
msp
Geometry & Topology 22 (2018) 775–844

Long-time behavior of 3–dimensional Ricci flow
A: Generalizations of Perelman’s long-time estimates

RICHARD H BAMLER

This is the first of a series of papers on the long-time behavior of 3–dimensional
Ricci flows with surgery. We first fix a notion of Ricci flows with surgery, which will
be used in this and the following three papers. Then we review Perelman’s long-time
estimates and generalize them to the case in which the underlying manifold is allowed
to have a boundary. Eventually, making use of Perelman’s techniques, we prove new
long-time estimates, which hold whenever the metric is sufficiently collapsed.

53C44; 53C23, 57M50

1 Introduction

In this paper, we first introduce a notion of Ricci flows with surgery, which will be used
throughout the whole series of papers (see Section 2). We will also mention known
existence and extension results for such Ricci flows with surgery. Then we review the
long-time estimates of Perelman [10] using our notion of Ricci flows with surgery (see
Section 3). For future purposes we include in this discussion the case in which the
underlying manifold is allowed to be noncompact or has a boundary. The estimates in
this more general case are of independent interest. Eventually, we derive new long-time
estimates using Perelman’s techniques, which hold under certain collapsing conditions
(see Section 4). Those estimates will be used in Bamler [D].

In the following we will outline the results of this paper. For a shorter summary we
refer to Section 1.2 of Bamler [0], where these results are also explained within the
context of the whole series of papers. All results of this paper will be used to describe
(3–dimensional) Ricci flows with surgery M at large times t . For a precise definition
of Ricci flows with surgery, we refer to the subsequent Section 2. In this introduction
we assume for simplicity that M is nonsingular, ie that it is given by a smooth family
of Riemannian metrics .gt /t2Œ0;1/ on a 3–manifold M that satisfies the Ricci flow
equation @tgt D�2 Ricgt

.
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Our first two results are generalizations of results of Perelman for the case in which
the underlying manifold M is noncompact and/or has a boundary.

Result I (noncollapsedness controls curvature — Proposition 3.2, Section 3.1) This
result is a generalization of a celebrated theorem of Perelman. It roughly states the
following:

For every w > 0 there are constants xr D xr.w/ > 0 and K D K.w/ <1 such that
if .x0; t0/ 2M � Œ0;1/ and 0< r0 < xr

p
t0 , then the following holds: if the time-t0

volume of the time-t0 ball B.x0; t0; r0/ is greater than wr3
0

and the time-t0 sectional
curvatures are bounded from below by �r�2

0
on this ball, then jRmt0

j < Kr�2
0

on
B.x0; t0; r0/.

We will generalize this result to the case in which M is noncompact and/or has a
boundary. It will turn out that if the boundary of M stays sufficiently far away from x0

on a time interval of the form
�
t0�

1
10

r2
0
; t0
�
, then the same estimate holds.

Result II (bounded curvature at bounded distance from noncollapsed regions —
Lemma 3.11, Section 3.1) This result is a generalization of another result of Perelman,
which can be summarized as follows:

For every A < 1 there are constants xr D xr.A/ > 0 and K D K.A/ < 1 such
that if .x0; t0/ 2M � Œ0;1/ and 0 < r0 < xr

p
t0 , then we can make the following

conclusion: if jRmt0
j � r�2

0
on the parabolic neighborhood P .x0; t0; r0;�r2

0
/ D

B.x0; t0; r0/� Œt0 � r2
0
; t0� and volt0

B.x0; t0; r0/ > A�1r3
0

, then jRmt j < Kr�2
0

on
B.x0; t0;Ar0/.

This result is an ingredient for the proof of Result I.

The next five results characterize the Ricci flow in regions that are collapsed, but that
become noncollapsed when we pass to the universal, or a local cover of M . By this
we mean the following: Consider the universal cover � W zM ! M of M and the
pull-backs zgt D �

�gt of the Riemannian metrics gt on zM . Then .zgt /t2Œ0;1/ is a
solution to the Ricci flow on zM . Let x 2M and consider a lift zx 2 zM of x . Then
the volume of a ball B

zM .zx; t; r/ around zx in . zM ; zgt / is not smaller than the volume
of the corresponding ball B.x; t; r/ in .M;gt /. In fact, the restriction

�j
B zM .zx;t;r/

W B
zM .zx; t; r/! B.x; t; r/
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Long-time behavior of 3–dimensional Ricci flow, A 777

is a surjective local diffeomorphism. Note that the volume of B
zM .zx; t; r/ can be much

larger than that of B.x; t; r/, for example if B.x; t; r/ collapses along incompressible
(ie �1 –injective) S1– or T 2 –fibers. On the other hand, if this collapse occurs along S1–
or T 2 –fibers that are compressible in M , but incompressible in some subset U �M ,
then the volume of B

zM .zx; t; r/ might be comparable to that of B.x; t; r/, but the
volume of the ball B

zU .zx0; t; r/ around a lift zx0 of x in the universal cover zU ! U

of U will be much larger. It can be seen that the volume of B
zU .zx0; t; r/ is monotone

in U (with respect to inclusion), the largest volume being achieved if we choose
U D B.x; t; r/. We refer to Section 1.2 of [0] for further discussion of collapsing
behaviors within the context of this series of papers.

We will now use the following terminology; for more details see Definition 4.1: For
every point x 2M and time t � 0, we first fix a local scale �.x; t/ > 0, which roughly
measures how large the negative sectional curvatures are in a neighborhood around x

(for more details see Definition 3.1). Then we call a point x 2M good if it is noncol-
lapsed in the universal cover zM of M , ie if the volume of B

zM .zx; t; �.x; t// is larger
than c�3.x; t/ for some uniform c > 0. If the volume of the ball B

zU .zx0; t; �.x; t// is
larger than c�3.x; t/ for some subset U �M , then we say that x is good relative to U .
Finally, if x is good relative to U D B.x; t; �.x; t//, then we call x locally good.

We can now state the next five results:

Result III (bounded curvature around good points — Proposition 4.4, Section 4.4)
This result can be summarized as follows:

For every w > 0 there are xr D xr.w/ > 0 and K D K.w/ <1 such that for every
.x0; t0/ 2M � Œ0;1/ and 0< r0 <

p
t0 we have: if volt0

B
zM .zx0; t0; r0/ > wr3

0
and

if the time-t0 sectional curvatures are bounded from below by �r�2
0

on B.x0; t0; r0/,
then jRmt0

j<Kr�2
0

on that ball.

This result will follow from Result I applied to the universal covering flow . zM ; zgt /.

Result IV (bounded curvature at bounded distance from sufficiently collapsed and
good regions — Proposition 4.5, Section 4.5) This result can be interpreted as a
variation of Result II in the collapsed case. It reads:

For every A<1 there are constants SwD Sw.A/ > 0 and KDK.A/ <1 such that for
every .x0; t0/2M�Œ0;1/ and 0< r0<

p
t0 we have: if jRmt0

j� r�2
0

on the parabolic
neighborhood P .x0; t0; r0;�r2

0
/DB.x0; t0; r0/� Œt0� r2

0
; t0�, volt0

B
zM .zx0; t0; r0/ >

A�1r3
0

and volt0
B.x0; t0; r0/ < Swr3

0
, then jRmt0

j<Kr�2
0

on B.x0; t0;Ar0/.
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778 Richard H Bamler

Note that we did not need to assume that r0 < xr
p

t0 for some xr D xr.A/ > 0 as
in Result II. This difference will be essential for us. So Result IV is not strictly a
generalization of Result II and does not directly follow from Result II by passing to the
universal cover. Instead, the proof of this result makes use of the fact that B.x0; t0; r0/

is sufficiently collapsed.

Result V (curvature control at points that are good relative to regions whose boundary
is geometrically controlled — Proposition 4.6, Section 4.6) We next consider a subset
U �M and a point x0 2U that is good relative to U . We then obtain a generalization
of Result III:

For every w > 0 there are constants xr D xr.w/ > 0 and K DK.w/ <1 such that: For
every .x0; t0/ 2 U � Œ0;1/ and 0< r0 < xr.w/

p
t0 we have: if volt0

B
zU .zx0

0
; t0; r0/ >

wr3
0

and the sectional curvatures are bounded from below by �r�2
0

on B.x0; t0; r0/

and if jRmj < r�2
0

on P .x; t0; r0;�r2
0
/ for all x 2 @U , then jRmt0

j < Kr�2
0

on
B.x0; t0; r0/.

The idea of the proof will be that under these assumptions the boundary of U stays far
enough away from x0 for all times of Œt0� r2

0
; t0� if it is far enough away at time t0 .

This fact will enable us to localize the arguments in the proof of Result III.

Result VI (controlled diameter growth of regions whose boundary is sufficiently
collapsed and good — Proposition 4.7, Section 4.7) We will next control the diameter
growth of a subset U �M under the Ricci flow, only based on geometric control
around its boundary and a diameter bound at early times. In rough terms, our statement
will be:

For every A <1 there are Sw D Sw.A/ > 0 and A0 D A0.A/; K DK.A/ <1 such
that: Assume that 0< r0 <

p
t0 and x0 2M . Assume that at time t0� r2

0
the subset

U has bounded diameter, U �B.x0; t0�r2
0
;Ar0/, and assume that the boundary of U

stays within controlled distance to x0 for some time, so that @U �B.x0; t;Ar0/ for all
t 2 Œt0� r2

0
; t0�. Then if volt0

B
zM .zx0; t0; r0/ >A�1r3

0
, volt0

B.x0; t0; r0/ < Swr3
0

and
the sectional curvatures on B.x0; t0; r0/ are bounded from below by �r�2

0
, we have

U �B.x0; t;A
0r0/ for all t 2 Œt0�r2

0
; t0�. Moreover, jRmj<Kr�2

0
on U � Œt0�r2

0
; t0�.

Result VII (curvature control in large regions that are locally good everywhere —
Proposition 4.8, Section 4.8) In the last result we derive a curvature bound assuming
only local goodness. In order to achieve this bound, we must however assume that the
local goodness holds in a sufficiently large region and also at earlier times:
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Long-time behavior of 3–dimensional Ricci flow, A 779

For all w > 0 there is a constant K D K.w/ < 1 such that the following holds:
Let x0 2 U � M and 0 < r0 <

p
t0 and b > 0 and assume that jRmj < r�2

0
on

P .x; t0; r0;�r2
0
/ for all x 2 @U . Assume moreover that for every t 2 Œt0 � r2

0
; t0�,

x 2 B.x0; t; b/\U and every 0< r < r0 for which B.x; t; r/� U and the sectional
curvatures on B.x; t; r/ are bounded from below by �r�2 , we have

voltB
zB.x;t;r/.zx0; t; r/ > wr3;

where zB.x; t; r/ is the universal cover of B.x; t; r/ and zx0 2 zB.x; t; r/ is a lift of
x 2 B.x; t; r/. Then jRmt0

j<Kr�2
0

on U \B.x0; t0; b� r0/.

We refer to [0] for historical remarks and acknowledgements.

Note that in the following all manifolds are always assumed to be orientable and
3–dimensional, unless stated otherwise.

2 Introduction to Ricci flows with surgery

2.1 Definition of Ricci flows with surgery

In this section, we give a precise definition of the Ricci flows with surgery that we
are going to analyze subsequently. We will mainly use the language developed in [1]
here. In a first step, we define Ricci flows with surgery in a very broad sense. After
explaining some useful notions, we will make precise how we assume that the surgeries
are performed. This characterization can be found in Definition 2.11. We have chosen
a phrasing that unifies most of the common constructions of Ricci flows with surgery,
such as those presented in [10; 7; 8; 2; 1]. Hence the main results, [0, Theorems
1.1 and 1.4], proved in [D], can be applied to the Ricci flows with surgery that were
constructed in each of these publications.

Definition 2.1 (Ricci flow with surgery) Consider a time interval I � R. Let
T 1 < T 2 < � � � be times in the interior of I that form a possibly infinite subset of R

without accumulation points and that divide I into the intervals

I1
D I \ .�1;T 1/; I2

D ŒT 1;T 2/; I3
D ŒT 2;T 3/; : : : ;

and IkC1 D I \ ŒT k ;1/ if there are only finitely many T i and T k is the last such
time, and I1 D I if there are no such times. Consider Ricci flows .M 1 � I1;g1

t /,
.M 2�I2;g2

t /; : : : on manifolds M 1;M 2; : : : , which may have a boundary, and time

Geometry & Topology, Volume 22 (2018)



780 Richard H Bamler

intervals I1; I2; : : : (ie @tg
i
t D�2 Ricgi

t
for each i ). Let �i �M i be open sets on

which the metric gi
t converges smoothly as t % T i to some Riemannian metric gi

T i

on �i and let
U i
� ��

i and U i
C �M iC1

be open subsets such that there are isometries

ˆi
W .U i

�;g
i
T i /! .U i

C;g
iC1
T i /; .ˆi/�giC1

T i jU i
C
D gi

T i jU i
�
:

We assume moreover that we never have U i
� D�

i DM i and U i
C DM iC1 and that

every component of M iC1 contains a point of U i
C . Then we call

MD ..T i/; .M i
� I i ;gi

t /; .�
i/; .U i

˙/; .ˆ
i//

a Ricci flow with surgery on the time interval I and the times T 1;T 2; : : : surgery
times.

If t 2 I i , then .M.t/;g.t// D .M i � ftg;gi
t / is called the time-t slice of M. The

points in M.T i/ nU i
C � fT

ig are called surgery points. For t D T i , we define the
(presurgery) time T i�–slice to be .M.T i�/;g.T i�//D .�i�fT ig;gi

T i /. The points
�i � fT ig nU i

� � fT
ig are called presurgery points.

If M has no surgery points, then we call M nonsingular and write MDM � I .

We will often view M in the space-time picture, ie we imagine M as a topological
space

S
t2I M.t/D

S
i M i � I i , where the components in the latter union are glued

together via the diffeomorphisms ˆi .

The following vocabulary will prove to be useful when dealing with Ricci flows with
surgery:

Definition 2.2 (Ricci flow with surgery, space-time curve) Consider a subinterval
I 0 � I . A map 
 W I 0!

S
t2I 0M.t/ (also denoted by 
 W I 0!M) is called a space-

time curve if 
 .t/2M.t/ for all t 2 I 0 , the restriction of 
 to each time subinterval I i

is continuous, and limt%T i 
 .t/ 2 U i
� and 
 .T i/Dˆi.limt%T i 
 .t// for all i .

So a space-time curve is a continuous curve in M in the space-time picture that is
parametrized by the time function.

Definition 2.3 (Ricci flow with surgery, points in time) For .x; t/ 2M, consider a
spatially constant space-time curve 
 in M that starts or ends in .x; t/, exists forwards
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Long-time behavior of 3–dimensional Ricci flow, A 781

or backwards in time for some duration �t 2R and that doesn’t hit any (pre)surgery
points except possibly at its endpoints. Then we say that the point .x; t/ survives until
time t C�t and we denote the other endpoint by .x; t C�t/.

Observe that this notion also makes sense if .x; t�/ 2M is a presurgery point and
�t � 0.

Note that the point .x; t C�t/ is only defined if .x; t/ survives until time t C�t ,
which entails that M is defined at time t C�t . Using the previous definition, we can
define parabolic neighborhoods in M.

Definition 2.4 (Ricci flow with surgery, parabolic neighborhoods) Let .x; t/ 2M,
r � 0 and �t 2 R. Consider the ball B D B.x; t; r/ �M.t/. For each .x0; t/ 2 B

consider the union I�t
x0;t of all points .x0; t C t 0/ 2M that are well-defined in the

sense of Definition 2.3 for t 0 2 Œ0; �t � (resp. t 0 2 Œ�t; 0�). Define the parabolic
neighborhood P .x; t; r; �t/D

S
x02B I�t

x0;t . We call P .x; t; r; �t/ nonsingular if all
points in B.x; t; r/ survive until time t C�t .

The following notion will be used in Section 4 and in [D]:

Definition 2.5 (sub-Ricci flow with surgery) Consider a Ricci flow with surgery
MD ..T i/; .M i � I i ;gi

t /; .�
i/; .U i

˙
/; .ˆi// on the time interval I . Let I 0 � I be

a subinterval and consider the indices i for which the intervals I 0i D I i \ I 0 are
nonempty. For each such i consider a submanifold M 0i �M i of the same dimension
and possibly with boundary. Let g0it be the restriction of gi

t onto M 0i � I 0i and set
�0i D�i \M 0i and U 0i� D U i

�\M 0i as well as U 0iC D U i
C\M 0iC1 . Assume that

for each i for which I 0i and I 0iC1 are nonempty, we have ˆi.U 0i� / D U 0iC and let
ˆ0i be the restriction of ˆi to U 0i� .

In the case in which U 0i� D�
0i DM 0i and U 0iC DM 0iC1 for some i , we can combine

the Ricci flows g0it and g0iC1
t on M 0i � I 0i and M 0iC1 � I 0iC1 to a Ricci flow on

the time interval I 0i [ I 0iC1 and hence remove i from the list of indices.

Then M0 D ..T 0i/; .M 0i � I 0i ;g0it /; .�
0i/; .U 0i

˙
/; .ˆ0i// is a Ricci flow with surgery

in the sense of Definition 2.1.

Assume that for all t 2 I 0 the boundary points @M0.t/�M.t/ (by this we mean all
points in M.t/ that don’t lie in the interior of M0.t/ or M.t/ nM0.t// survive until
any other time of I 0 and that @M0.t/ is constant in t . Then we call M0 a sub-Ricci
flow with surgery and we write M0 �M.

Geometry & Topology, Volume 22 (2018)
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We will now characterize three important local, approximate geometries, which we will
frequently be dealing with: "–necks, strong "–necks and .";E/–caps. The notions
below also make sense for presurgery time slices.

Definition 2.6 (Ricci flow with surgery, "–necks) Let " > 0 and consider a Rie-
mannian manifold .M;g/. We call an open subset U �M an "–neck if there is a
diffeomorphism ˆW S2 �

�
�

1
"
; 1
"

�
! U such that there is a � > 0 with

k��2ˆ�g�gS2�RkC Œ"�1� < ";

where gS2�R is the standard round metric on S2 �
�
�

1
"
; 1
"

�
of constant scalar curva-

ture 2.

We say that x 2 U is a center of U if x 2ˆ.S2 � f0g/ for such a ˆ.

If M is a Ricci flow with surgery and .x; t/ 2M, then we say that .x; t/ is a center
of an "–neck if .x; t/ is a center of an "–neck in M.t/.

Definition 2.7 (Ricci flow with surgery, strong "–necks) Let " > 0 and consider a
Ricci flow with surgery M and a time t2 . Consider a subset U �M.t2/ and assume
that all points of U survive until some time t1 < t2 . Then the subset U � Œt1; t2��M
is called a strong "–neck if there is a factor �> 0 such that after parabolically rescaling
by ��1 , the flow on U � Œt1; t2� is "–close to the standard flow on Œ�a; 0� for a� 1. By
this we mean aD��2.t2�t1/�1 and there is a diffeomorphism ˆW S2�

�
�

1
"
; 1
"

�
!U

such that

k��2ˆ�g.�2t C t2/�gS2�R.t/kC Œ"�1�.S2�.�1=";1="/�Œ�a;0�/
< ":

Here .gS2�R.t//t2.�1;0� is the standard Ricci flow on S2�R that has constant scalar
curvature 2 at time 0 and ��2ˆ�g.�2tC t2/ denotes the pull-back of the parabolically
rescaled flow on U � Œt1; t2�.

A point .x; t2/2U �ft2g is called a center of U � Œt1; t2� if .x; t2/2ˆ.S2�f0g�ft2g/

for such a ˆ.

Definition 2.8 (Ricci flow with surgery, .";E/–caps) Let ";E> 0 and let .M;g/ be
a Riemannian manifold with open subset U �M . Suppose that .diam U /2jRmj.y/ <
E2 for any y 2U and E�2jRmj.y1/� jRmj.y2/�E2jRmj.y1/ for any y1;y2 2U .
Furthermore, assume that U is diffeomorphic to either B3 or RP3 nB3 and that there
is a compact set K � U such that U nK is an "–neck.
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Then U is called an .";E/–cap. If x 2K for such a K , then we say that x is a center
of U .

Analogously as in Definition 2.6, we define .";E/–caps in Ricci flows with surgery.

With these concepts at hand we can soon give an exact description of the surgery
process that will be assumed to be carried out at each surgery time. To do this, we first
fix a geometry that models the metric with which we will endow the filling 3–balls
after each surgery.

Definition 2.9 (surgery model) Consider Mstan DR3 with its natural SO.3/–action
and let gstan be a complete metric on Mstan such that

(1) gstan is SO.3/–invariant,

(2) gstan has nonnegative sectional curvature,

(3) .Mstan;gstan/ is isometric to the standard round S2�.0;1/ of scalar curvature 2,
outside of some compact subset.

For every r > 0, we denote the r –ball around 0 by Mstan.r/.

Let Dstan > 0 be a positive number such that the compact subset in (3) is contained in
Mstan.Dstan/. Then we call .Mstan;gstan;Dstan/ a surgery model.

Definition 2.10 ('–positive curvature) We say that a Riemannian metric g on a
manifold M has '–positive curvature for ' > 0 if for every point x 2M there is an
X > 0 such that secx � �X and

scalx � �3
2
' and scalx � 2X.log.2X /� log' � 3/:

Observe that by [6, Theorem 4.1] this condition is improved by the Ricci flow in
the following sense: if .M; .gt /t2Œt0;t1�/ is a Ricci flow on a compact 3–manifold
with t0 > 0 and gt0

is t�1
0

–positive, then the curvature of gt is t�1 –positive for all
t 2 Œt0; t1�.

Definition 2.11 (Ricci flow with surgery, ı.t/–precise cutoff) Let M be a Ricci flow
with surgery defined on some time interval I � Œ0;1/, let .Mstan;gstan;Dstan/ be a
surgery model and let ıW I ! .0;1/ be a function. We say that M is performed by
ı.t/–precise cutoff (using the surgery model .Mstan;gstan;Dstan/) if:

(1) For all t > 0 the metric g.t/ is complete and has t�1 –positive curvature.

Geometry & Topology, Volume 22 (2018)
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(2) For every surgery time T i , the subset M.T i/ nU i
C is a disjoint union

Di
1[Di

2[ � � �

of finitely or countably infinitely many smoothly embedded 3–disks.

(3) For every such Di
j there is an embedding

ˆi
j W Mstan.ı

�1.T i//!M.T i/

such that Di
j �ˆ

i
j .Mstan.Dstan// and such that the images ˆi

j .Mstan.ı
�1.T i///

are pairwise disjoint and there are constants 0< �i
j � ı.T

i/
p

T i such that

kgstan� .�
i
j /
�2.ˆi

j /
�g.T i/k

C Œı
�1.T i /�.Mstan.ı�1.T i ///

< ı.T i/:

(4) For every such Di
j , the points on the boundary of U i

� in M.T i�/ corresponding
to @Di

j are centers of strong ı.T i/–necks.

(5) For every Di
j for which the boundary component of @U i

� corresponding to
the sphere @Di

j bounds a 3–disk component .D0/ij of M i nU i
� (ie a “trivial

surgery”; see below), the following holds: for every �> 0, there is some t�<T i

such that for all t 2 .t�;T
i/ there is a .1C�/–Lipschitz map �W .D0/ij ! Di

j

that corresponds to the identity on the boundary.

(6) For every surgery time T i , the components of M.T i�/nU i
� are diffeomorphic

to one of the following manifolds: S2 � I , D3 , RP3 nB3 , a spherical space
form, S1�S2 , RP3 #RP3 and (in the noncompact case) S2� Œ0;1/, S2�R,
RP3 nB3 .

We will speak of each Di
j as a surgery and if Di

j satisfies the property described in (5),
we call it a trivial surgery.

If ı > 0 is a number, we say that M is performed by ı–precise cutoff if this is true
for the constant function ı.t/D ı . If M is performed by ı.t/–precise cutoff for some
function ıW I ! .0;1/ and if this function is not of essence, then we sometimes also
say that M is performed by precise cutoff.

Note that a Ricci flow with surgery that is performed by precise cutoff may have time
slices that are noncompact or have a boundary. We need to allow for this possibility,
because we later want to analyze universal covers or subsets of Ricci flows with
precise cutoff; such settings will, however, only be considered in this paper. For this
reason, we also need to allow the possibility of countably infinitely many surgeries
in Definition 2.11(2). If, however, a Ricci flow with surgery M that is performed by
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precise cutoff has a time slice M.t0/ that is closed (ie compact and no boundary), then
all later time slices M.t/ with t � t0 are closed as well. In particular, if the initial
time slice of M is closed, as it will be assumed for normalized initial conditions (see
Definition 2.12), then so are all time slices.

Observe furthermore that we have phrased the Definition in such a way that if M
is a Ricci flow with surgery that is performed by ı.t/–precise cutoff, then it is also
performed by ı0.t/–precise cutoff whenever ı0.t/� ı.t/ for all t . Note also that trivial
surgeries don’t change the topology of the component on which they are performed.

We remark that our notion of “ı.t/–precise cutoff” differs slightly from Perelman’s
notion of “ı.t/–cutoff” (cf [10]). For example, in our picture the surgeries have size
. ı.t/

p
t , while in Perelman’s construction the size is � h.ı.t/; ı2.t/r.t// < ı.t/r.t/,

where r.t/ is similar to the function r ".t/ introduced in Proposition 2.15 below.
This difference will not be essential. In fact, every “Ricci flow with ı.t/–cutoff”, as
constructed by Perelman, is a “Ricci flow with surgery that is performed by ı0.t/–
precise cutoff”, in the sense of Definition 2.11, for some suitable function ı0.t/.

2.2 Existence of Ricci flows with surgery

Ricci flows with surgery and precise cutoff as introduced in Definition 2.11 can indeed
be constructed from any given initial metric. We will make this fact more precise in
this subsection. To simplify things, we restrict the geometries that we want to consider
as initial conditions.

Definition 2.12 (normalized initial conditions) We say that a Riemannian 3–manifold
.M;g/ is normalized if

(1) M is compact, orientable and has no boundary,

(2) jRmj< 1 everywhere, and

(3) vol B.x; 1/ > 1
2
!3 for all x 2 M , where !3 is the volume of a standard

Euclidean 3–ball.

We say that a Ricci flow with surgery M has normalized initial conditions if M.0/ is
normalized.

Any Riemannian metric on a compact and orientable 3–manifold can be rescaled to be
normalized. Next, recall:

Definition 2.13 (�–noncollapsedness) Let M be a Ricci flow with surgery, .x; t/ 2
M and �; r0 > 0. We say that M is �–noncollapsed in .x; t/ on scales less than
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r0 > 0 if voltB.x; t; r/� �r3 for all 0< r < r0 for which

(1) the ball B.x; t; r/ is relatively compact in M.t/ and does not intersect the
boundary @M.t/,

(2) the parabolic neighborhood P .x; t; r;�r2/ is nonsingular, and

(3) jRmj< r�2 on P .x; t; r;�r2/.

We now introduce a notion of canonical neighborhood assumptions, which slightly
differs from the notions found in other sources, but which better suits our purposes.

Definition 2.14 (canonical neighborhood assumptions) Let M be a Ricci flow with
surgery, .x; t/ 2M, and r; "; � > 0 and E <1 be constants. We say that .x; t/
satisfies the canonical neighborhood assumptions CNA.r; ";E; �/ if one of three cases
occurs: In the first case, jRmj.x; t/ < r�2 . In the second case, the following three
properties hold:

(1) .x; t/ is a center of a strong "–neck or an .";E/–cap U �M.t/.
If U �RP3 nB3 , then there is a time t1 < t such that all points on U survive
until time t1 and such that flow on U � Œt1; t � lifted to its double cover contains
strong "–necks and both lifts of .x; t/ are centers of such strong "–necks.

(2)
ˇ̌
rjRmj�1=2

ˇ̌
.x; t/ < ��1 and

ˇ̌
@t jRmj�1

ˇ̌
.x; t/ < ��1 .

(3) voltB.x; t; r
0/ > �.r 0/3 for all 0< r 0 � jRmj�1=2.x; t/.

Finally, in the third case, property (2) holds and the component of M.t/ in which x lies
is closed and the sectional curvatures are positive and E2 –pinched on this component,
ie they are contained in an interval of the form .�;E2�/ for some � > 0 (and hence
that component is diffeomorphic to a spherical space form).

Note that we have added an additional assumption in the case in which U �RP3 nB3

to ensure that the canonical neighborhood assumptions are stable when taking covers
of Ricci flows with surgery (compare with Lemma 4.2). We remark that every manifold
that contains a set diffeomorphic to RP3 nB3 admits a double cover in which this set
lifts to a set diffeomorphic to S2�.0; 1/. So it is possible to verify this extra assumption
if all the other canonical neighborhood assumptions hold in any double cover.

The following proposition gives a characterization of regions of high curvature in a Ricci
flow with surgery that is performed by precise cutoff. The power of this proposition lies
in the fact that none of the parameters depends on the number or the preciseness of the
preceding surgeries. Thus, it provides a tool to perform surgeries in a controlled way
and hence it can be used to construct long-time existent Ricci flows with surgery as
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presented in Proposition 2.16 below. The following proposition also plays an important
role in the long-time analysis of Ricci flows with surgery that are performed by precise
cutoff and will, in particular, be used in Sections 3 and 4 of this paper.

Proposition 2.15 (canonical neighborhood theorem, Ricci flows with surgery) For
every surgery model .Mstan;gstan;Dstan/ and every " > 0 there are constants � > 0

and E" <1 and decreasing continuous positive functions r "; ı"; �W Œ0;1/! .0;1/

such that the following holds:

Let M be a Ricci flow with surgery on some time interval Œ0;T / that has normalized
initial conditions and that is performed by ı".t/–precise cutoff. Then, for every
t 2 Œ0;T /:

(a) M is �.t/–noncollapsed at scales less than
p

t at all points of M.t/.

(b) All points of M.t/ satisfy the canonical neighborhood assumptions

CNA.r ".t/
p

t ; ";E"; �/:

For a proof of this proposition and of Proposition 2.16 see [10, Section 5; 7, Section 77ff;
8, Proposition 17.1, Theorem 15.9; 2, Proposition B, Theorem 5.3.1; 1, Theorem 7.5.1].
The following proposition provides us an existence result for Ricci flows with surgery.

Proposition 2.16 Given a surgery model .Mstan;gstan;Dstan/, there is a continuous
function ıW Œ0;1/! .0;1/ such that if ı0W Œ0;1/! .0;1/ is a continuous function
with ı0.t/� ı.t/ for all t 2 Œ0;1/ and .M;g/ is a normalized Riemannian manifold,
then there is a Ricci flow with surgery M defined for times Œ0;1/ with M.0/D .M;g/

and that is performed by ı0.t/–precise cutoff. (Observe that we can possibly have
M.t/D∅ for large t .)

Moreover, if M is a Ricci flow with surgery on some time interval Œ0;T / that has
normalized initial conditions and that is performed by ı.t/–precise cutoff, then M
can be extended to a Ricci flow on the time interval Œ0;1/ that is performed by
ı0.t/–precise cutoff on the time interval ŒT;1/.

We point out that the functions ı".t/, r ".t/ and �.t/ and the constants � and E" in
Proposition 2.15 as well as the function ı.t/ in Proposition 2.16 depend on the choice
of the surgery model.

From now on we will fix a surgery model .Mstan; gstan; Dstan/ for the
rest of this and the following three papers and we will not mention this
dependence anymore.
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3 Perelman’s long-time analysis results and certain
generalizations

3.1 Perelman’s long-time curvature estimates

In this subsection, we will review some of Perelman’s long-time analysis results
(see [10]). We will generalize these results to the boundary case and go through most
of their proofs. The most important result of this section will be Proposition 3.2 below.
It will be used in Section 4 of this paper. In addition, many of the lemmas leading to
this proposition will also be used in that section. The boundary case will be important
for us, because we want to analyze Ricci flows in local covers.

The following notation will be used throughout the whole paper:

Definition 3.1 Let .M;g/ be a Riemannian manifold and x 2M a point. We define

�.x/D supfr W sec� �r�2 on B.x; r/g:

For r0 > 0 we furthermore set �r0
.x/Dminf�.x/; r0g. If .M;g/DM.t/ is the time

slice of a Ricci flow (with surgery) M, then we often use the notation �.x; t/ and
�r0
.x; t/.

We also need to use the L–functional as introduced in [9, Section 7]: for any smooth
space-time curve 
 W Œt1; t2�!M (t1 < t2 � t0 ) in a Ricci flow with surgery M, set

(3-1) L.
 /D
Z t2

t1

p
t0� t 0

�
j
 0j2.t 0/C scal.
 .t 0/; t 0/

�
dt 0:

We say that L is based in t0 and call L.
 / the L–length of 
 . A curve 
 that is a
critical point of L with respect to variations that fix the endpoints is called L–geodesic.

We now present the main result of this section. Before we do that we introduce the
following convention that we will assume from now on: We will often be dealing with
Ricci flows with surgery M defined on a time interval of the form Œt0 � r2

0
; t0� and

most results require certain canonical neighborhood assumptions to hold on M. For
times that are very close to t0 � r2

0
this may be problematic, since strong "–necks

might stick out of the time interval. So we will assume from now on that in such a
setting M can be extended backwards to a Ricci flow with surgery M0 �M in which
the required canonical neighborhood assumptions hold on the time interval Œt0� r2

0
; t0�.

In fact, in our applications M will always arise as such a restriction. Note that we
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could also resolve this issue by requiring in the assumptions of each of the following
results that the canonical neighborhood assumptions hold on a slightly smaller time
interval Œt0 � 0:99r2

0
; t0�. In fact, in our applications M will always arise as such a

restriction. Note that we could also resolve this issue by requiring in the assumptions
of each of the following results that the canonical neighborhood assumptions hold on a
slightly smaller time interval Œt0� 0:99r2

0
; t0�.

Proposition 3.2 ([10, 6.8] in the noncompact case) There is a constant "0 > 0

such that, for all w; r; � > 0 and E < 1 and 1 � A < 1 and m � 0, there are
� D �.w;A;E;�/; xr D xr.w;A;E;�/; yr D yr.w;E;�/; ı D ı.r;w;A;E;�;m/ > 0 and
Km DKm.w;A;E;�/; C1 D C1.w;A;E;�/;Z DZ.w;A;E;�/ <1 such that:

Let r2
0
�

1
2
t0 and let M be a Ricci flow with surgery (whose time slices are allowed to

have boundary) on the time interval Œt0� r2
0
; t0� that is performed by ı–precise cutoff

and consider a point x0 2M.t0/. Assume that the canonical neighborhood assumptions
CNA.r

p
t0; "0;E; �/, as described in Definition 2.14, are satisfied on M. We also

assume that the curvature on M is uniformly bounded on compact time intervals which
don’t contain surgery times and that all time slices of M are complete.

In the case in which some time slices of M have nonempty boundary, we assume that:

(i) For all t1; t2 2
�
t0 �

1
10

r2
0
; t0
�

with t1 < t2 we have: if some x 2 B.x0; t0; r0/

survives until time t2 and 
 W Œt1; t2�!M is a space-time curve with endpoint

 .t2/ 2B.x; t2; .AC3/r0/ that meets the boundary @M somewhere, then it has
L–length L.
 / >Zr0 (L being based in t2 ; see (3-1)).

(ii) For all t 2
�
t0 �

1
10

r2
0
; t0
�

we have: if some x 2 B.x0; t0; r0/ survives until
time t , then B.x; t; 2.AC 3/r0C r

p
t0/ does not meet the boundary @M.t/.

Now assume that

(iii) 0< r0 � xr
p

t0 ,

(iv) sect0
� �r�2

0
on B.x0; t0; r0/, and

(v) volt0
B.x0; t0; r0/� wr3

0
.

Then jrk Rmj < Kmr�2�k
0

on B.x0; t0;Ar0/ for all k � m. In particular, if r0 D

�.x0; t0/ then r0 > yr
p

t0 .

If, moreover, the surgeries on M are performed by ı0–cutoff for some 0< ı0 � ı with
C1ı
0
p

t0 � r0 , then the parabolic neighborhood P .x0; t0;Ar0;�� r2
0
/ is nonsingular

and we have jrk Rmj<Kkr�2�k
0

on P .x0; t0;Ar0;�� r2
0
/ for all k � 0.
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The following corollary is a consequence of Propositions 3.2 and 2.15.

Corollary 3.3 (cf [10, 6.8, 7.3]) There is a continuous positive function

ıW Œ0;1/! .0;1/

such that, for every w > 0, 1�A<1 and m� 0, there are constants � D �.w;A/,
x�D x�.w/, xrDxr.w;A/, c1Dc1.w;A/>0 and T DT .w;A;m/;KmDKm.w;A/<1

such that:

Let M be a Ricci flow with surgery on the time interval Œ0;1/ with normalized initial
conditions (whose time slices are all closed) that is performed by ı.t/–precise cutoff.
Let t > T and x 2M.t/.

(a) If 0 < r � minf�.x; t/; xr
p

tg and voltB.x; t; r/ � wr3 , then jrk Rmj <
Kmr�2�k on B.x; t;Ar/ for all k � m. Moreover, if all surgeries on the
time interval Œt � r2; t � are performed by c1r t�1=2 –precise cutoff, then the para-
bolic neighborhood P .x; t;Ar;�� r2/ is nonsingular and we have jrk Rmj<
Kkr�2�k on P .x; t;Ar;�� r2/ for all k � 0.

(b) If voltB.x; t; �.x; t//�w�
3.x; t/, then �.x; t/ > x�

p
t and the parabolic neigh-

borhood P .x; t;A
p

t ;�� t/ is nonsingular, and we have jrk Rmj<Kk t�1�k=2

on P .x; t;A
p

t ;�� t/ for all k � 0.

In the case AD 1, this corollary implies [10, 6.8] and parts of [10, 7.3].

In the following, we will present proofs of Proposition 3.2 and Corollary 3.3. They
require a few rather complicated lemmas, which we will establish first. The proofs
of Proposition 3.2 and Corollary 3.3 can be found at the end of this subsection. Note
that the following arguments will be very similar to those presented in [10; 7] with
small modifications according to the author’s taste. Occasionally, we will omit shorter
arguments and refer to [7]. The main objective in the proofs will be the discussion of
the influence of the boundary. Upon the first reading, it is recommended to skip the
remainder of this subsection. The boundary case of Proposition 3.2, which is the new
result of this subsection, will only be used in Section 4.6.

The following distance distortion estimates will be used frequently throughout this
paper.

Lemma 3.4 (distance distortion estimates) Let .M; .gt /t2Œt1;t2�/ be a Ricci flow
whose time slices are complete and let x1;x2 2M . Then:
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(a) If Rict �K along some minimizing geodesic between x1 and x2 in .M;gt /,
then at time t we have d distt .x1;x2/=dt� � �K distt .x1;x2/ in the bar-
rier sense. Likewise, if Rict � �K along such a minimizing geodesic, then
d distt .x1;x2/=dtC �K distt .x1;x2/ in the barrier sense.

(b) If, at some time t , distt .x1;x2/ � 2r and Rict � r�2 on B.x1; r/[B.x2; r/

for some r > 0, then d distt .x1;x2/=dt� � �16
3

r�1 in the barrier sense.

Both statements are also true in a Ricci flow with surgery if we can guarantee that some
minimizing geodesic between x1 and x2 doesn’t intersect surgery points. For example,
this condition is satisfied if at time t the surgeries are performed by ı–precise cutoff
for some sufficiently small ı and if jRmj.x1; t/; jRmj.x2; t/ < cı�2t�1 for a certain
universal c > 0, which depends on the chosen surgery model.

Proof See [7, Section 27; 9, 8.3; 1, Section 2.3]. The very last statement follows from
Definition 2.11(3).

We will also need:

Lemma 3.5 Let M be a Ricci flow with surgery that satisfies the canonical neigh-
borhood assumptions CNA.r; ";E; �/ for some r; ";E; � > 0, let .x; t/ 2M and set
QD jRmj.x; t/.

(a) If Q� r�2 , then jRmj< 2r�2 on P
�
x; t; 1

10
�r;� 1

10
�r2

�
.

(b) If Q� r�2 , then jRmj< 2Q on P
�
x; t; 1

10
�Q�1=2;� 1

10
�Q�1

�
.

Proof See [10, 4.2; 7, Lemma 70.1; 1, Section 6.2].

We now present the first main lemma.

Lemma 3.6 (cf [10, 6.3(a)]) For any 1�A<1 and w; r; �> 0, there are constants
� D �.w;A; �/; ı D ı.A; r; �/ > 0;Z DZ.A/ <1 such that:

Let r2
0
< 1

2
t0 and let M be a Ricci flow with surgery (whose time slices are allowed to

have boundary) on the time interval Œt0� r2
0
; t0� that is performed by ı–precise cutoff

and consider a point x0 2M.t0/. Assume that the canonical neighborhood assumptions
CNA.r

p
t0; ";E; �/ are satisfied on M for some "; � > 0. We also assume that the

curvature on M is uniformly bounded on compact time intervals which don’t contain
surgery times and that all time slices of M are complete.
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Assume that the parabolic neighborhood P .x0; t0; r0;�r2
0
/ is nonsingular, jRmj � r�2

0

on P .x0; t0; r0;�r2
0
/ and volt0

B.x0; t0; r0/� wr3
0

.

In the case in which some time slices of M have nonempty boundary, we assume that:

(i) Every space-time curve 
 W Œt; t0�!M with t 2 Œt0� r2
0
; t0/ that ends in 
 .t0/ 2

B.x0; t0;Ar0/ and that meets the boundary @M.t 0/ at some time t 0 2 Œt; t0� has
L–length L.
 / >Zr0 (based in t0 ).

(ii) The ball B.x0; t0; .2AC 1/r0C r
p

t0/ does not hit the boundary @M.t0/ and
for every t 2

�
t0�

1
2
r2
0
; t0
�

the ball B
�
x0; t;A.1�2.t0� t/r�2

0
/r0C

1
10

r0

�
does

not hit the boundary @M.t/.

Then M is �–noncollapsed on scales less than r0 at all points in the ball B.x0; t0;Ar0/.

Proof We follow the lines of [10, 6.3(a)].

We first consider the case in which for some t 2 Œt0� r2
0
; t0� the component of M.t/

that contains x0 is closed and has positive sectional curvature. Then the same is true for
the corresponding component of M.t0/ and hence we are done by volume comparison.
So, in the following, we exclude this case and hence the last option in Definition 2.14
of the canonical neighborhood assumptions will not occur.

Let x1 2B.x0; t0;Ar0/ and 0< r1 < r0 be such that P .x1; t0; r1;�r2
1
/ is nonsingular

and such that jRmj < r�2
1

on P .x1; t0; r1;�r2
1
/. Note that by condition (ii) the ball

B.x1; t0; r1/ does not hit the boundary @M.t0/.

Claim 1 There is a universal constant ı0 > 0 such that if ı < ı0 , then we can restrict
ourselves to the case r1 >

1
2
r
p

t0 . By this we mean that if the lemma holds under the
additional restriction that r1 >

1
2
r
p

t0 for some �0D �0.w;A; �/ > 0, then it also holds
whenever r1 �

1
2
r
p

t0 for some � D �.w;A; �/ > 0.

Proof Assume that the lemma holds whenever r1 >
1
2
r
p

t0 , but that r1 �
1
2
r
p

t0 .
Let s > 0 be the supremum over all r 0

1
> 0 such that the properties above still hold

for1 r1 r 0
1

, that is, 0< r 0
1
< r0 , P .x1; t0; r

0
1
;�r 02

1
/ is nonsingular and jRmj< r 0�2

1

on P .x1; t0; r
0
1
;�r 02

1
/. If s � 1

2
r
p

t0 , then there are several cases:

(1) The closure of P .x1; t0; s;�s2/ hits a surgery point .x0; t 0/. By Definition 2.11(3),
there is a neighborhood U �M.t 0/ of .x0; t 0/ whose geometry is modeled on the
surgery model on a scale of at least c1s for some universal c1 > 0. Note that,

1In this and the following papers we use the notation “a b ” for “a is replaced by b ” or “b is
assigned to a”.

Geometry & Topology, Volume 22 (2018)



Long-time behavior of 3–dimensional Ricci flow, A 793

by Definition 2.11(3) again and the fact that .x0; t 0/ is a surgery point, we have
B.x0; t 0; c2ı

�1s/ � U for some universal c2 > 0. Since by distance distortion es-
timates distt 0.x1;x

0/ � 10 distt0
.x1;x

0/ � 10s , we find that for ı < 1
20

c2 we have
B
�
x1; t

0; 1
10

s
�
� U . Since the standard solution is uniformly noncollapsed, we have

volt 0B
�
x1; t

0; 1
10

s
�
> �0s3 for some universal �0 > 0. Again, by distance distortion

estimates, we have B
�
x1; t

0; 1
10

s
�
�B.x1; t0; s/. So, together with a volume distortion

estimate, we conclude volt0
B.x1; t0; s/ > �

00s3 for some universal �00 > 0. By volume
comparison, this implies volt0

B.x1; t0; r1/ > �r3
1

for some universal � > 0 (recall that
by our assumptions s � r1 ).

(2) There is a point .x0; t 0/ in the closure of P .x1; t0; s;�s2/ with jRmj.x0; t 0/D s�2 .
Then let 
 W Œ0; l �!M.t0/ be a time-t0 minimizing geodesic, parametrized by arc-
length, between x1 and x0 . So the image of 
 lies in the closure of B.x1; t0; s/.
Let x00 D 


�
l � 1

100
�s
�
2 B.x1; t0; s/ if l > 1

100
�s and x00 D x0 otherwise. Using

distance distortion estimates, we find that distt 0.x
00;x0/ � 10 distt0

.x00;x0/ � 1
10
�s .

By Lemma 3.5 and the canonical neighborhood assumptions CNA.r
p

t0; ";E; �/, we
conclude that jRmj.x00; t 0/� 1

2
s�2 > r�2t�1

0
.

Next, we use distance distortion estimates to show that B
�
x00; t 0; 1

2000
�s
�
�B.x1; t0; s/:

Assume that this inclusion was wrong and pick t 00 2 .t 0; t0� minimal such that we have
B
�
x00; t 00; 1

2000
�s
�
� B.x1; t0; s/ (note that the inclusion holds for t 00 D t0 because

B
�
x00; t0;

1
100
�s
�
� B.x1; t0; s/ and note that the set of all t 00 2 .t 0; t0� for which the

inclusion holds is closed). We can then use distance distortion estimates to show that
B
�
x00; t 00; 1

2000
�s
�
� B

�
x00; t0;

1
200
�s
�
� B

�
x1; t0; s �

1
200
�s
�
. Since t 00 > t 0 , this

contradicts the minimality of t 00 .

We can now use the canonical neighborhood assumptions, to conclude that

volt 0B
�
x00; t 0; 1

2000
�s
�
> �

�
1

2000
�s
�3

and as in case (1) we obtain that volt0
B.x1; t0; r1/ > �r3

1
for some universal � D

�.�/ > 0.

(3) We have sD r0 . So r0 �
1
2
r
p

t0 . In this case choose 0< d � .AC1/r0 maximal
with the property that jRmj< r�2

0
D s�2 on B.x1; t0; d/. So d � r0 . If d D .AC1/r0 ,

then
volt0

B.x1; t0; d/� volt0
B.x0; t0; r0/� wr3

0 D
w

.AC 1/3
d3:

So by volume comparison and assumption (ii) we obtain a lower volume bound on
the normalized volume of B.x1; t0; r1/ since r1 < r0 < d . Assume now that d <
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.AC 1/r0 . Then jRmj.x0; t0/ D r�2
0
� 4r�2t�1

0
for some .x0; t0/ in the closure of

B.x1; t0; d/. As in case (2), we can find a point .x00; t0/ 2 B
�
x1; t0; d �

1
10
�r0

�
with

jRmj.x00; t0/ > 1
2
r�2
0

> r�2t�1
0

. By the canonical neighborhood assumptions, we
have volt0

B.x1; t0; d/ � volt0
B
�
x00; t0;

1
10
�r0

�
> �

�
1

10
�r0

�3 . So again by volume
comparison, we find that volt0

B.x1; t0; r1/ > �r3
1

for some � D �.�;A/ > 0.

Lastly, if s > 1
2
r
p

t0 , then the conditions mentioned at the beginning of the proof
hold for some r 0

1
> 1

2
r
p

t0 . If the assertion of the lemma holds for r 0
1

and some
�0 D �0.w;A; �/ > 0 then, by volume comparison, it also holds for all r1 � r 0

1
and

some � D �.w;A; �/ > 0.

So assume in the following that r1 >
1
2
r
p

t0 . We will now set up an L–geometry
argument. Define, for any t 2 Œt0� r2

0
; t0� and y 2M.t/,

L.y; t/D inf
˚
L.
 / j 
 W Œt; t0�!M smooth; 
 .t/D y; 
 .t0/D x1

	
:

Moreover, set

xL.y; t/D 2
p

t0� tL.y; t/ and `.y; t/D
1

2
p

t0� t
L.y; t/:

Let

Dt D
˚
y 2M.t/ j there is a minimizing L–geodesic 
 W Œt; t0�!M n @M with


 .t/D y and 
 .t0/D x1 that does not hit any surgery points
	
:

We can then define the reduced volume

zV .t/D .t0� t/�n=2

Z
Dt

e�`. � ;t/ dvolt :

It is shown in [9, 7.1] that zV .t/ is nondecreasing in t .

We will now prove that the quantity `. � ; t0 � r2
0
/ is uniformly bounded from above

on B.x0; t0; r0/ by a constant that only depends on A if ı is chosen small enough
depending on A, r and �. To do this we will use a maximum principle argument
on Dt . The following claim will ensure hereby that extremal points of L lie inside Dt .

Claim 2 For any ƒ<1 there is a constant ı�D ı�.ƒ; r; �/ > 0 such that, whenever
ı � ı� and Z �ƒ, the following holds: Assume that r1 >

1
2
r
p

t0 . If t 2 Œt0� r2
0
; t0�,

y 2M.t/ and L.y; t/ < ƒr0 , then y 2 Dt , which also implies that .y; t/ is not a
surgery point.
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Proof Assume that y 2M.t/ nDt or that .y; t/ is a surgery point. Then there is a
space-time curve 
 W Œt; t0�!M with L.
 / <ƒr0 that touches either @M or a surgery
point. The first case is excluded by assumption (i), so 
 touches a surgery point. We
will now follow the lines of [10, 5.3], [7, Lemma 79.3] or [1, page 92].

First, define

LC.
 /D
Z t0

t

p
t0� t�

�
j
 0j2.t�/C scalC.
 .t�/; t�/

�
dt�;

where scalC.
 .t�/; t�/Dmaxfscal.
 .t�/; t�/; 0g denotes the nonnegative part. Using
Definition 2.11(1) and Definition 2.10, we can estimate

LC.
 /� L.
 /C
Z t0

t

p
t0� t� �

3

2t�
dt� �ƒr0C

3

2

Z t0

t0�r2
0

p
r2
0

t0� r2
0

dt�

�ƒr0C
3

2

p
r2
0

t0� r2
0

r2
0 �

�
ƒC

3

2

�
r0:

Note that for any subinterval Œt�
1
; t�

2
�� Œt; t0�, we have

(3-2) LC.
 jŒt�
1
;t�

2
�/D

Z t�
2

t�
1

p
t0� t�

�
j
 0j2.t�/C scalC.
 .t�/; t�/

�
dt�

� LC.
 /�
�
ƒC 3

2

�
r0:

Assume that 
 touches a surgery point .y0; t 0/. Let � > 0 and D <1 be constants,
whose values will be fixed later in the proof, depending only on ƒ and r . Using
[10, 4.5], [7, Lemma 74.1] or [1, Lemma 7.4.1], and assuming ı to be small depending
on � , D and �, we may find constants � 2 .0; 1��� and �> 0 such that the parabolic
neighborhood

P D P .y0; t 0;D�; ��2/

is nonsingular and such that, after rescaling by ��2 , the Ricci flow on P is "0–
close to a subset of a standard solution on the time interval Œ0; � � for some suitably
small "0 > 0. Here, the constant � can be chosen such that one of the following is
true: � D 1 � � or no point of B.y0; t 0;D�/ survives past time t 0 C ��2 . Recall
that a standard solution is a Ricci flow with initial metric .Mstan;gstan/, bounded
curvature on compact time intervals and complete time slices. Note also that the
proofs for [10, 4.5], [7, Lemma 74.1] or [1, Lemma 7.4.1] still hold in the boundary
case, since by Definition 2.11(3) we have the bound distt 0.y

0; @M.t 0// > c00ı�1� for
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some universal constant c00 > 0. So, for small enough ı , depending on D , we have
distt 0.y

0; @M.t 0//�D�.

The fact that P is close to a subset of a standard solution implies that

(3-3) scal.x�; t�/ >
c��2

1���2.t�� t 0/
for all .x�; t�/ 2 P

and

(3-4) jRmj< C��
�2 on P;

where c > 0 is some universal constant and C� <1 is a constant that only depends
on � . For more details see [10, Section 2], [7, Lemma 63.1] or [1, Theorem 7.3.2]. In
particular, (3-3) implies that scal> c��2 > c0ı�2t 0�1 on P for some universal c0 > 0.
So if ı < 1

2

p
c0r , then scal> 4r�2t 0�1 > r�2

1
on P . This implies that P is disjoint

from P .x1; t0; r1;�r2
1
/. So 
 jŒt 0;t0� has to exit P before entering P .x1; t0; r1;�r2

1
/.

We will now fix the constants � and D . Set

� D .400.ƒC 10//�2r2:

Next, set

� D exp
�
�

2.ƒC 10/

cr
p
�

�
and D D

2.ƒC 10/

r
p
�

exp.2C� /:

Note that these constants only depend on ƒ and r .

We first prove that

(3-5) 
 .Œt0� � r2
1 ; t0�/� P .x1; t0; r1;�r2

1 /:

Assume not and let t 00 2 Œt0�� r2
1
; t0� be maximal such that 
 .t 00/ 62P .x1; t0; r1;�r2

1
/.

Then 
 ..t 00; t0�/ � P .x1; t0; r1;�r2
1
/. Using the fact that the distance distortion on

P .x1; t0; r1;�r2
1
/ is bounded by a factor of 10 and Cauchy–Schwarz, we get

LC.
 jŒt 00;t0�/�

Z t0

t 00

p
t0� t� j


0
j
2
t�
.t�/ dt�

�
1

100

�Z t0

t 00

p
t0� t� j


0
j
2
t0
.t�/ dt�

��Z t0

t 00

1
p

t0� t�
dt�

�
�

1

2
p

t0� t 00

�
1

200
p
� r2

1

�Z t0

t 00
j
 0jt0

.t�/ dt�

�2

�
r2
1

200
p
� r2

1

D
r1

200
p
�
> 2

�
ƒC

3

2

�r1

r
>
�
ƒC

3

2

�p
t0 >

�
ƒC

3

2

�
r0;
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in contradiction to (3-2). So we have verified (3-5).

Next we consider the case in which 
 jŒt 0;t0� exits P through its final time slice. By
this we mean that 
 .Œt 0; t 0C ��2�/ � P (note that P \M.t 0C ��2/ is open). This
is only possible if the point 
 .t 0C ��2/ survives past time t 0C ��2 , which implies
by our earlier discussion that � D 1 � � . Moreover, due to (3-5), we must have
t 0C .1� �/�� t0� � r2

1
. Using (3-3), we can now compute that

LC.
 jŒt 0;t 0C��2�/�

Z t 0C��2

t 0

p
t0� t� scal.
 .t�/; t�/ dt�

>

Z t 0C.1��/�2

t 0

c��2
p
� r2

1

1���2.t�� t 0/
dt� D cr1

p
�

Z 1��

0

1

1�u
du

D cr1

p
� jlog � j> c

2
r
p

t0
p
� jlog � j>

�
ƒC

3

2

�
r0;

in contradiction to (3-2). So 
 jŒt 0;t0� cannot exit P through its final time slice.

It follows that 
 exists P through the boundary @B.y0; t 0;D�/ � Œt 0; t 0 C ��2�. In
other words, there is some � 0 2 .0; � � � .0; 1� �� such that for t 00 D t 0C � 0�2 , we
have 
 .Œt 0; t 00// � P and 
 .t 00/ 2 @B.y0; t 0;D�/. By (3-4), we have jRmj < C��

�2

on P . So distance elements on P are distorted by a factor of at most exp.C� /. We
can now estimate

LC.
 jŒt 0;t 00�/�
Z t 0C� 0�2

t 0

p
t0� t j
 0j2t�.t�/ dt� �

p
� r2

1

exp.2C� /

Z t 0C� 0�2

t 0
j
 0j2t 0.t�/ dt�

�

p
� r2

1

exp.2C� /�
0�2

�Z t 0C� 0�2

t 0
j
 0jt 0.t�/ dt�

�2

�

p
� r2

1

exp.2C� /�
2
.D�/2

�
r
p
�D

2 exp.2C� /

p
t0 >

�
ƒC

3

2

�
r0:

Hence we obtain another contradiction to (3-2). This finishes the proof of the claim.

We can now carry out the main argument. Recall that for all t 2 Œt0� r2
0
; t0� we have

scal. � ; t/� � 3

2t
� �3r�2

0 :

So
xL. � ; t/� �6

p
t0� t

Z t0

t0�t

r�2
0

p
t0� t 0 dt 0 D�4r�2

0 .t0� t/2:

Hence, for t 2
�
t0�

1
4
r2
0
; t0
�

we have

yL. � ; t/ WD xL. � ; t/C 2r0

p
t0� t > r0

p
t0� t > 0:
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Let � be a cutoff function that is equal to 1 on
�
�1; 1

20

�
, equal to 1 on

�
1

10
;1

�
and everywhere greater than or equal to 1 and that satisfies

2
.�0/2

�
��00 � .2AC 300/�0�C.A/�:

Here C.A/ <1 is a positive constant, which only depends on A. For more details
see [7, Section 28]. Then set, for all t 2

�
t0�

1
4
r2
0
; t0
�

and y 2M.t/,

h.y; t/D �
�
r�1
0 distt .x0;y/�A.1� 2r�2

0 .t0� t//
�
yL.y; t/:

So h. � ; t/ is infinite outside B
�
x0; t;A.1�2.t0� t/r�2

0
/r0C

1
10

r0

�
�M.t/n@M.t/

(compare with assumption (ii)) and hence it attains a minimum h0.t/ at some interior
point y 2M.t/.

Assume first that h.y; t/� 2r0

p
t0� t exp.C.A/C 100/. So

L.y; t/� r0 exp.C.A/C 100/:

Then, by Claim 2, assuming ı < ı�.exp.C.A/C100/; r; �/ and Z> exp.C.A/C100/,
we have y 2Dt and we can compute (cf [10, 6.3; 7, Section 85]) that, in the barrier
sense,

r2
0

�
@

@t�
�4

�
h.y; t/� �C.A/h.y; t/�

�
6C

r0
p

t0� t

�
�r2

0 :

So, by the maximum principle, we have, in the barrier sense (compare with [7, (85.7)]),

r2
0

d

dt�

�
log

h0.t/
p

t0� t

�
� �C.A/�

50r0
p

t0� t

if h0.t/� 2r0

p
t0� t exp.C.A/C 100/.

Since
h0.t/

r0

p
t0� t

! 2 for t ! t0;

we find that if h0.t
0/� 2r0

p
t0� t 0 exp.C.A/C 100/ for all t 0 2 Œt; t0�, then

h0.t/� 2r0

p
t0� t exp

�
C.A/r�2

0 .t0� t/C 100r�1
0

p
t0� t

�
< 2r0

p
t0� t exp.C.A/C 100/:

This implies that the assumption h0.t/ � 2r0

p
t0� t exp.C.A/C 100/ is actually

satisfied for all t 2
�
t0 �

1
4
r2
0
; t0
�
. So we can find a y 2 B

�
x0; t0 �

1
4
r2
0
; 1

10
r0

�
such

that L
�
y; t0�

1
4
r2
0

�
� r0 exp.C.A/C 100/D C 0.A/r0 .
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Since, by length distortion estimates, B
�
x0; t0�

1
4
r2
0
; 1

10
r0

�
�B

�
x0; t0;

1
2
r0

�
, we find

by joining paths that for all x 2 B.x0; t0; r0/ we have L.x; t0� r2
0
/ < C 00.A/r0 . So,

assuming ı < ı�.C 00.A/; r; �/ and Z > C 00.A/, we can use Claim 2 to conclude that
P .x0; t0; r0;�r2

0
/\M.t0� r2

0
/�Dt0�r2

0
and we have

zV .t0� r2
0 / > v.w;A/

for some constant v.w;A/ > 0, which only depends on A and w . This implies a
uniform lower bound on r�3

1
volt0

B.x1; t0; r1/ (cf [9, 7.3; 7, Theorem 26.2; 1, Lemma
4.2.3]).

The noncollapsing result from Lemma 3.6 will be applied in Lemma 3.11 below. Before
we continue, we introduce the concept of �–solutions, which will be used as models
for singularities and for regions of high curvature. The definition makes sense in all
dimensions.

Definition 3.7 (�–solution) Let � > 0. An ancient Ricci flow .M; .gt /t2.�1;0�/ is
called a �–solution if:

(1) The curvature is uniformly bounded on M � .�1; 0�.

(2) The metric on every time slice is complete and has nonnegative curvature operator
(ie it has nonnegative sectional curvature in dimension 3).

(3) The scalar curvature at time 0 is positive.

(4) At every point the scalar curvature is nondecreasing in time.

(5) The solution is �–noncollapsed on all scales at all points.

Note that, by Hamilton’s Harnack inequality (see [4]), condition (4) follows from
conditions (1)–(2).

We also mention that there is a universal �0 > 0 such that every 3–dimensional �–
solution that is not round (ie isometric to a quotient of a round sphere) is in fact a
�0 –solution (cf [9, 11.9; 7, Proposition 50.1]). Typically, �–solutions can be used
to detect strong "–necks or .";E/–caps or, more generally, to verify the canonical
neighborhood assumptions, as explained in the next lemma:

Lemma 3.8 There is an �>0 and for any ">0 there is an EDE."/<1 such that for
every orientable 3–dimensional �–solution .M; .gt /t2.�1;0�/ the following holds: For
all r > 0, the canonical neighborhood assumptions CNA.r; ";E; �/ hold everywhere
on M � .�1; 0�. More precisely, M is diffeomorphic to a spherical space form and
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has positive, E2 –pinched sectional curvatures, or, for any .x; t/ 2M � .�1; 0�, we
have:

(a) .x; t/ is a center of a strong "–neck or an .";E/–cap U �M . If U �RP3nB3 ,
then there is a double cover of M such that any lift of .x; t/ is the center of a
strong "–neck.

(b)
ˇ̌
rjRmj�1=2

ˇ̌
.x; t/ < ��1 and

ˇ̌
@t jRmj�1

ˇ̌
.x; t/ < ��1 .

(c) voltB.x; t; r
0/ > �r 03 for all 0< r 0 < jRmj�1=2.x; t/.

Proof See [9, 11.8], [7, Corollary 48.1] or [1, Theorem 5.4.11].

The following lemma will enable us to identify �–solutions as limits of Ricci flows
with surgeries under very weak curvature bounds. We first need to coin the following
notion.

Definition 3.9 (convergence of pointed Ricci flows with surgery) Let M˛ for
˛ D 1; 2; : : : be a sequence of Ricci flows with surgery and let .x˛; t˛/ 2M˛ be
basepoints. Furthermore, consider a constant 0 < T �1, a nonsingular Ricci flow
.M1; .g1t /t2.�T;0�/ and a basepoint .x1; t1/ 2M1 � .�T; 0�. We say that the
pointed Ricci flows with surgery .M˛; .x˛; t˛// converge to the pointed Ricci flow
.M1; .g1t /t2.�T;0�; .x

1; t1// if the following holds: We can find an increasing
sequence of open subsets U ˛ �M1 , open subsets V ˛ �M˛.t˛/, diffeomorphisms
ˆ˛W U ˛! V ˛ and numbers 0< T ˛ < T such that:

(1) lim˛!1 T ˛ D T .

(2)
S1
˛D1 U ˛ DM1 .

(3) For any ˛ , all points of V ˛ survive until time t˛�T ˛ . In other words, the flow
restricted to V ˛ � Œt˛ �T ˛; t˛ � is nonsingular.

(4) Denote by .xg˛/t2Œt1�T ˛;t1� the pullbacks xg˛t1Ct WD .ˆ˛/�g˛.t˛ C t/ for
t 2 Œ�T ˛; 0�. Then .xg˛t /t2Œt1�T ˛;t1� converges to .g1t /t2.t1�T;t1� locally
in any C m –norm on M1 � .�T; 0�.

Note that in the case in which all flows M˛ are nonsingular, this notion coincides with
the smooth convergence of Ricci flows as introduced by Hamilton (cf [5]).

Lemma 3.10 There is an "0 > 0 such that: Let M˛ be a sequence of (3–dimensional)
Ricci flows with surgery on the time intervals Œ��˛

0
; 0� with �˛ � �˛

0
, x˛

0
2M˛.0/
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a sequence of basepoints that survive until time ��˛ , and a˛ !1 a sequence of
positive numbers such that for P˛ D f.x; t/ 2M˛ W t 2 Œ��˛; 0�; distt .x

˛
0
;x/ < a˛g

the following conditions hold:

(i) The ball B.x˛
0
; t; a˛/ is relatively compact in M˛.t/ and does not hit the bound-

ary @M˛.t/ for all t 2 Œ��˛; 0�.

(ii) jRmj.x˛; 0/� 1.

(iii) The curvature on P˛ is '˛–positive for some '˛! 0.

(iv) All points of P˛ are �–noncollapsed on scales < a˛ for some uniform � > 0.

(v) All points of P˛ satisfy the assumptions CNA.r; "0;E; �/ for some uniform
r;E; � > 0.

(vi) There is a sequence K˛!1 such that for every surgery point .x0; t 0/ 2P˛ we
have jRmj.x0; t 0/ >K˛ .

Then, whenever �1 D lim sup˛!1 �
˛ > 0, a subsequence of the pointed Ricci

flows with surgery .M˛; .x˛
0
; 0// converges to some pointed, nonsingular Ricci flow

.M1; .g1t /t2.��1;0�; .x
1
0
; 0// on a manifold M1 without boundary. Moreover,

this limiting Ricci flow has complete time slices and bounded, nonnegative sectional
curvature. If �1 D 1 and jRmj.x1; 0/ > 0, then .M1; .g1t /t2.�1;0�/ is a �–
solution.

Proof We follow the lines of the proofs of [1, Proposition 6.3.1; 10, 4.2; 9, 12.1; 7,
Theorem 52.7].

We first use assumptions (i), (iv) and (v) at time 0 and assumptions (ii) and (iii) to apply
Perelman’s “bounded curvature at bounded distance estimate”. For more details see [10,
4.2, Claim 2], the proof of [7, Lemma 89.2], [7, Lemma 70.2] or [1, Proposition 6.2.4].
In order to carry out this estimate, we need to assume that " is smaller than some
universal constant "0> 0. The “bounded curvature at bounded distance estimate” yields
a function K�

1
W Œ0;1/! .0;1/ such that for every d > 0 we have

jRmj. � ; 0/ <K�1 .d/ on B.x˛0 ; 0; d/�M˛.0/

for large ˛ (depending on d ). Using Lemma 3.5(b) and assumption (v), we obtain
functions ��

2
;K�

2
W Œ0;1/! .0;1/ such that for all d > 0 we have

jRmj< 2K�2 .d/ on P .x˛0 ; 0; d;��
�
2 .d//
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for large ˛ (depending on d ). By assumption (vi), this implies that for any d > 0 and
large ˛ , the parabolic neighborhood P .x˛

0
; 0; d;���

2
.d// is nonsingular. So we obtain

uniform bounds on the curvature derivatives on slightly smaller parabolic neighborhoods.
This and assumption (iv) implies that, after passing to a subsequence, the pointed
Riemannian manifolds .M˛.0/;x˛

0
/ converge to a complete pointed Riemannian

manifold .M1;g1;x1
0
/ in the smooth Cheeger–Gromov sense. In the following, we

will only work with this subsequence.

By assumption (iii), we conclude that .M1;g1/ has nonnegative sectional curvature.
Moreover, by assumption (v), we find that any point x 2M1 with jRmj.x/> 2E2r�2

is the center of a 2"–neck or a .2"; 2E/–cap. This fact implies that the curvature on
.M1;g1/ is uniformly bounded. For more details see the proof of [7, Theorem 52.7]
(see also step 3 in the proof of [7, Theorem 52.7]), the proof of [1, Proposition 6.3.1]
or the second paragraph on page 34 of [9].

So there is a constant K�
3
<1 such that for any d > 0 we have

jRmj. � ; 0/ <K�3 on B.x˛0 ; 0; d/�M˛.0/

for sufficiently large ˛ (depending on d ). Again, by Lemma 3.5 and assumption (v),
we obtain constants ��

4
> 0 and K�

4
<1 such that for all d > 0 we have

jRmj<K�4 on P .x˛0 ; 0; d;��
�
4 /

for sufficiently large ˛ (depending on d ). So, again by assumption (vi), for large ˛
(depending on d ) the parabolic neighborhood P .x˛

0
; 0; d;���

4
/ is nonsingular.

Now choose 0< �� � �1 maximal with the following property, after possibly passing
to a subsequence: for any 0 < ��� < �� there is a constant K��� <1 such that for
all d > 0 we have

jRmj<K���� on P .x˛0 ; 0; d;��
��/

for large ˛ (depending on ��� and d ). By our previous conclusions, �� � ��
4
> 0. It

follows that we can pick sequences d˛!1 and ���˛ ! �� such that the parabolic
neighborhoods P .x˛

0
; 0; d˛;����˛ / are nonsingular. So we can apply Hamilton’s

compactness theorem for (nonsingular) Ricci flows to conclude that the pointed Ricci
flows with surgery .M˛; .x˛

0
; 0// subconverge to some nonsingular Ricci flow

.M1; .g1t /t2.���;0�; .x
1
0 ; 0//
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with the property that g1
0
D g1 . Moreover, .M1; .g1t /t2.���;0�/ has bounded

curvature on compact time intervals, complete time slices and, by assumption (iii),
nonnegative sectional curvature.

Next we show that .M1; .g1t /t2.���;0�/ has uniformly bounded curvature. In the
case in which �� D1, this fact follows from Hamilton’s Harnack inequality (cf [4]),
which implies that the scalar curvature is pointwise nondecreasing along the flow. In
the case in which �� <1, we can argue as in step 4 of the proof of [7, Theorem 52.7].
See also the proof of [1, Proposition 6.3.1] or the third paragraph on page 34 of [9]. For
these proofs the following statement, which follows from assumption (v), is important:
any .x; t/ 2M1 � .���; 0� with jRmj.x; t/ > 2r�2 is the center of a 2"–neck or a
.2"; 2E/–cap.

So it follows that, after passing to a subsequence once again, there is a uniform constant
K�

5
<1 such that for all 0< ��� < �� and all d > 0 we have

jRmj<K�5 on P .x˛0 ; 0; d;��
��/

for sufficiently large ˛ (depending on ��� and d ). Now assume that �� < �1 . Then,
using Lemma 3.5(b) and assumption (v), we can find some ��

6
with �� < ��

6
< �1

and some K�
6
<1 such that for any d > 0 we have

jRmj<K�6 on P .x˛0 ; 0; d;��
�
6 /

for sufficiently large ˛ (depending on d ). This, however, contradicts the choice of �� .
So we conclude that indeed �� D �1 .

It remains to consider the case in which �1 D1 and jRmj.x1; 0/ > 0. Note that
in this case .M1; .g1t /t2.�1;0�/ is an ancient solution with uniformly bounded,
nonnegative sectional curvature and complete time slices. Since jRmj.x1; 0/ > 0,
we must have scal.x1; t/ > 0 for some t < 0. So, by the strong maximum principle,
we have scal. � ; 0/ > 0 everywhere on M1 . The fact that the scalar curvature is
pointwise nondecreasing in time follows from Hamilton’s Harnack inequality (cf [4])
and the fact that .M1; .g1t /t2.�1;0�/ is �–noncollapsed on all scales at all points is
a consequence of assumption (iv).

We now state the second main lemma.

Lemma 3.11 (cf [10, 6.3(b)–(c)]) There are constants �0; "0 > 0 and for every
" 2 .0; "0� there is a constant E0 DE0."/ <1 such that:

Geometry & Topology, Volume 22 (2018)



804 Richard H Bamler

For any 1 � A < 1, w; r > 0, � 2 .0;�0� and E � E0 there are constants
K D K.w;A;E;�/;Z D Z.A/ < 1 and z� D z�.w;A; ";E;�/; xr D xr.A;w;E;�/,
ı D ı.w;A;r; ";E;�/ > 0 such that:

Let r2
0
�

1
2
t0 and let M be a Ricci flow with surgery (whose time slices are allowed to

have boundary) on the time interval Œt0� r2
0
; t0� that is performed by ı–precise cutoff

and consider a point x0 2M.t0/. Assume that the canonical neighborhood assumptions
CNA.r

p
t0; ";E; �/ hold on M. We also assume that the curvature on M is uniformly

bounded on compact time intervals that don’t contain surgery times and that all time
slices of M are complete.

Assume that the parabolic neighborhood P .x0; t0; r0;�r2
0
/ is nonsingular, jRmj � r�2

0

on P .x0; t0; r0;�r2
0
/ and volt0

B.x0; t0; r0/� wr3
0

.

In the case in which some time slices of M have nonempty boundary, we assume that:

(i) Every space-time curve 
 W Œt1; t2�!M with t2 2
�
t0 �

1
10

r2
0
; t0
�

and 
 .t2/ 2
B.x0; t2; .AC 1/r0/ that meets the boundary @M somewhere, has L.
 / >Zr0

(based in t2 ).

(ii) For all t 2
�
t0 �

1
5
r2
0
; t0
�
, the ball B.x0; t; 2.AC 3/r0C r

p
t0/ does not meet

the boundary @M.t/.

Then:

(a) Every point x 2B.x0; t0;Ar0/ satisfies the canonical neighborhood assumptions
CNA.z�r0; ";E; �/.

(b) If r0 � xr
p

t0 , then jRmj �Kr�2
0

on B.x0; t0;Ar0/.

It is important in this lemma that z� , unlike ı , may not depend on r .

Proof The proof follows the lines of [10, 6.3(b)–(c)].

Let "0 be the constant from Lemma 3.10. Choose �0 and E0 DE0."/ to be strictly
less/larger than the constants � and E."/ in Lemma 3.8. By choosing z� small and
K large enough, we can again exclude the case in which for some time t � t0 the
component of M.t/ that contains x0 has positive, E2 –pinched sectional curvatures.

We first establish part (a). Assume that, given some small z� , there is a point x 2

B.x0; t0;Ar0/ such that .x; t0/ does not satisfy the canonical neighborhood assump-
tions CNA.z�r0; ";E; �/, ie we have jRmj.x; t0/� z��2r�2

0
and .x; t0/ does not satisfy

the assumptions (1)–(3) in Definition 2.14. Set, for Nt 2 Œt0� r2
0
; t0� and xx 2M.Nt/,
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Pxx;Nt D
n
.y; t/ 2M W t 2

�
Nt � 1

20
z��2
jRmj�1.xx; Nt/; Nt

�
; y 2M.t/;

distt .x0;y/� distNt .x0; xx/C
1
4
z��1
jRmj�1=2.xx; Nt/

o
:

We will now use a point-picking process to find a particular .xx; Nt/ 2M with Nt 2�
t0 �

1
10

r2
0
; t0
�

and xx 2 B
�
x0; Nt ;

�
A C 1

2

�
r0

�
: First set .xx; Nt/ D .x; t0/. Let xq D

jRmj�1=2.xx; Nt/ � z�r0 . If every .x0; t 0/ 2 Pxx;Nt satisfies the canonical neighborhood
assumptions CNA

�
1
2
xq; ";E; �

�
, then we stop. If not, we replace .xx; Nt/ by such a

counterexample and start over. In every step of this algorithm, xq decreases by at least
a factor of 1

2
, which implies that the algorithm has to terminate after a finite number of

steps since after a finite number of steps we have xq < r
p

t0 and we can make use of the
canonical neighborhood assumptions CNA.r

p
t0; ";E; �/ from the assumptions of the

lemma. So the algorithm yields an .xx; Nt/2M and a xqDjRmj�1=2.xx; Nt/� z�r0 such that
.xx; Nt/ does not satisfy the canonical neighborhood assumptions CNA.xq; ";E; �/, but
all points in Pxx;Nt satisfy the canonical neighborhood assumptions CNA

�
1
2
xq; ";E; �

�
.

By convergence of the geometric series, we conclude Nt� 1
20
z��2xq2 2

�
t0�

1
10

r2
0
; t0
�

and
distNt .x0; xx/ <

�
AC 1

2

�
r0 . Moreover, for all .x0; t 0/ 2 Pxx;Nt we have distt 0.x0;x

0/ <

.AC 1/r0 .

We now claim that there is a constant z�D z�.w;A; ";E; �/ > 0 such that assertion (a)
holds for Z.A/DZ3:6.10.AC 1// and

ı D ı.w;A; r; ";E; �/Dminfı3:6.10.AC 1/; r; �/; r2
g;

where Z3:6 and ı3:6 are the constants from Lemma 3.6. Assume that this was wrong,
ie that for fixed parameters w , A, ", E and �, there is no such constant z� . Then
we can find a sequence z�˛ ! 0 and a sequence of counterexamples M˛ , t˛

0
, r˛

0
,

x˛
0

and r˛ that satisfy the assumptions of the lemma for Z D Z.A/ and ı˛ D

ı.w;A; r˛; ";E; �/, but for which there are points x˛ 2 B.x˛
0
; t˛

0
;Ar˛

0
/ such that

.x˛; t˛
0
/ doesn’t satisfy the canonical neighborhood assumptions CNA.z�˛r˛

0
; ";E; �/.

Note that by assumption, the point .x˛; t˛
0
/ satisfies the canonical neighborhood

assumptions CNA.r˛
p

t˛
0
; ";E; �/. So we must have z�˛r˛

0
> r˛

p
t˛
0
> r˛r˛

0
and

hence r˛! 0 for ˛!1. By the choice of ı this implies that ı˛=r˛! 0 for ˛!1.

First, let .xx˛; Nt˛/ and xq˛ be the point and the constant obtained by the algorithm two
paragraphs earlier. We now apply Lemma 3.6 with

r0 
1

10
r˛0 ; x0 x˛0 ; t0 t 2

�
Nt˛ � 1

20
.z�˛/�2.xq˛/2; Nt˛

�
;

w cw; A 10.AC 1/; r  r˛;
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where c>0 is a universal constant, which arises from volume comparison and distortion
estimates on P .x˛

0
; t˛

0
; r˛

0
;�r˛

0
/ and which has the property that voltB

�
x˛

0
; t; 1

10
r˛
0

�
>

cw
�

1
10

r˛
0

�3 . We conclude that any .x0; t 0/ 2M˛ with t 0 2
�
Nt˛ � 1

20
.z�˛/�2.xq˛/2; Nt˛

�
and x0 2 B.x˛

0
; t 0; .AC 1/r˛

0
/ is �–noncollapsed for some uniform � > 0 on scales

less than 1
10

r˛
0

. This implies that the points on Pxx˛;Nt˛ are �–noncollapsed on scales
less than 1

10
r˛
0

.

Observe that the assumption on ı˛ and Definition 2.11(3) imply that there is a universal
constant c0 > 0 such that for every surgery point .x0; t 0/ 2M˛ with t 0 � t˛

0
we have

(3-6) jRmj.x0; t 0/ > c0.ı˛/�2t 0�1
D c0

�
ı˛

r˛

��2

.r˛
p

t 0/�2

� c0
�
ı˛

r˛

��2

.r˛
p

t˛0 /
�2 > c0

�
ı˛

r˛

��2

.xq˛/�2:

Here we have again made use of the inequality xq˛ > r˛
p

t˛ , which follows from the
fact that the point .xx˛; Nt˛/ satisfies the assumptions CNA.r˛

p
t˛
0
; ";E; �/, but not

CNA.xq˛; ";E; �/. Recall moreover, that the factor .ı˛=r˛/�2!1 as ˛!1.

So, for large ˛ , the point .xx˛; Nt˛/ is not a surgery point. Pick 0 < �˛ � 1
20
.z�˛/�2

maximal such that the point xx˛ survives until time Nt˛ � �˛.xq˛/2 and such that

distt .x
˛
0 ; xx

˛/ < distNt˛
0
.x˛0 ; xx

˛/C 1
8
.z�˛/�1

xq˛ for all t 2 .Nt˛ � �˛.xq˛/2; Nt˛ �:

This implies

(3-7) B.xx˛; t; 1
8
.z�˛/�1

xq˛/� Pxx˛;Nt˛ for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

By passing to a subsequence, we may assume that the limit �1D lim˛!1 �˛ 2 Œ0;1�
exists. So, after parabolically rescaling by .xq˛/�1 , the Ricci flows with surgery M˛

restricted to the time interval ŒNt˛��˛.xq˛/2; Nt˛ � and based at xx˛ satisfy the assumptions
of Lemma 3.10 for some sequence a˛!1 (we also need to make use of assumption
(ii) here). Hence, again after passing to a subsequence, these flows subconverge to
some nonsingular Ricci flow on M1 � .��1; 0� of bounded curvature.

The previous conclusion has the following implication: there is a uniform constant
4�D <1 such that, whenever 0< � 0 < �1 or � 0 D 0, we have

(3-8) jRmj.xx˛; t/ <D.xq˛/�2 for all t 2 ŒNt˛ � � 0.xq˛/2; Nt˛ �

for large ˛ (in the case �1 D 0 the statement holds for D D 4).
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Assume first that �1 < 1. Observe that by (3-7) the point .xx˛; t/ satisfies the
canonical neighborhood assumptions CNA

�
1
2
xq˛; ";E; �

�
for all t 2 ŒNt˛� �˛.xq˛/2; Nt˛ �.

This implies (cf Definition 2.14(2)) that

(3-9) jRmj.xx˛; t/ < 4.xq˛/�2
�D.xq˛/�2 or

ˇ̌
@t jRmj�1

ˇ̌
.xx˛; t/ < ��1

for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

We now use (3-8) for � 0 D maxf�1 � �=4D; 0g and integrate the derivative bound
of (3-9) from Nt˛ � � 0.xq˛/2 backwards in time to any t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ � � 0.xq˛/2�

for large ˛ . Note that for large ˛ and any such t , we have t � .Nt˛ � �˛.xq˛/2/ �

.�=4DC .�˛ � �1//.xq
˛/2 < 2 � .�=4D/.xq˛/2 . So we obtain that for large ˛ we have

(compare with Lemma 3.5)

jRmj.xx˛; t/ < 2D.xq˛/�2 for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

In particular, it follows from (3-6) that for large ˛ none of the points .xx˛; t/ for t 2

ŒNt˛��˛.xq˛/2; Nt˛ � are surgery points. So .xx˛; Nt˛/ even survives past time Nt˛��˛.xq˛/2 .

Next, we use the following consequence of the canonical neighborhood assumptions
CNA

�
1
2
xq˛; ";E; �

�
, which hold on Pxx;Nt :

jRmj.x; t/ < 4.xq˛/�2
�D.xq˛/�2 or

ˇ̌
rjRmj�1=2

ˇ̌
.x; t/ < ��1

for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ � and x 2 B
�
xx˛; t; 1

8
.z�˛/�1

xq˛
�
:

Integrating these assumptions as in the proof of Lemma 3.5 yields that for large ˛

jRmj< 16D.xq˛/�2 on B
�
xx˛; t; 1

4
�D�1=2

xq˛
�

for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

Note that here we have used the fact that 1
8
.z�˛/�1> 1

4
�D�1=2 for large ˛ . By distance

distortion estimates (Lemma 3.4(b)) and (3-6), we then obtain that, for large ˛ and
some universal constant C <1,

d

dt
distt .x

˛
0 ; xx

˛/� �C��1
p

D.xq˛/�1 for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

Integrating this estimate yields that for large ˛

distt .x
˛
0 ; xx

˛/ < distNt˛ .x
˛
0 ; xx

˛/CC��1�˛
p

Dxq˛ for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

Since C��1
p

D < 1
16
.z�˛/�1 for large ˛ , this implies that for large ˛

distt .x
˛
0 ; xx

˛/ < distNt˛ .x
˛
0 ; xx

˛/C 1
16
.z�˛/�1

xq˛ for all t 2 ŒNt˛ � �˛.xq˛/2; Nt˛ �:

This fact, however, contradicts the definition of �˛ .
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So it follows that �1 D1. Hence, after parabolically rescaling by .xq˛/�1 , the Ricci
flows with surgery M˛ restricted to the time interval ŒNt˛ � �˛.xq˛/2; Nt˛ � and based at
xx˛ subconverge to a �–solution M1 � .�1; 0�. Using Lemma 3.8, we finally obtain
a contradiction to the assumption that the points .xx˛; Nt˛/ do not satisfy the canonical
neighborhood assumptions CNA.xq˛; ";E; �/.

Part (b) follows exactly the same way as in [10, 6.3]. See also [7, Lemma 70.2; 1,
Proposition 6.2.4]. The boundary @M.t0/ does not create any issues since it is far
enough away from x0 .

We now prepare for the proof of the next main result, Lemma 3.15. We believe that we
have to modify the result in [10, 6.5] as follows to make its proof work.

Lemma 3.12 [10, 6.5] For all w> 0 there exist �0D �0.w/> 0 and K0DK0.w/<

1 such that:

Let M be a Ricci flow with surgery with complete time slices that is defined on the
time interval Œ��; 0� and let x0 2M.0/. Assume that .x0; 0/ survives until time �� ,
that for all t 2 .��; 0� the ball B.x0; t; 1/ does not intersect any surgery points or the
boundary @M.t/, that sec � �1 on

S
t2Œ��;0�B.x0; t; 1/\P .x0; 0; 1;��/ and that

vol0B.x0; 0; 1/� w . Then:

(a) jRmj �K0�
�1 in P

�
x0; 0;

1
4
;�1

2
�
�
.

(b) All points in B
�
x0;��;

1
4

�
survive until time 0 and B

�
x0;��;

1
4

�
�B.x0; 0; 1/.

(c) vol�� B
�
x0;��;

1
4

�
> 1

2
w
�

1
4

�3 .

Proof See [7, Lemma 82.1] for a proof of the first part and the proof of [7, Corollary
45.1(b)] for the third. The second part follows from the lower bound on the sectional
curvature.

Lemma 3.13 [10, 6.6] For any w > 0 there is a �0 D �0.w/ > 0 such that: Let
.M;g/ be a Riemannian 3–manifold and B.x; 1/�M a ball of volume at least w that
is relatively compact and does not meet the boundary of M . Assume that sec � �1

on B.x; 1/. Then there exists a ball B.y; �0/ � B.x; 1/, such that every subball
B.z; r/� B.y; �0/ of any radius r has volume at least 1

10
r3 .

Proof See [7, Lemma 83.1].
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Lemma 3.14 For any K <1 there is an xr D xr.K/ <1 such that: Let r0 � xr
p

t0

and 1
2
t0 � t � t0 . Assume that .M;g/ is a Riemannian manifold of t�1 –positive

curvature and jRmj < Kr�2
0

on M . Then the sectional curvature is bounded from
below: sec� �1

2
r�2
0

.

Proof The claim is clear for r0 D 1. The rest follows from rescaling.

Lemma 3.15 [10, 6.4] There is a constant "0 > 0 such that for all r; � > 0 and
E<1 there are constants � D �.�;E/;xr Dxr.�;E/; ıD ı.r;�;E/> 0 and KDK.E/,
C1 D C1.E/;Z DZ.�;E/ <1 such that:

Let r2
0
< 1

2
t0 and let M be a Ricci flow with surgery (whose time slices are allowed to

have boundary) on the time interval Œt0� r2
0
; t0� that is performed by ı0–precise cutoff

for some 0 < ı0 � ı and consider a point x0 2M.t0/. Assume that the canonical
neighborhood assumptions CNA.r

p
t0; "0;E; �/ hold on M. We also assume that the

curvature on M is uniformly bounded on compact time intervals that don’t contain
surgery times and that all time slices of M are complete.

In the case in which some time slices of M have nonempty boundary, we assume that:

(i) For all t1 < t2 2
�
t0 �

1
10

r2
0
; t0
�

we have: if some x 2 B.x0; t0; r0/ survives
until time t2 and 
 W Œt1; t2�!M is a space-time curve with endpoint 
 .t2/ 2
B.x; t2; 3r0/ that meets the boundary @M somewhere, then L.
 />Zr0 (where
L is based in t2 ).

(ii) For all t 2
�
t0 �

1
10

r0; t0
�

we have: if some x 2 B.x0; t0; r0/ survives until
time t , then B.x; t; 5r0C r

p
t0/ does not meet the boundary @M.t/.

Now assume that

(iii) C1ı
0
p

t0 � r0 � xr
p

t0 ,

(iv) sec� �r�2
0

on B.x0; t0; r0/ and

(v) volt0
B.x0; t0; r0/�

1
10

r3
0

.

Then the parabolic neighborhood P
�
x0; t0;

1
4
r0;�� r2

0

�
is nonsingular and we have

jRmj<Kr�2
0

on P
�
x0; t0;

1
4
r0;�� r2

0

�
.

Proof Before we start with the main argument, we first discuss the case in which
r0 � r

p
t0 : We first show that for a universal K0 D K0.E/ < 1 and sufficiently

small but universal "0 , we can guarantee that jRmj< 1
2
K0r�2

0
on B

�
x0; t0;

1
4
r0

�
. The
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constant K0 and the smallness of the constant "0 will be determined in the course of this
paragraph. Assume the assumption was wrong, ie there is a point x 2 B

�
x0; t0;

1
4
r0

�
such that QD jRmj.x; t0/ � 1

2
K0r�2

0
. By the canonical neighborhood assumptions

CNA.r
p

t0; "0;E; �/, we know that .x; t0/ is either a center of a strong "0 –neck or
of an ."0;E/–cap or M.t0/ has positive E2 –pinched curvature (here we assumed
that K0 > 2). The latter case cannot occur by assumption (v), for large enough K0 , so
assume that .x; t0/ is a center of a strong "0 –neck or an ."0;E/–cap. In both of these
cases there is a y 2M.t0/ with distt0

.x;y/ <EQ�1=2 such that .y; t0/ is a center of
an "0 –neck and E�2Q< jRmj.y; t0/ <E2Q. Assuming K0 > 72E2 , we conclude
that y 2B

�
x0; t0;

1
3
r0

�
. Since "0 –necks are sufficiently collapsed for small enough "0 ,

we can make the following conclusion: for every w> 0 there is an "0
0
D "0

0
.w/> 0 and

a D DD.w/ <1 such that if "0 < "
0
0

, then volt0
B.y; t0;DQ�1=2/ < wD3Q�3=2 .

By assumption (v) and by volume comparison, there is a universal constant w0 > 0

such that volt0
B.y; t0; d/�w0d3 for all 0< d < 1

2
r0 . Assume now that "0 < "

0
0
.w0/

and K0 > 8D2.w0/. Then we obtain a contradiction for d DD.w0/Q
�1=2 < 1

2
r0 . So

we indeed have jRmj< 1
2
K0r�2

0
on B

�
x0; t0;

1
4
r0

�
. Next, by Lemma 3.5, assumption

(iii) and the fact that at every surgery point .x0; t 0/ we have (compare with (3-6))

jRmj.x0; t 0/ > c0ı0�2t 0�1
� c0ı�2t 0�1

� c0ı�2t�1
0 � c0C 2

1 r�2
0 ;

we conclude that there is a � 0D � 0.�;E/ > 0 such that if C1DC1.E/D c0�1=2K01=2 ,
then P

�
x0; t0;

1
4
r0;��

0r2
0

�
is nonsingular and jRmj<K0r�2

0
on P

�
x0; t0;

1
4
r0;��

0r2
0

�
.

Now we return to the general case, allowing r0� r
p

t0 . We will first fix some constants:
Let "0;C1 be the constants from the last paragraph. Without loss of generality, we may
assume that "0 is smaller than the corresponding constant from Lemma 3.11. Next
assume that the constants r; �;E have already been chosen. Consider the constants
�0;3:12 and K0;3:12 from Lemma 3.12, �0;3:13 from Lemma 3.13, K3:11 , xr3:11 , Z3:11

and ı3:11 from Lemma 3.11 and xr3:14 from Lemma 3.14 and set

� Dmin
˚
� 0; 1

2
�0;3:12

�
1

10

�
; 1

100

	
;

K Dmax
˚
K0;K0;3:12

�
1

10

�
��1

	
;

�0 Dmin
˚

1
4
�0;3:13

�
1

20

�
; 1

10

	
;

r� D �0 min
˚
�1=2;K�1=2; 1

10

	
;

K� D .r�/�2K3:11

�
1

10
; 2.r�/�1;E; �

�
;

Z DZ3:11.2.r
�/�1/;
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xr Dmin
˚
xr3:11

�
1

10
; 2.r�/�1;E; �

�
; xr3:14.K

�/
	
;

ı Dmin
˚
C�1

1 �0r; ı3:11

�
1

10
; 2.r�/�1; r; "0;E; �

�
; c0

1=2
.K�/�1=2r

	
:

Here c0 is again the constant from (3-6).

We now claim that the conclusion of the lemma holds with this choice of the constants � ,
xr , ı , K , C1 and Z and for any 0< ı0 � ı . Assume not, ie that P

�
x0; t0;

1
4
r0;�� r2

0

�
is singular or we don’t have jRmj < Kr�2

0
on P

�
x0; t0;

1
4
r0;�� r2

0

�
. We now carry

out a point-picking process. In the first step set x0
0
D x0 , t 0

0
D t0 and r 0

0
D r0 . If there

are x00
0

, t 00
0

and r 00
0

, such that

(1) t 00
0
2 Œt 0

0
� 2�.r 0

0
/2; t 0

0
�,

(2) the point x0
0

survives until time t 00
0

and for all t 2 .t 00
0
; t 0

0
� there are no surgery

points in B.x0
0
; t; r 0

0
/ and B.x0

0
; t; r 0

0
/\ @M.t/D∅,

(3) sec� �.r 0
0
/�2 on

S
t2Œt 00

0
;t 0

0
�B.x

0
0
; t; r 0

0
/,

(4) x00
0
2 B

�
x0

0
; t 00

0
; 1

4
r 0
0

�
,

(5) r 00
0
D �0r 0

0
� C1ı

0
p

t 0
0

,

(6) volt 00
0
B.x00

0
; t 00

0
; r 00

0
/� 1

10
.r 00

0
/3 and

(7) we don’t have jRmj < K.r 00
0
/�2 on P

�
x00

0
; t 00

0
; 1

4
r 00
0
;��.r 00

0
/2
�

or the parabolic
neighborhood P

�
x00

0
; t 00

0
; 1

4
r 00
0
;��.r 00

0
/2
�

is singular,

then we replace the triple .x0
0
; t 0

0
; r 0

0
/ by .x00

0
; t 00

0
; r 00

0
/ and repeat. If not, we stop the

process. Observe that here and in the rest of the proof the parabolic neighborhoods are
not assumed to be nonsingular unless otherwise noted (compare with Definition 2.4).
By the smallness of � , we have t 0

0
> t0 �

1
10

r2
0

at every step of this process. So by
condition (5) this process always has to terminate after a finite number of steps.

Observe that, by the smallness of � and �0 , distance distortion estimates and condi-
tion (3), we have in every step of this process

P
�
x000 ; t

00
0 ; r
00
0 ;�

1
10
.r 000 /

2
�
� P

�
x00; t

0
0; r
0
0;�

1
10
.r 00/

2
�
:

So these parabolic neighborhoods for each step are nested and we have for the final
triple .x0

0
; t 0

0
; r 0

0
/

P
�
x00; t

0
0; r
0
0;�

1
10
.r 00/

2
�
� P

�
x0; t0; r0;�

1
10
.r0/

2
�
:

So the triple .x0
0
; t 0

0
; r 0

0
/ satisfies assumptions (i) and (ii) of the lemma. By conditions

(3) and (6), also assumptions (iv) and (v) are satisfied. Moreover, we have .r 0
0
/2 < 1

2
t 0
0
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and by condition (5) we have after the first step C1ı
0
p

t 0
0
� r 0

0
� �0r0 �

1
10

r0 �

1
10
xr
p

t0 � xr
p

t 0
0

. So the triple .x0
0
; t 0

0
; r 0

0
/ also satisfies assumption (iii) of the lemma.

However, by condition (7), the assertion of the lemma fails for the triple .x0
0
; t 0

0
; r 0

0
/.

Note also that the Ricci flow with surgery M restricted to Œt 0
0
� .r 0

0
/2; t 0

0
� satisfies the

canonical neighborhood assumptions CNA.r
p

t 0
0
; "0;E; �/. Thus, after passing to this

restriction and the triple .x0
0
; t 0

0
; r 0

0
/, we may assume, without loss of generality, that

x0 D x0
0

, t0 D t 0
0

and r0 D r 0
0

and add to our assumptions that whenever we find x00
0

,
t 00
0

and r 00
0

satisfying the assumptions (1)–(6) above, then the opposite of assumption
(7) holds (and hence we have curvature control on P

�
x00

0
; t 00

0
; 1

4
r 00
0
;��.r 00

0
/2
�
). By the

discussion at the beginning of this proof and the fact that � � � 0 , K �K0 , we must
have r0 > r

p
t0 .

Now let x� � 2� be maximal with the property that

� the point x0 survives until time t0�x�r2
0

,

� for all t 2 .t0�x�r2
0
; t0�, there are no surgery points in B.x0; t; r0/,

� sec� �r�2
0

on
S

t2Œt0�x�r2
0
;t0�

B.x0; t; r0/.

Note that by assumption (ii), we have B.x0; t; r0/\@M.t/D∅ for all t 2 Œt0�x�r2
0
; t0�.

If x� D 2� , then the assertion of the lemma follows using Lemma 3.12.

So assume now x� < 2� . We will derive a curvature bound at times Œt0 � x�r2
0
; t0�,

which implies a better lower bound on the sectional curvature and hence contradicts
the maximality of x� . Fix for a moment t 2 Œt0 � x�r2

0
; t0�. By Lemma 3.12 we first

conclude voltB
�
x0; t;

1
4
r0

�
> 1

20

�
1
4

�3
r3
0

. Hence, using Lemma 3.13, we can find a
ball B.y; t; �0r0/�B

�
x0; t;

1
4
r0

�
such that voltB.y; t; �0r0/�

1
10
�3

0
r3
0

and such that
every subball of B.y; t; �0r0/ has volume ratio of at least 1

10
. Moreover, by the choice

of ı , we have �0r0 > �0r
p

t0 �C1ı
p

t0 �C1ı
0
p

t0 . So the triple .y; t; �0r0/ satisfies
the assumptions (1)–(6) above and hence, by choice of the triple .x0; t0; r0/, we find
that the parabolic neighborhood P

�
y; t; 1

4
�0r0;���

2
0

r2
0

�
is nonsingular and

jRmj<K��2
0 r�2

0 on P
�
y; t; 1

4
�0r0;���

2
0 r2

0

�
:

This implies that jRmj< .r�r0/
�2 on P .y; t; r�r0;�.r

�r0/
2/. Recall that by Lemma

3.13 we have voltB.y; t; r
�r0/�

1
10
.r�r0/

3 . Applying Lemma 3.11(b) for x0 y ,
t0 t , r0 r�r0 , w 1

10
, A A�D 2.r�/�1 , E E , � � and r r yields

jRmj. � ; t/ <K�r�2
0 on B.y; t; 2r0/ for all t 2 Œt0�x�r2

0 ; t0�:
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Observe here that by the choice of Z and assumptions (i)–(ii) of this lemma, the
assumptions (i)–(ii) of Lemma 3.11 are satisfied. We conclude that

(3-10) jRmj. � ; t/ <K�r�2
0 on B.x0; t; r0/ for all t 2 Œt0�x�r2

0 ; t0�:

By Lemma 3.14 and the choice of xr , this curvature bound implies sec � �1
2
r�2
0

on
B.x0; t; r0/ for all t 2 Œt0�x�r2

0
; t0�. We now argue that even for t D t0�x�r2

0
there are

no surgery points in B.x0; t; r0/: By (3-6), the choice of ı and the fact that r0 > r
p

t0 ,
we find that at any such surgery point .z; t/ we have

jRmj.z; t/ > c0ı�2t�1
�K�r�2t�1

�K�r�2t�1
0 >K�r�2

0 ;

in contradiction to (3-10). This also implies that the point x0 survives until some time
that is strictly smaller than t0 � x�r2

0
and that B.x0; t; r0/ does not contain surgery

points or meet the boundary for times which are strictly smaller than t0�x�r2
0

. This
contradicts the maximality of x� and hence finishes the proof.

Proof of Proposition 3.2 Let "0 be smaller than the corresponding constants from
Lemmas 3.11 and 3.15. By Lemma 3.13 we can find a ball B.y; t0; �0.w/r0/ �

B.x0; t0; r0/ with volt0
B.y; t0; �0.w/r0/�

1
10
.�0r0/

3 . So we can apply Lemma 3.15
with t0 t0 , x0 y , r0 �0r0 , "0 "0 , E E , � � and r  r and obtain
that if ı < ı3:15.r; �;E/, if the surgeries on M are performed by ı0–cutoff for some
0< ı0 � ı for which

C1;3:15.E/ı
0
p

t0 � �0r0;

if Z > Z3:15.�;E/ and if r0 < xr3:15.�;E/
p

t0 , then the parabolic neighborhood
P
�
y; t0;

1
4
�0r0;��3:15.�;E/�

2
0

r2
0

�
is nonsingular and

jRmj<K3:15.E/�
�2
0 r�2

0 on P
�
y; t0;

1
4
�0r0;��3:15�

2
0 r2

0

�
:

Now choose r� D r�.w; �;E/ 2
�
0; 1

100

�
so small that P .y; t; r�r0;�.r

�r0/
2/ �

P
�
y; t0;

1
4
�0r0;��3:15�

2
0

r2
0

�
for all t 2 Œt0 � .r

�r0/
2; t0� and jRmj < .r�r0/

�2 there.
By volume comparison and distortion estimates and the conclusion of Lemma 3.13, we
find that voltB.y; t; r

�r0/>c.r�r0/
3 for all t 2 Œt0�.r

�r0/
2; t0� and for some universal

constant c > 0. We can then invoke Lemma 3.11(b) with t0 t 2 Œt0 � .r
�r0/

2; t0�,
x0 y , r0 r�r0 , w c , A .AC 2/.r�/�1 , r  r , � � and E E and
obtain that if ı < ı3:11.c; .AC2/.r�/�1; r; "0;E; �/, Z >Z3:11..AC2/.r�/�1/ and
r0 < xr3:11..AC 2/.r�/�1; c;E; �/

p
t0 , then

(3-11) jRmj<Kr�2
0 on B.y; t; .AC 2/r0/ for all t 2 Œt0� .r

�r0/
2; t0�
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for KDK3:11.c; .AC2/.r�/�1;E; �/.r�/�2<1. Fix ı for the rest of this paragraph.
We now argue that there is a constant C1DC1.w;A; �;E/<1 such that the following
holds: If the surgeries on M are even performed by ı0–precise cutoff for some 0<ı0�ı

for which C1ı
0
p

t0 � r0 , then there are no surgery points in B.y; t; .AC 2/r0/ for all
t 2 Œt0� .r

�r0/
2; t0�. Similarly to in (3-6), at every surgery point .z; t/

jRmj.z; t/ > c0ı0�2t�1
� c0ı0�2t�1

0 � c0C 2
1 r�2

0 ;

which contradicts (3-11) if C1 > c0�1=2K1=2 . So we can find a � D �.w;A; �;E/ > 0

such that for all t 2 Œt0 � 2� r2
0
; t0� the points in B.y; t0; .AC 1:5/r0/ survive until

time t and
B.y; t0; .AC 1:5/r0/� B.y; t; .AC 2/r0/:

Hence P .y; t0; .AC 1:5/r0;�2� r2
0
/ is nonsingular and we have jRmj < Kr�2

0
on

P .x0; t0; .AC 0:5/r0;�2� r2
0
/� P .y; t0.AC 1:5/r0;�2� r2

0
/. The higher-derivative

estimates follow from Shi’s estimates on P .x0; t0; .AC 0:5/r0;�2� r2
0
/. Fix C1 for

the rest of the proof. Note that C1 can be chosen independently of ı . So we may
decrease ı depending on C1 and r and assume that C1ı < r .

It remains to consider the case C1ı
p

t0 > r0 , which implies r0 < r
p

t0 . Let Q D

jRmj.x0; t0/. In the next paragraph we show that Qr2
0

is bounded by a constant, which
only depends on w , E and �.

For the next two paragraphs fix w , E and � and assume that Qr2
0
> 1. Using the same

reasoning as in the proof of Lemma 3.11(b) (compare with the “bounded curvature at
bounded distance”-estimate in [10, 4.2, Claim 2], see also the proof of [7, Lemma 89.2],
[7, Lemma 70.2] or [1, Proposition 6.2.4]) we can conclude that jRmj>K�

1
.Qr2

0
/r�2

0

on B.x0; t0; r0/ if Qr2
0
> S0 and r0 < xr

�.Qr2
0
/
p

t0 for some constant S0 <1 and
some functions K�

1
; xr�W Œ0;1/! .0;1/ with K�

1
.s/!1 and s!1, which only

depend on w , E and � (we remark that for this argument the basepoint has to be chosen
at a point x02B.x0; t0; r0/ with r�2

0
�jRmj.x0; t0/�K�

1
.Qr2

0
/r�2

0
). So there is some

S1 D S1.w;E; �/ <1 such that if Qr2
0
> S1 and r0 < xr

�.S1/
p

t0 , then all points
on B.x0; t0; r0/ are centers of strong "–necks or .";E/–caps, whose cross-sectional
2–spheres have diameter at most C.K�

1
.Qr2

0
//�1=2r0 , where C <1 is a universal

constant. These necks and caps can be glued together to give long tubes as described
in [1, Proposition 5.4.7] or [7, Section 58] and we conclude that volt0

B.x0; t0; r0/ <

w�.Qr2
0
/r3

0
for some function w�W Œ0;1/! .0;1/ with w�.s/! 0 as s!1 . Now

choose S2DS2.w;E; �/<1 large enough that w�.S2/<w . Then by assumption (v)
we get Qr2

0
< S2 assuming xr < xr�.S2/.
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Again, by the same reasoning as before (this time, we choose the basepoint to be
.x0; t0/), we obtain the estimate jRmj < K�

2
r�2
0

on B.x0; t0; .AC 1/r0/ for some
universal constant K�

2
D K�

2
.w;A;E; �/ < 1 if r0 < xr

��.w;A;E; �/
p

t0 . Let
x� � 0 be maximal such that the parabolic neighborhood P .x0; t0; .AC 1/r0;�x�r2

0
/

is nonsingular. By Lemma 3.5, we conclude that there is a constant �0 > 0 such that
jRmj < 2K�

2
r�2
0

on P .x0; t0; .AC 1/r0;�minfx�; �0gr
2
0
/. If x� � �0 , then we can

deduce curvature derivative bounds on B.x0; t0;Ar0/ by Shi’s estimates. On the other
hand, if x� < �0 , then by assuming ı to be sufficiently small depending on m, we can
use Definition 2.11(3) to conclude that jrm Rmj< Ckr�2�k

0
for all k �m on initial

time slice of P .x0; t0; .AC 1/r0;�x�r2
0
/. So by a modified version of Shi’s estimates

(see [3, Section 14.4]), we obtain a bound on r2Ck
0
jrk Rmj in B.x0; t0;Ar0/ for

all k �m.

Finally, we consider the case r0 D �.x0; t0/. Applying the proposition with A 1

yields jRmj < Kr�2
0

on B.x0; t0; r0/ for some K D K.w;E; �/ < 1. So by
Lemma 3.14, if we had r0 < xr3:14.K/

p
t0 , then sec��1

2
r�2
0

on B.x0; t0; r0/, which
would contradict the choice of r0 .

Proof of Corollary 3.3 Let "0 be the constant from Proposition 3.2. Observe that
by Proposition 2.15 there are constants � > 0 and E"0

<1 and decreasing, contin-
uous, positive functions r "0

; ı"0
W Œ0;1/! .0;1/ such that if ı.t/ � ı"0

.t/ for all
t 2 Œ0;1/, then every point .x; t/2M satisfies the canonical neighborhood assumptions
CNA.r "0

.t/
p

t ; "0;E"0
; �/. Now consider the constant ı3:2 D ı3:2.r; w;A;E; �;m/

from Proposition 3.2. We can assume that it depends on its parameters r , w and A in a
monotone way, ie ı3:2.r 0; w0;A0;E; �;m0/� ı3:2.r; w;A;E; �;m/ if r 0 � r , w0 �w ,
A0 �A and m0 �m. Assume now that, for all t > 0,

(3-12) ı.t/ <min
˚
ı3:2

�
1
2
r "0
.2t/; t�1; t;E"0

; �; Œt �
�
; ı"0

.t/; t�1
	
:

Let w , A and m be given. Choose T D T .w;A;m/ < 1 such that 2T �1 < w ,
1
2
T >A and 1

2
T >m.

Consider the point x , the time t > T and the scale r from part (a) of the corollary. We
may assume xr < 1

2
, so that r2 < 1

4
t . The flow M satisfies the canonical neighborhood

assumptions CNA
�

1
2
r "0
.t/
p

t ; "0;E"0
; �
�

on Œt � r2; t �. Moreover, by (3-12), the
surgeries on Œt � r2; t � are performed by ı3:2

�
1
2
r "0
.t/; 2t�1; 1

2
t;E"0

; �;
�

1
2
t
��

–precise
cutoff. By the choice of T and the monotonicity of ı3:2 , this implies that the surgeries
on Œt � r2; t � are performed by ı3:2

�
1
2
r "0
.t/; w;A;E"0

; �;m
�
–precise cutoff. So we
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can apply Proposition 3.2 with x0  x , t0  t , r0  r , r  1
2
r "0
.t/, w  w ,

A A, E E"0
, � � and m m to conclude that if r � xr3:2.w;A;E"0

; �/
p

t ,
then jrk Rmj < Km;3:2.w;A;E"0

; �/r�2�k on B.x; t;Ar/ for all k � m. If the
surgeries on Œt � r2; t � are performed by C�1

1;3:2
.w;A;E"0

; �/r t�1=2 –precise cutoff,
then the second part of Proposition 3.2 gives us that P .x; t;Ar;��3:2.w;A;E"0

; �//

is nonsingular and jrk Rmj<Km;3:2.w;A;E"0
; �/r�2�k there for all k �m. This

establishes assertion (a).

For part (b) we argue as follows: If �.x; t/�xr
p

t , then by our discussion in the last para-
graph for r D �.x; t/ and Proposition 3.2, we obtain r D �.x; t/ > yr3:2.w;E"0

; �/
p

t .
So, in general, we have �.x; t/ > x�

p
t for x� D x�.w/ D minfxr ; yr3:2g and we can

apply assertion (a) with r  x�
p

t and A Ax��1 to deduce a curvature bound on
P .x; t;A

p
t ;�� x�2t/. For this application it is important that all surgeries on Œt�x�2t; t �

are performed by c1x�–precise cutoff. This is certainly the case for sufficiently large
T D T .w;A/, because for large t we have ı.t/� t�1 < c1x� .

3.2 The thick–thin decomposition

We now describe how, in the long-time picture, Ricci flows with surgery decompose
the manifold into a thick and a thin part. In this process, the thick part approaches a
hyperbolic metric while the thin part collapses at local scales. Compare this proposition
with [10, 7.3] and [7, Proposition 90.1].

Proposition 3.16 There is a function ıW Œ0;1/! .0;1/ such that, given a Ricci
flow with surgery M with normalized initial conditions that is performed by ı.t/–
precise cutoff and defined on the interval Œ0;1/, we can find a constant T0 <1, a
function wW ŒT0;1/! .0;1/ with w.t/! 0 as t!1 and a collection of orientable,
complete, finite volume hyperbolic (ie of constant sectional curvature �1) manifolds
.H 0

1
;ghyp;1/; : : : ; .H

0
k
;ghyp;k/ such that:

There are finitely many embedded 2–tori T1;t ; : : : ;Tm;t �M.t/ for t 2 ŒT0;1/ that
move by isotopies and don’t hit any surgery points and that separate M.t/ into two
(possibly empty) closed subsets Mthick.t/;Mthin.t/�M.t/ such that:

(a) Mthick.t/ does not contain surgery points for any t 2 ŒT0;1/.

(b) The Tj ;t are incompressible in M.t/ and diamt Tj ;t <w.t/
p

t .

(c) The topology of Mthick.t/ stays constant in t and Mthick.t/ is a disjoint union
of components H1;t ; : : : ;Hk;t �Mthick.t/ such that the interior of each Hi;t is
diffeomorphic to H 0i .
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(d) We can find an embedded cross-sectional torus T 0j ;t inside each cusp of each H 0i ,
at a distance of at least w�1.t/ from a fixed base point, which moves by isotopy
and speed at most w.t/t�1=2 such that the following holds: Chop off the ends of
the H 0i along the T 0j ;t and call the remaining open manifolds H 00i;t . Then there
are smooth families of diffeomorphisms ‰i;t W H

00
i;t !Hi , which become closer

and closer to being isometries, ie


 1

4t
‰�i;tg.t/�ghyp;i





C Œw
�1.t/�.H 00

i;t
/
<w.t/

and which move slower and slower in time, ie

sup
H 00

i;t

t1=2
j@t‰i;t j<w.t/ for all t � T0 and i D 1; : : : ; k:

Moreover, the sectional curvatures on a w�1.t/
p

t –tubular neighborhood of
Mthick.t/ lie in the interval

�
1
t

�
�

1
4
� w.t/

�
; 1

t

�
�

1
4
C w.t/

��
for all t � T0 .

And, for every 2–torus Tj ;t for j D 1; : : : ;m and all t � T0 , there are neigh-
borhoods Pj ;t �Mthin.t/ with Tj ;t � Pj ;t that have the following properties:
Pj ;t �T 2�I , Pj ;t has a T 2 –fibration over an interval whose fibers have time-t
diameter <w.t/

p
t , one of these fibers is Tj ;t and the boundary components of

Pj ;t have time-t distance of at least w�1.t/
p

t from Tj ;t .

(e) A large neighborhood of the part Mthin.t/ is better and better collapsed, ie for
every t � T0 and x 2M.t/ with

distt .x;Mthin.t// < w
�1.t/

p
t

we have

voltB.x; t; �pt .x; t// < w.t/�
3p

t
.x; t/:

4 Long-time estimates under the presence of collapse

In the following we derive more specialized estimates using the methods and results
presented in the previous section. Those statements will be used in [D].

4.1 The goodness property

The following notion will become important for us.
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Definition 4.1 (goodness) Let .M;g/ be a Riemannian 3–manifold (possibly with
boundary), r0 > 0 and consider the function �r0

W M ! .0;1/ from Definition 3.1.
Let w > 0 be a constant and x 2M be a point.

(1) Let zx be a lift of x in the universal cover zM of M . Then x 2M is called
w–good at scale r0 if vol B.zx; �r0

.x// > w�3
r0
.x/. Here B.zx; �r0

.x// denotes
the �r0

.x/–ball in the universal cover zM of M .

(2) Let U �M be an open subset and assume that x 2U . Assume now that zx is a
lift of x in the universal cover zU of U . Then x is called w–good at scale r0

relative to U if either B.x; �r0
.x// 6�U or vol B.zx; �r0

.x// >w�3
r0
.x/, where

now B.zx; �r0
.x// denotes the �r0

.x/–ball in zU .

(3) The point x is called locally w–good at scale r0 if it is w–good at scale r0

relative to B.x; �r0
.x//.

Observe that the choice of the lift zx of x is not essential. We remark that the property
“w–good” implies the properties “w–good relative to a subset U ” and “locally w–
good”. The opposite implication, however, is generally false: Consider for example a
smoothly embedded solid torus S �M , S � S1 �D2 , and a collar neighborhood U

of @S in S , ie U � S , U � T 2 � .0; 100/ and @S � @U , such that the geometry on
U is close to a product geometry T 2 � .0; 100/ in which the T 2 –factor is very small.
Then for some w > 0 all points of U are w–good relative to U as well as locally
w–good, but none of the points of U are w–good (see [0, Figure 2] for an illustration).

We also remark that by volume comparison there is a universal constant zc > 0 such
that if x 2M is w–good at scale r0 > 0 for some w > 0, then x is also zcw–good at
any scale r 0

0
� r0 .

4.2 Universal covers of Ricci flows with surgery

In the following subsections we will need to carry out Perelman’s methods in the
universal covering flow �M of a given Ricci flow with surgery M. In the case in which
M is nonsingular, �M is just the universal cover of the underlying manifold equipped
with the pullback of the time-dependent metric. In the general case, the existence of�M is established by the following lemma.

Lemma 4.2 Let M be a Ricci flow with surgery on a time interval I � Œ0;1/ that
is performed by precise cutoff. Then there is a Ricci flow with surgery �M (called the
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universal covering flow) that is performed by precise cutoff and a family of Riemannian
coverings �t W �M.t/!M.t/ that are locally constant in time away from surgery points
such that the components of all time slices �M.t/ are simply connected, ie �M.t/ is the
disjoint union of components that are isometric to the universal cover of M.t/.

Moreover, if M is performed by ı.t/–precise cutoff for some ıW I ! .0;1/, then
so is �M. If all time slices of M are complete, then the same is true for �M. If the
curvature on M is bounded on compact time intervals that don’t contain surgery times,
then this property also holds on �M.

Proof Recall that M D ..T i/; .M i � I i ;gi
t /; .�

i/; .U i
˙
/; .ˆi//, where each gi

t is
a Ricci flow on the 3–manifold M i defined for times I i . We can lift each of these
flows to the universal cover zM i

0
of M i via the natural projections � i

0
W zM i

0
!M i and

obtain families of metrics zgi
0;t , which still satisfy the Ricci flow equation. If M i is

disconnected, then we define zM i
0

to be the disjoint union of the universal covers of the
components of M i .

We will now assemble the flows . zM i
0
�I i ; zgi

0;t
/ to a Ricci flow with surgery �M. Each

time slice �M.t/ of the resulting flow will be composed of a (possibly infinite) number
of copies of components of . zM i

0
; zgi

0;t
/ if t 2 I i . If there are no surgery times in I , ie

I D I1 , then we set MD . � ; . zM 1
0
; zg1

0;t
/; � ; � ; � / and we are done. Assume now that

there are surgery times. For any i let Mi be the restriction of M to the time interval
I\.�1;T i/ and if T i�1 is the last surgery time, set Mi DM. By induction, we can
assume that �Mi already exists and we only need to prove that we can extend this flow
to a Ricci flow with surgery �MiC1 , which is the universal covering flow of MiC1 . In
order to do this, it suffices to construct the objects . zM iC1 � I iC1; zgiC1

t /, z�i , zU i
˙

,
ẑ i and the projection � iC1W zM iC1!M iC1 .

Fix i and consider . zM i � I i ; zgi
t / from �Mi and the projection � i W zM i !M i cor-

responding to �t for t 2 I i . Denote by z�i � zM i the preimage of �i and by
zU i
� �

z�i the preimage of U i
� under � i and let zU i

0;C
� zM iC1

0
be the preimage of

U i
C under � iC1

0
. Recall that by Definition 2.11(6) the subset U i

� �M i is bounded
by pairwise disjoint, embedded 2–spheres. So for every point p 2 U i

� , the natural
map �1.U

i
�;p/! �1.M

i ;p/ is an injection. Consider now the set zU i
0;C
� zM iC1

0
.

Recall that by Definition 2.11(2) the complement of U i
C in M iC1 is a collection of

pairwise disjoint, embedded 3–disks. So the complement of zU i
0;C

in zM iC1
0

is still
a collection of pairwise disjoint, embedded 3–disks and hence the preimage of each
component of U i

C under � i
0

is simply connected. The map .ˆi/�1ı� iC1
0
W zU i

0;C
!U i

�
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is a covering map. Consider a component CC of zU i
0;C

and a component C� of
zU i
� with � iC1

0
.CC/ D ˆi.� i.C�//. Since CC is simply connected, we find a lift

�i
CC;C� W CC! zU

i
� of .ˆi/�1ı� iC1

0
jCC W CC!U i

��M i such that �i
CC;C�.CC/D C�

and � i ı �i
CC;C� D .ˆi/�1 ı � iC1

0
jCC . Since U i

� ! M i is �1 –injective, the map
�i
CC;C� must be injective.

We can now construct zM iC1 . For every component C� of zU i
� there is a (unique)

component CCDCC.C�/ of zU i
0;C

such that � iC1
0

.CC/Dˆi.� i.C�//. Let zM iC1
0

.CC/
be the component of zM iC1

0
that contains CC (observe that CC is the only component

of zU i
0;C in zM iC1

0
.CC/). Now define zM iC1 to be the disjoint union of all components

zM iC1
0

.CC.C�//, where C� runs through all components of zU i
� . The set zU i

C is the
disjoint union of all the CC.C�/ and the diffeomorphism ẑ i is defined to be the inverse
of �i

CC.C�/;CC on each C� . We also define the projection � iC1W zM iC1 ! M iC1 ,
corresponding to �t for t 2 I iC1 , to be equal to � iC1

0
W zM iC1

0
!M iC1 restricted to

zM iC1
0

.CC.C�// for every component C� of zU i
� . Finally, we set zgiC1

t D .� iC1/�giC1
t

for all t 2 I iC1 . This finishes the proof.

4.3 Quotients of necks

Before we discuss the main results of this section, we need to establish the following
lemma, which asserts that sufficiently precise "–necks cannot have arbitrarily small
quotients.

Lemma 4.3 There are constants z"0; zw0 > 0 such that the following is true: Let
.M;g/ be a (possibly open) Riemannian manifold and " � z"0 ; assume that x0 2M

is a center of an "–neck and that 0 < r < jRmj�1=2.x/. Consider a local isometry
� W .M;g/! .M 0;g0/ (ie ��g0D g ) such that �.M /�M 0 is not compact (ie �.M /

is not a closed manifold) and let x0
0
D �.x0/ 2M 0 . Then volg0B.x00; r/ > zw0r3 .

Proof We may assume without loss of generality that the scale � in Definition 2.6
is equal to 1 (and hence r < 1:1 for small "), that M is an "–neck and that � is
surjective. So, we can make the identification M D S2 �

�
�

1
"
; 1
"

�
with x0 2 S2 �f0g

and assume that kg�gS2�RkC Œ"�1� < ". If " is small enough, there is a smooth unit
vector field X on M , pointing in the direction of the eigenspace of Ric associated
to the smallest eigenvalue, which is unique up to sign. For any y1; y2 2 M with
�.y1/D �.y2/, we have d�.Xy1

/D˙d�.Xy2
/. So by possibly passing to a 2–fold

cover of M 0 , we can assume that d�.X /DX 0 for some smooth vector field X 0 on
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M 0 (passing to a 2–fold cover may change the constant zw0 by a factor of 2). Moreover,
by possibly passing to another 2–fold cover, we can assume that M 0 is orientable. Let
†�M be the embedded 2–sphere corresponding to S2 � f0g. If " is small enough,
the trajectories of X cross † exactly once and transversely. Finally, let U0 �M be
the open set corresponding to S2 � .�30; 30/ and assume that "�1 > 100.

We will first show by contradiction that � restricted to the ball B.x0; 1/ is injective.
So assume that there are two distinct points y1; y2 2 B.x0; 1/ with �.y1/D �.y2/.
Consider a geodesic segment 
 between y1 and x0 and lift its projection � ı
 starting
from y2 . This produces a point x1 2M with �.x0/D �.x1/ and dist.x0;x1/ < 2.

We now show that we can construct an isometric local deck transformation

'W U0! U1 �M;

that is, a smooth map that satisfies � ı ' D � and '�g D g with '.x0/ D x1 . Fix
some point p 2 U0 . We can find a piecewise smooth curve 
 W Œ0; 1�!M of length
less than 40 such that 
 .0/D x0 and 
 .1/D p . Moreover, any two such curves are
homotopic relative endpoints to one another, through curves of length less than 50. Now
consider the projection � ı 
 W Œ0; 1�!M 0 . Observe that �.
 .0//D �.x0/D �.x1/.
So, since B.x1; 40/ � B.x0; 42/ is relatively compact in M , we can lift � ı 
 to
a curve 
 �W Œ0; 1�!M with 
 �.0/ D x1 . Then � ı 
 D � ı 
 � and, in particular,
�.
 �.1//D �.
 .1//D �.p/.

We now argue that 
 �.1/ only depends on p and not on the choice of 
 . Consider
a homotopy H W Œ0; 1�� Œ0; 1�!M between 
0 D H. � ; 0/ and 
1 D H. � ; 1/, two
curves Œ0; 1�!M . Assume that for all s 2 Œ0; 1�, the curve H. � ; s/ has length less
than 50 and H.0; s/D x0 and H.1; s/D p . Then � ıH W Œ0; 1�� Œ0; 1�!M 0 can be
lifted to a homotopy H�W Œ0; 1�� Œ0; 1�!M such that � ıH D � ıH� and such that
H�.0; s/D x1 for all s 2 Œ0; 1�. Note that in order to carry out this lift, it is important
that B.x1; 50/� B.x0; 52/ is relatively compact in M . The curves 
 �

0
WDH�. � ; 0/

and 
 �
1
WDH�. � ; 1/ are lifts of � ı 
0 and � ı 
1 with 
 �

0
.0/D 
 �

1
.0/D x1 . Since

� ıH�.1; s/D� ıH.1; s/D�.p/ is constant in s , it follows that H�.1; s/ is constant
in s and hence 
 �

0
.1/DH.1; 0/DH.1; 1/D 
 �

1
.1/. This shows that the point 
 �.1/

in the previous paragraph does not depend on the choice of 
 � . So we can define
'.p/ WD 
 �.1/. Letting p vary over U0 defines a map 'W U0!M with � ı' D � .

In order to show that ' is smooth and isometric, it remains to show that ' is continuous.
Fix some point p 2 U0 and let 
 W Œ0; 1�!M be a curve between x0 and p of length
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l < 40. Let moreover, 
 �W Œ0; 1�!M be a lift of 
 at x1 . Choose 0 < d < 40� l .
Then every point q 2 B.p; d/ can be reached from x0 , by first following 
 and then
following a geodesic between p and q . The length of the resulting curve 
 0W Œ0; 1�!M

is less than 40. Let 
 0�W Œ0; 1�!M be a lift of � ı
 0 at x1 . Note that 
 0� arises from
concatenating 
 � with a curve of length less than d . So '.q/D 
 0�.1/ has distance
less than d from '.p/D 
 �.1/. This finishes the proof of the continuity of ' .

Since � ı' D � , the map ' preserves orientation and the vector field X . Now for any
x 2 † define '0.x/ to be the unique intersection point of the X –trajectory passing
through '.x/ with †. Then '0W † ! † is bijective, continuous and orientation-
preserving. Hence it has a fixed point z0 2†.

Note that for sufficiently small " we have

dist.z0; '.z0//� dist.z0;x0/C dist.x0; '.x0//C dist.'.x0/; '.z0//

< 2 dist.z0;x0/C dist.x0;x1/ < 7C 2< 10:

Now let zk D '
.k/.z0/ 2 U1 as long as this is defined. Those points all lie on the

trajectory through z0 and have consecutive distance dist.z0; '.z0// < 10. Hence, there
is a point zk0

2 U1 whose distance to z0 is contained in the interval Œ10; 20�. This
implies that †0 D '.k0/.†/ is disjoint from †.

For every x2† let �x W .ax; bx/!M be the trajectory of the vector field X through x .
That is,

� 0x.s/DX.�.s// for all s 2 .ax; bx/ and �x.0/D x:

Here ax < bx are chosen such that .ax; bx/ is the maximal domain of �x . Since every
such trajectory intersects †0 exactly once, we can find a function S W †! R such
that for all x 2† we have S.x/ 2 .ax; bx/ and �x.S.x// 2†

0 . Since † and †0 are
disjoint, S vanishes nowhere. By transversality, we find that S is smooth. Since †
and †0 are disjoint, the function S is never zero. It follows that the map

S2
� Œ0; 1�!M; .x; s/ 7! �x.s �S.x//;

is a smooth embedding. Denote its image by P � M . Then P is compact and
@P D†[†0 . Moreover, the vector field X points inwards on † and outwards on †0

or vice versa. Since �.†/D �.†0/, � ı' D � on † and d�.X j†/D d�.X j†0/, it
follows that �.P /D x�.P /, where P is the (closed) manifold that arises from P by
identifying each x 2† with '.x/ 2†0 and x� W P !M 0 is an open map. It follows
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that �.P / �M 0 is equal to a closed component of M 0 . So �.M /D �.P /, which
contradicts our assumptions.

So �jB.x0;1/ is indeed injective. This implies that for all r �1 we have volg0B.x00; r/D
volgB.x0; r/ > cr3 for some universal c > 0. This finishes the proof.

4.4 Bounded curvature around good points

We start by presenting a simple generalization of Corollary 3.3 and consequence of
Proposition 3.2 that exhibits the flavor of the subsequent results. We point out that the
following proposition is also a consequence of the far more general Proposition 4.5
below.

Proposition 4.4 There is a continuous positive function ıW Œ0;1/! .0;1/ such that
for any w; � > 0 there are � D �.w/; x�D x�.w/> 0 and KDK.w/;T DT .w;�/<1

such that:

Let M be a Ricci flow with surgery on the time interval Œ0;1/ with normalized initial
conditions that is performed by ı.t/–precise cutoff. Let t0 > T be a time, x0 2M.t0/

a point and r0 > 0, and assume that

(i) �
p

t0 � r0 �
p

t0 ,

(ii) x0 is w–good at scale r0 and time t0 .

Then we have �.x0; t0/ > r1 WD minfx�
p

t0; r0g and the parabolic neighborhood
P .x0; t0; r1;�� r2

1
/ is nonsingular and jRmj<Kr�2

0
on P .x0; t0; r1;�� r2

1
/.

Proof The proof is very similar to that of Corollary 3.3. Let "0 be the constant from
Proposition 3.2 and E"0

, � and r "0
, ı"0
W Œ0;1/! .0;1/ the constants and decreasing

functions from Proposition 2.15. Consider the constant ı3:2 D ı3:2.r; w;A;E; �;m/
from Proposition 3.2 and assume again that it satisfies the same monotonicity prop-
erty as explained in the beginning of the proof of Corollary 3.3. We now choose
ıW Œ0;1/! .0;1/ such that for all t > 0

ı.t/ <min
˚
ı3:2

�
1
2
r "0
.2t/; t�1; 1;E"0

; �; 0
�
; ı"0

.t/; t�1
	
:

Consider now the Ricci flow with surgery M. Since ı.t/ < ı"0
.t/, we get by

Proposition 2.15 that every point .x; t/ 2M with t 2
�

1
2
t0; t0

�
satisfies the canonical

neighborhood assumptions CNA
�

1
2
r "0
.t0/
p

t0; "0;E"; �
�
. This implies that also every
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point .x; t/ 2 �M in the universal covering flow (see Lemma 4.2) with t 2
�

1
2
t0; t0

�
satisfies the same assumptions CNA

�
1
2
r "0
.t0/
p

t0; "0;E"0
; �
�
.

Next, we choose T D T .w; �/ <1 such that

T >maxf2zc�1w�1; 2C1;3:2�
�1
g;

where C1;3:2 D C1;3:2.zcw; 1;E"0
; �/ is the constant from Proposition 3.2 and zc was

defined at the end of Section 4.1.

Assume that t0 > T . By the choice of ı.t/ and T , the surgeries on �M restricted to
the time interval

�
1
2
t0; t0

�
are performed by ı

�
1
2
t0
�
–precise cutoff, where

ı
�

1
2
t0
�
< ı3:2

�
1
2
r "0
.t0/; 2t�1

0 ; 1;E"0
; �; 0

�
� ı3:2

�
1
2
r "0
.t0/; zcw; 1;E"0

; �; 0
�
:

Moreover, �M has complete time slices without boundary and the curvature on �M is
uniformly bounded on compact time intervals that don’t contain surgery points. Let
zx0 2 �M.t0/ be a lift of x0 2M.t0/. Set r2Dmin

˚
�r0
.x0; t0/; xr3:2

p
t0;

1
2

p
t0
	

, where
xr3:2Dxr3:2.zcw; 1;E"0

; �/ is the constant from Proposition 3.2. Then sect0
��r�2

2 on
B.zx0; t0; r2/ and volt0

B.zx0; t0; r2/� zcwr3
2

. We now apply Proposition 3.2 to �M with
x0 zx0 , t0 t0 , r0 r2 , r 1

2
r "0
.t0/, w zcw , A 1, E E"0

, � � and
m 0. Then we obtain that if r2D �.x0; t0/, then r2> yr3:2.zcw;E"0

; �/
p

t0 . This im-
plies that �.x0; t0/ >min

˚
min

˚
yr3:2; xr3:2;

1
2

	p
t0; r0

	
and hence the first claim for x�D

min
˚
yr3:2; xr3:2;

1
2

	
. Note that with this choice of x� , we have r1 Dmin

˚
x�
p

t0; r0

	
� r2 .

Next, observe that by the choice of T we have

C1;3:2ı
�

1
2
t0
�p

t0 < C1;3:2

�
1
2
T
��1
� ��1r0 � r0:

So by the second part of Proposition 3.2, we obtain that the parabolic neighbor-
hood P .zx0; t0; r2;��3:2.zcw; 1;E"0

; �/r2
2
/ is nonsingular and that we have jRmj <

K0;3:2.zcw; 1;E"0
; �/r�2

2
there. This implies the second claim since r1 � r2 .

4.5 Bounded curvature at bounded distance from sufficiently collapsed
and good regions

We now extend the curvature bound from Proposition 4.4 to balls of larger radii Ar0 . It
is crucial here that by assuming sufficient collapsedness around the basepoint (depending
on A), we don’t have to impose an assumption of the form r0 < xr.w;A/

p
t0 as in

Proposition 3.2. So the quantity Ar0t
�1=2
0

can indeed be chosen arbitrarily large.
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Proposition 4.5 There is a continuous positive function ıW Œ0;1/! .0;1/ such that
for any w; � > 0 and 1�A<1 there are � D �.w/; x�D x�.w;A/; SwD Sw.w;A/ > 0

and K.w;A/; T .w;A;�/ <1 such that:

Let M be a Ricci flow with surgery on the time interval Œ0;1/ with normalized initial
conditions that is performed by ı.t/–precise cutoff and let t0 > T . Choose x0 2M.t0/

and r0 > 0 and assume that

(i) �
p

t0 � r0 �
p

t0 ,

(ii) x0 is w–good at scale r0 and time t0 ,

(iii) volt0
B.x0; t0; r0/ < Swr3

0
.

Then jRmj < Kr�2
0

on B D
S

t2Œt0�� r2
0
;t0�

B.x0; t;Ar0/ and there are no surgery
points on B .

In particular, if r0 � �.x0; t0/, then �.x0; t0/ > x�
p

t0 and the curvature estimate
becomes jRmj<Kt�1

0
.

Proof We first set up an argument in the spirit of the proof of Corollary 3.3. Choose
"0> 0 to be smaller than the corresponding constant in Lemma 3.11 and the constant z"0

in Lemma 4.3. By Proposition 2.15 there are decreasing continuous positive functions
r "0
; ı"0
W Œ0;1/! .0;1/ such that if ı.t/� ı"0

.t/ for all t 2 Œ0;1/, then every point
.x; t/2M satisfies the canonical neighborhood assumptions CNA.r "0

.t/
p

t ; "0;E; �/

for any constants 0 < � < �, E"0
< E < 1. Without loss of generality, we can

assume that E > E0;3:11."0/ and � < �0;3:11 , where E0;3:11 and �0;3:11 are the
constants from Lemma 3.11. Consider the constant ı3:11.w

0;A0; r 0; "0;E; �/ and
assume that it depends on its parameters w0 , A0 and r 0 in a monotone way, ie
ı3:11.w

00;A00; r 00; "0;E; �/ � ı3:11.w
0;A0; r 0; "0;E; �/ whenever w00 � w0 , A00 � A0

and r 00� r 0 . Let ı4:4 be the constant from Proposition 4.4 and assume that, for all t >0,

ı.t/ <min
˚
ı3:11

�
t�1; t; 1

2
r "0
.2t/; "0;E; �

�
; ı"0

.t/; ı4:4.t/; t�1
	
:

By Proposition 4.4, and for large enough T depending on w and � , we have �.x0; t0/>

r1 D minfx�4:4.w/
p

t0; r0g and jRmj < K4:4.w/r
�2
0

on the nonsingular parabolic
neighborhood P .x0; t0; r1;��4:4.w/r

2
1
/. In particular, this shows how the last assertion

of the proposition follows from the first one.

It remains to prove the first assertion. Consider the constants �4:4.w/ and K4:4.w/

from Proposition 4.4 and set


 D 
 .w/D 1
10

minf1; �1=2
4:4
.w/;K

�1=2
4:4

.w/g:
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Consider the universal covering flow �M of M as described in Lemma 4.2 and let
zx0 2 �M.t0/ be a lift of x0 . By the choice of 
 we have

jRmj< .
 r0/
�2 on P .zx0; t; 
 r0;�.
 r0/

2/ for all t 2 Œt0� .
 r0/
2; t0�

and voltB.zx0; t; 
 r0/>
1

10
zcw.
 r0/

3 for all such t . We now argue that, for sufficiently
large T , depending on w;A, we can apply Lemma 3.11(a) with M �M, zx0 x0 ,
t0 t 2 Œt0 � .
 r0/

2; t0�, r0 
 r0 , w 1
10
zcw , A 
�1.AC 1/, r  1

2
r "0
.t0/,

� �, " "0 and E E . First, choose T D T .w;A; �/ large enough that 2T �1 <
1

10
zcw and 1

2
T > 
�1.AC1/. Observe that for all .x0; t 0/ 2M with t 0 2

�
1
2
t0; t0

�
the

canonical neighborhood assumptions CNA
�

1
2
r ".t0/; "0;E; �

�
hold. So these canonical

neighborhood assumptions also hold for all .x0; t 0/ 2 �M with t 0 2
�

1
2
t0; t0

�
. Moreover,

by the choice of T , we have

ı.t 0/ < ı3:11

�
1

10
zcw; 
�1.AC 1/; 1

2
r "0
.t0/; "0;E; �

�
for all t 0 2

�
1
2
t0; t0

�
. So Lemma 3.11(a) can be applied and we conclude that for any

t 2 Œt0� .
 r0/
2; t0� the points in B.zx0; t; .AC 1/r0/� �M.t/ satisfy the assumptions

CNA.
 z�3:11r0; "0;E; �/. Here z�3:11 D z�3:11

�
1

10
zcw; 
�1.AC 1/; "0;E; �

�
.

Set � D �.w/D 
 2.w/ and K D 
�2 maxfz��2
3:11

;E2g. So, if jRmj.x; t/�Kr�2
0

for
some t 2 Œt0� � r2

0
; t0� and x 2 B.zx0; t; .AC 1/r0/, then

(4-1)
ˇ̌
rjRmj�1=2

ˇ̌
.x; t/ < ��1

and .x; t/ is a center of a strong "0 –neck or an ."0;E/–cap or the component of M.t/

in which x lies has positive, E2 –pinched sectional curvatures. In the last case we
are done, since K �E2 . So assume that .x; t/ is a center of a strong "0 –neck or an
."0;E/–cap.

Fix some t 2 Œt0�� r2
0
; t0�. Let a�A be maximal with the property that jRmt j<Kr�2

0

on B.zx0; t; ar0/. If aDA, we are done, so assume a<A. By (4-1), we can conclude
(compare also with Lemma 3.5) that

(4-2) jRmt j< 4Kr�2
0 on B

�
zx0; t; ar0C

1
2
�K�1=2r0

�
:

By the choice of a we can find a point zx1 2 �M.t/ of time-t distance exactly ar0 from
zx0 with jRmj.zx1; t/DKr�2

0
. So .zx1; t/ is a center of an "0 –neck or an ."0;E/–cap

in �M.t/.

Let x1 2M.t/ be the projection of zx1 . By (4-2) and volume comparison, we can
crudely estimate that for some constant C D C.w;A/ <1, which only depends on w
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and A, and some universal constant C 0 <1,

(4-3) voltB
�
x1; t;

1
2
�K�1=2r0

�
< voltB

�
x0; t; ar0C

1
2
�K�1=2r0

�
< C.A;K/ voltB

�
x0; t;

1
10

r0

�
< C 0C.A;K/ volt0

B.x0; t0; r0/

< C 0C.w;A/Swr3
0 :

If .zx1; t/ is a center of an "0 –neck, then we obtain a contradiction using Lemma 4.3
assuming Sw is chosen small enough that C 0C.w;A/Sw < zw0

�
1
2
�K�1=2

�
3 (here zw0 is

the constant from Lemma 4.3). So assume for the rest of the proof that .zx1; t/ is a center
of an ."0;E/–cap U � �M.t/. Let K � U be a compact subset such that zx1 2K and
U nK is an "0 –neck and let zy 2U be a center of this neck. By Definition 2.8 we have

�2r�2

0
�E�2Kr�2

0
� jRmj �E2Kr�2

0
on U . So zx0 62U and hence the minimizing

geodesic segment between zx0 and zx1 passes through the whole "0 –neck U nK . So
for sufficiently small "0 we have distt .zx0; zy/ < distt .zx0; zx1/D ar0 . In particular, for
the projection y of zy we find B

�
y; t; 1

2
�E�1K�1=2r0

�
�B

�
x0; t; ar0C

1
2
�K�1=2r0

�
.

Now again, using Lemma 4.3 and (4-3), we conclude

zw0

�
1
2
�E�1K�1=2

�3
r3
0 < voltB

�
y; t; 1

2
�E�1K�1=2r0

�
< C 0C.w;A/Swr3

0 :

This yields a contradiction for sufficiently small Sw , depending on w and A.

It remains to show that there are no surgery points on B . To see this, observe that
jRmj<K��2t�1

0
on B , but by (3-6) we have

jRmj.x; t/ > c0ı�2.t/t�1
� c0ı�2

�
1
2
T
�
t�1
0 �

1
4
c0T 2r�2

0

at every surgery point .x; t/ 2M for some universal c0 > 0. So choosing T large
enough, depending on w;A and � , yields the desired result.

4.6 Curvature control at points that are good relative to regions whose
boundary is geometrically controlled

Next, we generalize Proposition 4.4 to points that are good relative to some open set U .
In order to do this, we need to assume that the metric around the boundary of U is
sufficiently controlled on a time interval of uniform size.

Proposition 4.6 There is a continuous positive function ıW Œ0;1/! .0;1/ such that,
for any w; � > 0 there are ˛ D ˛.w/ > 0 and K D K.w/; T D T .w;�/ <1 such
that:
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Let M be a Ricci flow with surgery on the time interval Œ0;1/ with normalized initial
conditions that is performed by ı.t/–precise cutoff and let t0 > T . Let 0< r0 �

p
t0

and consider a sub-Ricci flow with surgery U �M (see Definition 2.5) on the time
interval Œt0 � r2

0
; t0�, whose time slices U.t/ are closed subsets of M.t/. Finally, let

x0 2 U.t0/ be a point and assume that

(i) �
p

t0 � r0 �
p

t0 ,

(ii) for all x 2 @U.t0/, the parabolic neighborhood P .x; t0; 2r0;�r2
0
/ is nonsingular

and we have jRmj< r�2
0

there,

(iii) x0 is w–good at scale r0 relative to the interior of U.t0/ at time t0 .

Then the parabolic neighborhood P .x0; t0; ˛r0;�˛
2r2

0
/ is nonsingular and we have

jRmj<Kr�2
0

there.

Proof The idea of the proof will be to apply Proposition 3.2 to the universal covering
flow zU of U (see Lemma 4.2). So our main task will be to verify assumptions (i) and
(ii) of that proposition. Besides that, the proof essentially follows along the lines of the
proof of Proposition 4.4.

We first choose the function ı.t/. Let "0 > 0 be the constant from Proposition 3.2 and
consider the constants E"0

, � and the functions ı"0
.t/; r "0

.t/ from Proposition 2.15. So
if ı.t/ < ı"0

.t/ for all t � 0, then M satisfies the canonical neighborhood assumptions
CNA.r "0

.t/
p

t ; "0;E"0
; �/. Without loss of generality, we assume that r "0

.t/! 0 as
t !1. Similarly to in the proof of Proposition 4.4 or Corollary 3.3, we assume that

(4-4) ı.t/ <min
˚
ı3:2

�
1
2
r "0
.2t/; t�1; 1;E"0

; �; 0
�
; ı"0

.t/; t�1; 1
	
;

where ı3:2 is the constant in Proposition 3.2, which we assume to satisfy the before-
mentioned monotonicity property. Furthermore, we assume that T D T .w; �/ is large
enough that 2T �1 < zcw and such that r "0

.t/ < 1
10
� minf1;E�1

"0
; "0g for all t � 1

2
T .

We now present the main argument. By assumption (ii), we can consider the case in
which B.x0; t0; r0/�U.t0/. Our goal will be to apply Proposition 3.2 in the universal
covering flow zU of U (see Lemma 4.2) at a lift .zx0; t0/ 2 zU .t0/ of .x0; t0/ 2 U.t0/.
We first check that all points .x; t/ 2 zU with t 2

�
t0 �

1
2
r2
0
; t0
�

satisfy the canonical
neighborhood assumptions CNA

�
1
2
r "0
.t0/
p

t0; "0;E"0
; �
�
. To do this, consider first

a point .x; t/ 2 U �M with t 2
�
t0 �

1
2
r2
0
; t0
�
�
�

1
2
t0; t0

�
. By the previous conclu-

sion, .x; t/ satisfies the desired canonical neighborhood assumptions in M. We now
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argue that .x; t/ satisfies those canonical neighborhood assumptions also in U . If
jRmj�1=2.x; t/ > 1

2
r "0
.t0/
p

t0 , then there is nothing to show. So assume that

(4-5) jRmj�1=2.x; t/� 1
2
r "0
.t0/
p

t0 <
1

20
� minf1;E�1

"0
; "0g
p

t0

�
1

10
.maxf1;E"0

; 2"�1
0 g/

�1r0

(the second inequality holds by the choice of T ). Then, in particular, jRmj.x; t/ > r�2
0

,
which implies by assumption (ii) that .x; t/ 62 P .x0; t0; 2r0;�r2

0
/ for all x0 2 @U.t0/

and hence B
�
x; t; 1

10
r0

�
�U.t/ (recall from Definition 2.5 that the boundary @U.t 0/ is

constant in time). The point .x; t/ is a center of a strong "0 –neck or an ."0;E"0
/–cap

in M. The time-t slice of this strong "0 –neck or ."0;E"0
/–cap is contained in the

ball (compare with (4-5))

B
�
x; t;maxfE"0

; 2"�1
0 gjRmj�1=2.x; t/

�
� B

�
x; t; 1

10
r0

�
� U.t/:

Moreover, if .x; t/ is the center of a strong "0 –neck, then parabolic domain of this
strong neck can be chosen such that its initial time is larger than t � 2jRmj�1.x; t/ >

t0 �
1
2
r2
0
�

1
50

r2
0
> t � r2

0
. So .x; t/ in fact satisfies the canonical neighborhood

assumptions CNA
�

1
2
r "0
.t0/
p

t0; "0;E"0
; �
�

in U . It follows that all points .x; t/ 2 zU
with t 2

�
t0�

1
2
r2
0
; t0
�

satisfy those canonical neighborhood assumptions in zU .

Let zx0 2
zU .t0/ be a lift of x0 2U.t0/. Note that all surgeries on zU in the time interval�

t0�
1
2
r2
0
; t0
�

are performed by ı3:2
�

1
2
r "0
.t0/; zcw; 1;E"0

; �; 0
�
–precise cutoff (here we

have used (4-4) and 2T �1<zcw ). So, if r1�min
˚
�.x0; t0/;

1
2
r0; xr3:2.zcw;1;E"0

;�/r0

	
,

where xr3:2 is the constant from Proposition 3.2, then the first paragraph of the assump-
tions and assumptions (iii)–(v) of Proposition 3.2 are satisfied for M zU , t0 t0 ,
x0 zx0 , r0 r1 , w zcw , A 1, r 1

2
r "0
.t0/, E E"0

, � � and m 0. We
will now argue that assumptions (i) and (ii) are satisfied for the right choice of r1 , ie we
will show that there is a constant ˇD ˇ.w/ > 0 (depending only on w ) such that these
assumptions hold whenever r1 �min

˚
�.x0; t0/;min

˚
1
2
; ˇ; xr3:2.zcw; 1;E"0

; �/
	
r0

	
.

Consider first assumption (ii). Since B.x0; t0; r0/� U.t0/, we have

distt0
.x0; @U.t0//� r0:

Let x 2 B.zx0; t0; ˇr0/ be a point that survives until some time t 2
�
t0�

1
10
ˇ2r2

0
; t0
�
.

Then distt0
.x; @ zU .t0// >

1
2
r0 for ˇ < 1

2
and we conclude, using distance distortion

estimates and assumption (ii) of this proposition, that distt .x; @ zU .t// >
1

20
r0 . So

assumption (ii) of Proposition 3.2 holds if ˇ < 1
200

.
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Assumption (i) of Proposition 3.2 requires more work. Set Z DZ3:2.zcw; 1;E"0
; �/.

Let t1; t2 2
�
t0�

1
10
ˇ2r2

0
; t0
�
, with t1< t2 , and consider some point x 2B.zx0; t0; ˇr0/

that survives until time t2 and a space-time curve 
 W Œt1; t2� ! M with endpoint

 .t2/ 2 B.x; t; 4ˇr0/ and that meets the boundary @ zU . We want to show that for a
sufficiently small choice of ˇ we have L.
 />Zˇr0 . Similarly to in the last paragraph,
we conclude that distt0

.x; @ zU .t0//>
1
2
r0 if ˇ< 1

2
and that distt0

.
 .t2/; @ zU .t0//>
1
4
r0

if ˇ< 1
200

. So assume from now on that ˇ< 1
200

. Now let

P D
[

x02@ zU .t0/

P
�
x0; t0;

1
4
r0;�r2

0

�
be a parabolic collar neighborhood of @ zU . Recall that P is nonsingular and jRmj<
r�2
0

on P . Since distt0
.
 .t2/; @ zU .t0// >

1
4
r0 , we have .
 .t2/; t2/ 62 P and we can

find a time interval Œt 01; t
0
2� � Œt1; t2� such that 
 .t 0

1
/ 2 @ zU .t 0

1
/, 
 .Œt 0

1
; t 0

2
// � P and

distt0
.
 .t 0

2
/; @ zU 0.t 0

2
//� 1

4
r0 . Then we can estimate, using the t�1 –positive curvature

condition and the fact that t2� t1 �
1

10
ˇ2r2

0
,

L.
 /�
Z t2

t1

p
t2� t

�
j
 0.t/j2t �

3
2
t�1

�
dt �

Z t 0
2

t 0
1

p
t2� t j
 0.t/j2t dt �ˇr0

�
1

100

Z t 0
2

t 0
1

p
t 02� t j
 0.t/j2t0

dt �ˇr0:

Substituting s2 D t 0
2
� t and setting s2

1
D t 0

2
� t 0

1
yieldsZ t 0

2

t 0
1

p
t 02� t j
 0.t/j2t0

dt D
1

2

Z s1

0

ˇ̌̌
d

ds

 .t 02� s2/

ˇ̌̌2
t0

ds

�
1

2s1
dist2t0

.
 .t 02/; 
 .t
0
1//�

r2
0

32
p

t 0
2
� t 0

1

�
1

32ˇ
r0:

Thus
L.
 / >

�
1

4000ˇ
�ˇ

�
r0:

For sufficiently small ˇ , depending only on w , the right-hand side is larger than Zˇr0 .
So we have verified all assumptions of Proposition 3.2.

We can finally apply Proposition 3.2 with the parameters mentioned before and with r1D

minf�.x0; t0/;min
˚

1
2
; ˇ; xr3:2.zcw; 1;E"0

; �/
	
r0g. We first obtain that if r1D �.x0; t0/,

then r1> yr3:2.zcw; 1;E"0
; �/
p

t0 , where yr3:2 is the constant from Proposition 3.2. This
implies that we always have r1 > yr1r0 , where yr1 D yr1.w/Dmin

˚
1
2
; ˇ; xr3:2; yr3:2

	
. Let

us now assume that T D T .w; �/ is large enough that ı.t/ < yr1�C�1
1;3:2

.zcw; 1;E"0
; �/
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for all t 2
�

1
2
t0; t0

�
. Here C1;3:2 is the constant from Proposition 3.2. Then, for

all t 2
�

1
2
t0; t0

�
, we have C1;3:2ı.t/

p
t0 � yr1�

p
t0 � yr1r0 < r1 . So by the last part

of Proposition 3.2, the parabolic neighborhood P .zx0; t0; r1;��3:2.zcw; 1;E"0
; �/r2

1
/

is nonsingular and we have jRmj<K0;3:2.zcw; 1;E"0
; �/r�2

1
there. This implies the

result for ˛ D ˛.w/Dminfyr1; �
1=2
3:2
g.

4.7 Controlled diameter growth of regions whose boundary is sufficiently
collapsed and good

In this subsection we show that if a region U in a Ricci flow with surgery has bounded
diameter at some time t1 , then we can bound its curvature and diameter from above
at some slightly later time t2 > t1 if the geometry around the boundary @U satisfies
certain collapsedness and goodness assumptions. The important point is hereby that the
size of the time interval Œt1; t2� does not depend on the diameter of U at time t1 . We
are able to guarantee this independence by imposing a collapsedness condition, which
depends on the diameter of U at time t1 . Note that the opposite statement is most likely
wrong, namely a bound on the diameter of U at time t1 does not necessarily imply a
bound on the diameter at earlier times t2 < t1 , even under very strong collapsedness
assumptions. For example, if we consider a parabolic rescaling of the cigar soliton,
with a very small scaling factor, then the diameter of a region around its tip contracts
arbitrarily fast under the Ricci flow. The statement of the following proposition is that,
in certain settings, diameters, however, cannot “expand too fast”.

The idea of the following proof is that, by an L–geometry argument similar to
Lemma 3.6, we can deduce a �–noncollapsedness result where the constant � only
depends on the diameter of U at time t1 . Then an argument similar to the one in
the proof of Lemma 3.11(b) will help us derive more uniform canonical neighbor-
hood assumptions on U and finally an argument similar to the one in the proof of
Proposition 4.5 will yield a curvature bound on U .

Proposition 4.7 There is a continuous positive function ıW Œ0;1/! .0;1/ and for
every w> 0 there is a �0D �0.w/> 0 such that for all � > 0 and A<1 there are con-
stants �D �.w;A/; z�D z�.w;A/; SwD Sw.w;A/ > 0 and KDK.w;A/;A0DA0.w;A/,
T D T .w;A;�/ <1 such that:

Let M be a Ricci flow with surgery on the time interval Œ0;1/ with normalized initial
conditions that is performed by ı.t/–precise cutoff and let t0 > T . Let � 2 .0; �0�

and r0 > 0, and consider a sub-Ricci flow with surgery U �M on the time interval
Œt0� � r2

0
; t0�. Let x0 2U.t0/ be a point that survives until time t0� � r2

0
. Assume that
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(i) �
p

t0 � r0 �
p

t0 ,

(ii) x0 is w–good at scale r0 and time t0 ,

(iii) volt0
B.x0; t0; r0/ < Swr3

0
,

(iv) @U.t/� B.x0; t;Ar0/ for all t 2 Œt0� � r2
0
; t0�,

(v) U.t0� � r2
0
/� B.x0; t0� � r2

0
;Ar0/.

Consider the universal covering flow �M of M, as described in Lemma 4.2, and let
zU � �M be the sub-Ricci flow with surgery for which zU .t/� �M.t/ is the preimage of
U.t/ under the universal covering projection �t W �M.t/!M.t/ for all t 2 Œt0�� r2

0
; t0�.

Then:

(a) For all t 2 Œt0 � � r2
0
; t0� all points of zU .t/ are �–noncollapsed on scales < r0

in �M.

(b) There are universal constants � > 0, E <1 and 0 < " � z"0 (where z"0 is the
constant from Lemma 4.3), which don’t depend on w , � , A or M, such that for
every t 2 Œt0 � � r2

0
; t0� the points in zU .t/ satisfy the canonical neighborhood

assumptions CNA.z�r0; ";E; �/ in �M.

(c) There are no surgery points in U , ie the Ricci flow with surgery U is nonsingular
and we can write U D U.t0/ � Œt0 � � r2

0
; t0�, and we have jRmj < Kr�2

0
on

U.t0/� Œt0� � r2
0
; t0�.

(d) U.t/� B.x0; t;A
0r0/ for all t 2 Œt0� � r2

0
; t0�.

Proof Let "Dminfz"0; "0;3:8g, where "0;3:8 is the constant from Lemma 3.8. Consider
the functions ı".t/ and r ".t/ and the constants E" and � from Proposition 2.15 and the
function ı4:5.t/ from Proposition 4.5. Without loss of generality, we may assume that
r ".t/! 0 as t!1. Furthermore, let ı0 be the constant from Claim 1 and ı�.ƒ; r; �/
the function from Claim 2 in the proof of Lemma 3.6. We can assume without loss of
generality that ı� is monotone in the sense that ı�.ƒ0; r 0; �/� ı�.ƒ; r; �/ whenever
ƒ0 �ƒ and r 0 � r . Assume now that, for all t � 0,

ı.t/ <min
˚
ı�
�
t; 1

4
r ".2t/; �

�
; ı".t/; ı4:5.t/; t�1r ".2t/; ı0; t�1=2

	
:

We note that then, by Proposition 2.15, the flows M and �M satisfy the canonical
neighborhood assumptions CNA.r ".t/

p
t ; ";E"; �/ at any time t .

Set �0.w/Dmin
˚

1
2
�4:5.w/; 1

	
and assume Sw< Sw4:5.w; 2A/ and T >T4:5.w; 2A; �/,

where �4:5 , Sw4:5 and T4:5 are the constants from Proposition 4.5. Then, by Proposition
4.5, there is a constant 0<� 0D � 0.w;A/< �0.w/ such that the parabolic neighborhood
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P .x0; t0� � r2
0
;Ar0;��

0r2
0
/ is nonsingular and

(4-6) jRmj<K�1 .w;A/r
�2
0 on P .x0; t0� � r2

0 ;Ar0;��
0r2

0 /

and such that the distance distortion on P .x0; t0� � r2
0
;Ar0;��

0r2
0
/ can be controlled

by a factor of 2, ie U.t/� B.x0; t; 2Ar0/ for all t 2 Œt0� .� C �
0/r2

0
; t0� � r2

0
� (note

that since the previous parabolic neighborhood is nonsingular, we can extend U to the
time interval Œt0� .� C � 0/r2

0
; t0�). Moreover, we obtain the bound

(4-7) jRmj<K�1 .w;A/r
�2
0 on B D

[
t2Œt0�.�C� 0/r

2
0
;t0�

B.x0; t; 2Ar0/

and we can assume that there are no surgery points in B .

Proof of assertion (a) We follow a modified version of the proof of Lemma 3.6. Let
t12 Œt0�� r2

0
; t0�, zx12

zU .t1/� �M.t1/ and 0<r1<r0 be such that P .zx1; t1; r1;�r2
1
/��M is nonsingular and jRmj< r�2

1
on P .zx1; t1; r1;�r2

1
/.

We first explain that, for sufficiently large T , we can restrict ourselves to the case
r1 >

1
2
r ".t1/

p
t1 �

1
4
r ".t0/

p
t0 . Compare this statement with Claim 1 in the proof

of Lemma 3.6 (applied to �M). As in the proof of this claim, we choose s > 0 to be
the supremum over all 0 < r 0

1
< r0 that satisfy the properties above, meaning that

jRmj< r 0�2
1

on the nonsingular parabolic neighborhood P .zx1; t1; r
0
1
;�r 02

1
/. Consider

first the case in which s � 1
2
r ".t1/

p
t1 . Then we can argue as in cases (1)–(2) of the

proof of this claim. Note that case (3) does not occur since we can assume that for large
enough T we have s � 1

2
r ".t1/

p
t1 < �

p
t0 � r0 . So it remains to consider the case

s > 1
2
r ".t1/

p
t1 . We can then replace r1 by some r 0

1
2
�

1
2
r ".t1/

p
t1; s

�
. If we can

prove the assertion for r1 replaced by r 0
1

, then, by volume comparison, the assertion
also holds for the original r1 after reducing � by some uniform factor.

Let x1 2M.t1/ be the projection of zx1 . Consider the functions L and xL and the
family of domains Dt on M based in .x1; t1/ (see the proof of Lemma 3.6 for more
details). Our first goal will be to show that L

�
x0; t0�

�
� C 1

2
� 0
�
r2
0

�
< C3r0 for some

universal C3 D C3.w;A; �/ <1. An important tool will hereby be the following
claim, which is analogous to Claim 2 in the proof of Lemma 3.6:

Claim For any ƒ <1 there is a T � D T �.ƒ/ <1 such that whenever t0 � T � ,
then the following holds: If t 2 Œt0� .� C �

0/r2
0
; t1/, x 2M.t/, r1 >

1
4
r ".t0/

p
t0 and

L.x; t/ � ƒr0 , then x 2 Dt and .x; t/ is not a surgery point. Even more generally,
there is a minimizing L–geodesic between .x1; t1/ and .x; t/ and any such minimizing
L–geodesic does not meet surgery points.
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Proof This follows by the choice of ı in (4-7) along with Claim 2 in the proof of
Lemma 3.6 (applied to M) for T �.ƒ/Dƒ.

In contrast to the proof of Lemma 3.6, we don’t need to localize the function xL. So
we will only make use of the inequality

(4-8)
�
@

@t�
�4

�
xL.x; t/� �6;

which holds on Dt in the barrier sense (cf [9, 7.1]). We will now apply a maximum
principle argument to (4-8) to show that the following holds: infU.t/

xL. � ; t/� 6.t1� t/

for all t 2 Œt0�� r2
0
; t1/ or there is a t 2 Œt0�� r2

0
; t1/ such that inf@U.t/

xL. � ; t/�6.t1�t/.
Assume that neither of these cases occurs. Since xL.x1; t/� const.t1� t/2 as t ! t1 ,
there is some t 0 2 Œt0�� r2

0
; t1/ that infU.t/

xL. � ; t/� 6.t1�t/ for all t 2 Œt 0; t1/. Choose
� > 0 small enough that inf@U.t/

xL. � ; t/ > .6C �/.t1� t/ for all t 2 Œt0� � r2
0
; t 0� and

choose t� 2 Œt0�� r2
0
; t 0� minimal with the property that infU.t/

xL. � ; t/� .6C�/.t1�t/

for all t 2 .t�; t1/. We argue that then also

(4-9) inf
U.t/

xL. � ; t/� .6C �/.t1� t/ for all t 2 Œt�; t1/:

Choose t�0 2 .t�; t1/ such that there is no surgery time in .t�; t�0�. So M restricted
to Œt�; t�0� is a nonsingular Ricci flow and hence xL is continuous on this restriction
(see for example [7, Lemma 78.3(2)]). It follows that infU.t/

xL. � ; t/ is continuous on
Œt�; t�0�, proving (4-9).

So xL. � ; t�/ attains its minimum at an interior point x� 2 U.t�/. This implies that
4xL.x�; t�/� 0. Since xL.x�; t�/� .6C �/.t1� t�/, we have

L.x�; t�/� .3C �/
p

t1� t� � 4r0:

Hence by the claim, assuming T �T �.4/, we conclude x� 2Dt� and .x�; t�/ is not a
surgery point. By the assumption on t� , we must then have t�D t0�� r2

0
or xL.x�; t�/D

.6C �/.t1� t�/ and @xL.x�; t�/=@t � �6� � , which, however, contradicts (4-8). So
infU.t/

xL. � ; t/� .6C�/.t1� t/ holds for all � > 0 and t 2 Œt0�� r2
0
; t1/ and, by letting

� go to zero, we obtain a contradiction.

Consider now the case in which there is a t 2 Œt0�� r2
0
; t1/ such that inf@U.t/

xL. � ; t/�

6.t1� t/. Let x 2 @U.t/ such that xL.x; t/� 6.t1� t/, ie L.x; t/� 3
p

t1� t � 3r0 . By
concatenating an L–geodesic between .x1; t1/ and .x; t/ with a constant space-time
curve on the time interval Œt0� � r2

0
; t �, we conclude, using (4-7), assumption (iv) and

the fact that � � �0 � 1,
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L.x; t0� � r2
0 /�L.x; t/CC1K�1 r�2

0

Z t

t0�� r2
0

p
t1� t 0 dt 0 � 3r0CC1K�1 r0:

Here C1 <1 is a universal constant. Thus, in both cases (ie in the case in which the
infimum of xL can be controlled on the boundary of U as well as in the case in which
it can be controlled everywhere on U ), we can find some point y 2 U.t0� � r2

0
/ such

that L.y; t0 � � r2
0
/ < C2r0 for some constant C2 D C2.w;A/ <1. Observe that

by (v) we have y 2 B.x0; t0 � � r2
0
;Ar0/. So by extending an L–geodesic between

.x1; t1/ and .y; t0 � � r2
0
/ by a time-.t0�� r2

0
/ geodesic segment, we can conclude,

using (4-6), that there is a constant C3 D C3.w;A; �
0/ D C3.w;A/ <1 such that

L
�
x0; t0�

�
� C 1

2
� 0
�
r2
0

�
< C3r0 .

By the claim, assuming T � T �.C3/, we find that there is a smooth minimizing
L–geodesic 
 between .x1; t1/ and

�
x0; t0 �

�
� C 1

2
� 0
�
r2
0

�
that does not hit any

surgery points. We now lift 
 to an L–geodesic z
 in �M starting from .zx1; t1/

and going backwards in time. If there are no surgery times on the time interval�
t0�

�
�C 1

2
� 0
�
r2
0
; t1
�
, then this is trivial. If there are, then let T i be the last surgery time

that is � t1 and lift 
 on the time interval ŒT i ; t1� to �M.T i/. Note that z
 .T i/ 2 zU i
C ,

so we can use the diffeomorphism ẑ i from Definition 2.1 to determine the limit
limt%T i z
 .t/. Starting from this limit point, we can lift 
 on the interval ŒT i�1;T i/

or Œt0�
�
�C 1

2
� 0
�
r2
0
/;T i/ and continue the process until we reach time t0�

�
�C 1

2
� 0
�
r2
0

.
Let zx0 D z


�
t0�

�
� C 1

2
� 0
�
r2
0

�
2 �M�

t0�
�
� C 1

2
� 0
�
r2
0

�
be the initial point of z
 . Then

zx0 is a lift of x0 and, by (4-7) and assumption (ii), there is a v1D v1.w/ > 0 such that

volt0�.�C� 0/r
2
0

B.zx0; t0� .� C �
0/r2

0 ; r0/ > v1r3
0 :

We consider now the functions L
�M and ` �M , the domains D

�M
t and the reduced volume

zV
�M.t/ in �M based in .zx1; t1/. By concatenating z
 with time-

�
t0�

�
�C1

2
� 0
�
r2
0

�
geodesic segments, we conclude, using the curvature bound in (4-7), that there is some
C4 D C4.w;A/ <1 such that

L
�M.x; t0� .� C � 0/r2

0 / < C4r0 for all x 2 B.zx0; t0� .� C �
0/r2

0 ; r0/:

Again, using the claim and assuming T � T �.C4/, we conclude that

B.zx0; t0� .� C �
0/r2

0 ; r0/�D
�M

t0�.�C� 0/r
2
0

:

So, together with the inequality t1� .t0� .� C �
0/r2

0
/� 1

2
� 0r2

0
, this implies that there

is some v2 D v2.w;A/ > 0 such that

zV
�M.t0� .� C � 0/r2

0 / > v2:
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This implies the noncollapsedness in .zx1; t1/ as in the end of the proof of Lemma 3.6
(see also [9, 7.3; 7, Theorem 26.2; 1, Lemma 4.2.3]).

Proof of assertion (b) The proof of this part follows along the lines of the proof of
Lemma 3.11(a). The main difference is, however, that instead of invoking Lemma 3.6
for the noncollapsing statement, we make use of assertion (a) of this proposition.

Observe that by (4-7), (ii) and basic volume comparison, we can choose �D�.w;A/>0

such that the �–noncollapsedness from (a) even holds for all t 2 Œt0� .� C �
0/r2

0
; t0�.

Let w and A be given and let E D maxfE";E3:8."/g and �D minf�; �3:8g, where
E" and � are the constants from Proposition 2.15 and E3:8."/, �3:8 are the constants
from Lemma 3.8.

Assume first that the statement is false for some small 0 < z� < .K�
1
/�1=2 , ie there

is a time t 2 Œt0 � � r2
0
; t0� and a point zx 2 zU .t/ such that .x; t/ does not satisfy

the canonical neighborhood assumptions CNA.z�r0; ";E; �/ in �M. In particular,
jRmj.zx; t/� z��2r�2

0
.

We now use a point picking argument to find a time Nt 2 Œt0�� r2
0
; t0� and a point xx2 zU .Nt/

that also doesn’t satisfy the canonical neighborhood assumptions CNA.z�r0; ";E; �/ in�M and that additionally satisfies the following condition: Set xqDjRmj�1=2.xx; Nt/� z�r0 .
Then for any t 0 2 Œt0 � .� C �

0/r2
0
; Nt �, all points in zU .t 0/ satisfy the canonical neigh-

borhood assumptions CNA
�

1
2
xq; ";E; �

�
in �M. The point .xx; Nt/ can be obtained as

follows: First set .xx; Nt/D .zx; t/ and xq D jRmj�1=2.xx; Nt/� z�r0 . If .xx; Nt/ satisfies the
desired properties, then we stop. Otherwise, we find another time Nt 0 2 Œt0�.�C� 0/r2

0
; Nt �

and point xx0 2 U.Nt 0/ such that .xx0; Nt 0/ does not satisfy the canonical neighborhood
assumptions CNA

�
1
2
xq; ";E; �

�
in �M. Since we have assumed that z��2 > K�

1
, and

due to (4-7), we actually have Nt 0 2 Œt0� � r2
0
; t0�. We can now replace .xx; Nt/ by .xx0; Nt 0/

and repeat the process. This process has to come to a close, since in every step we
decrease xq by a factor of 2 and �M satisfies the canonical neighborhood assumptions
CNA

�
1
2
r ".t0/

p
t0; ";E"; �

�
on Œt0 � � r2

0
; t0�. So we obtain .xx; Nt/ with the desired

properties. We furthermore conclude from (4-7) that

(4-10) distNt .xx; @ zU .Nt// > 2Ar0:

We now assume that there are no uniform constants z� and T such that assertion
(b) holds. Then, for some given w and A, we can find a sequence z�˛ ! 0 and a
sequence of counterexamples �M˛ , U ˛ , t˛

0
, r˛

0
, �˛ , �˛ and x˛

0
with t˛

0
!1 and

t˛
0
> T.a/.w;A; �

˛/ (here T.a/ is the constant for which assertion (a) holds) such that
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there are times t˛ 2 Œt˛
0
� �˛.r˛

0
/2; t˛

0
� and points zx˛ 2 zU ˛.t˛/ that do not satisfy the

canonical neighborhood assumptions CNA.z�˛r˛
0
; ";E; �/ in �M. By the last paragraph,

we find times Nt˛ 2 Œt˛
0
� �˛.r˛

0
/2; t˛

0
� and points xx˛ 2 zU .Nt˛/ such that .xx˛; Nt˛/ does

not satisfy the canonical neighborhood assumptions CNA.xq˛; ";E; �/ in �M with
xq˛ D jRmj�1=2.xx˛; Nt˛/ � z�˛r˛

0
, but for any t 0 2 ŒNt˛ � .�˛C � 0/.r˛

0
/2; Nt˛ �, all points

in zU ˛.t 0/ satisfy the canonical neighborhood assumptions CNA
�

1
2
xq˛; ";E; �

�
in �M.

Recall that by Proposition 2.15 we must have

xq˛ > r ".Nt
˛/.Nt˛/1=2 � 1

2
r ".t

˛
0 /.t

˛
0 /

1=2:

Let .x0; t 0/ 2M˛ be a surgery point with t 0 2 Œt˛
0
��˛.r˛

0
/2; t˛

0
�. Then, as in (3-6), we

have, by the choice of ı ,

(4-11) jRmj.x0; t 0/> c0ı�2.t 0/t 0�1
�c0t 0r�2

" .2t 0/� 1
2
c0t˛0 r�2

" .t˛0 /�
1
8
c0.t˛0 /

2.xq˛/�2

and hence .xq˛/2jRmj.x0; t 0/ > 1
8
c0.t˛

0
/2!1. So, as in the proof of Lemma 3.11(a),

we conclude, using Lemma 3.5, that there is a constant c > 0 such that for large
˛ the parabolic neighborhood P .xx˛; Nt˛; cxq˛;�c.xq˛/2/ is nonsingular and we have
jRmj< 8.xq˛/�2 there.

Again, as in the proof of Lemma 3.11(a), we choose ��˛ > 0 maximal with the property
that Nt˛���˛ .xq

˛/2 � t˛
0
� .�˛C� 0/.r˛

0
/2 and such that the point .xx˛; Nt˛/ survives until

time Nt˛ � ��˛ .xq
˛/2 . After passing to a subsequence, we may assume that the limit

��1D lim˛!1 ��˛ 2 Œ0;1� exists. By the conclusion in the previous paragraph, we must
have ��1� c> 0. Recall that by (4-10) we have distNt˛ .xx

˛; @ zU ˛.Nt˛//> 2Ar˛
0

. By (4-7)
and a distance distortion estimate in B , we obtain that distt .xx

˛; @ zU ˛.t// > br˛
0

for all
t 2 ŒNt˛���˛ .xq

˛/2; Nt˛ � and some bDb.w;A/>0 (actually we can choose bDb.w/>0).
So for every a <1 we have distt .@ zU

˛.t/; xx˛/ > axq˛ for all t 2 ŒNt˛ � ��˛ .xq
˛/2; Nt˛ �

whenever ˛ is sufficiently large.

So by assertion (a) of this proposition and the choice of .xx˛; Nt˛/, there is a uniform
constant � > 0 such that: For all a<1 and for sufficiently large ˛ (depending on a)
we have that for all t 2 ŒNt˛ � ��˛ .xq

˛/2; Nt˛ � the points in the ball B.xx˛; t; axq˛/ are
�–noncollapsed on scales < r˛

0
and satisfy the canonical neighborhood assumptions

CNA
�

1
2
xq˛; ";E; �

�
. Therefore, we can follow the reasoning of the proof of Lemma

3.11(a) and apply Lemma 3.10 to the flows �M˛ restricted to ŒNt˛ � ��˛ .xq
˛/2; Nt˛ � and

parabolically rescaled by .xq˛/�1 . We conclude that, after passing to a subsequence,
we have convergence to a nonsingular Ricci flow on the time interval .���1; 0�, which
has bounded curvature. So there is a K�

2
< 1 such that for all 0 < ��� < ��1
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and for large ˛ (depending on ��� ) we have .xq˛/2jRmj.xx˛; t/ < K�
2

for all t 2

ŒNt˛ � ���.xq˛/2; Nt˛ �. Using Lemma 3.5 and (4-11), we can find a constant c00 > 0 such
that for large ˛ the point .xx˛; Nt˛/ survives until time Nt˛ � .���C 2c00/.xq˛/2 and we
have .xq˛/2jRmj.xx˛; t/ < 2K�

2
for all t 2 ŒNt˛� .���C2c00/.xq˛/2; Nt˛ �. If ��1 <1, we

may choose ��1 � c00 < ��� < ��1 and conclude that for large ˛ the point .xx˛; Nt˛/
survives until time Nt˛� .��1C c00/.xq˛/2 and we have .xq˛/2jRmj.xx˛; t/ < 2K�

2
for all

t 2 ŒNt˛ � .��1C c00/.xq˛/2; Nt˛ �. Since for large ˛

Nt˛ � .��1C c00/.xq˛/2 � t˛0 � �
˛.r˛0 /

2
� .��1C c00/.z�˛r˛0 /

2 > t˛0 � .�
˛
C � 0/.r˛0 /

2;

this gives us a contradiction to the choice of the ��˛ . So ��1D1 and again Lemma 3.10
yields that the pointed Ricci flows with surgery .M˛; .xx˛; Nt˛// subconverge to a �–
solution after parabolically rescaling by .xq˛/�1 . Using Lemma 3.8, this yields a
contradiction to the assumption that the points .xx˛; Nt˛/ don’t satisfy the canonical
neighborhood assumptions CNA.xq˛; ";E; �/.

Proof of assertion (c) The proof is similar to the proof of Proposition 4.5. However,
instead of using Lemma 3.11(a), we will invoke the canonical neighborhood assumptions
from assertion (b), which are independent of the distance to x0 . Choose E and �
according to assertion (b) and set K D maxfz��2.w;A/;E2K�

1
.w;A/;E2g. In the

following we may assume without loss of generality that A> 10.

Note first that by (4-7) we have jRmj < Kr�2
0

on U.t0 � � r2
0
/. Consider a time

t1 2 Œt0 � � r2
0
; t0� with the property that U restricted to Œt0 � � r2

0
; t1� is nonsingular

and for which

(4-12) jRmj< 2Kr�2
0 on U.t/ for all t 2 Œt0� � r2

0 ; t1�:

We will then show that we actually have

(4-13) jRmj<Kr�2
0 on U.t/ for all t 2 Œt0� � r2

0 ; t1�

if Sw is chosen small enough depending on w and A. This fact and the observation
that for every surgery point .x0; t 0/ we have

jRmj.x0; t 0/ > c0ı�2.t 0/t 0�1
� c0 � c0�2t0 � r

�2
0

will then imply assertion (c) for sufficiently large T , depending on K and � .

So assume that U restricted to Œt0 � � r2
0
; t1� is nonsingular and that (4-12) holds. It

suffices to prove the curvature bound in (4-13) for t D t1 , because otherwise we may
replace t1 by t . Assume that there was a point x1 2U.t1/ with jRmj.x1; t1/�Kr�2

0
.
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Then x1 62 B.x0; t1; 2Ar0/ by (4-7). So by assumption (iv) we have

(4-14) distt1
.x1; @U.t1// >Ar0:

Using (4-12), the distance distortion estimates from Lemma 3.4(a) and assumption (v)
we conclude that

distt1
.x1; @U.t1// < e4Kr�2

0
.t1�t0C� r2

0
/ distt0�� r2

0
.x1; @U.t0� � r2

0 // < e4K�0 � 2Ar0:

So

(4-15) distt1
.x0;x1/ < .2Ae4K�0 CA/r0:

Let zx1 2
zU .t1/ � �M.t1/ be a lift of x1 . By assertion (b) we know that .zx1; t1/

satisfies the canonical neighborhood assumptions CNA.z�r0; z"0;E; �/ in �M. Since
jRmj.zx1; t1/�Kr�2

0
� .z�r0/

�2 , the point .zx1; t1/ has a canonical neighborhood in �M.
Note that jRmj.zx1; t1/ � Kr�2

0
� E2K�

1
r�2
0

and by (4-7) we have jRmj.zx0; t1/ <

K�
1
r�2
0

for any lift of zx0 in �M.t1/. So the very last case in Definition 2.14 (the
canonical neighborhood assumptions) cannot occur. Therefore, .zx1; t1/ is the center of
an "–neck or an .";E/–cap. In the first case set zx2 D zx1 and in the second case let
zx2 2 �M.t1/ be the center of an "–neck that bounds this cap. So in either case .zx2; t1/

is the center of an "–neck in �M.t1/ and

distt1
.zx1; zx2/ <EjRmj�1=2.zx1; t1/�EK�1=2r0 � r0;

E�2Kr�2
0 � jRmj.zx2; t1/ < 2Kr�2

0 :

(For the last inequality, we have used (4-12) and the fact that zx2 2
zU .t1/, which follows

from (4-14), assuming without loss of generality that A� 1.) Let x2 2M.t1/ be the
projection of zx2 . We can then apply Lemma 4.3 and conclude that

(4-16) volt1
B
�
x2;

1
2
K�1=2r0

�
> zw0 �

1
8
K�3=2r3

0 :

Next, note that by (4-15) and the conclusion in the previous paragraph we have

(4-17) distt1
.x0;x2/ < .2Ae4K�0 CAC 1/r0:

Also, using (4-14) and assuming without loss of generality that A > 2, we find that
B
�
x2; t1;

1
2
K�1=2r0

�
�U.t1/. Observe that by (iv) any minimizing geodesic in M.t1/

connecting x0 with a point in U.t1/ is contained in B.x0; t1; 2Ar0/[U.t1/ and recall
that by (4-7) and (4-12) we have

(4-18) jRmj< 2Kr�2
0 on B.x0; t1; 2Ar0/[U.t1/:
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Lastly, by (4-7) and distance and volume distortion estimates, there are uniform con-
stants 0 < ˇ D ˇ.w;A/ < 1 and C1 D C1.w;A/ < 1, which only depend on w
and A, such that

(4-19) volt1
B.x0; t1; ˇr0/ < C1 volt0

B.x0; t0; r0/:

We now apply volume comparison to deduce a lower bound on volt1
B.x0; t1; ˇr0/. To

do this, observe that, due to assumption (iv), every minimizing geodesic that connects
x0 with a point in U.t1/ has to lie within B.x0; t1; 2Ar0/[U.t1/. Moreover, by (4-17),

B
�
x2; t1;

1
2
K�1=2r0

�
� B.x0; t1; .2Ae4K�0 CAC 2/r0/:

So, using the curvature bound (4-18), volume comparison along minimizing geodesics
between x0 and points in B

�
x2; t1;

1
2
K�1=2r0

�
and, using (4-16), we find

volt1
B.x0; t1; ˇr0/ >

c2.w;A/ˇ
3

.2Ae4K�0 CAC 2/3
volt1

B
�
x2; t1;

1
2
K�1=2r0

�
> c2.w;A/c3.w;A/ zw0 �

1
8
K�3=2r3

0 :

Here c2 D c2.w;A/; c3 D c3.w;A/ > 0 are uniform constants, which only depend on
w and A. Together with (4-19) and assumption (iii), this yields

c2.w;A/c3.w;A/ zw0 �
1
8
K�3=2.w;A/r3

0 < C1.w;A/Swr3
0 :

So for small enough Sw , depending only on w and A, we obtain a contradiction.

Thus with this choice of Sw , the bound (4-12) does indeed imply the bound (4-13). As
mentioned before, this implication proves the desired result.

Proof of assertion (d) Assertion (d) follows from assertion (c) by a distance distortion
estimate or from (4-15) in the previous proof.

4.8 Curvature control in large regions that are locally good everywhere

We will now show that if we only have local goodness control within some distance to
some geometrically controlled region and if we can guarantee this control on a time
interval of uniform size, then we can deduce a curvature bound, which is independent
of this distance.

In this section, we will use the following notation: Let U �M be a sub-Ricci flow
with surgery of M, t be a time for which U.t/ is defined and d � 0. Then we write
BU .@U; t; d/D B.@U.t/; t; d/\U.t/ for the time-t d –tubular neighborhood around
@U.t/ in U.t/. The parabolic neighborhood PU .@U; t; d; �t/ is defined similarly.
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Proposition 4.8 There is a continuous positive function ıW Œ0;1/! .0;1/ such that
for every w; � > 0 and A <1 there are constants K D K.w;A/;T .w;A;�/ <1

such that the following holds:

Let M be a Ricci flow with surgery on the time interval Œ0;1/ that is performed
by ı.t/–precise cutoff and whose time slices are closed and let t0 > T . Consider a
sub-Ricci flow with surgery U �M on the time interval Œt0� r2

1
; t0�. Let r1; r0; b > 0

be constants such that

(i) �
p

t0 � r1 � r0 �
1
2

p
t0 ,

(ii) for all x 2 @U.t0/ we have jRmj �Ar�2
1

on P .x; t0; r1;�r2
1
/,

(iii) for every t 2 Œt0� r2
1
; t0� and x 2 BU .@U; t; b/, the point x is locally w–good

at scale r0 and time t or jRmj.x; t/�Ar�2
1

.

Then for every t 2 .t0� r2
1
; t0� and x 2 BU .@U; t; b/ we have

jRmj.x; t/ <K
�
.b� distt .@U.t/;x//

�2
C .t � t0C r2

1 /
�1
�
:

Proof Let ı.t/ be an arbitrary function that goes to zero as t ! 1. Then for
sufficiently large t (depending on w , A and � ), we can use Definition 2.11(3) and
volume comparison to conclude that no surgery point of M.t/ is locally w–good at
scale r0 and the curvature at every surgery point satisfies jRmj > Ar�2

1
. So we can

assume in the following that there are no surgery points in the space-time neighborhood

B D
[

t2.t0�r2
1
;t0�

BU .@U; t; b/:

Consider the function

f W .x; t/ 7! jRmj.x; t/
�
.b� distt .@U.t/;x//

�2
C .t � t0C r2

1 /
�1
��1

on B . Since B is free of surgery points, we find that jRmj and hence f is bounded
on B (by a nonuniversal constant).

In the following, we will bound the supremum H of f . Choose some .x1; t1/ 2 B

where this supremum is attained up to a factor of 2, ie f .x1; t1/ >
1
2
H and set

QD r2
1
jRmj.x1; t1/. Observe that

(4-20) Q> f .x1; t1/ >
1
2
H:

Now if H �maxf2; 2Ag, then we are done, assuming K >maxf2; 2Ag. So assume in
the following that H >maxf2; 2Ag. This implies, in particular, that Q> f .x1; t1/ >
1
2
H >maxf1;Ag and hence by assumption (iii) that the point x1 is locally w–good at
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scale r0 and time t1 . Moreover, by assumption (ii),

(4-21) .x1; t1/ 62 P .x; t0; r1;�r2
1 / for all x 2 @U.t0/:

Set d1 D distt1
.@U.t1/;x1/, aD r�1

1
.b� d1/ and observe that

(4-22) Qa2 > f .x1; t1/ >
1
2
H > 1 and Q.t1� t0C r2

1 /r
�2
1 > f .x1; t1/ >

1
2
H:

So, for all t � 1
4
.t1� t0C r2

1
/C t0� r2

1
and x 2 BU

�
@U; t; d1C

1
2
ar1

�
, we have

(4-23) jRmj.x; t/�H
�
.b� distt .@U.t/;x//

�2
C .t � t0C r2

1 /
�1
�

�H.4a�2r�2
1 C 4.t1� t0C r2

1 /
�1/ < 16Qr�2

1 :

For a moment fix some arbitrary x 2 BU
�
@U; t1; d1 C

1
4
ar1

�
and choose �t > 0

maximal with the property that t1��t � 1
4
.t1�t0Cr2

1
/Ct0�r2

1
and distt .@U.t/;x/<

d1C
3
8
ar1 for all t 2 .t1��t; t1�. We will now estimate the distance distortion between

x and any point x0 2 @U using Lemma 3.4(b). Using (4-23) we find that for all t 2

Œt1��t; t1� we have jRmj<16Qr�2
1

on B
�
x; t; 1

8
ar1

�
\U.t/�BU

�
@U; t; d1C

1
2
ar1

�
.

Moreover, by (4-22), we have 1
8
Q�1=2r1 <

1
8
ar1 . By assumption (ii) and distance

distortion estimates, we can also find a uniform 0 < ˇ D ˇ.A/ < 1
2

such that for all
t 2 Œt1 ��t; t1� and all y 2 @U.t/ we have B.y; t; ˇr1/ � B.y; t0; r1/ and jRmj <
ˇ�2r�2

1
on B.y; t; ˇr1/. So, for all t 2 Œt1��t; t1�, we have

jRmj<
�
min

˚
1
8
Q�1=2; ˇ

	��2
r�2
1 on B.x0; t; ˇr1/[B

�
x; t;min

˚
1
8
Q�1=2; ˇ

	
r1

�
and thus Lemma 3.4(b) yields

d

dt
distt .x0;x/ > �C

�
min

˚
1
8
Q�1=2; ˇ

	��1
r�1
1

for some universal constant C <1. This implies that for all t 2 Œt1��t; t1� we have

distt .x0;x/� dt1
.x0;x/CC

�
min

˚
1
8
Q�1=2; ˇ

	��1
r�1
1 .t1� t/

for all t 2 Œt1��t; t1�. Letting x0 vary over @U yields

distt .@U.t/;x/� d1C
1
4
ar1CC

�
min

˚
1
8
Q�1=2; ˇ

	��1
r�1
1 .t1� t/:

So, by the definition of �t and using (4-22) and (4-20), we obtain (recall Q> 1
2
H > 1)

�t �min
� 1

8
ar1

C
�
min

˚
1
8
Q�1=2; ˇ

	��1
r�1
1

; 3
4
.t1� t0C r2

1 /

�
> c0minfaQ�1=2; aˇ;HQ�1

gr2
1

> c minfH 1=2Q�1;H 1=2Q�1=2;HQ�1
gr2

1 D cH 1=2Q�1r2
1
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for some universal c0>0 and some cD c.A/>0. Note that x 2BU
�
@U; t1; d1C

1
4
ar1

�
was chosen arbitrarily. So by the choice of �t , we find that for any such x and any
t 2 Œt1� cH 1=2Q�1r2

1
; t1� we have

(4-24) distt .@U.t/;x/ < d1C
3
8
ar1 < d1C

1
2
ar1:

Moreover, by (4-23), we conclude that

jRmj< 16Qr�2
1 on P 0 D PU

�
@U; t1; d1C

1
4
ar1;�cH 1=2Q�1r2

1

�
:

So, in particular, P 0 does not contain surgery points. Moreover, by (4-24), we have

P 0 �
[

t2Œt1�cH 1=2Q�1r2
1
;t1�

BU
�
@U; t; d1C

1
2
ar1

�
:

By the t�1 –positivity of the curvature on M, we have sec��F.Qr�2
1

t0/Qr�2
1

on P 0 ,
where F W Œ0;1/! Œ0;1/ is a decreasing function that goes to zero on the open end.
Since F.Qr�2

1
t0/� F.4Q/� F.H /, we have the bound sec� �F.H /Qr�2

1
on P 0 .

Next, using (4-21) and using the constant 0< ˇ D ˇ.A/ < 1 from before, we get that
distt1

.@U.t1/;x1/ > ˇr1 . Then

P
�
x1; t1;min

˚
ˇ; 1

4
a
	
r1;�cH 1=2Q�1r2

1

�
� P 0:

Define S W .0;1/! .0;1/ by S.x/ D min
˚
F�1=2.x/; 1

8
x1=2; 1

2
ˇx1=2; c1=2x1=4

	
.

Then S.x/!1 as x!1 and we find, using (4-22) and (4-20), that

1
4
a> 1

8
H 1=2Q�1=2

� S.H /Q�1=2;

ˇ � 1
2
ˇH 1=2Q�1=2

� S.H /Q�1=2;
cH 1=2Q�1

� S2.H /Q�1:

This yields the bound

sec� �S�2.H /Qr�2
1 on P .x1; t1;S.H /Q�1=2r1;�S2.H /Q�1r2

1 /:

In particular, �r0
.x1; t1/� S.H /Q�1=2r1 (observe that S.H /Q�1=2r1 � ˇr1 � r0 ).

So, by property (iii), we conclude that for r D S.H /Q�1=2r1 we have

volt1
zB.zx1; t1; r/ > zcwr3;

where zB.zx1; t1; r/ denotes the universal cover of the ball B.x1; t1; r/. We can now
lift the flow on P .x1; t1; r;�r2/ to this universal cover, rescale it parabolically by r�1

and use Lemma 3.12 to obtain

Qr�2
1 D jRmj.x1; t1/ <K0;3:12.zcw/�

�1
0;3:12.zcw/r

�2
DK0;3:12�

�1
0;3:12S�2.H /Qr�2

1 :
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Here K0;3:12; �0;3:12 are the constants from Lemma 3.12. The last inequality implies
S2.H / <K0;3:12�

�1
0;3:12

, which in turn implies that H is bounded by some universal
constant H0 DH0.w;A/ <1. This finishes the proof.
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