� r , and r3 D r
in the construction above, we obtain a family

�r WD
1
4
.1� r/d c log ks`1k

2
E C

1
8
rd c log ksC k2E˝2 for r 2 Œ0; 1�

of Liouville forms for !FS defined on all of V . Denote by

�t�r W .V; !FS/! .V; e�t!FS/

the corresponding Liouville flow.

Remark 6.1 It makes sense to also consider the limit cases �r with r D 0 and r D 1.

(1) The Liouville form �0 is identified with the standard radial Liouville form, which
is the pullback of

�std D
1
2
kzz1k

2 d z�1C
1
2
kzz2k

2 d z�2 D
1
4
i.zz1 dzz1�zz1 dzz1/C

1
4
i.zz2 dzz2�zz2 dzz2/
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on .B4; !0 D d�std/ under the symplectomorphism ' . By Gromov’s theorem [19]
there are no exact closed Lagrangian embeddings with respect to this Liouville form.

(2) The Liouville �1 is defined on .CP 2nC;!FS/ and vanishes along the Lagrangian
embedding

fz2 D�xz1g � .CP
2; !FS/

of RP 2 , which thus in particular is exact. Note that CP 2 nC is symplectomorphic to
the disc cotangent bundle of RP 2 .

Different Lagrangian fibres of …s become exact for different Liouville forms in the
family �r . Here we give a description, using the conventions from Section 2.1 for the
computation of the symplectic action.

Lemma 6.2 (1) The Lagrangian fibre …�1s .0; u2/ is exact and, in the case of
the immersed sphere u2 D 1, even strongly exact, precisely for the Liouville
form �r with parameter r D .2=�/As.0; u2/ in the above family (note that
.2=�/As.0; u2/ 2 .0; 1/).

(2) The backward Liouville flow ��t
�r

for t � 0 is complete on V for all r 2 .0; 1/.

(3) For any A 2 .0; �=2/, the backward Liouville flow ��t
�.2=�/A

applied to the torus
fibre …�1s .u1; u2/ rescales both the quantitiesZ

e0

�std D � �u1 and
Z

e1

�std�AD As.u1; u2/�A

by multiplication with e�t , where the function As is as given in Lemma 2.7.
(Here we have used the flow to identify the basis in homology.)

Proof (1) This follows from an explicit computation of the symplectic action of
e1 2H1.L/. The crucial identities areZ

e1

1
4
d c log ks`1k

2
E D

Z
e1

�std D As.u1; u2/;Z
e1

1
8
d c log ksC k2E D As.u1; u2/�

1
2
�:

(2) The Liouville vector field is equal to the gradient

r
�
�
1
4
.1� r/ log ks`1k

2
E �

1
8
r log ksC k2E˝2

�
:

Since this function has no critical points outside of a compact subset of CP 2n.`1[C/,
and since it moreover blows up along the divisor, the completeness is now immediate.
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(3) The symplectic action of e0 coincides with the symplectic area of a suitable disc
living inside V ; its rescaling properties are thus immediate from the basic property
that the Liouville flow rescales the symplectic form by et .

For the rescaling properties of the symplectic action of e1 , one can, for example, use
the fact that the fibre …�1s .0; u/ with As.0; u/ D A is exact for the Liouville form
�.3=2/A . Hence, the corresponding symplectic actions for this torus, as well as its
images under the Liouville flow, vanish.

For an arbitrary torus L it is now a simple matter of finding a two-dimensional chain with
boundary on L[…�1s .0; u/, where the boundary on L moreover lives in the class e1
(and whose symplectic area hence coincides with the symplectic action of e1 on L).

In the proof of Proposition 7.2 we will need to use the fact that the backward Liouville
flow corresponding to �r contracts V into any neighbourhood of the subset

fkzz1k
2
�kzz2k

2
D 0g\V:

This is a consequence of the following.

Lemma 6.3 The Liouville vector field corresponding to �r for any r 2 Œ0; 1� evaluates
positively (resp. negatively) on the exterior derivative

d.kzz1k
2
�kzz2k

2/D d

�
kz1k

2�kz2k
2

1Ckz1k2Ckz2k2

�
inside the subset fkzz1k2�kzz2k2>0g (resp. fkzz1k2�kzz2k2<0g) of CP 2n.`1[C/.
It follows that the same is true also for the Liouville flows corresponding to �r with
r D .r � �; �; �; 1� r � �/ 2R4>0 .

Proof We prove the fact for the parameters r D 0 and r D 1; since the Liouville forms
for the remaining parameters are convex interpolations of �0 and �1 , the statement
then follows in general.

For the Liouville form �0 the statement follows by Remark 6.1(1).

For the Liouville form �1 we argue as follows. By the proof of Lemma 6.2 the
corresponding Liouville vector field is given as the gradient

�r
1
8

log ksC k2E˝2

for the Fubini–Study metric. It thus suffices to show that the gradient

V WD r
kz1k

2�kz2k
2

1Ckz1k2Ckz2k2
D 2.z1@z1 Cxz1@xz1 � z2@z2 �xz2@xz2/
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evaluates positively (resp. negatively) on

d.�ksC k
2
E˝2

/D�d
kz1z2� 1k

2

.1Ckz1k2Ckz2k2/2

in the subset fkzz1k2�kzz2k2 > 0g (resp. fkzz1k2�kzz2k2 < 0g), since

d.�ksC k
2
E˝2

/.V /D
4kz1z2� 1k

2.kz1k
2�kz2k

2/

.1Ckz1k2Ckz2k2/3

D
4kz1z2� 1k

2

1Ckz1k2Ckz2k2
.kzz1k

2
�kzz2k

2/:

6.2 Inflation via the Liouville flow

Recall that a Lagrangian isotopy is generated by a Hamiltonian if and only if the
corresponding symplectic flux-path vanishes identically. Since we are considering
the case of an exact symplectic manifold .X; ! D d�/, the latter condition can be
formulated as having a Lagrangian isotopy under which the pullback of � to L is a
path of closed one-forms on L that are constant in cohomology. In cases when we
can find suitable symplectic divisors in the complement of the Lagrangian isotopy,
the technique of “inflation” along the divisors can in favourable situations be used to
deform a Lagrangian isotopy into one with vanishing flux-path.

Remark 6.4 In the proof of the nearby Lagrangian conjecture for the torus [12,
Theorem 7.1] the Lagrangian isotopy was turned into a Hamiltonian isotopy by applying
the fibrewise addition of suitable Lagrangian sections in T �T2 (ie deformation by
nonexact symplectomorphisms). That procedure can be reinterpreted as an inflation as
well; first one compactifies DT �T2 to S2�S2 , and then one inflates along appropriate
lines inside the compactifying divisor.

In our case the inflation will be performed along the divisors D0 D `1 , D1 D `1 ,
D2 D `2 , and D3 D C living inside CP 2 , with different parameters r0; r1; r2; r3 � 0,
one parameter for each of the divisors. In practice we found it most efficient to perform
the inflation by constructing a family of Liouville forms on CP 2 n .D0 [ � � � [D3/

parametrised by r D .r0; r1; r2; r3/ 2R4 . Again we emphasise that it also would be
possible to use a more hands-on approach as in eg [12, Section 6].

We start by investigating where these different Liouville flows can be integrated:
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Lemma 6.5 Assume that ri � 0 holds for all i D 0; 1; 2; 3. Then the backward
Liouville flow of �r exists for all times when restricted to CP 2 n

S
fi Wri¤0g

Di .

The Liouville vector field that corresponds to �r equals the negative gradient �rfr=4

(taken with respect to the Fubini–Study metric) of the function

fr WD r0 log ks`1k
2
E C r1 log ks`1k

2
E C r2 log ks`2k

2
E˝3
C
1
2
r3 log ksC k2E˝3 :

Hence Lemma 6.5 is a direct consequence of the following behaviour of fr that we
proceed to establish.

Lemma 6.6 Whenever all ri � 0 are nonnegative, fr � Cr is bounded uniformly
from above by a constant depending continuously on r . If, moreover, ri > 0 holds
for some i 2 f0; 1; 2; 3g, then for any c < 0, there exists a neighbourhood Ui � Di
inside B4 on which fr jUin.`1[C[Cnodal/ � c .

Proof The uniform bound is straightforward to show for any of the four terms in
the above expression of fr , using the property that all sections s`1 , s`i , and sC are
holomorphic.

Concerning the behaviour near the divisor Di in the case when ri > 0, the claim is a
standard consequence of the fact that the holomorphic section corresponding to the i th

term vanishes along that divisor, together with the above uniform bound.

We will now see that the effect of the backward Liouville flow ��t
�r

corresponding
to �r on a Lagrangian L�CP 2n.C [`1[Cnodal/ in the complement of this singular
divisor corresponds to the Lagrangian isotopy induced by performing an appropriate
“inflation” along the same divisors. In other words, we need to investigate which effect
the Liouville flow has on the symplectic action of the Lagrangian.

It is clear that the change of symplectic action under the flow only depends on the
homotopy class of the Lagrangian. Here we consider two cases, characterised in
terms of the existence of a basis satisfying certain properties. For a Lagrangian torus
L�CP 2 n .`1[C [Cnodal/, any basis

H1.L/D hf1;f2i

is induced by a basis

Fi 2H2.B
4; L/ with Œ@Fi �D fi for i D 1; 2

of the corresponding relative homology group. In the following we are interested in
two types of bases that are characterised as follows:
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� A basis of Clifford type Fi � C D 1 for i D 1; 2, while Fi � j̀ D ı
j
i .

� A basis of Chekanov type F0 � `i D .�1/
i for i D 1; 2, while F0 � C D 0,

and F1 � C D 1, while F1 � `i D 0 for i D 1; 2.

The fibres of …s of Clifford and Chekanov types also admit bases of the respective
types; in the case of the Clifford torus both basis elements have Maslov index two,
while in the Chekanov case F0 and F1 have Maslov index zero and two, respectively.

Remark 6.7 (1) The property of admitting a basis as above only depends on the
homotopy class of the torus inside CP 2 n .`1 [C [Cnodal/. Furthermore, the two
cases are mutually exclusive for a given torus.

(2) The basis of Chekanov type coincides with the basis considered in Lemmas
2.3 and 2.4 for the same tori, ie fi D ei .

The Liouville flow has the following effect on the symplectic action of a Lagrangian
torus in the two aforementioned cases:

Proposition 6.8 Take some

r 2 f.r0; : : : ; r3/ W ri � 0; r0C � � �C r3 D 1g

and consider the symplectic action

Ai .t/ WD

Z
fi

�std for i D 1; 2

of the image Lt of a Lagrangian torus L � CP 2 n .`1 [ C [ Cnodal/ under the
time-.�t / Liouville flow of �r , where Lt moreover is assumed to be contained inside
the same subset for t 2 Œ0; t0�. Then:

� If hf1;f2i is a basis of Clifford type, then

A1.t/D �
�
r1C

1
2
r3
�
C e�t

�
A1.0/��

�
r1C

1
2
r3
��
;

A2.t/D �
�
r2C

1
2
r3
�
C e�t

�
A2.0/��

�
r2C

1
2
r3
��
;

for all t 2 Œ0; t0�.

� If hf1;f2i is a basis of Chekanov type, then

A1.t/D �.r1� r2/C e
�t .A1.0/��.r1� r2//;

A2.t/D
1
2
�r3C e

�t
�
A2.0/�

1
2
�r3

�
;

for all t 2 Œ0; t0�.

Here we have used the Lagrangian isotopy to make the identification H1.Lt /ŠH1.L/.
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Remark 6.9 In view of Lemma 6.6, assuming that r0; : : : ; r3 > 0 is sufficient to
guarantee that Lt �CP 2 n .`1[C [Cnodal/ for the entire backward Liouville flow.

Proof The statement is a consequence of the following more general properties.
Consider a surface † � CP 2 which intersects Di transversely with algebraic inter-
section number equal to ni 2 Z, while having boundary contained in the complement
of D0 [ � � � [D3 . We assume that all intersections † t Di are transverse. The
Liouville flow ��tr with ri > 0 acts on † n .D0 [ � � � [D3/ by an isotopy, and this
punctured surface can be suitably completed near D0[ � � �[D3 to extend this isotopy
to a smooth isotopy †t � CP 2 of surfaces, where †0 D †, and †t � Di D ni for
all t � 0. The general claim that shows the statement is thatZ

†t

!FS D e
�t

Z
†

!FSC .1� e
�t /
�
n0r0Cn1r1Cn2r2C

1
2
n3r3

�
whenever ri > 0. This holds, since the area of any such surface can be computed to beZ

†t

!FS D

Z
@†t

�r Cn0r0Cn1r1Cn2r2C
1
2
n3r3;

while .��tr /� �r D e
�t�r is satisfied. (The contributions for each transverse intersec-

tion with a divisor, ie the latter terms, are preferably computed for a model problem
consisting of a small complex disc contained in a fibre normal to the divisor.)

Corollary 6.10 For t 2 Œ0; 1�k smoothly parametrising a family

zLt WD…
�1
s.t/.u1.t/; u2.t//�CP 2 n .`1[C [Cnodal/ with u2.t/¤ 1

of Lagrangian standard torus fibres, there exists smooth functions

r.t/ 2 f.r0.t/; : : : ; r3.t// W ri .t/ > 0; r0.t/C � � �C r3.t/D 1g

and ˛.t/ 2R�0 for which the path

Lt WD �
�˛.t/

r.t/

�
…�1s.0/.u1.0/; u2.0//

�
�CP 2 n .`1[C [Cnodal/

of Lagrangian tori realises the same symplectic flux-path as zLt . We may moreover
assume that ˛.t/D 0 holds whenever .u1.t/; u2.t//D .u1.0/; u2.0//.

Proof We prove the statement in the case of tori of Chekanov type, ie in the case
u2.t/ 2 .0; 1/. The case of tori of Clifford type is similar. Without loss of generality
we can consider the case when s.t/� �=2� � for � > 0 sufficiently small. Indeed,
we may realise the path zLt of tori by tori in the same homotopy class, and of the same
action, while the path s.t/ is constant.
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Denote by .A1.t/; A2.t// the symplectic actions of the tori zLt with respect to the
basis of Chekanov type, and write

.a1.t/; a2.t// WD .A1.t/; A2.t//� .A1.0/; A2.0//:

For a small number ı > 0 we choose a smooth bump function ˇW R�0! Œ�ı�1; ı�

which satisfies ˇ.t/ D t near t D 0, while ˇ.t/ D �ı�1 for all t � ı . Then we
construct the smooth and nonnegative function

˛.t/ WD � log
�

eˇk.a1.t/;a2.t//k
2

1C eˇk.a1.t/;a2.t//k
2

�
:

In view of Proposition 6.8 it then suffices to take a suitable path r.t/ that satisfies�
�.r1.t/� r2.t//;

1
2
�r3.t/

�
D
�
A1.0/C .1C e

ˇk.a1.t/;a2.t//k
2

/a1.t/; A2.0/C .1C e
ˇk.a1.t/;a2.t//k

2

/a2.t/
�
:

That this is possible when ı > 0 in the construction of the above bump function is
chosen to be sufficiently small can be readily seen using Lemma 2.7. Namely, by this
lemma the values of .A1.t/; A2.t// and hence also

.A1.0/; A2.0//C .1C e
ˇ.k.a1.t/;a2.t//k

2//.a1.t/; a2.t//

are restricted to the interior of the polytope in Figure 5; also see Remark 6.7(2).

6.3 Flux-paths that determine the Hamiltonian isotopy class

A Lagrangian isotopy with a nonzero symplectic flux-path cannot be generated by a
Hamiltonian isotopy. Furthermore, it is known that two Lagrangian isotopies starting
at the same Lagrangian torus (ie the Clifford torus) and realising the same symplectic
flux-paths still need not end at Hamiltonian isotopic tori (we may, for example, end at
either the Clifford or the Chekanov torus). In contrast to this, we here show that when
the symplectic flux-path can be generated by a complete negative Liouville flow, then
the Hamiltonian isotopy class is indeed determined by the flux-path.

Lemma 6.11 Consider a symplectic manifold .X2n; ! D d�/, with a complete
negative Liouville flow ��t induced by �, and a smooth Lagrangian submanifold
L � X. For any Lagrangian isotopy Lt with L0 D L that satisfies the property that
the symplectic actions of ��t .L/ and Lt agree for all t 2 Œ0; T �, it is the case that
��T .L/ and LT are Hamiltonian isotopic inside X2n .
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Proof By Weinstein’s Lagrangian neighbourhood theorem one readily proves the
following: the set of numbers S 2 Œ0; T � satisfying the property that ��t .L/ and Lt
are Hamiltonian isotopic for all t 2 Œ0; S� forms an interval which is open inside Œ0; T �
and contains zero. It suffices to show that this interval also is closed, since it then is
equal to Œ0; T �.

Thus, we take S0 > 0 such that the property is true for all S < S0 . By the same reason
why the previously established openness property holds, there exists some � > 0 such
that LS0�t is Hamiltonian isotopic to �t .LS0/ whenever 0� t � � .

By our assumptions, ��.S0��/.L/ is Hamiltonian isotopic to LS0�� , and by the
previous paragraph, the Lagrangian LS0�� is Hamiltonian isotopic to ��.LS0/. Since
Hamiltonian isotopies are preserved by the conformal symplectomorphism ��� , it
finally follows that, as sought, ��S0.L/D���ı��.S0��/.L/ is Hamiltonian isotopic to
���ı��.LS0/DLS0 . (The assumption of completeness is needed to guarantee that ���

is well defined on the whole Hamiltonian isotopy from ��.S0��/.L/ to ��.LS0/.)

7 The Hamiltonian isotopy to a standard torus

In this section we prove Theorem A in the embedded case. In other words, given a
Lagrangian torus L� .V; !FS/ satisfying the assumptions made in that theorem, we
produce a Hamiltonian isotopy to a standard torus. The first step of the proof consists
of applying Theorem 5.12. From now on we hence assume that L has been placed
in either Clifford or Chekanov position by the Hamiltonian isotopy produced by the
aforementioned result and thus, in particular, that we have L�CP 2n.`1[C[Cnodal/.
The proof of Theorem A for L in Clifford position is given in Section 7.1, and in
Section 7.2 when L is in Chekanov position.

7.1 Classification up to Hamiltonian isotopy for tori in Clifford position

The argument presented in Sections 7.2 and 7.3, which concerns the case of a torus
in Chekanov position, applies also to the present case of tori in Clifford position after
minor modifications. However, we here choose a different path with a somewhat
simpler argument. This argument also turns out to be useful later when we classify the
immersed Lagrangian spheres.

After the application of Theorem 5.12 the torus can be assumed to be contained inside
V n f �1Œ0; 1�. Since f �1Œ0; 1� deformation retracts onto f �1.0/, it follows from
Corollary 5.14 that the torus is homologically essential in the same subset. The existence
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of the Hamiltonian isotopy is now a direct consequence of Theorem B combined with
the following lemma:

Lemma 7.1 There exists a symplectomorphism

ˆW .V nf �1Œ0; 1�; !FS/
Š
�!T2

�U � .T �T2; d�T2/

where

U WD
˚
.p1; p2/ W jp1j< �; maxf0; p1g< p2 < 1

2
.p1C�/

	
�R2

is the bounded convex subset shown in Figure 9. This symplectomorphism can moreover
be taken to satisfy:

(1) For any fixed .u; v/ 2 .�1; 1/� .1;C1�, each torus fibre …�1s .u; v/ is mapped
to the standard torus ˆ.…�1s .u; v// D T2 � fp.u;v/g whenever s > 0 is suffi-
ciently small.

(2) The punctured Lagrangian disc

f.z;�xz/ 2C2
g\f �1.�1; 0/� V nf �1Œ0; 1�

(ie the standard Lefschetz thimble with a point removed) is mapped into the
Lagrangian annulus

.S1 � f0g/� .f0g �R/� T �T2:

p2

�

�=2

U

p1
�� �

Figure 9: The image U �R2 of the values .p1; p2/ of the symplectic action
class evaluated on the pair .e0; ze1/ of basis vectors of H1.…�1s .u1; u2//
with u2 > 1 .

Proof The symplectomorphism is constructed by considering the Lagrangian torus
fibration …0 on V n f �1Œ0; 1� from Section 1.3 obtained as the “limit” of the fibra-
tions …s as s!0. Using the classical Arnold–Liouville theorem [34, Theorem 2.3] we
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can find locally defined fibre-preserving symplectomorphisms from this torus fibration
into the standard fibration T2 � fpg. Since the space of fibres is simply connected
(even contractible), the maps can be patched together to give a well-defined global
symplectomorphism. This symplectic map is an embedding, as follows from the action
considerations in Lemma 2.7 (the Lagrangian tori in the fibration are determined
uniquely by their symplectic actions).

To see that the image is T2 �U � T �T2 as claimed, we choose action–angle coor-
dinates .p1; p2/ that correspond to the following global continuous choice of basis
of H1.L/ for the tori of Clifford type in the fibration. First make the global choice of
basis vector e0 as specified in Lemma 2.5. Then choose the second basis vector ze1
by following the recipe in the case u1 < 0 in Lemma 2.5(2)(c). The shape of the
image is now a consequence of the action computations made in Lemma 2.7; also see
Figures 5 and 9. (Observe that, while the obtained basis he0; ze1i of course satisfies
ze1 D e1 in the region u1 < 0, it satisfies ze1 D e1C e0 in the region u1 � 0.)

(1) This property is follows from the construction of the fibration …0 in Section 1.3.

(2) The Lagrangian punctured disc inside V under consideration can alternatively be
described as

…�1s .f0g � .1;C1//\f �1.�1; 0/

for any s � 0. The action properties of the tori in the family …�1s .f0g � .1;C1//

imply that, after an appropriate choice of coordinates on T �T2 , the image of the
punctured disc lives inside the subset

.S1 �S1/� .f0g �R/� T �T2;

while it intersects the Lagrangian tori S1 �S1 � f.0; t/g cleanly in embedded closed
curves. Hence, using the Lagrangian condition for the punctured disc, its image can be
seen to be of the form .S1 � f�0g/� .f0g �R/ for some fixed �0 2 S1 .

7.2 Classification up to Lagrangian isotopy for tori in Chekanov position

In the case of a torus in Chekanov position we must start by constructing a mere
Lagrangian isotopy inside the subset CP 2 n .`1 [C [Cnodal/ that deforms it to a
standard torus.

Proposition 7.2 Any Lagrangian torus L � .CP 2 n .`1 [ C [ Cnodal/; !FS/ in
Chekanov position is Lagrangian isotopic inside the same subset to a standard torus.
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Proof Consider a sufficiently small neighbourhood

U � V DCP 2 nC

of the subset fkzz1k2 � kzz2k2 D 0g \ V . Using standard techniques, such as the
symplectic neighbourhood theorem, one readily constructs a symplectic embedding
 W .U; !FS/ ,! .W; d�/ into the neighbourhood of the self-plumbing of the sphere as
constructed in Section 3. Recall that there exists a symplectic involution I of .W; d�/
which interchanges tori of Chekanov and Clifford types; see Proposition 1.5. We may
furthermore require that

� the nodal conic Cnodal is identified with the symplectic nodal surface

fp1 D˙q2; p2 D�q1g;

which is fixed setwise by I (while its two sheets are interchanged), and

� the image  .U /�W is invariant under the symplectic involution I.

Using Lemma 6.3 we can see that the backward Liouville flow of �.1=2��;�;�;1=2��/ for
some small �2 .0; 1/ is a Lagrangian isotopy of L confined to CP 2n.`1[C[Cnodal/

that produces a Lagrangian isotopy from L to a torus

��T�.1=2��;�;�;1=2��/.L/� U nCnodal:

An application of Theorem 5.12 to the torus

L0 WD  �1 ı I ı ı��T .L/� V nCnodal

can readily be seen to make it compatible with a conic fibration while being in
Clifford position; see Proposition 1.5 together with the homotopical consideration
in Remark 6.7(1). In Section 7.1 we constructed a Hamiltonian isotopy from L0 to
a standard torus of Clifford type. There is a Lagrangian isotopy that is contained
inside V nCnodal from that torus to a standard torus of Clifford type that moreover is
contained inside U nCnodal . Denote by L0t this entire Lagrangian isotopy.

The sought Lagrangian isotopy is then obtained by an application of the Liouville
flow of �.1=2��;�;�;1=2��/ to the Lagrangian isotopy L0t , with the purpose of making
it confined to the subset U n Cnodal , followed by an application of the involution
 �1 ı I ı , which is defined in the same subset. Indeed, note that this involution
interchanges standard tori of Clifford and Chekanov types (at least up to Hamiltonian
isotopy) by Proposition 1.5.
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7.3 From Lagrangian to Hamiltonian isotopy for tori in Chekanov
position

Proposition 7.2 gives a Lagrangian isotopy Lt � .CP 2 n .`1[C [Cnodal/; !FS/ from
L0 D L in Chekanov position to a standard torus. In order to correct the symplectic
flux, it is sufficient to find a standard torus of Chekanov type of the same action as L,
as the following lemma shows.

Lemma 7.3 Let Lt � .CP 2 n .`1 [C [Cnodal/; !FS/ be a Lagrangian isotopy of
tori in Chekanov position from L0DL to L1D…�1s .u1; u2/, where s 2 .0; �=2/ and
.u1; u2/ 2 .�1; 1/� .0; 1/. Assume that there exists a Lagrangian isotopy

Lstd
t WD…

�1
s.t/.u1.t/; u2.t//�CP 2 n .`1[C [Cnodal/ with u2.t/ 2 .0; 1/

of standard tori satisfying s.1/D s and .u1.1/; u2.1//D .u1; u2/ such that the sym-
plectic actions of Lstd

t and Lt coincide for all t (when using the identifications induced
by the isotopies). Then L is Hamiltonian isotopic inside CP 2 n .`1[C [Cnodal/ to
the standard torus …�1

s.0/
.u1.0/; u2.0//.

Proof By our assumptions, after concatenating the Lagrangian isotopy Lt with the
Lagrangian isotopy Lstd

1�t , we may produce a Lagrangian isotopy Lt of the same type
but that satisfies L0 D L and L1 D…�1s.0/.u1.0/; u2.0//. In particular, the symplectic
actions of L0 D L and the standard torus L1 now coincide.

In the remainder of this proof we construct a deformation Lt of the path relative
endpoints t D 0; 1 to a Lagrangian isotopy with vanishing symplectic flux-path by
applying suitable negative Liouville flows; the main ingredient is Corollary 6.10.

Let Lstd
t WD…

�1
s.t/
.u1.t/; u2.t// be the path of standard tori being of the same action as

(the new version of) the tori Lt . Note that, since (the new version of) the Lagrangian
isotopy Lt starts and ends at a Lagrangian of the same symplectic action, Lstd

t is
actually a loop of standard tori, ie Lstd

0 D Lstd
1 . Since u2.t/ 2 .0; 1/, this loop is

moreover contractible; ie there exists a homotopy Lstd
t;� WD…

�1
s.t;�/

.u1.t; �/; u2.t; �//

of loops of standard tori satisfying

…�1s.t;0/.u1.t; 0/; u2.t; 0//D…
�1
s.t/.u1.t/; u2.t//;

…�1s.t;1/.u1.t; 1/; u2.t; 1//�…
�1
s.0/.u1.0/; u2.0//;

…�1s.i;�/.u1.i; �/; u2.i; �//�…
�1
s.0/.u1.0/; u2.0// for i D 0; 1;
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where u2.t; �/2 .0; 1/ moreover is satisfied. Using Corollary 6.10 we then find smooth
paths

r.t; �/ 2 fR4 W ri > 0; r0C � � �C r3 D 1g;

˛.t; �/� 0 with ˛.0; �/� ˛.1; �/� 0;

for which ��˛.t;�/r.t;�/

�
…�1
s.t/
.u1.t/; u2.t//

�
, and hence ��˛.t;�/r.t;�/ .Lt /, realises the same

symplectic flux-path as Lstd
t;� . In particular, ��˛.t;1/r.t;1/ .Lt / is the sought Hamiltonian

isotopy from the torus ��˛.0;1/r.0;1/ .L0/D L0 D L to the standard torus

�
�˛.1;1/
r.1;1/

�
…�1s.0/.u1.0/; u2.0//

�
D…�1s.0/.u1.0/; u2.0//:

The nondisplaceability result in Proposition 5.15 can now be used to show that the
assumptions of the previous lemma indeed are satisfied.

Lemma 7.4 Let Lt � .CP 2 n .`1 [C [Cnodal/; !FS/ be a Lagrangian isotopy of
tori in Chekanov position from Lt DL to L1D…�1s .u1; u2/, where s 2 .0; �=2/ and
.u1; u2/ 2 .�1; 1/� .0; 1/. Then the assumptions of Lemma 7.3 can be assumed to
hold. In particular L is Hamiltonian isotopic to a standard torus.

Proof It suffices to show that there exists a standard torus of Chekanov type that
is of the same symplectic action as Lt for all t 2 Œ0; 1�. This is the case for the
image of Lt under the negative Liouville flow ��T

1=2��;�;�;1=2��
for some small � > 0

and sufficiently large T � 0, as can be seen by referring to the symplectic action
computations in Proposition 6.8.

Since ��T1=2��;�;�;1=2��.…
�1
s .u1; u2// is Hamiltonian isotopic to a standard torus by

Lemma 6.11, we can in fact conclude the following by appealing to Lemma 7.3: the
image ��T1=2��;�;�;1=2��.L/ of our torus is Hamiltonian isotopic to a standard torus
…�1s0 .u

0
1; u
0
2/ of Chekanov type.

From this we will now deduce that there exists a standard torus of the same symplectic
action as Lt . Consider the symplectic embedding

�s0 W .V; !FS/ ,! . yW ; d�/

into its Liouville completion as provided by Proposition 3.8, which takes torus fibres
to torus fibres. Since �s0 ı��T1=2��;�;�;1=2��.L/ is Hamiltonian isotopic to a standard
torus fibre y� W yW !R2 , we can use Lemma 6.11 to conclude that

zL WD �T� ı �s0 ı�
�T
1=2��;�;�;1=2��.L/

is Hamiltonian isotopic to a fibre y��1.a; b/ also. Since �t� ı �s0 ı�
�t
1=2��;�;�;1=2��.L/
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is a Hamiltonian isotopy from �s0.L/ to zL, we conclude that the latter fibre y��1.a; b/
must be contained in the image of �s0 , as sought. If not, then we have produced a
Hamiltonian displacement of �s0.L/, which is in contradiction with Proposition 5.15.

8 The Hamiltonian isotopy to a standard immersed sphere

In this section we let zL� .B4; !0/ be an immersed Lagrangian sphere that satisfies
one of the conditions in the assumption of Theorem A. The goal is to prove the theorem
by finding a Hamiltonian isotopy to a standard sphere. We begin with a preliminary
lemma which holds for arbitrary such spheres.

Lemma 8.1 For any immersed Lagrangian sphere zL� .B4; !0D d�std/ with a single
transverse double point, a primitive f W zL!R of �stdjT zL satisfies the property that
the difference of its values at the two preimages fp; qg of the double point is bounded
by jf .p/�f .q/j � �=2.

Proof This is a consequence of [9, Corollary 1.3], by which the minimal positive
symplectic action of a Lagrangian torus satisfies the same upper bound �=2. Indeed,
performing a “zero-area” Lagrangian surgery on zL (this can always be done in an
arbitrarily small neighbourhood of the double point) we obtain a monotone Lagrangian
torus that is contained inside B4 and whose minimal value of the modulus of the
nonzero symplectic action is equal to precisely jf .p/� f .q/j. (For such a surgery,
the symplectic area of a disc with a corner is the same as the corresponding area of the
disc with boundary on the resolved Lagrangian.)

In view of the above lemma, combined with Proposition 1.4(1), when taking s D
jf .p/�f .q/j, we conclude that zL and LWh.s/ both are strongly exact for the Liouville
form �3s=� on .V; !FS/; see Lemma 6.2.

Consider the two nonmonotone tori T 0
˙
WD…�1s .˙�; 1/ fibred over the closed curve

f .T 0
˙
/D‰�1s .1C ei� /�C in the standard conic Lefschetz fibration. The subset of

the fibres bounded by these two Lagrangian tori is a one-parameter family

A0.�/ WD f �1.‰�1s .1C ei� //\fjkzz1k
2
�kzz2k

2
j � �g for � 2 S1

of holomorphic annuli, whose boundaries thus provide foliations of the two tori. All
annuli are embedded and smooth except for the “nodal” annulus A0.�/, which consists
of two embedded discs intersecting transversely in a single point. In addition, the
annuli fA0.�/gf�¤�g intersect the smooth part (ie the complement of the double point)
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of the Whitney immersion LWh.s/ in a foliation by closed curves, while the double
point of LWh.s/ intersects A0.�/ precisely in its node.

A basis he˙0 ; e
˙
1 i D H1.T

0
˙
/ with the properties in Lemma 5.8 can be fixed in the

following manner. We let e˙0 be the boundary inside T 0
˙

of either holomorphic disc in
the nodal annulus A0.�/; their orientations are moreover chosen so that the symplectic
action of e˙0 satisfies ˙

R
e˙0
�std > 0 on H1.T 0˙/. We then let e˙1 be the unique class

of Maslov index two inside C2 for which
R

e˙1
�std D s .

Consider a Weinstein neighbourhood of zL identified with a neighbourhood of the stan-
dard sphere LWh.s/D…

�1
s .0; 1/ by a symplectomorphism ˆ satisfying ˆ.LWh/D zL

(here we have used Proposition 3.2). The map ˆ is constructed so that it induces the
identity map in homology; to that end recall that Hi .V /Š Z for i D 0; 1, and that V
deformation retracts onto the Whitney sphere by Propositions 3.5 and 3.8.

Since zL satisfies the assumption of Theorem A, the same holds also for the induced
Lagrangian tori T˙ WD ˆ.T 0˙/, which can be assumed to be arbitrarily close to zL.
Moreover, using this symplectomorphism we can produce a family A.�/ WDˆ.A0.�//
of symplectic annuli containing our immersed Lagrangian sphere zL�

S
� A.�/. Using

the same identification ˆ, we also obtain an induced basis he˙0 ; e
˙
1 i DH1.T˙/ from

the choice of basis for H1.T 0˙/ made above. We formulate its properties in a lemma.

Lemma 8.2 The ordered basis

he˙0 ; e
˙
1 i DH1.T˙/

satisfies the properties of Lemma 5.8. Furthermore, the induced orientation on ŒT˙� 2
H2.V / is equivalent to the orientation of a standard torus Œ…�1s .u1; u2/� 2 H2.V /

that is induced by the action–angle coordinates and the standard orientation of the
base f.u1; u2/g � R2 (more precisely, orienting the base gives an orientation of the
cotangent bundle of the torus, which is canonically isomorphic to the tangent bundle
by the Lagrangian condition).

Lemma 8.3 For a generic neck-stretching sequence around either of the tori T˙ , the
broken conic fibres produced by Proposition 5.16 satisfy the property that the unique
plane in the building which passes through q1 (resp. q2 ) is asymptotic to a closed
geodesic in the class e˙0 (resp. �e˙0 ).

Proof Because the assumptions of Theorem A are satisfied for the tori T˙ , they
are Hamiltonian isotopic to standard tori …�1s .u˙1 ; u

˙
2 /. By Lemma 8.2, we must
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have
R

e˙0
.�std/D � �u

˙
1 (the sign of the right-hand side is the nontrivial part of this

equivalence, for which we must use the statement concerning the orientation induced
by the basis). The claim now follows from the topological fact that the area of
a plane that has intersection number C1 with `1 is of symplectic area equal to
� �

R
g �std D � ��u

˙
1 , where g 2H1.T˙/ is the class of the geodesic to which the

plane is asymptotic (note the sign!).

We proceed to perform a neck-stretching simultaneously around the two disjoint La-
grangian tori TC [ T� . It can be explicitly seen that it is possible to choose the
neck-stretching sequence J� so that the above family A.�/ of symplectic annuli stay
pseudoholomorphic for all � � 0. To that end, it is important to use the fact that they all
are nicely embedded near their boundaries, and that they intersect the tori T˙ cleanly
in a foliation by embedded closed curves. Moreover, we can achieve the following for
the limit almost complex structure J1 defined on CP 2 n .TC[T�/:

Lemma 8.4 The almost complex structure J1 on CP 2 n .TC[T�/ may be taken to
satisfy:

(1) C.�/ WDA.�/n .TC[T�/ for � ¤ � are embedded J1–holomorphic cylinders
(ie two-punctured spheres) inside CP 2 n .T� [ TC/, one of the punctures of
which is asymptotic to a closed geodesic in the class �eC0 on TC , while the
other puncture is asymptotic to a closed geodesic in the class e�0 on T� .

(2) The curve C.�/ is a nodal J1–holomorphic cylinder consisting of two trans-
versely intersecting pseudoholomorphic planes P˙ , where the plane P˙ is
asymptotic to a closed geodesic on T˙ in the class �e˙0 .

(3) Away from the node PC \P� , the punctured spheres C.�/ provide a smooth
foliation of an embedded three-manifold

S
� C.�/n fPC\P�g, and the asymp-

totic evaluation maps fC.�/g! �˙e0 Š S
1 from the cylinders to its asymptotic

orbit on either torus T˙ are diffeomorphisms.

(4) The Fredholm index of each cylinder C.�/ with � ¤ � is index.C.�// D 0,
while each of the two punctured planes involved in the nodal cylinder C.�/ is
of index �1.

Proof (1)–(3) These properties can be explicitly checked by hand.

(4) This follows easily from the formulation of the Fredholm index in terms of the
Maslov index; see [12, Section 3.1].
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The planes involved in C.�/ are of negative Fredholm index, and are hence clearly not
transversely cut out. Neither of the cylinders C.�/ has the correct dimension, since the
cylinders come in a one-dimensional family while their index is equal to zero. In other
words, an almost complex structure J1 as above is never regular. For that reason,
additional care must be taken in order to control the structure of the broken conics.
First we need to exclude the existence of other pseudoholomorphic planes of negative
index. By the following lemma, this is possible by perturbing J1 away from zL.

Lemma 8.5 There exists an arbitrarily small closed neighbourhood ˆ.U /�CP 2 ofS
� A.�/�T˙ , where U �CP 2 is a sufficiently small neighbourhood of

S
� A

0.�/�

T 0
˙

, and an almost complex structure JU on ˆ.U / n .TC[T�/ for which

(1) JU can be extended to an almost complex structure J1 on CP 2 n .TC[T�/

satisfying the properties of Lemma 8.4;

(2) JU has the property that, given an arbitrary such extension, any J1–holomorphic
plane inside CP 2 n .TC [ T�/ which is not equal to a branched cover of P˙
must leave the neighbourhood ˆ.U /.

In particular, after choosing an extension J1 to be generic outside of ˆ.U /, we may
assume that the planes of negative index are precisely the planes P˙ together with their
branched covers.

Proof There is a bijection between pseudoholomorphic planes P �ˆ.U /n.TC[T�/
contained inside the neighbourhood of interest, and pseudoholomorphic planes

ˆ�1.P /� U n .T 0C[T
0
�/�CP 2 n .T 0C[T

0
�/;

given that the almost complex structures are chosen so that the symplectomorphism ˆ

is a biholomorphism. The complex structure satisfying the sought properties will be
constructed on the “standard model” U n.T 0

C
[T 0�/, which then will be pushed forward

to ˆ.U / under the locally defined symplectomorphism ˆ. In other words, we need
to find a suitable neighbourhood U of

S
� A

0.�/, together with a suitable almost
complex structure J1 on CP 2 n .T 0� [T

0
C
/, for which the branched covers of the two

planes
P 0˙ � C

0.�/�CP 2 n .T 0C[T
0
�/

asymptotic to T 0
˙

comprise all the J1–holomorphic planes contained inside U.

We begin by constructing an almost complex structure J1 on .CP 2 n.T 0
C
[T 0�/; !FS/

by deforming the standard complex structure i near T 0
C
[ T 0� in order to obtain a
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concave cylindrical end there. With some additional care, this construction can be
performed so that

� J1 is made to satisfy the analogous properties of Lemma 8.4 (for T 0
˙

instead
of T˙ ), and

� all i–holomorphic conic fibres f �1.z/ that pass through T 0
˙

give rise to three
J1–holomorphic punctured spheres f �1.z/ n .T 0

C
[ T 0�/. The latter three

components consist of two planes A1i .�/ for i D 1; 2 which are tangent to C
at A1i .�/\ `1 D fqig, together with a cylinder C 0.�/.

Using the second property, one obtains a broken pseudoholomorphic conic by adjoining
two cylinders in the bottom level to these three punctured spheres in the top level, as
shown in Figures 10 and 11.

We continue by arguing that the simply covered J1–holomorphic planes inside
V n .T 0

C
[T 0�/ are precisely the two planes P 0

˙
. We argue by contradiction, assuming

the existence of a J1–holomorphic plane P �U nT 0
C

asymptotic to T 0
C

; the argument
is analogous in the case of T 0� . The only asymptotic of P is a closed geodesic in the
class �keC0 on T 0

C
for some k > 0. (Recall that k < 0 is impossible by positivity of

symplectic area for pseudoholomorphic curves.)

A topological consideration shows that

P � .P 0� [A
1
2 .�//D kŒP

0
C� � .P

0
� [A

1
2 .�//D k:

For the first equality, we use that TC is disjoint from the line P 0� [A
1
2 .�/ � CP 2

and that the connecting homomorphism H2.C2; TC/
Š
�!H1.TC/ is an isomorphism.

Positivity of intersection then shows that, unless P D kP 0
C

, the plane P also must
intersect at least one of the components C 0.�/ or A12 .�/ for all � sufficiently close
to � . (This follows by positivity of intersection of P and C 0� [A

1
2 .�/.)

Now choose a � as above, with the additional requirement that all asymptotics arising
in the broken conic with top components A11 .�/[C

0.�/[A12 .�/�CP 2 nT 0� are
different from the asymptotic of P. In other words,

P [ k �A11 .�/ and A11 .�/[C
0.�/[A12 .�/D f

�1.z/

inside CP 2 nT 0� compactify to two cycles in CP 2 that intersect in a subset where they
both are J1–holomorphic. Positivity of intersection leads to the final contradiction,
since one computes the intersection number

.P [ k �A11 .�0// �f
�1.z/ > kŒ`1� � Œf

�1.z/�D 2k
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between the cycles given as the completions of the respective buildings. Recall that
the intersection at q1 2 `1 of the two buildings is a tangency that precisely gives the
contribution 2k .

Lemma 8.6 Consider a neck-stretching sequence around TC (resp. T�) for which
P˙ � CP 2 n T˙ is the unique simply covered J1–holomorphic plane of index �1.
Then the limit of lines passing through q1 2 `1 (resp. q2 2 `1 ) while being tangent
to C is a broken line containing a branched cover of PC (resp. P� ) in its limit.

Proof We prove the statement in the case of the line through q1 , and while stretching
the neck around the Lagrangian torus TC ; the proof is analogous in the other case.

If the limit is a broken line, then the statement is a direct consequence of Corollary 5.14
together with the fact that there are no contractible geodesics on the flat TC ; by the
assumptions there simply are no other pseudoholomorphic planes inside V n TC to
which the broken line can limit except the branched covers of PC . Note that, by
elementary topological reasons, it is clear that the building indeed must contain a plane.

It thus suffices to show that the line necessarily converges to a broken line. We argue
by contradiction and assume that the limit line passing through q1 , denoted by `J11 , is
unbroken.

We can perturb the almost complex structure J1 through a path J1.t/ for t 2 Œ0; ��
of almost complex structures with J1.0/D J1 in order to obtain the regular almost
complex structure J1.�/. The lines passing through q1 which are tangent to C may be
assumed to remain unbroken during this isotopy, giving rise to a smooth family `J1.t/1

of such lines.

Then we examine the limit of the conic fibration when stretching the neck around TC in
the case of the generic almost complex structure J1.�/. By Proposition 5.16 together
with Lemma 8.3, we see that the cycle PC (which need not be pseudoholomorphic
for the perturbed almost complex structure) necessarily intersects `J1.1/1 , and hence
also `

J1
1 , with negative intersection number. Indeed, the plane A1 � CP 2 n TC

in the broken conic with asymptotic Reeb orbit covering the same geodesic as the
corresponding asymptotic of PC (but necessarily with the opposite orientation of the
geodesic) can be completed to a cycle A1[PC in the class of a line; then we use the
fact that A1 � `

J1
1 D 2. (There is a similar argument in the proof of Proposition 5.16.)

Finally, since PC and `J11 both are J1–holomorphic, the negative intersection number
PC � `

J1
1 < 0 gives the sought contradiction.

Geometry & Topology, Volume 23 (2019)



The classification of Lagrangians nearby the Whitney immersion 3441

CP 2 nL

T �L

q2q1

0

zL
C.�/

A2.�/
A1.�/

5 5

2 2

e0 �e0 e0 �e0

TC T�

Figure 10: The broken conic in the generic case. The two planes Ai .�/ each
intersect `1 transversely in the point qi , where they moreover are tangent to
the smooth conic C. The two planes join to form a continuous embedding of
a sphere.

CP 2 nL

T �L

q2q1

�1 �1

zL C.�/
A2.�/

A1.�/

5 5

2 2

e0 �e0 e0 �e0

TC T�

Figure 11: The broken conic in the generic case. The two planes Ai .�/ each
intersect `1 transversely in the point qi , where they moreover are tangent to
the smooth conic C. The two planes join to form a continuous embedding of
a sphere.

Proposition 8.7 For a generic almost complex structure satisfying the conclusions of
Lemma 8.5, there exists a family of embedded broken conics parametrised by � 2S1 , all
of which are tangent to C at the two points q1; q2 2 `1 , and consisting of the following
three components in the top level CP 2 n .TC[T�/, varying smoothly with � ,

� two planes Ai .�/�CP 2 n .TC[T�/ for i D 1; 2, where A1.�/ is asymptotic
to TC and tangent to C at q1 2 `1 , and where A2.�/ is tangent to C at q2 2 `1
and asymptotic to T� , together with

� the cylinder C.�/Dˆ.C 0.�// constructed above,

while the bottom level consists of two cylinders inside T �T˙ . Moreover, all curves
Ai .�/n`1 and C.�/n`1 are mutually disjoint and foliate the three-dimensional vari-
ety that is given by their union. See Figures 10 and 11 for a schematic depiction of this.
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Proof Using Lemma 8.6 we conclude that the nodal conics converge to a broken
conic consisting of (possibly trivial) branched covers of both planes P˙ under a neck-
stretching limit. Arguing by using positivity of intersection, we conclude that these
planes occur only once in each such broken line, and that they both are simply covered.
The lines are thus seen to have components in the top level consisting of P˙ together
with planes Ai �CP 2 n .TC[T�/ passing through qi for i D 1; 2.

We then argue that the planes Ai necessarily live in compact components of its moduli
spaces consisting of planes tangent to C at qi 2 `1 . Namely, any broken building
arising as an SFT limit of such planes would involve an additional plane P˙ . Since
every such a plane intersects P� transversely, this would contradict positivity of
intersection when combined with the fact that the original planes Ai were disjoint
from PC[P� ; recall that the SFT compactness theorem implies that we can extract
a convergent sequence which converges uniformly in the C1–topology on compact
subsets. Finally we can argue as in the proof of Theorem 5.12 (ie using automatic
transversality and the asymptotic intersection number) in order to show the existence
of the required S1–families Ai .�/ of planes.

8.1 The proof of Theorem A in the case of a sphere

Proposition 8.7 produces a family of broken conics asymptotic to TC[T� that contains
the immersed sphere zL. We then use the techniques from [12, Section 5.3] in order to
smooth the broken conics near TC[T� . Recall that this smoothing is performed so
that the produced conics in the S1–family

A1.�/[C.�/[A2.�/� .CP
2; !FS/ for � 2 S1

each intersect the union TC[T� of tori in two embedded and disjoint closed curves
that are homotopically nontrivial. In addition, we may assume that the symplectic
annuli C.�/ are left undeformed by this smoothing procedure, since they already
compactify to a smooth surface with boundary on T˙ by their construction.

An application of Theorem 4.3 combined with Theorem 4.6 now produces a globally
defined smooth conic fibration fJ W CP 2 n `1! C satisfying the following crucial
properties:

� f �1J .0/ is the nodal conic,

� f �1J .1/D C is our standard smooth conic, and

� fJ D f near `1 .
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By construction, the immersed sphere zL�
S
� C.�/ satisfies the property that fJ .zL/D

� � C is a closed curve encircling fJ .C / D 1 2 C with winding number one and
passing through 0 2 C ; see Figure 12 for an example. Note that both tori T˙ also
live over the same curve � by construction. In the four steps below we then perform
additional normalisations of the fibration fJ .

Step I: Normalising the nodal conic By construction, the nodal conic f �1J .0/ can
be assumed to have a node modelled on the standard conic Cnodal ; recall that this nodal
conic coincides with the nodal annulus C.�/ which, in turn, is symplectomorphic
to the standard nodal annulus C 0.�/ � Cnodal by construction. After an application
of a suitable Hamiltonian isotopy we may also assume that `Ji � f

�1
J .0/D `J1 [ `

J
2

coincides with `i near the node for i D 1; 2.

Arguing as in the proof of Lemma 5.7, we can readily produce a Hamiltonian iso-
topy that deforms f �1J .0/ to Cnodal : First we consider a family of symplectic nodal
conics that connects f �1J .0/ to Cnodal produced by Gromov’s result, Theorem 4.1,
for an interpolation of tame almost complex structures from J to i . Then we invoke
Proposition 4.9(2) to normalise the node as well as the intersections with `1 . Finally,
we can apply Proposition 4.8.

Step II: Normalising a neighbourhood of the nodal conic It is now the case that
the double point of zL intersects Cnodal precisely in its node. After a Hamiltonian
isotopy supported in an arbitrarily small neighbourhood f �1J B22� of this node, one
readily makes sure that zL moreover coincides with LWh.s/ inside f �1B2� for any
fixed choice of s 2 .0; �=2/. Reiterating the previous construction in this setting, we
can now assume that the fibration fJ produced satisfies the additional properties

� fJ D f , and

� zLD LWh.s/

in some neighbourhood of Cnodal . The image of the immersed sphere after this modifi-
cation is shown in Figure 13.

For a suitable such modification, we may in addition assume that there exists an embed-
ded path  �C from 0 to 1, also shown in Figure 13, satisfying the properties that

(1)  \ � D f0g,

(2)  coincides with Œ0; 1� near its boundary point f0; 1g �C , and

(3)  is isotopic to Œ0; 1� through paths t coinciding with Œ0; 1� near its boundary,
where 0 D  and 1 D Œ0; 1�.
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1

� D fJ .zL/D fJ .T˙/

x

iy

Figure 12: The image of zL and T˙ under fJ coincide by construction.

For the last point, it might be necessary to first deform the sphere zL near its double
point by an explicit rotation via an application of the Reeb flow on the standard contact
sphere. We proceed to give the details.

Consider a Hamiltonian of the form h.kzzk2/ defined on

.B4 n f0g; !0/Š .CP
2
n `1; !FS/

with support in a small neighbourhood of the origin. We require h.kzzk2/D 1
4
k�kzzk2

near the origin for some suitable k 2 Z. Note that the corresponding Hamiltonian
diffeomorphisms given as the time-1 maps are of the form zz 7! ei�.kzzk

2/zz, where
�.kzzk2/� k�=2 near the origin. In particular, this Hamiltonian diffeomorphism fixes
the two coordinate lines fzzi D 0g for i D 1; 2.

Inspecting the standard fibration zf .zz; zz2/D zz1zz2=.1�kzz1k2�kzz2k2/ in these coor-
dinates, we see that the deformation of zL by such a Hamiltonian diffeomorphism still

1

�

 D 0

B22�

x

iy

Figure 13: Here we have deformed the sphere zL inside f �1.B22�/ in order
to make it standard inside f �1.B2� / .
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has an image under fJ which is a curve that passes through the origin, but which now
spins around it with a number k of additional half-turns. Here we note that the double
point of the sphere is 0 2B4 , and that its two sheets are tangent to the two Lagrangian
discs f.z;˙xz/g �C2 there.

Step III: Normalise along a path from 0 to 1 As in the proof of Theorem 5.12, the
isotopy from  to Œ0; 1� induces a Hamiltonian isotopy that disjoins zL from f �1.0; 1�.
A second reiteration of the whole argument in this subsection now allows us to infer that,
in addition to the above, it is the case that fJ D f is satisfied in some neighbourhood
of f �1.Œ��; 1�/, and that zL moreover coincides with a standard sphere in the same
neighbourhood. See Figure 14 for a schematic depiction of this situation.

1

�

1
x

iy

Figure 14: Here we have deformed the sphere zL to make it standard inside a
neighbourhood of f �1Œ0; 1� .

Step IV: Resolving the double point Finally, we perform a Lagrangian surgery in
a neighbourhood of Cnodal , replacing zL there (where it coincides with a standard
immersed sphere) with a piece of a standard torus of Clifford type; this is shown
in Figure 15. Denote by L the obtained Lagrangian torus, which is contained in
an arbitrarily small neighbourhood of zL. Note that the standard Lagrangian disc
f.z;�xz/ W kzk �

p
�g � V may be assumed to intersect L cleanly precisely along its

boundary.

The proof of Theorem A is finalised by a Hamiltonian isotopy from L to a stan-
dard torus, where this Hamiltonian isotopy is supported away from the Lagrangian
disc f.z;�xz/ W kzk �

p
�g � V . To construct this Hamiltonian isotopy we apply

parts (2) and (3) of Theorem B, after first using the symplectic identification of
.CP 2 n .`1[f �1Œ0; 1�/; !FS/ and a suitable subset R�U � T �T2 as produced by
Lemma 7.1.
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1��

fJ .L/

x

iy

Figure 15: The resolution of the double point of zL creates a Lagrangian
torus L of Clifford type. The image under fJ of the Lagrangian disc
f.z;�xz/ W kzk �

p
�g is equal to the path Œ��; 0��C .

The final Hamiltonian isotopy from zL to a standard immersed sphere is then constructed
by means of a simple modification by hand of the above Hamiltonian isotopy from L

to a standard Clifford torus.

9 The proof of Theorem B

In this section we prove the refined version of the nearby Lagrangian conjecture for T2

formulated in Theorem B. Denote by �LW L ,!T �T2 the Lagrangian embedding under
consideration, and let � W T �T2! T2 be the canonical bundle projection.

We begin by deducing the existence of a Hamiltonian isotopy to a graphical Lagrangian
under any of the different assumptions made on the embedding, ie that �L is

(1) weakly exact,

(2) homological essential, or

(3) a Lagrangian embedding of a torus with vanishing Maslov class.

In view of [12, Theorem 7.1], such a Hamiltonian isotopy exists whenever �L is a
homotopy equivalence; we thus need the following result.

Lemma 9.1 The three assumptions (1), (2) and (3) on �L are equivalent, and each
condition is moreover equivalent to �L being a homotopy equivalence.

Proof First note that any closed Lagrangian L � T �T2 which is homologically
essential with Z–coefficients is orientable, and is hence a torus by the Lagrangian
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adjunction formula. By [3, Theorem 4.1.1], a Lagrangian torus L � T �T2 has
vanishing Maslov class if and only if it is homologically essential. As shown by
Arnold [2], and independently by E Giroux [18], the latter is in turn equivalent to �L
being a homotopy equivalence. In conclusion, we have shown that (2) and (3) both are
equivalent to �L being a homotopy equivalence. It is clear from elementary topology
that these conditions also imply weak exactness.

What remains is showing that (1) implies that �L is a homotopy equivalence. If L weakly
exact, Lemma 9.2 shows that L is exact after a translation by a section corresponding
to the graph of a suitable closed one-form. By [1] and [25], the exactness now implies
that L indeed is a torus whose inclusion is homotopy equivalent to the zero section.

Given a closed one-form ˛ 2�1M we use �˛W .T �M;d.�MC˛//! .T �M;d.�M //

to denote the (not necessarily exact) symplectomorphism given by fibrewise addi-
tion with the section ˛ . The identification T �T2 D T2 �R2 provides us with the
“constant” one-forms p1 d�1Cp2 d�2 and we write �.p1;p2/ for the corresponding
symplectomorphism.

Lemma 9.2 If L � .T �M;d�M / is a closed connected Lagrangian submanifold
which is weakly exact, and if M is connected with �1.M/ abelian, then the fibrewise
translation �˛.L/ by a suitable closed one-form ˛ 2�1M is exact.

Proof Since �1.M/ is abelian, it follows that H1.T �M/D �1.T
�M/, and hence

any element
 2 ker.H1.L/

Œ�L�
���!H1.T

�M//

can be lifted to z 2 �1.L/ that is contained in the image of the connecting homomor-
phism �2.T

�M;L/! �1.L/.

By the previous paragraph, together with the assumption of weak exactness of L, it
now follows that Œ��L�M � vanishes on kerŒ�L��H1.LIR/. The symplectic action class
can thus be written as Œ��L�M �D�Œ.� ı �L/

�˛� for some closed one-form ˛ 2�1M.

For any section ˛ 2�1M of a closed one-form, the pullback of �M under �L and its
fibrewise translation �˛ ı �L by ˛ satisfies

Œ.�˛ ı �L/
��M �D Œ.� ı �L/

�˛�C Œ��L�M �D 0

in H 1.L;R/, which shows the statement.

Geometry & Topology, Volume 23 (2019)



3448 Georgios Dimitroglou Rizell

We are now ready to prove parts (1)–(3) of Theorem B.

Proof of (1) As already established, there is a Hamiltonian isotopy Lt from the
Lagrangian torus LDL0 to a section L1 of a closed one-form, which may be assumed
to be a constant section L1 D T2 � fp0g. Unless p0 2 U �R2 , it follows that L is
displaceable from itself by a Hamiltonian isotopy, which thus contradicts, for example,
Floer’s original work [16] or the result in [26] by F Laudenbach and J-C Sikorav.

In order to see that the entire Hamiltonian isotopy can be assumed to be contained
inside U, we note the following. First, the fibrewise rescalings

�sW .T
�T2; d�T2/! .T �T2; e�sd�T2/; .�;p/ 7! .�; esp/;

preserve exact Lagrangian submanifolds. Hence, the induced isotopy by such a rescal-
ing of an exact Lagrangian submanifold can thus be generated by a Hamiltonian
isotopy. Since ��1p0

.L/ is exact, we now see that the isotopy �p0 ı�s ı �
�1
p0

acts on our
Lagrangian L by Hamiltonian isotopy.

Since the conformal symplectic isotopy

�p0 ı �s ı �
�1
p0
W .T �T2; d�T2/! .T �T2; e�t d�T2/

contracts any compact subset into an arbitrarily small neighbourhood of T2 � fp0g

as s!�1, and since it preserves the subset T2 �U � T2 � fp0g by the convex-
ity assumptions, it now follows that we can deform the Hamiltonian isotopy Lt to
the Hamiltonian isotopy �p0 ı �s ı �

�1
p0
.Lt / for s � 0, which is contained entirely

inside T2 �U. Finally, we also need to preconcatenate with the Hamiltonian isotopy
�p0 ı �s ı �

�1
p0
.L/, which also is contained entirely inside T2 �U for the very same

reasons.

Proof of (2) The geometric assumptions made on the Lagrangian enable us to construct
a Hamiltonian isotopy which “frees up” space around L above S1 � eiŒ��;�� � T2 .

Lemma 9.3 There exists a Hamiltonian isotopy �tHt with support in the complement
of
S
jsj��

PDp0.e
is/, where

�1Ht .L/\ .S
1
� eiŒ��=2;�=2� �R� .�1; p02 �/D S

1
� eiŒ��=2;�=2� � fp0g

is satisfied for the time-1 map.

See Figure 16 for an example of the effect of the above symplectic isotopy in the case
p0 D .0; 0/.
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p2 p2

p1 p1

L\fj�2j< 2ıg

�1Ht .L/\fj�2j< 2ıg

C.eis/

C.t; eis/S
jsj�2ı

PDp0.e
is/

S
jsj�2ı

PDp0.e
is/

Figure 16: The canonical projection of L \ .S1 � .��; �/ � R2/ to R2

before and after the deformation provided by Lemma 9.3. Here p0 D .0; 0/
and 2ı WD �=2 . In this subset the deformation is simply a translation of
L nS1 � .��; �/� fp0g in the positive p2–direction.

Proof We act on the subset of L contained inside

S1 � .��; �/�O � T �T2 with O WDR2 n .fp01g � .�1; p
0
2 �/

by the symplectic isotopy given by the fibrewise translation �th.�2/ d�2 . Here h.�2/� 0
is a smooth bump function with nonempty support contained inside .��=2; �=2/. Here
it is crucial to use the assumptions on the intersection properties of L and the Lagrangian
disc in order to infer that this produces a Lagrangian isotopy.

Finally we argue that the above Lagrangian isotopy has a vanishing symplectic flux-path
and, hence, that it is a Hamiltonian isotopy, as sought. It suffices to consider the change
of symplectic action on a closed loop  � L which is homotopic to fptg �S1 � f0g
inside T �T2 (recall that L is homotopic to the zero section). Since the degree of
the projection T �T2 ! S1 to the second factor of T2 D S1 � S1 restricted to 
is one, and since the part of  contained inside S1.��; �/� f0g � L is fixed by the
deformation, one readily computes that the flux is unchanged (by degree reasons the
total integral over the remaining sheets of  where the isotopy is supported is equal to
zero).

We now replace L with the Lagrangian produced by Lemma 9.3 and will write

ı WD
�

8
:

Under these assumptions it is possible to establish a refined Lagrangian isotopy result —
this is the only result in this section whose proof requires hard techniques.
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Proposition 9.4 For L as above, there exists a Lagrangian isotopy Lt from L0DL

to a graphical Lagrangian torus L1 , where the isotopy satisfies the additional property
that

Lt \ .S
1
� ei.�2ı;2ı/ �R� .�1; p02 �/D S

1
� f�2g � fp

t
1; p

0
2g;

where pt1 depends smoothly on t 2 Œ0; 1�.

We prove this proposition in Section 9.1 by following the steps of the proof of
[12, Theorem 7.1] while taking additional care.

Given Proposition 9.4, Theorem B(2) is now a direct consequence of the straightforward
result Lemma 9.5.

Lemma 9.5 Consider the Lagrangian isotopy Lt produced by Proposition 9.4. There
exists a smooth path of one-forms

˛t D .p1�p
t
1/ d�1Cgt .�2/ d�2

supported inside S1 � ei.�2ı;2ı/ , and where gt D 0 moreover holds in ei.�ı;ı/ , for
which �˛t .Lt / is a Hamiltonian isotopy.

In other words, �˛t .Lt / is a Hamiltonian isotopy which starts at L0 D L, satisfies

�˛t .Lt /\ .S
1
� ei.�ı;ı/ �R� .�1; p02 �/D S

1
� ei.�ı;ı/ � fp0g

for all t 2 Œ0; 1�, and ends at the graphical Lagrangian torus �˛1.L1/.

Proof The functions gt .�2/ are constructed to satisfyZ
S1
gt .�2/ d�2 D

Z
fei0g�S1

�T2 jTL0 �

Z
fei0g�S1

�T2 jTLt

for all t 2 Œ0; 1�. Using the fact that L�T �T2 is a homotopy equivalence, the resulting
deformed isotopy is now seen to have a vanishing symplectic flux-path, as sought.

Proof of (3) Consider the Hamiltonian isotopy Lt constructed in (2), where L1 is a
Lagrangian that is the graph of the closed one-form ˛ on T2 . Since LDL0�T2�U

we can readily find a different closed one-form ˇ , coinciding with ˛ near f�2 D 0g,
whose graph is contained inside T2 �U. Here we have used the fact that there is a
Hamiltonian isotopy from L0 to a constant section inside T2 �U by (1). We then
construct a Hamiltonian isotopy zLt from zL0 D L to the graph of ˇ which satisfies
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the requirements of (2) as follows: concatenate the original path Lt with a path of
graphical Lagrangians from the fibrewise convex interpolation tˇC .1� t /˛ .

What remains is to deform the Hamiltonian isotopy constructed above relative its
endpoints in order to make it confined to the subset T2 � U � L. This we do by
arguing as in (1), ie by considering the deformed Hamiltonian isotopy

�ˇ ı �s ı �
�1
ˇ .zLt / for s� 0:

Here it is important to use the property that

U n fp2 < p
0
2g �R2

is a star-shaped set with respect to the point p0 , in order to ensure that the requirements
in (2) are satisfied also for this new Hamiltonian isotopy.

9.1 Proof of Proposition 9.4

Here we show the existence of the Lagrangian isotopy Lt . After a suitable translation
by the constant section �.p01 d�1 C p

0
2 d�2/ it suffices to consider the case when

p01 D p
0
2 D 0.

The starting point of the proof is the observation that

C.eis/ WD S1 � feisg � .�1; p01/� fp
0
2g � T

�T2
nL

is a smooth one-dimensional family of embedded two-punctured symplectic spheres,
ie cylinders, which moreover are pseudoholomorphic for the standard cylindrical almost
complex structure Jcyl on T �T2 n 0L (see Section 5.1). Here C.eis/ is parametrised
by .�1; p1/ with p1<p01D 0, while the family is parametrised by s 2 .�4ı; 4ı/. Note
that the cylinder is asymptotic to Reeb chords of T �T2 nL at its convex (ie near C1)
as well as concave (ie near L) ends. In fact this is a “trivial” cylinder inside the
symplectisation T �T2n0T 2

Š
�!R�ST �T2 , in the sense that each C.eis/ is invariant

under translation of the symplectisation coordinate.

In addition, for all s 2 .�4ı; 4ı/ and p2 < p02 , there are Jcyl–holomorphic cylinders

C.p2; e
is/ WD S1 � feisg �R� fp2g � T

�T2
nL

having both punctures asymptotic to Reeb orbits in the convex end (ie near C1).

Of course, since L only partially coincides with 0T2 , the almost complex structure Jcyl

is typically not defined on all of T �T2 n L. However, we can find a well-defined
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compatible almost complex structure J on .T �T2 nL; d�T2/ which is cylindrical
outside of a compact subset, and which agrees with Jcyl in a neighbourhood of the
union of cylinders

C.eis/[C.p2; e
is/ with jsj � 4ı and p2 < p02 :

Here it is crucial that these cylinders all are disjoint from L; see Figure 16. (This was
achieved by the previous application of Lemma 9.3.)

We now follow the argument given in [12, Section 7]. First, we compactify DRT �T2

to S2 � S2 for some R � 0 as described in [12, Section 7]. The above cylinders
C.eis/ now become one-punctured pseudoholomorphic spheres inside the latter space,
ie pseudoholomorphic planes, given that J is carefully chosen. In fact, we may
require J to be equal to the standard product complex structure near the divisor

C1 WD .S
2
� f0;1g/t .f0;1g�S2/� S2 �S2;

and thus, in particular, this divisor J–holomorphic.

Second, arguing as in [12] by using automatic transversality, positivity of intersection,
and the SFT compactness theorem, we obtain the following result, which is the core of
the argument here:

Proposition 9.6 [12, Section 6] The above family fC.eis/gjsj<4ı of J–holomorphic
planes inside S2 �S2 nL lives inside a regularly cut out and compact component of
its moduli space MD fC.�/g�2S1 Š S1 . Furthermore, the planes C.�/ for � 2 S1

foliate the hypersurface [
�2S1

C.�/� T �T2
nL

diffeomorphic to S1 � C.ei0/, and the asymptotic evaluation map M ! � is a
diffeomorphism, where we have used � Š S1 to denote the corresponding S1–family
of Reeb orbits on ST �L.

By construction, the discs C.�/ with � 2 ei.�4ı;4ı/ may be assumed to coincide with
planes of the form

B2 � fei�g � S2 �S2;

where B2 � S2 denotes the lower open hemisphere.
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Lemma 9.7 [12, Section 7.1] After a deformation of C.�/ with � 2 S1 supported
near the divisor C1 � S2 �S2 we may further assume that each C.�/ with � 2 S1

coincides with the Jcyl–holomorphic cylinder

B2 � fei�g � S2 �S2

in that neighbourhood.

Third, after deforming the planes fC.�/ W � … ei.�3ı;3ı/g as in [12, Section 5.3], we
may assume that the compactifications D.�/ � .S2 � S2; L/ for all � 2 S1 yield a
smoothly embedded solid torus

.zT WDD2 �S1; S1 �S1/ ,! .S2 �S2; L/:

Using the initial identification

S2 �S2 nC1
Š
�!DRT

�T2

we extend the image of zT to a proper embedding

..D2 n f0g/�S1; S1 �S1/ Š�! . PT ; @ PT /� .T �T2; L/

foliated by symplectic punctured discs PD.�/. Using the existence of our initial punc-
tured pseudoholomorphic spheres C.eis/ and C.p2; eis/, we can make sure that this
“punctured solid torus” is of a standard form.

Lemma 9.8 In addition to the above properties, we may assume that :

(1) The punctured disc leaves PD.�/ for � 2 ei.�3ı;3ı/ coincide with

S1 � f�g �R�0 � f0g;

while PD.�/ nDRT �T2 all are contained inside the latter subset.

(2) The intersection

PT \ .S1 � ei.�3ı;3ı/ �R�R<0/

is empty.

Proof (1) This property can be achieved by Lemma 9.7.

(2) This is a consequence of positivity of intersection with the cylinders C.p2; sis/
with p2 < 0, which can be assumed to remain pseudoholomorphic during all of the
steps taken above.
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Lastly, we need to correct the monodromy map induced by the characteristic distribution
of the solid torus. Recall that this monodromy is a symplectomorphism

�W .S1 � fei0g �R�0 � f0g; d�T2/! .S1 � fei0g �R�0 � f0g; d�T2/

obtained by integrating the line field

ker.d�T2 jT PT /� T
PT ;

which clearly is transverse to all symplectic leaves PD.�/. The goal of this deformation
is to make this symplectomorphism preserve the foliation

p WD S
1
� fei0g � fpg � f0g � S1 � fei0g �R�0 � f0g D PD.e

i0/

by simple closed curves. Observe that this is already the case for the curve 0 as
well as �P for all P � 0, as follows from the Lagrangian condition of L and
Lemma 9.8(1), respectively.

The deformation of the family of annuli is performed by a so-called symplectic suspen-
sion of a suitable Hamiltonian isotopy �tHt of the symplectic punctured disc

PD.ei0/D S1 � fei0g �R�0 � f0g � .T
�T2; d�T2/:

The argument for the existence of Hamiltonian isotopies of the disc in [12, Lemma 7.4]
carries over to show the following.

Lemma 9.9 There exists a Hamiltonian isotopy

�tHt W .
PD.ei0/ŠD2 n f0g; !/ Š�! . PD.ei0/ŠD2 n f0g; !/ for t 2 Œ0; ı�;

where Ht D 0 for all t … Œı=2; ı/, which

� is generated by a nonnegative time-dependent Hamiltonian Ht � 0 that has
compact support, and satisfies Ht j@D2 � 0 for all t , and

� satisfies the property that �ıHt ı� preserves the leaves of the foliation fpg by
embedded closed curves.

Proof We begin by recalling the standard fact that any symplectomorphism of an
annulus that preserves the boundary setwise is Hamiltonian isotopic, while fixing the
boundary setwise, to one which preserves the standard foliation by meridian curves.
Whenever a boundary component is fixed pointwise by the symplectomorphism, this
Hamiltonian isotopy may moreover be assumed to fix the same component pointwise.

Geometry & Topology, Volume 23 (2019)



The classification of Lagrangians nearby the Whitney immersion 3455

To see this claim, first we point out that a Hamiltonian isotopy can be explicitly
constructed in order to deform the symplectomorphism to one which is the identity
on both boundary components. We can then use [10, Proposition A.4], together with
the fact that the standard Dehn twist and hence its powers are compactly supported
symplectomorphisms that preserve the standard foliation by meridians.

After adding a time-dependent constant we may assume that the Hamiltonian constructed
above satisfies Ht j@D2 � 0. In order to make it nonnegative everywhere, we can simply
add a suitable autonomous Hamiltonian which is constant along any meridian in the
foliation. (The generated isotopy now performs an additional rotation along the meridian
curves.) Note that the same technique also can be used to make Ht vanish near the
origin 0 2D2 , as opposed to being merely constant there.

The symplectic suspension that we use is the locally defined symplectomorphism

.z; .eis; p2//

7!
�
�sC3ıHt

.z/; eis; p2�HsC3ı.�
sC3ı
Ht

.z//
�

for z 2D.ei0/ and s 2 Œ�3ı;�2ı�:

When applying this symplectomorphism to the family S1 � ei.�3ı;�2ı/ �R�0 � f0g

of punctured discs, the properties in Lemma 9.8 satisfied by PT imply the following:
the deformation of PT obtained by excising the above family and replacing it by its
suspension PT 0 is embedded, and has a symplectic monodromy that preserves all
leaves fpg for p � 0 of the foliation of PD.ei0/.

Given the above, the Lagrangian isotopy is finally constructed to be contained com-
pletely inside the hypersurface PT 0 foliated by punctured symplectic discs. More
precisely, we consider the Lagrangian tori Lt in PT 0 uniquely determined by the
property that they intersect the disc PD.0/ precisely in the curve �Ct for some C � 0

sufficiently large. Indeed, by the assumption that all annuli are standard outside of
a compact subset of T �T2 , it necessarily follows that these tori all are graphical
for t D 1.
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geometry of manifolds” (G Matić, C McCrory, editors), Proc. Sympos. Pure Math. 71,
Amer. Math. Soc., Providence, RI (2003) 153–208 MR

Geometry & Topology, Volume 23 (2019)

http://dx.doi.org/10.1007/BF01388806
http://msp.org/idx/mr/809718
http://dx.doi.org/10.1007/s00039-004-0459-6
http://msp.org/idx/mr/2060197
http://dx.doi.org/10.1007/s00029-013-0146-2
http://msp.org/idx/mr/3366927
http://dx.doi.org/10.1007/BF02921708
http://dx.doi.org/10.1007/BF02921708
http://msp.org/idx/mr/1630789
http://msp.org/idx/mr/1432460
http://dx.doi.org/10.1016/s0294-1449(16)30108-1
http://dx.doi.org/10.1016/s0294-1449(16)30108-1
http://msp.org/idx/mr/1395676
http://dx.doi.org/10.2140/gt.2013.17.639
http://msp.org/idx/mr/3070514
http://dx.doi.org/10.1007/BF01388807
http://dx.doi.org/10.1007/BF01388807
http://msp.org/idx/mr/809719
http://dx.doi.org/10.1007/s11784-010-0004-1
http://msp.org/idx/mr/2821362
http://dx.doi.org/10.4310/jdg/1214446994
http://msp.org/idx/mr/1114456
http://msp.org/idx/mr/1698616
https://bookstore.ams.org/coll-52-r/
http://msp.org/idx/mr/2954391
http://dx.doi.org/10.2140/gt.2009.13.1877
http://msp.org/idx/mr/2497314
http://dx.doi.org/10.1215/00127094-2804892
http://dx.doi.org/10.1215/00127094-2804892
http://msp.org/idx/mr/3265556
http://dx.doi.org/10.4007/annals.2005.161.959
http://msp.org/idx/mr/2153404
http://dx.doi.org/10.1090/pspum/071/2024634
http://msp.org/idx/mr/2024634


3458 Georgios Dimitroglou Rizell

[35] R Vianna, On exotic Lagrangian tori in CP2 , Geom. Topol. 18 (2014) 2419–2476
MR

[36] R F V Vianna, Infinitely many exotic monotone Lagrangian tori in CP2 , J. Topol. 9
(2016) 535–551 MR

[37] A Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in
Math. 6 (1971) 329–346 MR

[38] C Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in
dimension four, Comment. Math. Helv. 85 (2010) 347–407 MR

Department of Mathematics, Uppsala University
Uppsala, Sweden

georgios.dimitroglou@math.uu.se

Proposed: Yasha Eliashberg Received: 5 March 2018
Seconded: Ciprian Manolescu, Leonid Polterovich Revised: 23 October 2018

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/gt.2014.18.2419
http://msp.org/idx/mr/3268780
http://dx.doi.org/10.1112/jtopol/jtw002
http://msp.org/idx/mr/3509972
http://dx.doi.org/10.1016/0001-8708(71)90020-X
http://msp.org/idx/mr/286137
http://dx.doi.org/10.4171/CMH/199
http://dx.doi.org/10.4171/CMH/199
http://msp.org/idx/mr/2595183
mailto:georgios.dimitroglou@math.uu.se
http://msp.org
http://msp.org

	1. Introduction
	1.1. Preliminaries
	1.2. Result
	1.3. A family of Lagrangian fibrations

	2. Properties of the Lagrangian fibration
	2.1. Action properties
	2.2. Proof of Proposition 1.4

	3. Standard neighbourhood of a sphere with self-intersection  number +1
	3.1. The self-plumbing of the cotangent bundle of a sphere
	3.2. Extending the neighbourhood to a complete Liouville manifold
	3.3. A singular Lagrangian torus fibration

	4. Pencils of pseudoholomorphic conics
	4.1. Normalising the fibration
	4.2. Hamiltonian isotopies of symplectic surfaces with smooth self-intersection

	5. Properties derived from broken conic fibrations
	5.1. A neck-stretching sequence
	5.2. Solid tori foliated by pseudoholomorphic planes and consequences
	5.3. Constructing a compatible fibration of conics
	5.4. The proof of Theorem 5.12

	6. Liouville forms and inflation
	6.1. A family of Liouville forms on V=CP^2(l_infty cup C)
	6.2. Inflation via the Liouville flow
	6.3. Flux-paths that determine the Hamiltonian isotopy class

	7. The Hamiltonian isotopy to a standard torus
	7.1. Classification up to Hamiltonian isotopy for tori in Clifford position
	7.2. Classification up to Lagrangian isotopy for tori in Chekanov position
	7.3. From Lagrangian to Hamiltonian isotopy for tori in Chekanov position

	8. The Hamiltonian isotopy to a standard immersed sphere
	8.1. The proof of Theorem A in the case of a sphere

	9. The proof of Theorem B
	9.1. Proof of Proposition 9.4

	References

