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Ubiquitous quasi-Fuchsian surfaces
in cusped hyperbolic 3–manifolds

DARYL COOPER

DAVID FUTER

We prove that every finite-volume hyperbolic 3–manifold M contains a ubiquitous
collection of closed, immersed, quasi-Fuchsian surfaces. These surfaces are ubiq-
uitous in the sense that their preimages in the universal cover separate any pair of
disjoint, nonasymptotic geodesic planes. The proof relies in a crucial way on the
corresponding theorem of Kahn and Markovic for closed 3–manifolds. As a corollary
of this result and a companion statement about surfaces with cusps, we recover Wise’s
theorem that the fundamental group of M acts freely and cocompactly on a CAT.0/
cube complex.

20F65, 20H10, 30F40, 57M50

1 Introduction

A collection of immersed surfaces in a hyperbolic 3–manifold M DH3=� is called
ubiquitous if, for any pair of hyperbolic planes …;…0 �H3 whose distance apart is
d.…;…0/ > 0, there is some surface S in the collection with an embedded preimage
zS �H3 that separates … from …0. The main new result of this paper is the following:

Theorem 1.1 Let M DH3=� be a complete, finite-volume hyperbolic 3–manifold.
Then the set of closed, immersed, quasi-Fuchsian surfaces in M is ubiquitous.

We refer the reader to Section 2.2 for the definition of a quasi-Fuchsian surface
(abbreviated QF). Informally, a quasi-Fuchsian subgroup of isometries of H3 preserves
a small deformation of a totally geodesic hyperbolic plane.

Theorem 1.1 resolves a question posed by Agol [19, Problem 3.5]. The case of
Theorem 1.1 where M is closed is a theorem of Kahn and Markovic [31], and forms a
crucial ingredient in our proof of the general case. Very recently, Kahn and Wright [33]
proved a version of Theorem 1.1 with additional control on the quasiconformal con-
stants of the QF surfaces. Their proof extends the dynamical methods of Kahn and
Markovic [31], including the good pants homology [32].
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A slope on a torus T is an isotopy class of essential simple closed curves on T , or
equivalently a primitive homology class (up to sign) in H1.T /. When M is a cusped
hyperbolic 3–manifold — that is, noncompact with finite volume — it follows from the
work of Culler and Shalen [18] that M contains at least two embedded QF surfaces
with cusps, and furthermore that the boundaries of these surfaces have distinct slopes
on each cusp torus of M. Masters and Zhang [36; 37], as well as Baker and Cooper [8],
found ways to glue together covers of these cusped QF surfaces to produce a closed,
immersed QF surface. However, it is not clear whether these constructions can produce
a ubiquitous collection of QF surfaces.

If an embedded essential surface S � M has all components of @S homotopic to
the same slope ˛ �M, we say that ˛ is an embedded boundary slope. An immersed
boundary slope in M is a slope ˛ in a cusp torus of M, for which there is an integer
m > 0 and an essential immersed surface S whose boundary maps to loops each
homotopic to ˙m �˛ . Such a surface S is said to have immersed slope ˛ . We prove
the following.

Theorem 1.2 Let M D H3=� be a cusped hyperbolic 3–manifold, and let ˛ be a
slope on a cusp of M. Then the set of cusped quasi-Fuchsian surfaces immersed in M
with immersed slope ˛ is ubiquitous.

Hatcher [26] showed that a compact manifold bounded by a torus has only finitely many
embedded boundary slopes. Hass, Rubinstein and Wang [25] (refined by Zhang [52])
showed that there are only finitely many immersed boundary slopes whose surfaces
have bounded Euler characteristic.

Baker [4] gave the first example of a hyperbolic manifold with infinitely many immersed
boundary slopes, while Baker and Cooper [5] showed that all slopes of even numerator
in the figure-eight knot complement are virtual boundary slopes. Oertel [39] found a
manifold with one cusp such that all slopes are immersed boundary slopes. Maher [35]
gave many families, including all 2–bridge knots, for which every slope is an immersed
boundary slope. Subsequently, Baker and Cooper [6, Theorem 9.4] showed that all
slopes of one-cusped manifolds are immersed boundary slopes. Przytycki and Wise
[41, Proposition 4.6] proved the same result for all slopes of multicusped hyperbolic
manifolds.

The surfaces constructed in those papers are not necessarily quasi-Fuchsian, because
they may contain annuli parallel to the boundary. By contrast, Theorem 1.2 produces a
ubiquitous collection of QF surfaces realizing every immersed boundary slope.

Geometry & Topology, Volume 23 (2019)



Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3–manifolds 243

1.1 Applications to cubulation and virtual problems

Theorems 1.1 and 1.2 have an application to the study of 3–manifold groups acting on
CAT.0/ cube complexes. We refer the reader to Section 8 for the relevant definitions.

Theorems 1.1 and 1.2, combined with results of Bergeron and Wise [9] and Hruska
and Wise [29], have the following immediate consequence:

Corollary 1.3 Let M be a cusped hyperbolic 3–manifold. Choose a pair of distinct
slopes ˛.V / and ˇ.V / for every cusp V � M. Then � D �1.M/ acts freely and
cocompactly on a CAT.0/ cube complex zX dual to finitely many immersed quasi-
Fuchsian surfaces S1; : : : ; Sk . Every surface Si is either closed or has immersed slope
˛.V / or ˇ.V / for one cusp V �M.

Thus, M is homotopy equivalent to a compact nonpositively curved cube complex
X D zX=� , whose immersed hyperplanes correspond to immersed quasi-Fuchsian
surfaces S1; : : : ; Sk .

Corollary 1.3 is not new. The statement that �1M acts freely and cocompactly on
a cube complex zX is an important theorem due to Wise [51]. In Wise’s work, this
result is obtained in the final step of his inductive construction of a virtual quasiconvex
hierarchy for �1M. The purpose of this inductive construction is to establish the
following stronger statement [51, Theorem 17.14]:

Theorem 1.4 Let M be a cusped hyperbolic 3–manifold. Then M is homotopy
equivalent to a compact nonpositively cube complex X, which has a finite special
cover yX. The finite-index special subgroup �1 yX � �1M embeds into a right-angled
Artin group.

Theorem 1.4 has far-reaching consequences. It implies that the manifold M is virtually
fibered [1], and that the fundamental group �1M is large, subgroup-separable and
linear over Z.

The same statements also hold for a closed hyperbolic 3–manifold M. In this setting,
Corollary 1.3 was proved by Bergeron and Wise [9, Theorem 1.5], using the closed
case of Theorem 1.1 due to Kahn and Markovic [31]. Subsequently, Agol [2] gave
a direct argument to show that the cube complex X is virtually special, establishing
Theorem 1.4 for closed manifolds.
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After this paper was first distributed, Groves and Manning [22] used the work of
Agol [2], combined with older results of Minasyan [38] and Haglund and Wise [24], to
show that the cube complex X constructed in Corollary 1.3 is virtually special. That is,
Corollary 1.3 implies Theorem 1.4. Consequently, the results of this paper constitute
part of a direct second-generation proof of virtual specialness and virtual fibering for
cusped hyperbolic 3–manifolds, following the same outline as for closed manifolds.
This is considerably easier and more direct than Wise’s proof.

In addition to the existence of the cube complex X, Corollary 1.3 asserts that the
surfaces used to cubulate �1M can be chosen to have prescribed immersed slopes.
This statement is also not new, as it was proved by Tidmore [48, Theorem 1.7]. His
proof uses the full strength of Wise’s work [51], including Theorem 1.4 and a relative
version of the special quotient theorem. These strong tools enable Tidmore to settle
some open questions about fundamental groups of mixed 3–manifolds, including
biautomaticity and integrality of L2 Betti numbers. Our direct proof of Corollary 1.3
using Theorem 1.2 and [9; 29] can be inserted into Tidmore’s argument to provide a
more straightforward route to these results.

Proof outline and organization

This paper is organized as follows. In Section 2, we review QF manifolds, convex
thickenings and geometric estimates during Dehn filling. We also extend the prior
work of Baker and Cooper [6; 8] to prove the asymmetric combination theorem,
Theorem 2.5, which roughly says that the convex hull of a union of convex pieces
stays very close to one of the pieces. In Section 3, we prove several useful lemmas and
characterize ubiquitous collections of surfaces using the notion of a compact pancake
(see Definition 3.7). In Section 4, we assemble these ingredients to prove the following
weaker version of Theorems 1.1 and 1.2:

Theorem 1.5 Let M DH3=� be a cusped hyperbolic 3–manifold. Let ˛1; : : : ; ˛n
be a collection of slopes on cusps of M. Then there is a ubiquitous set of cusped QF
surfaces immersed in M, with the property that for each ˛i , at least one cusp of each
surface is mapped to a multiple ki˛i .

It is worth observing that Theorem 1.5 already implies a weak version of Corollary 1.3,
namely cosparse cubulation. See Corollary 8.2 for a precise statement.

Here is the idea of the proof of Theorem 1.5. First, we perform a large Dehn filling
on the cusps of M to produce a closed hyperbolic 3–manifold N. Then, by results of
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Kahn and Markovic [31] and Agol [2], there is a finite cover yN of N that contains a
closed, embedded, almost-geodesic QF surface. (See Remark 4.11 for a way to avoid
relying on Agol [2].) A small convex neighborhood of this surface is a compact QF
manifold Q � yN, with strictly convex boundary. The preimages of the filled cusps
form a collection W of solid tori in yN. Gluing these onto Q and thickening gives a
compact convex manifold Z � yN with strictly convex boundary that is far from the
core geodesics ��W . Deleting � gives a finite cover �M of M, with the property
that the hyperbolic metric on �M XW is very close to the hyperbolic metric on yN XW .
It follows that @Z is also locally convex in �M, so Y DZX� is a convex submanifold
of �M. One now surgers @Y inside Y along disks and annuli in Y running out into
the cusps of �M to produce an embedded, geometrically finite incompressible surface
F � Y without accidental parabolics. It follows that F is quasi-Fuchsian, and the
projection of F into M is an immersed QF surface with cusps. This use of the convex
envelope Z is similar to the method used by Cooper and Long [15] to show that most
Dehn fillings of a hyperbolic manifold contain a surface subgroup.

To derive Theorem 1.1 from Theorem 1.5, we need to call upon several results and
techniques developed by Baker and Cooper [8]. We review these results in Section 5.
Given enough cusped surfaces, one can glue together finite covers of copies of convex
thickenings of these surfaces, together with some finite covers of the cusps of M, to
create a convex manifold Z called a prefabricated manifold (see Definition 5.5). This
prefabricated manifold is immersed in M by a local isometry, and each component
of @Z is closed and quasi-Fuchsian. Projecting @Z down to M yields a closed,
immersed QF surface. A mild variation of this technique proves Theorem 1.2 in
Section 7.

Finally, in Section 8, we explain how to combine Theorems 1.1 and 1.2 with results
of Bergeron and Wise [9] and Hruska and Wise [29] to show that M is homotopy
equivalent to a compact cube complex.
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2 Background

This section lays out the definitions, conventions, and background material that are
used in subsequent arguments. Almost all of the results stated here are widely known
and appear elsewhere in the literature. The one result with any novelty is Theorem 2.5,
the asymmetric combination theorem. This is a mild generalization of the convex
combination theorem of Baker and Cooper [6; 8]. The generalized statement described
here may be of some independent interest.

2.1 Convex and complete manifolds

A hyperbolic n–manifold is a smooth n–manifold, possibly with boundary, equipped
with a metric such that every point has a neighborhood that is isometric to a subset of
hyperbolic space, Hn . A connected hyperbolic n–manifold M is convex if every pair
of points in the universal cover �M is connected by a geodesic. It is complete if the
universal cover is isometric to Hn .

We emphasize that the hyperbolic manifolds considered in this paper are not necessarily
complete. On the other hand, all manifolds in this paper are presumed connected
and orientable, unless noted otherwise. As we describe at the start of Section 4.1,
disconnected manifolds are typically denoted with calligraphic letters.

The following facts are straightforward; see [6, Propositions 2.1 and 2.3].

Lemma 2.1 Let M be a convex hyperbolic n–manifold. Then the developing map
embeds �M isometrically into Hn , and the covering transformations of �M extend
to give a group � � IsomHn . Consequently, M is isometric to a submanifold of
N DHn=� , where N is unique up to isometry.

If M is convex and f W M !N is a local isometry into a hyperbolic n–manifold N,
then f is �1–injective.
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The geodesic compactification of Hn is the closed ball Hn DHn t @Hn . In the main
case of interest, n D 3, we write @H3 D S21 . The limit set of a subset A � Hn is
ƒ.A/D xA\ @Hn . If � � Isom.Hn/ is a discrete group, then ƒ.�/ is the limit set of
an orbit �x , for an arbitrary x 2Hn .

The convex hull of a set A�Hn , denoted by CH.A/, is the intersection of Hn and
all the convex subsets containing A. If M is a convex hyperbolic manifold, then by
Lemma 2.1, M isometrically embeds into a complete manifold N DHn=� . We define
the convex core of M to be Core.M/D CH.ƒ.�//=� . Then Core.M/D Core.N /
and Core.M/�M �N.

A convex hyperbolic n–manifold is geometrically finite if some (any) �–neighborhood
of Core.M/ has finite volume. We focus our attention on two special kinds of geomet-
rically finite hyperbolic 3–manifolds.

2.2 Quasi-Fuchsian basics

A Fuchsian group is a discrete, torsion-free, orientation-preserving subgroup � �
Isom.H2/ such that the quotient S DH2=� has finite area. We call S a finite-area
hyperbolic surface. A Fuchsian group � stabilizing a hyperbolic plane H2 �H3 can
also be considered a subgroup of Isom.H3/. Note that the convex core of a Fuchsian
group is Core.H3=�/DH2=� D S, which has 3–dimensional volume 0.

A convex hyperbolic 3–manifold M is called quasi-Fuchsian (or QF for short) if
there is a finite-area hyperbolic surface S such that Core.M/ has finite volume and is
homeomorphic to S � I or to S. To overcome this mild technical irritation, we define
a convex 3–manifold by Q.S/DCore.M/ unless S is Fuchsian, in which case Q.S/
is a small convex neighborhood of S. Thus, Q.S/Š S � I in all cases.

By Lemma 2.1, every quasi-Fuchsian 3–manifold Q isometrically embeds into a
complete 3–manifold N Š S �R. We call N the universal thickening of Q (compare
Section 2.3). We call S � f0g � N a quasi-Fuchsian surface. If f W N ! M is
a covering map of complete hyperbolic 3–manifolds and N is quasi-Fuchsian, the
restriction f W S � f0g !M gives an immersed quasi-Fuchsian surface in M. Note
that immersed QF surfaces are automatically �1–injective.

Let S be a finite-area hyperbolic surface. A representation �W �1S ! Isom.H3/ is
called type-preserving if � sends peripheral loops in S to parabolic isometries and
nonperipheral loops to nonparabolic isometries. If a loop  2 �1S is not homotopic
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into a puncture but �./ is parabolic, we say that  is an accidental parabolic for � .
Thus, type-preserving representations cannot have accidental parabolics.

We will deduce that certain surfaces are QF via the following classical result:

Theorem 2.2 Let Y be a convex, finite-volume hyperbolic 3–manifold with @Y ¤∅.
Let f W S!Y be an immersion from a hyperbolic surface S such that f�W �1S!�1Y

is faithful and type-preserving. Then S is quasi-Fuchsian.

Proof By Lemma 2.1, Y has an isometric embedding into a complete 3–manifold M.
Let MS be the cover of M corresponding to f�.�1S/� �1M. We claim that MS is
geometrically finite.

Suppose MS is geometrically infinite. Then Thurston’s covering theorem [13], com-
bined with tameness for surface groups [11], says that M must have finite volume
and f�.�1S/ must be a virtual fiber subgroup of �1M. In this case ƒ.�1M/ D

ƒ.f�.�1S//D S
2
1 , hence Core.M/DM. But Core.M/� Y by the convexity of Y ,

hence @Y D∅, a contradiction.

Since MS is geometrically finite and has no accidental parabolics, it is a standard fact
that it is quasi-Fuchsian. Thus, S is an immersed QF surface in Y .

2.3 Convex thickenings

Let M and N be (possibly disconnected) hyperbolic 3–manifolds with M �N. We
say N is a thickening of M if the inclusion �W M ,! N is a homotopy equivalence.
If, in addition, each component of N is convex, then N is called a convex thickening
of M. If M is connected and has a convex thickening, then the convex hull of M is
CH.M/D CH. �M/=� , where � is the holonomy of M.

Convex thickenings only change the boundary of a 3–manifold by isotopy.

Lemma 2.3 Let Y be a (connected) hyperbolic 3–manifold. Let Z be a convex
thickening of Y with finite volume and incompressible boundary. Suppose that every
end of Z is a rank-1 or rank-2 cusp that contains a corresponding cusp of Y . Then
@Y is isotopic in Z to @Z .

Proof We construct a compact manifold Z� �Z by cutting off the noncompact ends
of Z along a union of horospherical tori T and a union of horospherical annuli A. Set
Y � DZ�\Y . Let N be the 3–manifold obtained by taking two copies of Z� and
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gluing them by the identity map along A. Let M �N be the corresponding double
of Y � along A. Let †� @N be a component that is not in the double of T . Then †
is the double of part of the boundary of Z� .

Let P be the closure of the component of N XM that contains †. Since @Z is
incompressible, † is a closed surface that is incompressible in both N and P. Since
Z is convex, it is irreducible, hence so is P. The inclusions Y ,! Z and M ,! N

are homotopy equivalences by the definition of “thickening.” By Waldhausen’s theo-
rem [49], P Š†� I. The components of A\P can be isotoped to be vertical in this
product. Thus, †\N is properly isotopic into @Y .

If M is a subset of a metric space N, the (closed) r –neighborhood of M in N is

Nr.M IN/D fx 2N W d.x;M/� rg:

We will omit the second argument of Nr. � ; � / when it is clear from context, for instance
when the ambient set is Hn . If M his a convex hyperbolic n–manifold, recall from
Lemma 2.1 that the developing map gives an isometric embedding �M ! Hn , and
identifies �1M with a discrete subgroup � � Isom.Hn/. We define the r –thickening
of M to be

Thr.M/DNr. �M IHn/=�;

and set
Th1.M/D

[
r>0

Thr.M/DHn=�:

By construction, the universal thickening Th1.M/ is complete.

If S �M is a smoothly embedded surface and v 2 TxS, the extrinsic curvature of S
along v is (the absolute value of) the curvature in M of the geodesic in S that has
tangent vector v . Thus, totally geodesic surfaces have constant extrinsic curvature 0,
while horospheres have constant extrinsic curvature 1.

Given � � 0, a surface S in a hyperbolic 3–manifold M is �–convex if for each x 2 S
there is a smooth surface D�M of constant extrinsic curvature � such that x 2D\S
and S is locally on the convex side of D. This is sometimes called �–convex in the
barrier sense. If � D 0, then D is totally geodesic, and we say S is locally convex
at x . Thus, �–convexity implies local convexity. Observe that if …�H3 is a totally
geodesic copy of H2 , then @Nr.…/ has constant extrinsic curvature � D �.r/ > 0.
This implies:
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Lemma 2.4 There is a continuous, monotonically increasing function �W RC! .0; 1/

such that if X �H3 is a closed convex set and r > 0, then @Thr.X/ is �.r/–convex.

The point of using barrier surfaces in the definition of �–convexity is that, in most
cases, @Core.M/ and @Thr.Core.M// are not smooth. However, Lemma 2.4 still
applies to these surfaces.

The next result is a variant of the convex combination theorem of Baker and Cooper
[6; 8].

Theorem 2.5 (asymmetric combination theorem) For every � > 0, there is R D
R.�/ > 8 such that the following holds: Suppose that:

(1) Y D Y0 [ � � � [ Ym and M D M0 [ � � � [Mm are connected hyperbolic 3–
manifolds.

(2) Mi and Yi are convex hyperbolic 3–manifolds such that Yi is a thickening
of Mi .

(3) Yi � Th8.Mi /.

(4) If Yi \Yj ¤∅, then i D j or one of i or j is 0.

(5) Every component of Yi \Yj contains a point of Mi \Mj .

Then CH.M/�N�.M0IY /[NR.M1[ � � � [MmIY /:

Theorem 2.5 strengthens [8, Theorem 1.3] in two small but useful ways. First, it allows
a larger number of convex pieces to combine. Second, it records the conclusion that,
far away from the pieces M1; : : : ;Mm , the convex hull of M is �–close to M0 .

Proof First, we verify that

CH.M/� Th8.M0/[ � � � [Th8.Mm/� Y:

When mD 1, this is a special case of [8, Theorem 1.3]. (In that theorem, the pair M0

and M1 are denoted by M1 and M2 .) Indeed, hypotheses (C1)–(C2) of that theorem
are restated in (1)–(2). Hypotheses (C3)–(C5) of that theorem are all implied by (2)–(3).
Hypothesis (C6) of that theorem is restated in (5). Thus, the desired conclusion holds
when mD 1.

The proof of [8, Theorem 1.3] combines a lemma about thin triangles with Theorem 2.9
of [6] to conclude that r D 8 is a sufficient thickening constant. Thus, almost all of the
work is performed in [6, Theorem 2.9].
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For m> 1, we observe that the proof of [6, Theorem 2.9] goes through verbatim when
M1 is replaced by the disjoint union M1t� � �tMm . Note that condition (4) guarantees
that Y1; : : : ; Ym are pairwise disjoint, hence M1; : : : ;Mm are as well. This concludes
the proof that CH.M/� Y .

To prove the stronger containment claimed in the theorem, we need the next easy lemma.
We use the notation Œa; b� to denote a geodesic segment with endpoints at a and b .

Lemma 2.6 For every � > 0, there is yRD yR.�/ > 0 such that the following properties
hold:

(1) For every triangle in H3 with vertices a , b , c , the geodesic Œa; c� satisfies

Œa; c��N yR.Œa; b�/[N�=4.Œb; c�/:

(2) Every (skew) quadrilateral in H3 with vertices a1 , b1 , b2 , a2 satisfies

Œa1; a2��N yR.Œa1; b1�/[N yR.Œa2; b2�/[N�=2.Œb1; b2�/:

Proof We introduce the following terminology. A rounded rectangle is a region
P �H2 with four corners at w , x , y , z such that Œx; y� is a geodesic segment, Œw; x�
and Œy; z� are geodesic segments of length h perpendicular to Œx; y�, and the fourth
side is an arc from w to z that stays at constant distance h > 0 from Œx; y�. The side
Œx; y� is called the base of P and h is called the height of P. A standard calculation
shows that area.P /D sinh.h/ len.Œx; y�/.

Conclusion (1) is proved by an area argument. Let � be the triangle with vertices
a , b , c . If Œa; c��N�=4.Œb; c�/, the conclusion holds trivially. Otherwise, let P ��
be the maximal rounded rectangle with height �

4
and base Œx; y� contained in Œb; c�.

Then, by maximality, at least one corner of P (either w or x ) lies in Œa; b�, while
another corner (labeled z ) is the unique point of Œa; c� at distance �

4
from Œb; c�. Since

sinh
�
�

4

�
len.Œx; y�/D area.P / < area.�/ < �;

we conclude that

d.Œa; b�; z/ < len.Œw; x�/C len.Œx; y�/C len.Œy; z�/ < �

4
C

�

sinh
�
�
4

� C �
4
:

Setting yR.�/D �=sinh
�
�
4

�
C
�
2

yields

Œa; z��N yR.�/.Œa; b�/ and Œz; c��N�=4.Œb; c�/;

implying (1). Now, conclusion (2) follows from (1) by triangle inequalities.
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We now return to the proof of Theorem 2.5. For any � > 0, let R D R.�/ D

yR.�/C 16, where yR.�/ is the function of Lemma 2.6. For every r > 0, let Zr D
Nr.M1[ � � � [MmIY /. We have already seen that

CH.M/� Th8.M0/[ � � � [Th8.Mm/D Th8.M0/[Z8:

Since R > 8, this implies

CH.M/XZR � CH.M/XZ8 � CH
�
M0[ .Z8\Th8.M0//

�
;

where Z8\Th8.M0/D Th8.M0\M1/[ � � �[Th8.M0\Mm/ is the thickened inter-
section. To see the second containment, suppose x 2CH.M/XZ8 . By Carathéodory’s
theorem [40, Proposition 5.2.3], there is a geodesic 3–simplex � with vertices at
a; b; c; d 2 M such that x 2 � � CH.M/. Let Œx; a0� be the maximal subinterval
of Œx; a� that is disjoint from the interior of Z8 . If aD a0, then a0 2M Xint.Z8/�M0 .
Otherwise, a¤ a0, hence a0 2 @Z8\Th8.M0/. Thus, in both cases,

a0 2M0[ .Z8\Th8.M0//:

Define b0 , c0 and d 0 in a similar fashion to a0, and let �0 �� be the geodesic simplex
with vertices a0 , b0 , c0 , d 0. Then x 2�0 � CH

�
M0[ .Z8\Th8.M0//

�
.

Given x 2 CH.M/XZR , our goal is to show that x 2N�.M0/. The above characteri-
zation of CH.M/XZR , combined with Carathéodory, implies that x lies in a geodesic
3–simplex � whose vertices a0; : : : ; a3 are in M0[ .Z8\Th8.M0//. Let bi be the
point of M0 closest to ai . Then d.ai ; bi / � 8. In fact, if ai ¤ bi , then ai … M0 ,
hence ai 2Z8 , which means that Œai ; bi ��Z16 .

Consider how far the segment Œbi ; bj � can be from Œai ; aj �. If ai ¤ bi but aj D bj D c ,
Lemma 2.6(1) gives

Œai ; aj ��N yR.Œai ; bi �/[N�=4.Œbi ; bj �/

�N yR.Z16/[N�=2.Œbi ; bj �/

DZR [N�=2.Œbi ; bj �/:

Similarly, if ai ¤ bi and aj ¤ bj , Lemma 2.6(2) gives

Œai ; aj ��N yR.Œai ; bi �/[N yR.Œaj ; bj �/[N�=2.Œbi ; bj �/

�N yR.Z16/[N yR.Z16/[N�=2.Œbi ; bj �/

DZR [N�=2.Œbi ; bj �/:
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Let �0 be the simplex in M0 with vertices b0; : : : ; b3 . Then the corresponding sides
of � and �0 either lie in ZR or are �

2
–fellow-travelers. Since x 2�XZR , it follows

that d.x;�0/ < � . But the convex manifold M0 contains �0 , hence x 2N�.M0/, as
desired.

2.4 Cusps, tubes and Dehn filling

A cusped hyperbolic 3–manifold is one that is complete, noncompact and with finite
volume. Every cusped manifold M can be decomposed into a compact submanifold A
and a disjoint union of horocusps. Here, a .3–dimensional, rank-2) horocusp is
C DB=� , where B �H3 is a horoball and � ŠZ�Z is a discrete group of parabolic
isometries that preserve B . The boundary @C D @B=� is called a horotorus.

A tube is a compact, convex hyperbolic solid torus. Any tube W contains exactly one
closed geodesic, called the core curve and denoted ı.W /. A round tube is a uniform
r –neighborhood about its core curve.

Given a hyperbolic manifold M and � > 0, the �–thick part M�� is the set of all
points whose injectivity radius is at least �

2
. The �–thin part is M�� DM XM�� .

A famous consequence of the Margulis lemma is that there is a uniform constant �3
such that for every � � �3 and every complete hyperbolic 3–manifold M, the thin
part M�� is a disjoint union of horocusps and round tubes.

Let M be a cusped hyperbolic 3–manifold. Given a horocusp C �M, and a slope ˛
on @C, the length of ˛ , denoted by `.˛/, is the length of a Euclidean geodesic
representative. The normalized length of ˛ is the quantity L.˛/D `.˛/=

p
area.@C /,

which is left unchanged when C is expanded or contracted. The definitions of `.˛/
and L.˛/ extend linearly to nonprimitive homology classes in H1.@C /.

For a slope ˛ on @C, Dehn filling M along ˛ is the process of removing a horocusp C
and gluing in a solid torus W so that the meridian disk is mapped to ˛ . The resulting
3–manifold is denoted by M.˛/. For an integer k > 1, Dehn filling M along k˛
produces a 3–orbifold with base space M.˛/ and singular locus of order k along the
core curve of the added solid torus W . The same definition applies to Dehn fillings
of M along multiple horocusps.

Thurston showed that the change in geometry under Dehn filling is controlled by the
length of a filling slope [47]. Hodgson and Kerckhoff made this control much more
quantitative [27; 28]. The following theorem, building on their work, is essentially due
to Brock and Bromberg [12].
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Theorem 2.7 Let � > 0, � > 0 and J > 1 be constants, where � � �3 . Then
there exists a number K DK.�; �; J / such that the following holds for every cusped
hyperbolic 3–manifold M:

Let C1; : : : Cn be a disjoint collection of horocusps, where each Ci is a component of
M�� . Let ADMX

S
Ci . Let ˛1; : : : ; ˛n be (possibly nonprimitive) homology classes

on @C1; : : : ; @Cn . Then, for any Dehn filling in which each ˛i satisfies L.˛i /�K
p
n,

we have the following:

(1) N D M.˛1; : : : ; ˛n/ has a complete hyperbolic metric, in which the cores
ı1; : : : ; ın of the added solid tori are closed geodesics.

(2) There is a diffeomorphism 'W M !N X .ı1[ � � � [ ın/, whose restriction to A
is J –bilipschitz.

(3) Let S � A be a surface. If S is �–convex, then the image '.S/ is �
2

–convex.
Conversely, if '.S/ is �–convex, then S is �

2
–convex.

Proof Brock and Bromberg proved the same result under hypotheses on N rather
than M (one needs to assume that the total length of the cores ı1; : : : ; ın � N is
sufficiently small). See [12, Theorem 1.3] for the J –bilipschitz diffeomorphism and
[12, Corollary 6.10] for the control of extrinsic curvature. Using estimates by Hodgson
and Kerckhoff [27], Magid translated their result into hypotheses on normalized length
in M [34, Theorem 1.2]. As Hodgson and Kerckhoff clarify in [28], the methods apply
equally well to a simultaneous orbifold filling of multiple cusps, so long as each ˛i has
normalized length L.˛i /�K

p
n. See the remark containing [28, equation (37)].

We remark that the length cutoff K DK.�; �; J / in Theorem 2.7 is independent of the
manifold M. The dependence of K on the constants � , � and J is made explicit in
forthcoming work of Futer, Purcell and Schleimer [20]. We will not need this here. In
fact, Theorem 2.7 is already stronger than what we need; see Remark 4.10.

2.5 Covers, lifts, and elevations

Throughout the paper, we deal with immersed objects in hyperbolic 3–manifolds, as
well as their preimages in (finite or infinite) covering spaces. This requires some careful
terminology.

Suppose that X and M are manifolds, pW �M !M is a covering map and f W X!M

is an immersion. If f�.�1X/� p�.�1 �M/, the map f lifts to yf W X! �M. Such a lift
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is determined by a local inverse to p at a point of f .X/. We call yf the lift of f and
the image yf .X/ the lift of X in �M.

More generally, if � W zX !X is the universal covering map, then f ı� always has
a lift zf W zX ! �M. Again, the lift is determined by a local inverse to p at a point
of f .X/. We call the image zf . zX/ an elevation of X in �M. If pW �M !M is a finite
cover, an elevation of X in �M is a lift of some finite cover of X. However, if f is not
one-to-one, an elevation of X may fail to be a component of p�1.X/.

A subgroup H �G is called separable if H is the intersection of finite-index subgroups
of G. The group G is called residually finite if f1g is separable, and subgroup-separable
if all finitely generated subgroups are separable. A deep observation of Scott [45] is
that if X is compact and f W X !M is an immersion that lifts to an embedding in
some infinite cover of M and f�.�1X/ is separable in �1.M/, then f also lifts to
an embedding yf W X ! �M into a finite cover �M.

Hyperbolic manifold groups are residually finite by Selberg’s lemma. Scott showed
that the fundamental groups of surfaces are subgroup-separable [45]. Agol showed that
all (finitely generated) fundamental groups of hyperbolic 3–manifolds are subgroup-
separable [2, Corollary 9.4], completing a program developed by Wise [51; 50]. Our
argument in Section 4 uses Agol’s theorem, although this is mainly a matter of con-
venience; see Remark 4.11. The argument in Section 7 uses subgroup separability in
surfaces, and draws on the previous work of Baker and Cooper that does the same.

3 Fat tubes, thin surfaces, and pancakes

This section lays out some elementary results that are needed in the proof of Theorem 1.5.
In Section 3.1, we explore the notion of quasi-Fuchsian manifolds with nice product
structures, and show that collared geodesics in such manifolds are naturally classified
into three types (Definition 3.5). In Section 3.2, we characterize ubiquitous collections
of surfaces in a 3–manifold using the notion of a pancake (Definition 3.7). The
advantage of this point of view is that pancakes are compact objects, hence are well
behaved under Dehn filling.

3.1 Nice product structures

A product structure on a quasi-Fuchsian manifold Q Š S � I is a diffeomorphism
f W S � Œ�1; 1�!Q . The two boundary components of Q are @˙QD f .S � f˙1g/.
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The arc f .x � Œ�1; 1�/ is called vertical. A product structure determines a map
�hW Q ! S called horizontal projection. The midsurface of Q is f .S � 0/. The
midsurface is only well defined up to isotopy, because it depends on the choice of
product structure.

The constants in the following definition are convenient but somewhat arbitrary.

Definition 3.1 A properly embedded geodesic ˛ in a convex hyperbolic manifold M
has a fat collar if any path  that starts and ends on ˛ and has `./�0:01 is homotopic
into ˛ . In particular, ˛ must be length-minimizing on a scale up to 0:01.

A fat tube is a tube that contains a neighborhood of radius r D 0:01 about its core
geodesic. In particular, the core of a fat tube has a fat collar.

A product structure on Q Š S � I is nice if every vertical arc ˇ has length and
curvature at most 0:01 and if the endpoints of ˇ meet @Q almost orthogonally. Here,
“almost orthogonal” means that unit tangent vectors to ˇ and @Q have inner product
less than 0:01.

The thickness of a convex QF manifold Q with boundary @�Qt @CQ is

t .Q/Dmaxfd.x�; @CQ/; d.xC; @�Q/ W x˙ 2 @˙Qg:

Lemma 3.2 (almost flat implies thin) For every � >0, there is a constant �D�.�/>0
such that if S is a QF surface with extrinsic curvature everywhere less than � , then
t .Q.S// < � .

Proof If � is small enough, every geodesic in the universal cover zS is very close to
a geodesic in H3 with the same endpoints. By Carathéodory [40, Proposition 5.2.3],
the convex hull of zS is the union of tetrahedra with vertices in zS. Hence, every point
in AQ.S/ is very close to zS. This implies Q.S/ is thin.

Lemma 3.3 There exists � > 0 such that every convex QF manifold Q with t .Q/< �
has a nice product structure.

Proof A product structure can be constructed on Q by using a partition of unity to
combine unit vector fields whose integral curves are geodesics and that are defined in
balls of radius :001 that cover Q and are almost orthogonal to @Q . The flow defined
by this combined vector field can be reparametrized to give a nice product structure.
Further details are left to the reader.
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A 1–manifold ˛ �Q is called unknotted if there is a product structure on Q such that
�hj˛ is injective. Because any two product structures on Q are isotopic, a closed curve
˛ �Q is unknotted if and only if it is isotopic to a simple closed curve in @Q . An arc
˛ properly embedded in Q is unknotted if and only if it properly isotopic to either a
vertical arc or an arc in @Q . Geodesics in general QF manifolds can be knotted, but
nice product structures preclude this for geodesics with a fat collar:

Lemma 3.4 (unknottedness) Suppose Q is a QF manifold with a nice product
structure. Let ˛ �Q be a geodesic with a fat collar. Then ˛ is compact and unknotted
in Q .

Proof The fat collar about ˛ prevents it from accumulating on itself inside Q or
traveling too deep into any cusps of Q . Thus, ˛ is compact.

Let F be the union of all vertical arcs (with respect to the nice product structure) that
contain a point of ˛ . If some vertical arc ˇ contains two points of ˛ , the niceness
of the product structure and the fat collar about ˛ imply that ˛ is almost vertical.
Thus, ˛ is isotopic to a vertical arc, hence unknotted. Otherwise, if every vertical line
in F contains a single point of ˛ , then �hj˛ is injective, hence ˛ is unknotted by
definition.

As a consequence, we have the following classification of geodesics in thin QF mani-
folds:

Definition 3.5 Let Q Š S � I be a QF manifold with a nice product structure and
let Th1.Q/ be the universal thickening of Q . Let ı � Th1.Q/ be an embedded
geodesic with a fat collar and let ˛ D ı\Q . We say that ı is

� skirting if ˛ D ∅ or an interval whose endpoints are on the same component
of @Q .

� meridional if ˛ is an interval whose endpoints are on different components
of @Q .

� longitudinal if ˛ D ı is a closed, unknotted geodesic in Q .

The terminology can be explained as follows. In the meridional case, @CQX ı has
a puncture that is a meridian of ı . In the longitudinal case, ı is isotopic into @CQ ,
hence removing it creates a pair of loops in @CQ that are longitudes of ı .
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Lemma 3.6 Let RDH3=� Š S �R be a complete QF manifold and let ı �R be
an embedded geodesic with a fat collar. Suppose that some convex thickening Q of
Core.S/ has a nice product structure. Then ˛ D ı\Q is either empty or connected.
Furthermore, ı is one of the three types enumerated in Definition 3.5. The type of ı is
independent of the choice of thickening of Core.S/.

Proof Note that if ˛ ¤∅, it must be connected by convexity of Q . In addition, ˛ is
compact and unknotted by Lemma 3.4. Thus, one of the above three possibilities must
always hold.

Let zı be an elevation of ı to zRDH3 . This is a bi-infinite geodesic with endpoints x˙ .
Let ƒ D ƒ.�/ � S21 be the limit set of � . Then ı is skirting if and only if x˙
lie in the same component of S21 Xƒ, meridional if and only if x˙ lie in different
components of S21 Xƒ, and longitudinal if and only if x˙ 2ƒ. This classification
depends only on � , hence is independent of the choice of thickening of Core.S/.

3.2 Pancakes ensure ubiquity

Definition 3.7 For 0 < � < r , a pancake is

P.�; r/DN�.Dr IH3/;

where Dr is a closed disk of radius r in a totally geodesic hyperbolic plane in H3 . The
points of @P.�; r/ that are distance � from @Dr form an annulus called the vertical
boundary, denoted by @VP.�; r/. Meanwhile, @P.�; r/X @VP.�; r/ consists of two
disks, called the upper and lower boundary, and denoted by @˙P.�; r/.

Let X be a submanifold of H3 . We say that X separates P if @�P and @CP are
contained in different path components of P XX, and X strongly separates P if @�P
and @CP are contained in different path components of H3 XX.

Lemma 3.8 Let …�;…C�H3 be hyperbolic planes such that d.…�;…C/D 2�>0.
Then there is a radius r D r.�/ > 0 and a pancake P D P.�; r.�// contained between
…� and …C such that every convex submanifold X �H3 that strongly separates P
also separates …� from …C .

Proof The pancake P D P.�; r/ is constructed as follows. Let  be the unique
geodesic segment of length 2� connecting …� to …C and let y be the midpoint of  .
Let C �H3 be the double cone constructed by coning y to @…˙ .
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Figure 1: The construction of a pancake P D P.�; r/ in Lemma 3.8

The disk Dr lies in the plane perpendicular to  at y . We choose a radius r D r.�/
large enough to ensure that the vertical boundary of P.�; r/DN�.Dr/ lies entirely
outside C. See Figure 1.

Let X �H3 be a convex submanifold that strongly separates P. In particular, X is
disjoint from @˙P. Suppose, for a contradiction, that there is a point x 2X\…C . The
geodesic line ˇ through x and y must meet both @�P and @CP, hence contains points
of X between @�P and @CP. By convexity, the interval ˇ\X must intersect @CP,
since x 2 ˇ \X is above @CP. This contradicts the hypothesis that X is disjoint
from @˙P. Thus, X must be disjoint from …˙ .

To show that X strongly separates …� from …C , consider a path ˇ � H3 from
…� to …C . Suppose, for a contradiction, that ˇ is disjoint from X. The geodesic
segment ˛ with the same endpoints as ˇ must intersect P in an interval I, with
@I � @˙P. Furthermore, X \ ˛ � P \ ˛ D I. By concatenating ˇ with the two
components of ˛X int.I /, we obtain a path from @�P to @CP through H3XX. This
contradicts the hypothesis that X strongly separates P.

The point of Lemma 3.8 is the following: If M D H3=� is a cusped hyperbolic
manifold and …�H3 is a generic hyperbolic plane, the image of … is dense in M,
and in particular makes arbitrarily deep excursions into the cusps [42; 46]. When we
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Dehn fill M, we can control geometry using Theorem 2.7, but this control only works
in regions of M that stay out of the very thin parts of the horocusps. Thus, in proving
ubiquity, we cannot directly control what happens to …˙ in Dehn fillings. By contrast,
the image of a pancake P.�; r/ in M has bounded diameter, hence lies in M�� for
some � . Thus, we can use Theorem 2.7 to understand what happens to the pancake
during Dehn filling. This is used in the proof of Theorem 4.1.

We will need to work with pancakes embedded in manifolds. If f W H3!M is a local
isometry and P �H3 is a pancake such that f jP is an embedding, we refer to the
image PM D f .P /�M as a pancake in M . The upper and lower boundaries @CPM
and @�PM are well defined via f . A submanifold X �M is said to (strongly) separate
PM in M if there are elevations zX of X and zPM of PM to the universal cover �M
such that zX (strongly) separates @� zPM from @C zPM . Since universal coverings are
regular, one may first choose a lift zPM and then find an appropriate elevation zX.

4 Drilling Kahn–Markovic surfaces

The main goal of this section is to prove Theorem 1.5. That result follows immediately
from the following reformulated statement:

Theorem 4.1 Let M DH3=� be a cusped hyperbolic 3–manifold. Let ˛1; : : : ; ˛n
be a collection of slopes on cusps of M. In addition, let P D P.�; r/ be a pancake
in H3 . Then there are constants ki 2N and an immersed QF surface F !M such
that the following hold:

(1) For every i , at least one boundary component of F is mapped to a multiple ki˛i .

(2) There is an elevation of Core.F / to H3 that strongly separates P.

Proof of Theorem 1.5, assuming Theorem 4.1 For any pair of disjoint planes …˙
whose distance is 2�, construct a pancake P D P.�; r/ as in Lemma 3.8. Let F be
a QF surface produced by Theorem 4.1. The elevation eCore.F /�H3 that strongly
separates P is a convex set, hence eCore.F / also separates …� from …C . Thus, the
surfaces produced using Theorem 4.1 are ubiquitous.

It is worth recalling that Theorem 4.1 and its consequence in Theorem 1.5 already
implies a weak form of cubulation for �1.M/. See Corollary 8.2 below for details.
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The proof of Theorem 4.1 consists of two halves: filling and drilling. After passing to
a cover where distinct slopes ˛i lie on distinct cusps, we perform a long Dehn filling
on M along multiples of ˛1; : : : ; ˛n . The result is a closed hyperbolic 3–orbifold N.
For the sake of this outline, it helps to imagine that N is a manifold. The Kahn–
Markovic theorem gives a very thin immersed QF surface S ! N. We study the
intersection of a convex thickening Q of Core.S/ with the union of Dehn filling tubes
to build a convex envelope Z DQ[V , where V consists of a subset of the tubes. This
convex envelope is embedded in some cover of N ; for now it helps to imagine that no
cover is needed.

In the second half of the proof, we surger the midsurface S of Q , while taking
care to stay within the convex envelope Z . We then drill out the Dehn filling cores,
recovering M DN X�. This produces a (possibly disconnected) surface F �Z X�.
The convexity of @Z ensures that the components of F have convex cores contained
in Z X�, which implies they are quasi-Fuchsian.

We begin the proof in Section 4.1 by laying out the drilling portion of the argument. See
Proposition 4.2 for a self-contained if somewhat lengthy statement. In Section 4.2, we
lay out the Dehn filling argument, including repeated passage to covers, and incorporate
Proposition 4.2 to complete the proof of Theorem 4.1. In Section 4.3, we sketch how
the proof of Theorem 4.1 can be modified to avoid using several large hammers.

4.1 Drilling a quasi-Fuchsian surface

We employ the following convention introduced by Baker and Cooper [8]. From
now until the start of Section 8, calligraphic letters always denote disjoint unions of
objects (typically finitely many objects). The corresponding Roman letters denote the
individual components. For instance, in the following proposition, V denotes a disjoint
union of tubes in a manifold N, whereas V is a single tube forming a component of V .
Similarly, ı.V / denotes the core of a tube V , while ı.V/ is a disjoint union of all the
cores.

Proposition 4.2 Suppose that N is a complete hyperbolic 3–manifold and Q � N
is a compact, embedded QF submanifold with a nice product structure. Suppose that
V � N is a disjoint union of fat tubes such that every tube V � V intersects Q in
a single component of intersection and Q \ ı.V / is empty or has a fat collar. Let
Z DQ[V . Suppose ��N is a geodesic 1–manifold such that �\Z D ı.V/, the
disjoint union of the cores of V .
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Suppose that M is a complete hyperbolic manifold with a diffeomorphism 'W M !

N X� such that Y D '�1.Z X�/ is convex and has finite volume in the hyperbolic
metric on M.

Then M contains a (possibly disconnected) embedded surface F . Each component
F � F is quasi-Fuchsian, with Core.F / � Y . The cusps of F correspond to the
components of � meeting Q , as follows. For each meridional geodesic ı ��, one
cusp of F is a meridian of ı . For each longitudinal geodesic ı ��, two cusps of F
are longitudes of ı . Skirting geodesics do not contribute cusps of F .

Finally, suppose that PM �M is an embedded pancake such that V\'.PM /D∅ and
Q strongly separates '.PM / in N. Then there is a component F � F whose convex
core strongly separates PM .

In the statement of the proposition, '.PM /�N is diffeomorphic but not necessarily
isometric to a pancake. Since the definition of (strongly) separating a pancake is purely
topological, the statement that Q strongly separates '.PM / is unambiguous.

The surface F in the statement of Proposition 4.2 is constructed as follows. The tubes
of V can be subdivided into three types, according to how their cores intersect Q . (See
Definition 3.5.) For each type of tube, we perform a local isotopy of the midsurface S
of Q Š S � I. After this isotopy, we let F D S X�. Most of the proof is devoted
to verifying that F has all the desired properties; this verification is broken up into a
number of claims.

Proof of Proposition 4.2 Let V be a tube component of V , let ı D ı.V / be the
core of V and let ˛ D ı\Q . If H DQ\V is nonempty, then it is connected and
convex, hence Lemma 2.1 implies �1H is isomorphic to a subgroup of �1V Š Z. If
�1H ŠZ, then H is a (convex) tube, hence ı �H �Q . Otherwise, �1H Š f1g and
H is a convex ball, hence ˛ D ı\H is empty or an arc. In every case where ˛ ¤∅,
it is compact and unknotted in Q by Lemma 3.4.

The universal thickening Th1.Q/ is a cover of N. If ˛ D ı \ Q is nonempty,
the isometric inclusion Q ,! Th1.Q/ determines a unique complete geodesic yı �
Th1.Q/ extending ˛ along a tangent vector. Following Definition 3.5, we call V �N
a skirting tube, meridian tube or longitude tube according to the type of ˛ D yı\Q .

Let S be the midsurface of Q with respect to the chosen nice product structure. For
each type of tube, we perform an isotopy of S in H. This can be done independently
for each tube V � V , because the tubes in V are compact and pairwise disjoint.
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Skirting tube If ˛ ¤∅, then it has both endpoints on the same component of @Q .
Isotope S inside H so it is disjoint from ˛ . If ˛ D∅, no isotopy is needed. In either
case, Q[V is homeomorphic to Q with V glued onto the boundary along a disk.

There is a disk †.V / � Q \ V , with @†.V / � @Q \ @V and ˛ \†.V / D ∅, that
separates ˛ from S. For future usage, we isotope each of Q and V to its own side
of †.V /. (After this isotopy, Q and V may no longer be convex. However, the
topological setup where V is glued to Q along †.V / is helpful below.)

Meridian tube In this case, H \ @Q contains two disks D˙.V / � @˙Q , each
containing an endpoint of ˛ and each serving as a compressing disk for V . Thus, after
an isotopy of S inside H, we may assume S \ı consists of one transverse intersection
point. In this case, Q[V is homeomorphic to the manifold obtained by attaching a
1–handle to Q along D˙.V /. Define †.V /D .D�.V /[DC.V //X ı .

Longitude tube In this case, V is a fat tube that contains the unknotted circle
˛ D ı.V /. As in the proof of Lemma 3.4, the vertical arcs in Q meeting ˛ form
an embedded annulus A.V / that is contained in V because V is fat. Thus, A.V / is
properly embedded in H DQ\V and contains ˛ . This annulus has one boundary
component in each component of @˙Q . After an isotopy of S in H, we may assume
that S contains ˛ .

In the longitudinal case, Q[V is homeomorphic to Q . For future usage, we take two
parallel copies of A.V /, denoted by A0.V / and A1.V /, and isotope the solid torus V
inward, until H DQ\V is the portion of Q contained between A0.V / and A1.V /.
After this isotopy, V or H may no longer be convex, but H still contains the closed
geodesic ı . Define †.V /D A0.V /[A1.V /.

After performing the above isotopy of S for each component of V , the midsurface
S �Q has the following properties: If ı is the core of a longitude tube, then ı � S. If
ı is the core of a meridian tube, then ı intersects S once transversely. If ı is the core
of a skirting tube, then ı\S D∅.

Set M D N X�. Then F D S X� is a surface properly embedded in M, which is
disconnected if and only if the union of the longitude tubes separates S.

Observe that F has punctures of two kinds. Each meridian tube gives rise to one
puncture of F , whose slope is a meridian of a component of �. Each longitude tube
gives rise to two punctures of F , whose slopes are longitudes of a component of �.
The skirting tubes do not contribute punctures.
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From now on, we focus attention on a component F � F . The following sequence of
claims shows that F has all the required properties:

Claim 4.3 F is incompressible in M.

Suppose otherwise. Then there is a compressing disk D �M, with D\F D @D D ˛ ,
an essential simple closed curve on F. Since F � S and S is incompressible in N,
there must be a disk D0 � S with @D0 D ˛ . This disk D0 � S cannot contain any
component of �, because each component is a geodesic in N. Thus, D0 meets each
component of � transversely in at most one point. Since D � N X� is disjoint
from � by hypothesis, the 2–sphere E DD[D0 must meet each component ı ��
transversely in at most one point. But the hyperbolic manifold N is irreducible, so E
is separating, hence E \ ı D∅. It follows that D0 DE \S is disjoint from �, hence
D0 � F , and so ˛ is not essential in F . This contradiction proves the claim.

Recall that Z DQ[V and that Y D '�1.Z X�/ is a convex submanifold of M.

Claim 4.4 F has no accidental parabolics in M. Consequently, the inclusion-induced
representation �W �1F ! �1M is faithful and type-preserving.

Suppose, for a contradiction, that a nonperipheral loop in F is a parabolic in M. By
Jaco’s annulus theorem [30, Theorem VIII.13] — see also [15, Lemma 2.1] — there
is an embedded annulus B � M with one boundary component an essential loop
˛ � F and the other boundary component ˇ � T , where T �M is a horotorus. Since
˛ � F � Y and Y is convex, T must bound a neighborhood of some core curve ı of
some tube of V �Z . Thus, after an isotopy, we may take B and T to be embedded
in Y , with ˛ � F XV .

For each tube V � V , we have constructed a planar surface †.V /; this is a disk for
skirting tubes, a pair of once-punctured disks for a meridian tube, and a pair of annuli
for a longitude tube. Define †.V/ D

S
V�V †.V / to be the disjoint union of these

planar surfaces. A small isotopy of B ensures that it intersects †.V/ transversely.
Since B and every component of †.V/ are incompressible in Y , a further isotopy
ensures that each component of B \†.V/ is essential in both surfaces. No component
of B \†.V/ can be an arc, because @†.V / � @Y for each tube V , whereas B is
disjoint from @Y . Thus, B \†.V/ consists of simple closed curves 1; : : : ; k that
are essential in both B and †.V/. We order these curves from ˛ � @B to ˇ � @B .
Observe that k > 0, because ˛ � F XV whereas ˇ � V .
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It follows that B cannot enter a skirting tube V , because for such a tube †.V /DD.V /
is a disk, which contains no essential closed curves.

We now focus on 1 , the curve of B \†.V/ that is closest to ˛ . Then 1 is the core
curve of some annulus belonging to †.V /. If V is a meridian tube, then 1 is the
meridian of ı D ı.V /. Since ˛ is isotopic to 1 through B , it follows that ˛ is a
meridian of ı , hence peripheral in F .

If V is a longitude tube, then 1 is isotopic to a longitude of ı D ı.V /. In addition,
1 is isotopic to ˛ � F through B and to the closed curve F \†.V / through †.V /.
Again, we conclude that ˛ is peripheral in F. Thus, in all cases, ˛ is not actually
accidental.

Claim 4.5 F is a quasi-Fuchsian surface in M such that Core.F /�Y D'�1.ZX�/.

Recall that Y � M is convex by hypothesis, and F � Y by construction. Thus,
Core.F / � Y . Since �W �1F ! �1M is faithful and type-preserving by Claim 4.4,
Theorem 2.2 says that F is quasi-Fuchsian.

Claim 4.6 Let PM �M be an embedded pancake such that V \'.PM /D∅ and Q
strongly separates '.PM / in N. Let F be the unique component of F D S X� that
intersects '.PM /. Then each of F and Core.F / strongly separates PM .

As in Claim 4.5, let MF be the cover of M corresponding to �1F. Then F has
an isometric lift yF �MF . This determines an isometric lift yPM �MF such that
yF \ yPM ¤∅. We will show that the two components of @˙ yPM are contained in differ-

ent path components of MF X
yF and in different path components of MF XCore. yF /.

This implies strong separation in the universal cover H3 .

Let y̌�MF be a path from @� yPM to @C yPM . Projecting down to M, we obtain a path
ˇ from @�PM to @CPM . Mapping over to N, we obtain a path '.ˇ/ from '.@�PM /

to '.@CPM /. Since Q strongly separates '.PM /, we have Q\'.@˙PM /D∅. In
addition, V \'.@˙PM /D∅. Thus, '.ˇ/ starts and ends outside Z DQ[V .

Recall that Q has an isometric lift yQ � R D Th1.Q/, where R! N is the quasi-
Fuchsian cover of N corresponding to Q . The covering projection MF ! .RX y�/

determines an image y'. yPM / � R that is an isometric lift of '.PM / � N. It also
determines a unique image y'. y̌/, which runs from y'.@�PM / to y'.@CPM /. Since
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Q strongly separates '.PM /, the path y'. y̌/ � R must have an essential intersec-
tion with yQ . Consequently, '.ˇ/ has an essential intersection with Q , with the
midsurface S of Q , and with F D S X�.

Observe that '.ˇ/ cannot have an essential intersection with any component surface
of F besides F. If such an intersection were to occur, the pullback of '.ˇ/ to MY

would start on @� yPM and end somewhere other than @C yPM , which means it would
not agree with y̌. Thus, '.ˇ/ must have an essential intersection with F .

This means y̌ intersects yF �MF . Since y̌ was an arbitrary path in MF from @� yPM

to @C yPM , it follows that the two components of @˙ yPM are contained in different
path components of MF X

yF. Hence, yF strongly separates yPM and F strongly
separates PM .

To show that Core.F / strongly separates PM , it remains to check that

Core.F /\ @˙PM D∅:

Recall that the endpoints of '.ˇ/ lie outside Z DQ[V . Thus, the endpoints of ˇ lie
outside Y D '�1.Z X�/. On the other hand, the convex set Core.F / is contained
in Y . Thus, ˇ starts and ends outside Core.F /. In the cover MF , the path y̌ starts and
ends outside Core. yF /. Since y̌ was an arbitrary path in MF from @� yPM to @C yPM ,
the conclusion follows.

This completes the proof of Proposition 4.2.

4.2 Dehn filling and covers

Here are the main steps of the proof of Theorem 4.1:

1. Replace M by a finite cover where (elevations of) the slopes ˛1; : : : ; ˛n lie on
distinct cusps and where the pancake P embeds.

2. Perform a Dehn filling, resulting in a hyperbolic orbifold N DM.k˛1; : : : ; k˛n/.
The integer k is chosen large enough so that Theorem 2.7 preserves much of
the geometry of M in the filling. The cusps of M get replaced by a union of
tubes W . See properties (F1)–(F5) for details.

3. Map the pancake P �H3 into M, and then into N via the bilipschitz map ' .
The result is a pancake PN . Then, find a very large immersed disk D! N

that separates PN and that has a transverse intersection with each core geodesic.
See Claim 4.7 for details.
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4. Apply the Kahn–Markovic theorem [31] to find an immersed QF surface S!M

that closely fellow-travels the disk D. This surface has transverse, meridional
intersections with each core curve, and also strongly separates PN .

5. Pass to a cover yN of N where a certain thickening Q0 of Core.S/ is embedded,
and where Q0 intersects each tube of �W at most once. A finite cover with these
properties exists by Agol’s work [2]; see also Remark 4.11.

6. Working in the cover yN, apply Theorem 2.5 to show that the union of Q0
and the tubes that intersect it has a convex thickening Z such that @Z closely
fellow-travels Core.S/ on the regions of interest. In particular, Z still separates
the pancake PN .

7. Apply Proposition 4.2 to the convex envelope Z � yN, recovering a disconnected
QF surface F . This surface is embedded in the cover �M of M corresponding
to the cover yN of N. By construction, one component F � F fellow-travels
the disk D, hence contains at least one meridional cusp projecting to a multiple
of each ˛i . It also separates the pancake.

The above outline deliberately omits any mention of quantitative constants that control
thickness, embedded collars and geodesic curvature. We now proceed to the full proof,
with constants.

Proof of Theorem 4.1 Let P D P.�; r/ be a pancake in H3 . Without loss of
generality, assume that 5

4
� is smaller than the constant � from Lemma 3.3. (Otherwise,

make the pancake P thinner and apply the same proof.) Let � D �
��
4

�
be as in

Lemma 2.4. Then, for every convex set X � H3 , the boundary @Th�=4.X/ is �–
convex. In particular, the pancake P D P.�; r/D Th�=4.Th3�=4.Dr// has �–convex
boundary.

By residual finiteness, there is a finite regular cover of M where the pancake P embeds,
and where elevations of the peripheral curves ˛1; : : : ; ˛n lie on distinct cusp tori. (See
[16, Lemma 2.1] for an explicit recipe ensuring that a cusp torus T �M has many
preimages in a cover.) Observe that any QF surface in a cover M !M satisfying the
desired conditions (1) and (2) projects to a QF surface in M with the same properties.
Thus, no generality is lost by assuming that every cusp of M contains exactly one
slope ˛i .

After the above reduction, we can consider the embedded pancake PM �M that lifts
to P �H3 . Thus, @CPM and @�PM are �–convex, embedded surfaces in M.
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Let � < �3 be small enough to ensure that PM �M�� and that d.PM ; @M��/� 1.
Let R D R

��
4

�
be as in Theorem 2.5. Then there is a constant �0 D e�.RC2/� with

the property that in every horocusp C �M, the �0–thin part of C is at least distance
RC 1 away from M�� .

Let C1; : : : ; Cn denote the horocusp components of M�� , and let C 0i � Ci be the
corresponding horocusp components of M��

0

. By the above choice of �0, we have
d.@C 0i ; @Ci /�RC 1. The horotori @Ci and @C 0i are 1–convex.

Let A D M X
S
Ci and A0 D M X

S
C 0i . Then we may think of ˛i as a slope

on either @Ci or @C 0i , with the same normalized length. For a large integer k , let
N D M.k˛1; : : : ; k˛n/ be a closed hyperbolic orbifold obtained by Dehn filling
on M. More precisely, k � 1 needs to be large enough that Theorem 2.7 ensures a
diffeomorphic embedding 'W A0!N with the following properties:

(F1) If S � A0 is a �–convex surface, then '.S/ is �
2

–convex. If '.S/� '.A0/ is a
�–convex surface, then S is �

2
–convex.

(F2) The image '.PM / is a convex ball in N, with �
2

–convex boundary.

(F3) There is a thinner pancake PN D P
�
3
4
�; rN

�
isometrically embedded in '.A0/

such that PN separates '.@�PM / from '.@CPM /.

(F4) For every i � n, the tori '.@Ci / and '.@C 0i / are �
2

–convex. As a consequence,
there is a nested pair of (convex) tubes W 0i � Wi , with @W 0i D '.@C 0i / and
@Wi D '.@Ci /.

(F5) The Lipschitz constants on ' give d.@W 0i ; @Wi /�RC� and d.@Wi ; @PN /� �.

Each of the above statements is ensured by conclusions (2) and (3) of Theorem 2.7.

Let ıi be the core of Wi . We define WDW1[� � �[Wn and W 0DW 01[� � �[W
0
n. Then

each of W and W 0 is a disjoint union of convex tubes, with cores along �D ı1[� � �[ın .

Consider a covering map pW yN ! N. Let y� D p�1.�/ and �W D p�1.W/. This
defines a corresponding cover �M D yN X y�, whose hyperbolic metric is lifted from M.
The pancake PM �M has a lift yPM � �M, namely the image of the pancake P �H3

stipulated in the hypotheses. Then the diffeomorphic image y'. yPM / � yN defines
an isometric lift yPN � yN, which still separates y'.@� yPM / from y'.@C yPM /, as in
condition (F3). We call yPN � yN the preferred lift of PN to yN.

Applying the above construction to zN DH3 gives a preferred lift zPN �H3 .

Claim 4.7 There is a totally geodesic disk D �H3 with the following properties:
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(D1) The disk D intersects at least one elevation of each ıi �N.

(D2) Every intersection of D with an elevation of ıi is transverse.

(D3) There is a number � > 0 such that N�C�=2.D/ separates the preferred lift
zPN � zN DH3 .

This follows as a corollary of a result by Shah [46] and Ratner [42]: almost every
geodesic plane …�H3 has dense image in N. Hence, an arbitrarily small perturbation
of the midplane of zPN contains a disk with the desired properties.

Define a pancake zP 0DN� .D/�H3 . Then, by (D3), the thicker pancake Th�=2. zP 0/D
N�C�=2.D/ separates zPN �H3 . This thickened pancake Th�=2. zP 0/ maps to N by a
local isometry.

So far, N is a closed hyperbolic orbifold, with singular locus of order k along the
core of every tube Wi �W . By Selberg’s lemma, a finite regular cover yN of N is a
closed hyperbolic manifold. The preimage of W in this cover, denoted by �W � yN, is
a disjoint union of tubes with nonsingular core along the preimage y� of �. Then yN
is a Dehn filling of �M D yN X y�. Note that the meridian of every component of y� is a
primitive slope in �M, which maps to k˛i �M for some i .

By residual finiteness, we may select yN so that the locally isometric immersion
Th�=2. zP 0/ ! N lifts to an embedding in yN, with image an embedded pancake
Th�=2. yP 0N /.

We will pass to finite covers of N several more times, keeping the name yN. Each
newly constructed yN is a cover of the previously constructed covers of N. Each time
we pass to a cover, we keep the complete preimage of the nested sets ��W 0 �W ,
denoted by y�� �W 0� �W , respectively. Each time, the manifold �M D yN X y� is a finite
cover of M. In contrast with the complete preimage �W , we keep only the preferred
lift of the pancakes PM and PN , denoted by yPM and yPN , respectively. Each time,
the lifted diffeomorphism y'W �M ! yN X y� continues to satisfy (F1)–(F5). Combining
(F3) with (D3), we have an embedded pancake yP 0N � yN, with an embedded thickening
Th�=2. yP 0N / that separates y'.@� yPM / from y'.@C yPM /. See Figure 2.

By the Kahn–Markovic theorem [31], there is a ubiquitous collection of immersed
QF surfaces in yN, with arbitrarily small extrinsic curvature. By Lemma 3.2, a surface
with small extrinsic curvature has a convex core with very small thickness. Thus, their
theorem implies:
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y'. yPM /

yPN

yP 0N

y� y� y�

Figure 2: A cross-sectional view of the nested pancakes appearing in the
proof of Theorem 4.1. All of these objects are embedded in a finite cover yN
of N.

Claim 4.8 There is a quasi-Fuchsian covering � W S �R! yN such that Core.S/ has
a convex thickening Q0 DQ.S/Š S � I with the following properties:

(KM1) t .Q0/ <
�
4

.

(KM2) � W Q0! yN has an elevation zQ0 � zN DH3 , which strongly separates the
preferred lift zP 0N .

(KM3) Every component of ��1.y�/ that intersects ��1. yP 0N / is meridional in Q0
(see Definition 3.5).

Property (KM1) holds by Lemma 3.2, because Kahn–Markovic surfaces are almost
geodesic. Property (KM2) holds because these surfaces are ubiquitous. Property (KM3)
holds because S can be chosen so that an elevation zQ0D zQ.S/ lies arbitrarily close to
the disk D of Claim 4.7, whose intersections with the elevations of � are transverse.

By Agol’s theorem [2, Theorem 9.2], �1. yN/ is subgroup-separable, hence we may
pass to a finite cover of yN in which Th8.Q0/ is an embedded submanifold. We
replace yN by this cover, retaining the name yN. As described above, we keep the
complete preimage of the unions of tubes W and W 0, and the single preferred lift of
each pancake.

Applying subgroup separability again, we pass to a finite cover of yN such that Th�.Q0/
lifts to the cover, and �W \Th�.Q0/ is empty or connected for every component �W � �W .
By convexity, this means �W 0\Th�.Q0/ is empty or connected for every component�W 0 � �W 0.
Let �W 01; : : : ; �W 0m be the components of �W 0 with the property that Th�=2.�W 0j /\Q0¤∅.
Let �W1; : : : ; �Wm be the corresponding components of �W . We apply Theorem 2.5 to Q0
and these tubes. That is, Q0 and Th8.Q0/ play the roles of M0 and Y0 , respectively.
For 1 � j � m, the nested tubes Th�=2.�W 0j / and �Wj play the roles of Mj and Yj ,
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respectively. Note that each of the above submanifolds of yN is convex. The tubes �Wj
are disjointly embedded by the Dehn filling construction of N. Furthermore, condition
(F5) gives �Wj � ThRC�.�W 0j /. Thus, all the hypotheses of Theorem 2.5 hold for
RDR

��
4

�
, and we have

Z WDTh�=4 CH.Q0[Th�=2.�W 01/[ � � � [Th�=2.�W 0m//
�Th�=4.Th�=4.Q0/[ThRC�=2.�W 01/[ � � � [ThRC�=2.�W 0m//
DTh�=2.Q0/[ThRC3�=4.�W 01/[ � � � [ThRC3�=4.�W 0m/
�Th�=2.Q0/[ �W1[ � � � [ �Wm:

Here, the first containment is by Theorem 2.5 and the second containment is by
condition (F5).

Define Q D Z \ Th�=2.Q0/ and V D Z \ .�W1 [ � � � [ �Wm/. Then V is a disjoint
union of tubes, each of which has connected intersection with Q . Since t .Q0/ <

�
4

,
and the thickening adds �

2
to each side, we have t .Q/ < 5

4
�. Thus, by the choice of �

at the beginning of the proof, Lemma 3.3 implies Q has a nice product structure.

Recall that Z is the �
4

–thickening of a convex set in yN. Thus, by the definition
of � at the beginning of the proof, @Z D @.Q [ V/ is �–convex. By construction,
every component of �W 0 \ V is properly contained inside Z . By the definition of�W 01; : : : ; �W 0m� V , every tube of �W 0XV is disjoint from Th�=2.Q0/, which means that
these tubes lie entirely outside Z . Thus, @Z � yN X �W 0D y'. yA0/, where yA0 � �M is the
region outside the horocusps on which y' has the desired metric properties. Therefore,
by property (F1), it follows that y'�1.@Z/� �M is �

2
–convex.

Let Y D y'�1.ZX y�/� �M . Then the (finitely many) tubes of �W 0 that lie inside Z are
replaced by (finite-volume) horocusps in Y . Thus, Y has finite volume. Furthermore,
@Y D y'�1.@Z/ is �

2
–convex in the hyperbolic metric on �M. Then an elevation of Y

to �M is a closed, connected subset of H3 with locally convex boundary, which means
it is convex. Thus, Y is convex as well.

We have now checked that the submanifolds Q;V; y�� yN and Y � �M satisfy all the
hypotheses required by Proposition 4.2. That proposition performs an isotopy of S
inside Q , after which every component of F D S X y� is quasi-Fuchsian in the metric
on �M. To complete the proof of the theorem, we claim that one component F � F
has all the desired properties.
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Claim 4.9 There is a unique component F �F such that F \ yPM ¤∅. Furthermore:

(1) For every slope ˛i �M, at least one cusp of F maps to some multiple ki˛i .

(2) There is an elevation of Core.F / to H3 that strongly separates P D zPM .

Recall that by property (KM2), Q0 strongly separates yP 0N , hence Q � Th�=2.Q0/
strongly separates N�=2. yP 0N /. Combining (F3) with (D3), as above, we conclude that
Q strongly separates y'. yPM /. In particular, Q\ y'. yPM /¤∅ and Q0\ y'. yPM /¤∅.
See Figure 2.

By property (KM3), every component of y� that intersects yP 0N is meridional in Q0 .
By Lemma 3.6, every component of y� that intersects yP 0N is also meridional in Q . In
particular, y�\ yP 0N does not disconnect the midsurface S of Q . Thus, there is exactly
one component F � F such that F \ yPM ¤∅.

By Proposition 4.2, every component of y� that is meridional in Q gives rise to a
cusp of F that is a meridian of �. By property (D2), the components of y�\ yP 0N
include geodesics that project to every core ıi �N. Thus, for every slope ˛i on M,
the component F � F contains at least one cusp projecting to ki˛i . (The multiple ki
incorporates the regular cover of M constructed at the very beginning of the proof, as
well as the manifold cover of the orbifold N constructed using Selberg’s lemma.)

Finally, since Q strongly separates y'. yPM /, and �W \ y'. yPM /D∅ by property (F5),
Proposition 4.2 implies that Core.F / strongly separates PM . Thus, some elevation of
Core.F / to H3 strongly separates P D zPM .

4.3 Making do with less

In this section, we outline how the proof of Theorem 4.1 can be modified to avoid
appealing to Shah’s theorem [46], Agol’s theorem [2] or the work of Brock and
Bromberg [12]. The upshot of Remarks 4.10–4.12 is that almost all of the technical
work in the proof of Theorem 1.5 can be handled by soft classical arguments. The one
“major hammer” needed for the proof is the Kahn–Markovic theorem [31].

Remark 4.10 In the proof of Theorem 4.1, our use of Brock and Bromberg’s result,
Theorem 2.7, can be replaced by a softer appeal to Thurston’s results on geometric
convergence under Dehn filling. Suppose M is a finite-volume hyperbolic manifold
and X � M is a compact submanifold obtained by removing a set of horocusps.
Then the map Dev.X/ ! Hom.�1X;PSL.2;C// that sends the developing map
for an incomplete hyperbolic metric on X to its holonomy is open. See Thurston
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[47, Theorem 5.8.2], Goldman [21] and Choi [14]; compare Cooper, Long and Tillmann
[17, Proposition 1.2]. It follows that for any sufficiently large Dehn filling N of all
the cusps of M, there is a diffeomorphic embedding of X into N that is close in the
smooth topology to an isometry. In particular, such a map is .1C�/–bilipschitz and
the second derivative is close to 0. The control of second derivatives ensures that
�–convex surfaces stay convex.

Remark 4.11 In the proof of Theorem 4.1, our appeal to Agol’s theorem on subgroup
separability [2] is convenient but not actually necessary.

Picking up the proof after Claim 4.8, suppose we have found an immersed QF surface
S ! yN, with immersed convex thickening Q0 . Then we may pass to an infinite
cover N ! yN, where Th8.Q0/ embeds and �W � yN pulls back to a noncompact
submanifold W with the following properties: For every component W �W such that
Th�.Q0/\W ¤ ∅, the intersection must be connected and W must be a compact
tube. For concreteness, one could take N to be the cover corresponding to �1.Q0/
amalgamated with one extra loop (about some power of a core) for every skirting or
meridional intersection Th�.Q0/ \ �W . The compactness of Q0 ensures that only
finitely many tubes intersect Th�.Q0/, hence �1.N / is finitely generated. In fact, the
virtual amalgamation theorem of Baker and Cooper [6, Theorem 5.3] ensures that N
is geometrically finite.

With this setup, Theorem 2.5 applies exactly as above to give a compact, convex
manifold Z D Q[ V . Let x� be the union of all the cores of W , which may have
noncompact components and infinitely many components. Then Proposition 4.2 applies
to give an embedded QF surface in M DN X x�. Since Z\ x� consists of finitely many
closed geodesics, it still the case that Y D '�1.ZX x�/ has finite volume. Note that M
inherits its hyperbolic metric from M, and that Proposition 4.2 does not require any
manifold except Y to have finite volume. The surface F �M projects to an immersed
QF surface in M, and Claim 4.9 verifies that F has all the desired properties.

Remark 4.12 In the proof of Theorem 4.1, we use Claim 4.7 (which follows from the
work of Shah [46] and Ratner [42]) to ensure that a certain region of a Kahn–Markovic
surface hits all the Dehn filling cores transversely. This is used in Proposition 4.2
to produce a single component F � F with cusps along some multiple of every
slope ˛i . However, even without Claim 4.7, we could focus on one slope ˛i and apply
Proposition 4.2 to find a connected QF surface Fi with at least one cusp mapping to a
multiple of ˛i . Moreover, the set of surfaces with this property is ubiquitous.
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Given surfaces F1; : : : ; Fn realizing slopes ˛1; : : : ; ˛n , one could use the techniques
of Baker and Cooper [6] to build a single surface F immersed in M such that every
cusp of Fi is covered by a cusp in F. As we explain in Section 5 below, such a
surface F can be obtained by gluing together subsurfaces of finite covers of the Fi .
By the argument in Sections 6 and 7, the set of such surfaces is ubiquitous. This line
or argument recovers Theorem 4.1 and proves Theorems 1.2 and 1.5 without relying
on Claim 4.7.

5 Gluing and prefabrication

This section summarizes without proof some of the results of Baker and Cooper [8].
In what follows, M is a complete finite-volume hyperbolic 3–manifold and Q is a
finite-volume QF manifold.

When working with 3–manifolds that contain surfaces with cusps, it is convenient to
isotope everything so the cusps have compatible product structures. Suppose B �Hn

is a horoball centered on a point x 2 @Hn bounded by the horosphere H D @B . A
vertical ray is a ray in B that starts on H and limits on x . Given P �H, the set lying
above P is called a vertical set and is the union, V.P /, of the vertical rays starting
on P. If P � H is convex, V.P / is called a thorn and P is called the base of the
thorn. If P D I �R is an infinite strip, V.P / is a slab.

A hyperbolic n–manifold E is an excellent end if it has finite volume and is isometric
to V=� for some vertical set V � B and discrete group � � Isom.Hn/ preserving V .
The horospherical boundary of E is @HED .V \H/=� . An excellent rank-1 cusp is a
3–manifold V=� where V is a slab and � is a cyclic group of parabolics preserving V .

A (possibly disconnected) hyperbolic manifold M is excellent if M DM c[VM , where
M c is compact, each component of VM is an excellent end and M c \VM D @HVM .
The pair .M c ;VM / is called an excellent decomposition of M. For example, an ideal
convex polytope is an excellent manifold whose ends are thorns. In addition, a complete
hyperbolic manifold with finite volume is excellent, since any ends of M are horocusps.
It is routine to show that if S is a QF surface then Q.S/ has ends that are excellent
rank-1 cusps, hence Q.S/ is excellent.

A compact, orientable surface properly embedded in a compact, orientable 3–manifold
is essential if it is incompressible and @–incompressible.
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Definition 5.1 A surface S embedded in an excellent 3–manifold M DM c [V is
excellently essential if each component of S \V is an excellent annulus in the induced
metric on S, and Sc DS\M c is a compact essential surface in M c with @Sc � @M c .

For example, if Q.S/ is embedded in M, then both components of @Q.S/ are excel-
lently essential. Recall that a slope on a torus is an isotopy class of essential simple
closed curves. In view of the preceding, it makes sense to talk about the slope of
an excellently essential surface S in a cusp of M, and the slope of a rank-1 cusp
embedded in a rank-2 cusp.

Definition 5.2 An ideal spider is an excellent convex hyperbolic 3–manifold X with
simply connected ends. Thus, there is an excellent decomposition X D B [L such
that B is compact and convex, and each component of L is a thorn. The components
of L are called legs and B is called the body.

The definition implies that the holonomy of an ideal spider has no parabolics. A special
case of an ideal spider with k legs is a convex polytope with k ideal vertices. In general,
the body of a spider need not be simply connected. The following is immediate:

Proposition 5.3 [8, Proposition 3.3] Suppose that M is a complete hyperbolic 3–
manifold and Q1;Q2�M are excellent QF submanifolds. Then Q1\Q2 is excellent.
If Q1 and Q2 have different slopes in every cusp of M, then each component of
Q1\Q2 is an ideal spider.

If M and N are excellent hyperbolic manifolds, a map f W M !N is excellent if it
is a local isometry and there are excellent decompositions with f �1.N c/DM c . It
follows that each vertical ray in VM maps to a vertical ray in VN .

An immersed QF manifold is a triple .M;Q; f /, where f W Q!M is an excellent
map between excellent hyperbolic 3–manifolds and Q is quasi-Fuchsian. An immersed
ideal spider is some .M;R; p/ where M is an excellent 3–manifold, R is an ideal
spider and pW R!M is an excellent map.

If N is a submanifold of a cover of a hyperbolic manifold M, the restriction of the
covering projection gives a local isometry pW N !M, called the natural projection. If
S is an immersed QF surface in M, the natural projection Q.S/!M is excellent.
The following result generalizes Proposition 5.3 to immersed QF manifolds:
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Theorem 5.4 [8, Theorem 3.4] Suppose that .M;Q1; f1/ and .M;Q2; f2/ are
immersed QF manifolds. Whenever rank-1 cusps V1 � Q1 and V2 � Q2 map to
the same cusp of C �M, suppose f1.V1/ and f2.V2/ represent linearly independent
homology classes in H1.C /. Suppose there are basepoints qi 2 Qi such that the
basepoint mD f1.q1/D f2.q2/ is located in an excellent end of M.

Then there is a connected hyperbolic 3–manifold P D yQ1[ yQ2 , where pi W yQi !Qi

is a finite covering and R D yQ1 \ yQ2 is an ideal spider with at least two legs. Thus,
.Qi ; R; pi jR/ is an immersed ideal spider.

The holonomy provides an identification of �1.M;m/ with a Kleinian group � �
Isom.H3/. Then the QF manifolds Qi have holonomy �i D .fi /�.�1.Qi ; qi // � �
and the holonomy of R is �1\�2 .

Part of the point of Proposition 5.3 and Theorem 5.4 is that the spider RD yQ1\ yQ2
retains all the information for gluing yQ1 to yQ2 . More evocatively, spiders know how
to sew a web. This is useful in our constructions, where we want to glue further covers
of yQ1 and yQ2 . If the spiders lift to the covers, they retain all the necessary gluing
instructions.

The goal in our proof of Theorem 1.1 is to take several immersed QF submanifolds
of M and some rank-2 cusps of M, and glue copies of finite covers of these manifolds
to create a geometrically finite hyperbolic manifold Z that has a convex thickening
such that @Z consists of closed QF surfaces.

Definition 5.5 [8, Definition 1.1] A prefabricated manifold is a connected, metrically
complete, finite-volume, hyperbolic 3–manifold

Z D C [Q1[Q2:

Each component of Qi and of C is a convex hyperbolic 3–manifold called a piece.
Each component of Qi is a quasi-Fuchsian 3–manifold with at least one cusp. Each
component of C is a horocusp. These pieces satisfy the following conditions for
i 2 f1; 2g and for each component C of C :

(P1) Qi \ C is the disjoint union of all the cusps in Qi .

(P2) Qi \ @C is an annulus with core curve ˛i .C /.

(P3) ˛1.C / intersects ˛2.C / once transversely.

(P4) Each component of Q1\Q2 intersects C .

Note that by Proposition 5.3, each component of Q1\Q2 is an ideal spider.

Geometry & Topology, Volume 23 (2019)



Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3–manifolds 277

If pieces of a prefrabricated manifold Z are sufficiently far apart, it has a convex
thickening.

Corollary 5.6 [8, Corollary 1.4] Suppose r � 8k , where kD .jCjCjQ1jCjQ2j�1/,
and suppose

(Z1) Zr D Cr [Qr1[Qr2 is a prefabricated manifold,

(Z2) Z D C [Q1[Q2 is a prefabricated manifold contained in Zr ,

(Z3) Qri is a thickening of Qi ,

(Z4) Cr D Thr.C/,

(Z5) Qri contains an r –neighborhood of Qi X C ,

(Z6) Every component of Qr1\Qr2 contains a point of Q1\Q2 .

Then Z has a convex thickening that is a submanifold of Zr . Moreover, every
component of @Z is compact and quasi-Fuchsian.

To achieve the metric separation needed for Corollary 5.6, one starts with a prefabricated
manifold Z and replaces it by another prefabricated manifold Z0, constructed from
large finite covers of the pieces of Z , with the property that all spiders used for the
gluing lift. (Compare Section 2.5.) Choices of lifts of the spiders then determine Z0. If
the cover of each piece is regular (eg cyclic) and large enough, then one can choose
lifts that are far apart.

Since a QF manifold is the product of a surface and an interval, constructing such
covers reduces to questions about coverings of surfaces that contain various immersed
surfaces (corresponding to the spiders). The existence of the right coverings of surfaces
is shown in [8, Theorem 2.8]. The argument makes heavy use of subgroup separability
arguments in surface groups [45].

A covering space pW yF ! F is called conservative if the surfaces F and yF have the
same number of boundary components. We frequently wish to take large conservative
covers of surfaces with the property that certain immersed spiders lift to embedded
spiders that are far apart. This is done using:

Theorem 5.7 (Theorem 0.1 of [7]; compare Theorem 9.1 of [36]) Let F be a
compact, connected surface with @F ¤∅ and H � �1F a finitely generated subgroup.
Assume that no loop representing an element of H is freely homotopic into @F . Given
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a finite subset B ��1F XH, there exists a finite-sheeted conservative cover pW yF !F

and a compact, connected, �1–injective subsurface S � yF such that p�.�1S/DH
and p�.�1 yF /\B D∅ and F XS is connected.

The crucial ingredient for constructing a prefabricated manifold is a supply of QF
surface subgroups with the property that, for every cusp V of M, there are (at least)
two cusps of this collection that are contained in V and have different slopes. This
is used to ensure property (P3). In turn, (P3) implies that @Z contains no accidental
parabolics; see Corollary 5.6 and Proposition 7.2.

6 Ubiquitous closed surfaces

In this section, we prove Theorem 1.1. The proof is a modification of the proof of
[8, Theorem 4.2]. In that proof, Baker and Cooper construct a QF surface † from
a pair of (possibly disconnected) cusped surfaces J1 and J2 , with all components
quasi-Fuchsian. The surface † is the boundary of a prefabricated manifold Z , and
is obtained by gluing together subsurfaces of the components of J1 and J2 , together
with subsets of horotori. In [8] the components of J1 and J2 are produced from ideal
points of character varieties and group actions on trees, via the work of Culler and
Shalen [18].

In our setting, J1 and J2 will be cusped surfaces produced by Theorem 4.1. Given
a pancake P �H3 , Theorem 4.1 allows us to assume that S D J1 has an elevation
to H3 that strongly separates P. Thus, S has a finite cover containing a very large
embedded disk G, whose elevation zG �H3 also separates P. By a slight modification
of the proof of [8, Theorem 4.2], we may ensure † lies extremely close to G, hence
Q.†/ also has an elevation that separates a slightly thicker pancake N�.P /. This
ensures the ubiquitous condition in Theorem 1.1.

Immersed curves ˛ and ˇ in a torus T have an essential intersection if they map to
multiples of distinct slopes, or equivalently if the homology classes Œ˛� and Œˇ� are
linearly independent in H1.T /. The definition extends to cusps of surfaces mapping
to a rank-2 cusp of a 3–manifold M.

Theorem 6.1 Suppose M is a cusped hyperbolic 3–manifold and S is a finite set of
QF surfaces immersed in M. Suppose that, for each cusp V of M, there are at least two
cusps of surfaces in S that both map into V and have an essential intersection in V .
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Suppose P DP.�; r/ is a pancake in H3 and S is a surface in S such that an elevation
of Q.S/ to H3 strongly separates P. Then, for any � > 0, there is a closed QF
surface † immersed in M and an elevation of Core.†/ that strongly separates N�.P /.
Furthermore, † � @Z , where Z is a prefabricated manifold whose quasi-Fuchsian
pieces are thickenings of covers of surfaces in S .

Proof For most of the proof, we restrict attention to the following special case. Suppose
that S consists of exactly two immersed QF surfaces, f1W J1!M and f2W J2!M.
Moreover, suppose that every cusp of J1 has an essential intersection with some cusp
of J2 , and vice versa. Finally, suppose that S D J1 .

At the end of the proof, we will briefly describe the (purely notational) changes needed
to address the general case. For now, we reassure the reader that the special case
described above is all that is needed in the proof of Theorems 1.1 and 1.2.

The maps fi W Ji !M extend to locally isometric immersions fi W Qi !M, where
Qi D Q.Ji /. There is a decomposition of M into a compact set K and a union
of horocusps V such that for each component V � V and for each i 2 f1; 2g, the
preimage f �1i .V / is a nonempty union of vertical rank-1 cusps in Qi . Moreover,
each component of Ji \f �1i .V / is an excellent annulus. By a small isotopy, we may
arrange that f1jJ1

is transverse to f2jJ2
.

Then Di D Ji \ f �1i .@V/ is a finite set of disjoint, horocyclic simple closed curves.
These horocyclic curves cut off the cusps of Ji . Moreover MDf1.D1/\f2.D2/� @V
is a finite set and jf �1i .x/\Di j D 1 for each x 2M. The hypotheses imply that
f �1i .M/ contains at least one point in every component of Di . This ensures the ample
spiders condition formulated in [8, Definition 3.6, part (W4)], which is crucial for the
proof of [8, Theorem 4.2].

From here, we follow the proof of [8, Theorem 4.2], starting at the second paragraph,
with Ji consisting of the single connected surface Ji . That proof constructs a pre-
fabricated manifold Z D C [Q1[Q2 , where each component of Qi is a finite cover
of Qi , and each component of C has a thickening that is a finite cover of a component
of V . That proof ends by verifying the hypotheses of Corollary 5.6, which implies that
Z has a convex thickening ZC .

This construction of [8, Theorem 4.2] involves a parameter ı > 0 with the following
meaning: For i 2 f1; 2g the distance in Z between distinct components of Qi is
at least ı . Moreover, the conservative separability theorem, Theorem 5.7, ensures
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that increasing ı does not change the number of pieces kC 1 D jCj C jQ1j C jQ2j
in the construction. (More precisely, this follows from the spider pattern theorem
[8, Theorem 2.8].) As a result, one eventually achieves ı > 8k , hence Corollary 5.6
ensures that Z has a convex thickening ZC with @ZC consisting of closed QF surfaces.

For our purposes, we modify the construction slightly to ensure the pancake condition
in the statement of the theorem. This requires increasing ı even further than what is
needed for Corollary 5.6, but again without increasing the number of pieces in Z .

Recall that S D J1 has a convex thickening Q.S/, with an elevation AQ.S/ that
strongly separates a pancake P D P.�; r/. Let A be the rotational axis of P and let
zx 2 @AQ.S/ \A. Let x 2 @Q.S/ be the projection of zx . For the value � > 0 in the
statement of the theorem, fix Rbig DR.�/C r , where R.�/ is as in Theorem 2.5 and
r is the radius of the pancake.

Now, we construct a prefabricated manifold Z exactly as above, with the same number
of pieces. Recall that Q1 is a disjoint union of finite covers of Q.S/DQ.J1/. By
increasing ı , we ensure that in some component yQ of Q1 , the point x has a preimage yx
whose distance in Z from every component of Q2 and Q1 X yQ is larger than Rbig .
By shrinking the cusps C , we may also ensure the distance (in Z ) from yx to every
component of C is larger than Rbig . In short, yx lies further than Rbig from every piece
of Z except its own.

By Corollary 5.6, Z has a convex thickening Y , which may be taken to contain Th8.Z/.
Applying Theorem 2.5 to Z , with yQ playing the role of M0 , gives

ZC WD CH.Z/�N�. yQIY /[NR.�/..Q1 X yQ/[Q2[ CIY /:

Since yx has distance greater than Rbig DR.�/C r to any other piece of Z besides yQ ,
it follows that

Nr.yxIZC/�N�. yQIY /� Th�. yQ/:

Let † be a component of @ZC that passes �–close to yx . Then Core.†/ � ZC D
CH.Z/, hence

Core.†/\Nr.yx/� Th�. yQ/:

Now, the projection ZC!M immerses Core.†/ in M, sending yx to x . Choose an
elevation of Core.†/ to H3 so that yx lifts to zx . Recall that zx lies on the axis A of
P D P.�; r/. By the above equation,

eCore.†/\Nr.zx/� Th�.AQ.S//:
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Since zQ.S/ strongly separates P DP.�; r/, it follows that eCore.†/ strongly separates
N�.P /.

Finally, we discuss how to prove the theorem in the general case. The proof is exactly the
same, except that the connected surfaces J1 and J2 are replaced by J1 and J2 , where
each Ji is a (separate) copy of the finite set of immersed surfaces S . Then Ji satisfies
the ample spiders condition, and can be inserted into the proof of [8, Theorem 4.2]
exactly as above. In fact, the proof of [8, Theorem 4.2] is already adapted to finite
collections of surfaces, and contains all the necessary book-keeping notation for keeping
track of components of Ji . At the end of the construction of [8, Theorem 4.2], one
needs to define Rbig exactly as above, and argue in the same way that a surface †�@ZC

lies very close to S on a disk of big radius.

Proof of Theorem 1.1 By the Kahn–Markovic theorem [31], it suffices to treat the
case where M has cusps. Let …;…0�H3 be a pair of planes whose distance is 4�. Let
PCDP.2�; r/DN2�.Dr/ be a pancake as in Lemma 3.8. Let P DP.�; r/DN�.Dr/
be a thinner pancake such that PC DN�.P /.

Let M DH3=� be a cusped hyperbolic 3–manifold. For every cusp V �M, select
a pair of slopes ˛.V / ¤ ˇ.V /. By Theorem 4.1, there are immersed QF surfaces
J1!M and J2!M such that each Ji has an elevation that strongly separates P,
and each has a cusp mapping to a multiple of every ˛.V / and every ˇ.V /. Since every
slope on @V intersects either ˛.V / or ˇ.V / or both, it follows that every cusp of J1
has an essential intersection with some cusp of J2 , and vice versa.

Now, apply Theorem 6.1 with S D fJ1; J2g and with � D �. That theorem produces a
closed QF surface † such that an elevation of Core.†/ strongly separates PCDN�.P /.
By Lemma 3.8, this elevation also separates … from …0.

7 Ubiquitous surfaces with prescribed immersed slope

In this section, we prove Theorem 1.2, producing a ubiquitous collection of surfaces
with prescribed immersed slope. The argument proceeds in two stages. We begin by
proving Theorem 7.3, which says that given a slope ˛ in some cusp of M, there is a
QF surface F immersed in M and an integer m> 0 such that all the cusps of F have
slope m �˛ .

In the special case where M has one cusp, Theorem 7.3 follows from a result of
Przytycki and Wise [41, Proposition 4.6]. If M has multiple cusps, the result appears
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to be new. In fact, Theorem 7.3 can be proved without appealing to the Kahn–Markovic
theorem [31], by using only the gluing idea behind prefabricated manifolds [8]. See
Remark 7.4.

Next, we prove Theorem 1.2 by another analogue of the argument of Theorem 6.1. We
take the single QF surface F produced by Theorem 7.3 and the ubiquitous collection of
closed QF surfaces produced by Theorem 1.1. Then, we apply the convex combination
theorem to glue together a large regular cover of F with some large cover of a closed
surface splitting a desired pancake.

7.1 One surface with prescribed immersed slope

The idea of Theorem 7.3 is to build a variant of a prefabricated manifold, whose
boundary has cusps. This entails the following altered definition:

Definition 7.1 A modified prefabricated manifold is a connected, metrically complete,
finite-volume, hyperbolic 3–manifold

Z D C [Q1[Q2:

Each component of Qi and of C is a convex hyperbolic 3–manifold called a piece.
Each component of Qi is a QF 3–manifold with at least one cusp. Each component
of C is a horocusp. There is a component Q � Q1 called the special component.
One or more rank-1 cusps of Q are called the special cusps. These pieces satisfy the
following conditions for i 2 f1; 2g and for each component C of C :

(M1) Qi \ C is the disjoint union of all the cusps in Qi that are not special,

(M2) Qi \ @C is an annulus with core curve ˛i .C /,

(M3) ˛1.C / intersects ˛2.C / once transversely,

(M4) Each component of Q1\Q2 intersects C .

Thus, each component of C contains one cusp of Q1 and one cusp of Q2 . In addition
to some number of rank-2 cusps (the components of C ), Z also has some rank-1
cusps, namely the special cusps of Q . The next result is a minor modification of
[8, Proposition 1.6].

Proposition 7.2 Let Z DQ1[Q2[ C be a modified prefabricated manifold with a
convex thickening. Then @Z ¤ ∅, and each component of @Z is an incompressible
surface. Moreover, every loop in @Z with parabolic holonomy is homotopic into a
special cusp.
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Proof Let F be a surface with nonempty boundary and �.F / < 0. Following [6,
Section 7], a tubed surface is a 2–complex formed by gluing each component of @F
to an essential simple closed curve in a torus. Distinct components of @F are glued to
distinct tori.

Given Z D C [Q1 [Q2 , as in Definition 7.1, let CC D C t C0 where C0 has one
horocusp for each special cusp of Q1 . Let ZC DZ [ C0 be the manifold obtained by
obtained by isometrically gluing each special cusp of Q1 into a distinct cusp in C0. It
is clear that @Z ¤∅.

Set QC1 DQ1[ CC and QC2 DQ2[ C . Then ZC DQC1 [QC2 . Each component of
QCi is a geometrically finite manifold that retracts to a tubed surface. Thus, ZC is the
union of convex submanifolds, each of which retracts to a tubed surface. The proof
that @ZC is incompressible is now the same as that of [8, Proposition 1.6]. Since @Z
with the cusps truncated is an incompressible subsurface of @ZC , it follows that @Z is
incompressible in Z .

Suppose that a loop  � @Z has parabolic holonomy. Since Z has a convex thickening,
 must be homotopic into some cusp of @Z . Suppose, for a contradiction, that  is
homotopic to a loop ˇ � @C for a cusp C � C . By property (M2), the intersection
Qi \ @C is an annulus, and by property (M3) the core curves ˛1.C / and ˛2.C / of
these annuli have intersection number 1. It follows that ˇ has intersection number
n ¤ 0 with at least one of ˛1.C / and ˛2.C /. Furthermore, n depends only on the
homology class Œˇ�D Œ� 2H1.Z/. Since  is disjoint from the midsurfaces of Q1
and Q2 , it follows that nD 0, which contradicts the hypothesis that C 2 C .

Since  � @Z cannot be homotopic into C , it must be homotopic into a special cusp.

Theorem 7.3 Suppose M D H3=� is a cusped hyperbolic 3–manifold and ˛ is a
slope on a cusp of M. Then there is a cusped quasi-Fuchsian surface immersed in M
with immersed slope ˛ .

As mentioned above, the 1–cusped case of Theorem 7.3 is due to Przytycki and Wise
[41, Proposition 4.6]. Before giving the proof of the theorem, we outline the main
steps:

1. Construct a prefabricated manifold Z D C[Q1[Q2 , with a convex thickening
and a local isometry into M. We arrange things so that Q1 contains a piece Q
with a cusp mapping to m˛ .
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2. Modify some of the pieces of Z . We replace Q � Q1 by a 3–fold cyclic
cover yQ . We also replace some of the rank-2 cusps in C by cyclic 3–fold covers.
The result is a modified prefabricated manifold Z0 D C0 [Q01 [Q2 , whose
special cusps map to m˛ .

3. Pick a cusped component F � @Z0, and surger it until has the right properties.
Proposition 7.2 gives a way to remove accidental parabolics by surgery, and
Theorem 2.2 ensures the resulting surface is quasi-Fuchsian.

Proof of Theorem 7.3 We claim that there is a pair of immersed QF surfaces
f1W J1!M and f2W J2!M such that every cusp of J1 has an essential intersection
with some cusp of J2 , and vice versa. Furthermore, some cusp of J1 is mapped to
m �˛ for some m¤ 0. This claim follows immediately from Theorem 4.1. See also
Remark 7.4 for an alternative argument.

Now, we plug the immersed QF manifolds f1W J1!M and f2W J2!M into the
construction of [8, Theorem 4.2]. By that theorem, there is a prefabricated manifold
Z DQ1[Q2[ C , with a convex thickening and a local isometry into M, where the
quasi-Fuchsian pieces of Qi are thickenings of covers of Ji . By [8, Theorem 2.16],
we may build Z so that every quasi-Fuchsian piece Qi �Qi has an even number of
cusps, with j@Qi j � 4. In addition, the spiders meeting Qi do not disconnect Qi .

Next, we modify the pieces of Z D Q1 [Q2 [ C to create a modified prefabricated
manifold Z0 DQ01[Q2[ C0.

By construction, Z contains a quasi-Fuchsian piece Q � Q1 , with a cusp W �Q
mapping to m � ˛ for some m ¤ 0. (This manifold Q is a convex thickening of
some cover of J1 .) There is a connected cyclic 3–fold cover pW yQ! Q with the
following properties: First, the cusp W �Q has a disconnected preimage p�1.W /D�W t �W 0t �W 00 consisting of three isometric lifts of W . Every other cusp V � .QXW /
has a connected preimage yV D p�1.V / that is a 3–fold cyclic cover of V . In addition,
each component X �Q\Q2 lifts to yQ . (By Definition 5.5, each component X �
Q\Q2 is an ideal spider.) The cover yQ can be constructed by cutting the midsurface S
of Q along some carefully chosen arcs that avoid the spiders, taking three copies of
the cut-up surface, and reassembling. Since j@Qj � 4 and is even, the existence of the
arcs with the desired properties and the cover yQ! Q is explained in the proof of
Case 2 of [8, Theorem 2.16]. See [8, page 1215].

For each spider X �Q , we choose one lift yX � yQ . Since each cusp of Q1 contains
exactly one spider leg by Definition 5.5, it follows that exactly one of �W , �W 0 and �W 00
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contains a leg of the chosen lift of some spider. Label the lifts of W so that �W is the
component that contains a spider leg.

We can now describe the QF pieces of Z0, as well as how to glue them. Define
Q01 D .Q1 XQ/[ yQ . Every component X �Q1\Q2 is a spider that corresponds to
an isometric spider yX � Q01. If X �Q , the lift yX � yQ was chosen in the previous
paragraph. Otherwise, a spider X � .Q1 X Q/ corresponds to itself (but is also
labeled yX ). Now glue Q01 to Q2 by isometrically identifying each spider X � Q2
with the corresponding spider yX �Q01 to obtain a manifold Z� .

It remains to construct a union of cusps C0, and to glue these rank-2 cusps onto Z� to
obtain Z0. Every leg of every spider yX �Q01\Q2 will run into exactly one rank-2 cusp
yC � C0, with distinct legs terminating on distinct cusps. Furthermore, every component
yC � C0 will correspond to a rank-2 cusp C � C , and is a 1–fold or 3–fold cover of C.
There are three cases, as follows.

First, if X � .Q1 XQ/\Q2 , then every leg of X lands on a cusp C � C disjoint
from Q . For every such cusp C meeting a leg of X, we take an isometric copy yC and
glue it onto the corresponding leg of yX. Second, if X �Q\Q2 has a leg on W , there
is a unique rank-2 cusp CW 2 C with W � CW . Construct an isometric lift yCW , and
embed �W into it. By construction, the above-chosen lift yX has a leg on �W � yCW .
This specifies a way to glue yCW onto Z� DQ01[Q2 .

Third, let CQ be the union of all other cusps of C (which meet Q but are disjoint
from W ). For every C � CQ , Definition 5.5 says that @C contains two simple closed
curves ˛1.C / and ˛2.C / that are the cores of Qi \ @C. These curves form a basis
for �1.C /. Construct a connected 3–fold cyclic cover yC ! C corresponding to the
subgroup h3˛1.C /; ˛2.C /i � �1.C /. Then we may glue yC onto yQ � Q01 along a
neighborhood of 3˛1.C / and onto Q2 along a neighborhood of ˛2.C /.

We have now constructed a modified prefabricated manifold Z0 D C0[Q01[Q2 . The
special component is yQ and the special cusps are �W 0 and �W 00.
Since Z has a convex thickening, so does Z0. In fact, one choice of convex thickening
of Z0 is obtained by doing the corresponding modifications to the thickened pieces
of Z . We rename Z0 to be this convex thickening. The local isometries Qi !M and
C!M define local isometries Q01!M and Q2!M and C0!M, which agree on
the overlaps. Thus, Z0 has a local isometry into M. Note that the special cusps �W 0
and �W 00 both map to m˛ .
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Let F be a component of @Z0 that contains a (rank-1) cusp. By Proposition 7.2,
F is incompressible and every parabolic in F is homotopic to a special slope. Any
accidental parabolics in F can be removed by surgery, as follows: If there is an
accidental parabolic in F, then Jaco’s theorem [30, Theorem VIII.13] provides an
annulus A embedded in Z , with one end an essential simple nonperipheral loop
 � F and the other end a simple closed curve that is a special slope in a special
cusp. Surgering F using A produces a new surface F 0 with �.F 0/ < 0, isotopic to
a subsurface F and with fewer accidental parabolics. After a finite number of steps,
one obtains from F a surface E without accidental parabolics that is (isotopic to) a
subsurface of F and has at least one cusp. By Proposition 7.2, the cusps of E all
project to the slope m �˛ in M.

The modified prefabricated manifold Z0 is convex, has finite volume and has @Z0¤∅.
Since E �Z0 and �W �1E! �1Z

0 � �1M is type-preserving, Theorem 2.2 implies
it is quasi-Fuchsian.

Remark 7.4 Theorem 7.3 can be proved without relying on the Kahn–Markovic
theorem. In the above argument, the only appeal to Kahn–Markovic was in the claim at
the start: that there is a pair of immersed QF surfaces f1W J1!M and f2W J2!M

such that every cusp of J1 has an essential intersection with some cusp of J2 , and vice
versa. Furthermore, we claimed some cusp of J1 is mapped to m �˛ for some m¤ 0.
Here is a sketch of an alternative proof of the claim.

By [8, Theorem 4.2], there is a prefrabricated 3–manifold Z D Q1 [Q2 [ C and a
local isometry gW Z!M. Let Fi be the midsurface of each Qi and let F DF1tF2 .
For each component F of F , let d.F / be a nonzero integer and let �.F / 2 f˙1g
be an orientation of F. There is an incompressible, oriented, possibly disconnected
surface F.d/ properly embedded in Z obtained by cutting and cross-joining jd.F /j
copies of each component F of F using the orientation �.F / � sgn.d.F //, and then
compressing as much as possible. Finally, one surgers away accidental parabolics.
Then F.d/ is QF by Theorem 2.2, and ŒF.d/�D

P
d.F /ŒF; �.F /� 2H2.Z/. If C is

a cusp of Z , let ˛i .C /D ŒFi \ @C � 2H1.C / be the slope determined by the oriented
surface Fi in C. Let Fi �Fi be the component that meets C. Then the slope of F.d/
in C is d.F1/˛1.C /C d.F2/˛2.C /. Thus, by choosing d appropriately, we may
arrange that g.F.d//�M has a prescribed slope in a prescribed cusp of M, and meets
every cusp. By performing this construction twice, we obtain J1 and J2 as required
for the claim.
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7.2 Intersecting and gluing ubiquitous surfaces

In the remainder of this section, we employ another cut-and-paste construction to derive
Theorem 1.2 from Theorem 7.3. Before proceeding, we note that only Theorem 1.1
and Theorem 7.3, both of which have already been established, are needed to derive
the cubulation statement of Corollary 1.3 in the next section.

The proof of Theorem 1.2 requires a topological lemma that ensures our surface will
not have accidental parabolics.

Lemma 7.5 Suppose F and G are compact, connected, orientable surfaces with
negative Euler characteristic and nonempty boundary. In addition, suppose Y D P [Q
is a compact 3–manifold, where P D F � I and Q D G � I. Suppose P and Q

intersect along a collection of annuli AD P \QD @G � I � int.F /� @I. Let † be a
component of @Y X int.@F �I /. Suppose every component X �†XA has �.X/ < 0.

Then † is incompressible in Y . If  � † is a loop that is freely homotopic into @†
through Y , then  is freely homotopic into @† through †.

Proof This is a standard topological argument in the same spirit as Claim 4.4. One
needs to consider the intersections between A and an annulus B � Y realizing a
homotopy of  into @†. The hypothesis �.X/ < 0 for every component X �†XA
ensures that intersections B \A must indeed occur.

We also need a geometric lemma about convex hulls. If Q and N are convex subsets
in R3 , then Q\N is convex, but @Q can undulate in and out of N, so that N \ @Q
might be an arbitrary planar surface. For example, consider how a concentric ball
and cube might intersect. The same phenomenon happens if Q and N are convex
submanifolds of a hyperbolic 3–manifold. In particular, N\@Q might be compressible
in @Q . The situation is better when Q is equal to its convex core. We also need the
mild assumption that �1Q is finitely generated.

Lemma 7.6 Suppose that Q and N are convex 3–dimensional submanifolds of a
complete hyperbolic 3–manifold Y , where Q \N is compact, Q D Core.Q/ and
�1Q is finitely generated. If X is a component of @QX int.N /, then �.X/ < 0.

Proof Let � be the holonomy of Q . The hypothesis QD Core.Q/D CH.ƒ.�//=�
implies that the universal cover zQ is the convex hull of ƒ.�/. Since Q is 3–
dimensional, it follows that � is nonelementary. Since � is finitely generated, the
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Ahlfors finiteness theorem [3; 10] says that every component of @Q D @Core.Q/ is
intrinsically a finite-area hyperbolic surface. (Observe that if Q is quasi-Fuchsian, this
conclusion is immediate without citing any theorems.) Therefore, X � @Q cannot
be homeomorphic to S2 or T 2 , since such a closed surface would form an entire
component of @Q . Furthermore, X has finite area.

Now, suppose that �.X/� 0. Then @X DX \N ¤∅, and @X �N consists of one
or two circle components. If X is compact, then it is a disk or annulus. Otherwise,
X Š S1 � Œ0;1/ is a finite-area end of @Q . We claim that X is contained in the
convex hull of @X. Since N is convex and @X �N, it follows that X �N, which is a
contradiction.

By Carathéodory’s theorem [40, Proposition 5.2.3], every point of zQ is contained in
an ideal simplex with vertices in ƒ.�/. It follows that each x 2 @ zQ is contained in
an ideal 1– or 2–simplex � � @ zQ . Let �W �1X ! �1Q be the inclusion-induced
homomorphism. Since �1X is trivial or cyclic, there are three possibilities.

First, suppose that �.�1X/ is generated by a parabolic element. Then some component
 of @X is homotopic to a horocycle in Q . Thus, the convex hull C of  is not
compact. But  � Q \N and Q and N are both convex, so C � Q \N is not
compact, contradicting the hypothesis that Q\N is compact.

Next, suppose that �.�1X/ is generated by a hyperbolic element. Then the core curve
of X is homotopic to a closed geodesic  �Q , and X is a compact annulus. Hence,
X has an elevation zX � zQ , which lies within a bounded neighborhood of a geodesic
z �H3 covering  . Given x 2 zX, let � � @ zQ be an ideal simplex that contains x .
Each geodesic ray from x to a vertex of � either crosses @ zX or else limits on an
endpoint z of z . Since z is in the limit set of @ zX, it follows that X is contained in the
convex hull of @X.

Next, suppose that �.�1X/ is trivial. Then X has an isometric lift zX � @ zQ . If X is not
compact, then X Š S1� Œ0;1/ is a finite-area end of @Q . In this case, a compressing
disk for X lifts to a compressing disk of zX, which cuts off a thorn end of zQ . But then
the limit point of this thorn must be an isolated point of ƒ.�/, which contradicts the
well-known fact that ƒ.�/ is a perfect set whenever � is nonelementary [3].

The remaining case is that �.�1X/ is trivial and X is compact. Then each point x 2 zX
lies in some ideal simplex � � @ zQ . Since zX D X is compact, each geodesic ray
from x to an ideal vertex of � must cross a component of @ zX, so x is in the convex
hull of these crossing points in @ zX. This proves the claim and the lemma.
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Remark 7.7 A version of Lemma 7.6 also holds if Q � Y is a totally geodesic,
finite-area surface (hence QD Core.Q/) and N � Y is a convex submanifold of any
dimension such that Q\N is compact. Under these hypotheses, any component X
of QX int.N / has �.X/ < 0. The proof is easier than Lemma 7.6, because a totally
geodesic annulus always lies in the convex hull of its boundary.

A map f W A! B is conjugacy-injective if the induced homomorphism f� sends
distinct conjugacy classes in �1A to distinct conjugacy classes in �1B . The inclusion
of a subsurface A into a surface B is conjugacy-injective if and only if �.X/ < 0 for
any nonperipheral component X � B XA.

A pair of QF manifolds Q1 and Q2 that are isometrically immersed in a complete hyper-
bolic 3–manifold M have an essential intersection if there are elevations zQ1; zQ2�H3

such that the limit set ƒ. zQ1/ intersects both components of S21Xƒ. zQ2/. It is easy to
see this condition is symmetric in Q1 and Q2 , and is equivalent to the statement that
both components of H3 X zQ2 contains points in zQ1 at unbounded distance from zQ2 .

If Q is a quasi-Fuchsian 3–manifold, then a finite covering yQ!Q is conservative
if Q and yQ have the same number of cusps. The next result says one can glue together
large conservative covers of two QF manifolds to obtain a geometrically finite manifold
with connected QF boundary containing large parts of covers of the two surfaces.

Proposition 7.8 For i 2 f1; 2g, suppose fi W Qi !M is an isometric immersion of a
QF manifold Qi into a complete hyperbolic 3–manifold M. Suppose that Q1 and Q2
have an essential intersection in M and that one of the Qi is compact.

Fix K > 0. Then there exist conservative covers pi W yQi ! Qi and a hyperbolic
3–manifold yY D yQ1 [ yQ2 , with an isometric immersion gW yY ! M such that
gj yQi

D fi ıpi . Moreover, yY has a convex thickening such that

NK. yQ1\ yQ2ITh1. yY //D ThK. yQ1\ yQ2/:

Finally, @ yY has at most two components, each of which is quasi-Fuchsian and meets
every cusp of yY .

Proof For most of the proof, we will work under the additional hypothesis that each
Qi is not Fuchsian. In this case, by Lemma 2.3, no additional generality is lost by
assuming Qi D Core.Qi /. The Fuchsian case is explained at the end.
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Fix elevations zQi �H3 whose limit sets intersect as required, and define zN D zQ1\ zQ2 .
The virtual convex combination theorem [6, Theorem 5.4] implies that, after replacing
each Qi by a certain finite cover, there is a connected, geometrically finite, hyperbolic
3–manifold Y D Q1 [Q2 and a local isometric immersion gW Y ! M such that
gjQi

D fi , and moreover Y has a convex thickening. Since one of the Qi is compact,
it follows that N D Q1 \Q2 is compact and convex. The essential intersection
hypothesis implies that Q1 meets both boundary components of Q2 , and vice versa.
By Theorem 5.7, we may assume these covers are conservative.

The subgroup �1N is finitely generated (because N is compact), free (because it is
an infinite-index subgroup of a surface group) and contains no parabolics (because
N is compact and convex). Since N is irreducible, it must be a handlebody. If A is
a path-connected subspace of B and the map �1A! �1B induced by inclusion is
injective, then we will regard �1A as a subgroup of �1B .

Next, we pass to further conservative covers yQi !Qi that satisfy several conditions.

Claim 7.9 Given K > 8, there is a hyperbolic 3–manifold yY D yQ1[ yQ2 such that

(Y1) yQi !Qi is a conservative cover,

(Y2) yN D yQ1\ yQ2 is an isometric lift of N,

(Y3) the inclusion yN ,! yQi extends to an isometric embedding ThK. yN/,!Th1. yQi /,

(Y4) �1 yN is conjugate in �1 yQi to �1Fi;˙ for some connected incompressible sub-
surface Fi;˙ � @˙ yQi ,

(Y5) Fi;˙ is compact and @˙ yQi XFi;˙ is connected,

(Y6) yY has a convex thickening Th1. yY /.

Indeed, conclusions (Y1)–(Y5) follow by applying Theorem 5.7. Once we set K > 8,
condition (Y6) follows from the convex combination theorem [8, Theorem 1.3].

Next, we show that each component of @ yY is QF. To do this, we will replace yY by a
certain thickening. Define yQC2 DThK. yQ2/ and yNCD yQ1\ yQC2 and yY CD yQ1[ yQC2 .
Since yY and yY C have a common thickening, it follows from Lemma 2.3 that they
have isotopic boundaries.

By (Y5), we know that @˙ yQ1 XF1;˙ is connected. Set F 01;˙ D @˙ yQ1\ yQ
C
2 . As K

increases, the set F 01;˙ also increases. Thus, we may assume that K is large enough to
ensure that F1;˙ � F 01;˙ . As K increases, distinct components of F 01;˙ may combine,

Geometry & Topology, Volume 23 (2019)



Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3–manifolds 291

but because yQ1 and yQC2 are convex, new components cannot be created. Thus, we
may assume K is also chosen so that F 01;˙ is connected. Since yQ1 D Core. yQ1/, it
follows from Lemma 7.6 that no component of @˙ yQ1 X F 01;˙ is a disk or annulus.
Thus, F 01;˙ is just F1;˙ with collars added onto the boundary components. We now
replace F1;˙ by F 01; .̇ Since F1;˙ is conjugacy-injective in @˙ yQ1 , it follows that
yN is conjugacy-injective in yQ1 . The same argument, interchanging the roles of Q1

and Q2 , shows that yN is conjugacy-injective in yQ2 .

For notational simplicity, we now replace yQ2 by yQC2 and yN by yNC and yY by yY C .
Since yN is a handlebody, it is irreducible, and it follows from the h–cobordism
theorem for 3–manifolds that there is a homeomorphism hW F � Œ�1; 1�! yN with
h.F �.˙1//DF1;˙ . The vertical boundary of yN is @v yN D h.@F � Œ�1; 1�/. Observe
that @v yN � @ yQ1[ @ yQ2 .

If @v yN is not entirely contained in @ yQ2 , then @v yN\@ yQ1¤∅ and we can isotope @ yQ2 ,
shrinking yQ2 , and keeping yQ2 convex, until @v yN � @ yQ2 . Let X be a component of
@ yQ2Xint.@v yN/. Since yN is conjugacy-injective in yQ2 , it follows that either �.X/<0
or X is peripheral in @ yQ2 . But X cannot be peripheral because @X � yN cannot be
parabolic. Thus, �.X/ < 0.

Define A˙ D cl.@˙ yQ1 X F1;˙/ and set P WD cl. yQ1 X yN/ Š AC � I. We wish to
apply Lemma 7.5 with QD yQ2 and P as above to deduce that @ yY C (and hence @ yY )
is incompressible and contains no accidental parabolics. However, one of P or Q
might not be compact, in which case the ends are rank-1 cusps. Since N is compact,
we may truncate any cusps of P or Q away from N and replace the manifold by a
homotopy equivalent compact one before appealing to Lemma 7.5. Now, it follows
from Theorem 2.2 that every component of @Y is QF.

Observe that @ yY CDAC[A�[B , where B�@ yQ2 . Each of A˙ is connected by (Y5),
and each component of B intersects at least one component of A˙ . Hence, @ yY C (and
so @ yY ) has at most two components. Finally, if Y contains cusps, we may relabel
the Qi so that Q1 contains cusps. Since F1;˙ is compact, each of A˙ meets every
cusp of yY , hence every component of @ yY meets every cusp of yY .

If some Qi is Fuchsian, we merely need to modify the argument that establishes the
conjugacy-injectivity of yN in yQi . The argument stays the same up to the construction
of yQi in Claim 7.9. If yJ1 D Core. yQ1/ is Fuchsian, then yN D yQ1\ yQ2 deformation
retracts onto the compact Fuchsian surface yJ1\ yQ2 D yJ1\ yN. By Remark 7.7, every
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component of yJ1 X yN has negative Euler characteristic. Thus, yN \ yJ1 is conjugacy-
injective in yJ1 , implying that yN is conjugacy-injective in yQ1 . The rest of the proof is
the same.

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Let M DH3=� be a cusped byperbolic 3–manifold and let ˛
be a slope on one cusp of M. Let …� and …C be a pair of planes in H3 whose
distance is 4�> 0. Let PCDP.2�; r/DN2�.Dr/ be a pancake as in Lemma 3.8. Set
�D � and let P DP.�; r/ be a thinner pancake, so that PCDN�.P /. Let RDR.�/
be the constant of Theorem 2.5.

By Theorem 7.3, there is an immersed QF surface f1W J1!M with immersed slope ˛ .
Let Q1 DQ.J1/. By the work of Shah [46] and Ratner [42], there is a hyperbolic
plane …0 �H3 that strongly separates P and has an essential intersection with some
elevation zQ1 . We also require that zQ1 lies very far from the pancake P , specifically
d.P; zQ1/ > R . Observe that any small perturbation of …0 also separates P and has
an essential intersection with the same elevation zQ1 .

By Theorem 1.1, closed quasi-Fuchsian surfaces are ubiquitous in M. Thus, there is
an immersed closed QF surface f2W J2 !M with an elevation that lies arbitrarily
close to …0. In particular, Q2 DQ.J2/ has an elevation zQ2 that strongly separates
the pancake P and has limit points in both components of S21 X zQ1 .

Apply Proposition 7.8 with Q1 and Q2 as above, and with K D d.P; zQ1/ > R , to
obtain a hyperbolic 3–manifold yY D yQ1[ yQ2 whose convex thickening yY C has QF
boundary. By Theorem 2.5, the portion of yY C D CH. yY / that is R–far from yQ1 must
lie �–close to yQ2 . Thus, there is a component †� @ yY C with an elevation z† that lies
�–close to @ zQ2 on a region that includes the pancake P. Therefore, eCore.†/ strongly
separates PC DN�.P /.

By Proposition 7.8, the component † has cusps, all of which are cusps of @ yQ1 . Since
the cover yQ1!Q1 used to construct yY is conservative, all cusps of † map to the
same multiple of ˛ .

8 Cubulating the fundamental group

In this section, we explain how Corollary 1.3 follows from the preceding theorems and
[9; 29]. We begin by briefly reviewing the terminology associated to cube complexes
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and the groups that act on them. The references [29; 44; 50] give an excellent and
detailed description of this material.

For 0� n <1, an n–cube is Œ�1; 1�n . A cube complex is the union of a number of
cubes, possibly of different dimensions, glued by isometry along their faces. A cube
complex X is called CAT.0/ if it is simply connected and if the link of every vertex is
a flag simplicial complex. By a theorem of Gromov, this combinatorial definition is
equivalent to the CAT.0/ inequality for geodesic triangles.

A midcube of an n–cube is the .n�1/–cube obtained by restricting one coordinate
to 0. A hyperplane H � zX is a connected union of midcubes, with the property that
H intersects every cube of zX in a midcube or in the empty set. Hyperplanes in a
CAT.0/ cube complex zX are embedded and two-sided, hence they can be used to
inductively cut zX (and its quotients) into smaller pieces. This endows cube complexes
and the groups that act on them with a hierarchical structure. See Wise [50], where
this philosophy is extensively fleshed out.

Suppose that a group G acts freely (that is, without fixed points) on a CAT.0/ cube
complex zX. Then the quotient X D zX=G is a nonpositively curved cube complex.
The quotients of hyperplanes in zX are immersed hyperplanes in X. If the immersed
hyperplanes of X are embedded and two-sided and avoid two other pathologies (see
[50, Definition 4.2]), X and G are called special. By a theorem of Haglund and Wise,
G is special if and only if it embeds into a right-angled Artin group [23].

Following Sageev [43], group actions on cube complexes can be constructed in the
following way: Suppose that G D �1Y , where Y is a compact cell complex. Then
G acts by deck transformations on zY and is quasi-isometric to zY . Suppose that
H1; : : : ;Hk are codimension-1 subgroups of G, meaning that some metric thickening
of an orbit .Hi /y separates zY into noncompact components. Sageev uses this data
to build a G–action on a dual cube complex zX, whose hyperplanes are in bijective
correspondence with cosets of the Hi . See Hruska and Wise [29] or Sageev [44] for
detailed, self-contained expositions.

In our application, Y is the compact part of a hyperbolic 3–manifold M. The
codimension-1 subgroups of G D �1Y D �1M are QF surface groups. The quasi-
isometry G! zY identifies the cosets of �1S with the elevations of S in zY . These
elevations give rise to hyperplanes in zX.

The following is a special case of a theorem of Bergeron and Wise [9, Theorem 5.1]:
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Theorem 8.1 Let M DH3=� be a cusped hyperbolic 3–manifold. Suppose that M
contains an ubiquitous collection S of quasi-Fuchsian surfaces, with the property that
for every cusp V �M, the cusps of surfaces in S map to at least two distinct immersed
slopes in V . Then there are finitely many surfaces S1; : : : ; Sk 2 S such that � D �1M
acts freely on the CAT.0/ cube complex zX dual to all elevations of S1; : : : ; Sk to H3 .

Combining Theorem 8.1 with Theorem 1.5 gives:

Corollary 8.2 Let M D H3=� be a cusped hyperbolic 3–manifold. Let S be the
collection of surfaces guaranteed by Theorem 1.5. Then �D�1M acts freely on a finite-
dimensional CAT.0/ cube complex zX, with finitely many �–orbits of hyperplanes.
Each immersed hyperplane in X D zX=� corresponds to an immersed, cusped quasi-
Fuchsian surface in S .

We emphasize that in Corollary 8.2, the quotient X D zX=� need not be compact.
However, this quotient has finitely many immersed hyperplanes. Such a cubulation
of � is called cosparse. While weaker than the cocompact cubulation described
below, a cosparse cubulation can frequently be promoted to be virtually special. See
[9, Proposition 3.3; 51, Theorem 15.10].

Stronger hypotheses on S guarantee that the action on zX is cocompact. The following
result is implicit in Hruska and Wise [29, Theorem 1.1]:

Theorem 8.3 Let M DH3=� be a cusped hyperbolic 3–manifold. Suppose that M
contains an ubiquitous collection S of quasi-Fuchsian surfaces, with the property that
for every cusp V �M, the cusps of surfaces in S map to exactly two distinct immersed
slopes ˛.V / and ˇ.V /. Then there are finitely many surfaces S1; : : : ; Sk 2 S such
that � D �1M acts freely and cocompactly on the CAT.0/ cube complex zX dual to
all elevations of S1; : : : ; Sk to H3 .

Proof Let S1; : : : ; Sk be the finite collection of surfaces guaranteed by Theorem 8.1.
Then � acts freely on the cube complex zX dual to these surfaces. Let V1; : : : ; Vn be
the horocusps of M.

Hruska and Wise [29, Theorem 1.1] show that the � –action on the dual cube complex zX
is relatively cocompact. This means that the quotient X D zX=� decomposes into a
compact cube complex K and cube complexes C1; : : : ; Cn corresponding to the cusps
V1; : : : ; Vn . Each Cj is the quotient under �1.Vj /Š Z2 of a cube complex zCj � zX.
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Furthermore, zCj � zX is exactly the dual cube complex constructed from the parabolic
subgroups �1.Si /\�1.Vj / acting on zVj .

In the case at hand, every peripheral group �1.Vj / Š Z2 can intersect a conjugate
of �1.Si / in one of two parabolic subgroups, namely h˛.Vj /i or hˇ.Vj /i. The slopes
˛.Vj / and ˇ.Vj / are distinct. Thus, zCj is quasi-isometric to the standard cubulation
of R2 , constructed from two families of parallel lines in the plane. See [50, Figure 6.4].
It follows that every Cj D zCj =Z2 is a quasi-isometric to a compact torus, hence
X D zX=� is compact as well.

Proof of Corollary 1.3 Let V1; : : : ; Vn be the cusps of M. For every Vj , choose
two distinct slopes ˛.Vj / and ˇ.Vj /. For each Vj , let S˛;j and Sˇ;j be two quasi-
Fuchsian surfaces produced by Theorem 7.3, whose immersed boundary slopes are
˛.Vj / and ˇ.Vj /, respectively. Let S be the (infinite) collection of QF surfaces
consisting of fS˛;1; : : : ; S˛;n; Sˇ;1; : : : ; Sˇ;ng and the ubiquitous collection of closed
QF surfaces guaranteed by Theorem 1.1. In particular, every S 2 S is either closed or
has all cusps mapping to exactly one multiple of ˛.Vj / or ˇ.Vj /, for one Vj .

Now, Theorem 8.3 applied to S gives a free and cocompact action on a dual cube
complex zX.
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