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The number of convex tilings of the sphere
by triangles, squares, or hexagons

PHILIP ENGEL

PETER SMILLIE

A tiling of the sphere by triangles, squares, or hexagons is convex if every vertex has
at most 6 , 4 , or 3 polygons adjacent to it, respectively. Assigning an appropriate
weight to any tiling, our main results are explicit formulas for the weighted number
of convex tilings with a given number of tiles. To prove these formulas, we build on
work of Thurston, who showed that the convex triangulations correspond to orbits
of vectors of positive norm in a Hermitian lattice ƒ � C1;9 . First, we extend this
result to convex square and hexagon tilings. Then, we explicitly compute the relevant
lattice ƒ . Next, we integrate the Siegel theta function for ƒ to produce a modular
form whose Fourier coefficients encode the weighted number of tilings. Finally, we
determine the formulas using finite-dimensionality of spaces of modular forms.

05C30, 32G15, 53C45; 11F27

1 Introduction

A tiling of the sphere by triangles, squares, or hexagons is convex if every vertex is
adjacent to at most six, four, or three polygons, respectively. In this paper, we count
convex tilings of S2 up to combinatorial equivalence. Convexity is a very strong
restriction; while the total number of tilings grows exponentially in the number of
tiles (see Tutte [17]), the number of convex tilings grows polynomially. Thurston [16]
proved that convex triangulations with 2n triangles correspond to U.ƒ/–orbits of
vectors of norm 2n in a Hermitian lattice ƒ � C1;9 . It follows that the number of
triangulations with less than 2n triangles is order n10 . Similarly, we show that convex
square and hexagon tilings correspond to lattice points in C1;5 and C1;3 , respectively.

It is natural to weight a tiling by the inverse of the order of the U.ƒ/–stabilizer of the
associated vector. The weight is expressed in terms of the tiling itself in Definition 2.7.
Counting with weight does not change the order of growth, and allows for simple exact
formulas for the number of convex tilings. Following Convention 2.2 in the case of
hexagon tilings, our main theorem is:
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Theorem 1.1 The weighted number of oriented convex tilings of S2 with n tiles is

809

21531352
�9.n=2/ for triangles,

1

21332
.�5.n/C 8�5.n=2// for squares, and

1

2334
.�3.n/� 9�3.n=3// for hexagons,

where �m.n/D
P
d jn d

m when n is an integer, and otherwise �m.n/D 0.

The key to proving Theorem 1.1 is to show that the generating function for the weighted
number of tilings is a modular form of a specific weight and level. The modularity
follows from our second theorem:

Theorem 1.2 Let k D 6, 4, or 3. Let �k be a primitive kth root of unity. Let
.ƒ; ? / be a Hermitian lattice over ZŒ�k� of signature .1; s/ with s > 1. Suppose
ƒD .1C �k/ƒ

_ , where ƒ_ denotes the Hermitian dual of ƒ. Let � be a finite-index
subgroup of U.ƒ/ and let ƒC �ƒ denote the set of positive-norm vectors. Then there
is a constant c0 such that

c0C
X

v2�nƒC

1

jStab.v/j
exp

�
2�i�v ? v

j1C �kj
2

�
is a modular form in � of weight 1C s with respect to the group �1.j1� �kj2/.

Theorem 1.1 follows from Theorem 1.2 because of the finite-dimensionality of spaces
of modular forms. The relevant modular forms are uniquely determined by some small
Fourier coefficients which equal the weighted number of tilings for some small numbers
of tiles.

In Section 2, we review Thurston’s work on flat cone spheres and extend his results
to convex square and hexagon tilings. We prove in Proposition 2.5 that convex tilings
correspond to �–orbits of positive-norm vectors in some Hermitian lattice. In Section 3,
we explicitly compute the lattices corresponding to convex tilings by each polygon. By
Proposition 3.3, these lattices satisfy the assumptions of Theorem 1.2. In Section 4,
we prove Theorem 1.2. The technique is to integrate the Siegel theta function — a
function on CHs �H satisfying certain transformation properties — over the complex-
hyperbolic orbifold �nCHs . This integral is a Maass form on H whose Fourier
coefficients encode the weighted counts of orbits of vectors of given norm. Finally, in
Section 5, we deduce Theorem 1.1 from Theorem 1.2 by determining the weighted
number of tilings with one or two tiles.
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2 Flat cone spheres and tilings

A flat cone sphere is a sphere with a flat metric away from a finite set of points
fp1; : : : ; png which near each point is isometric to a convex Euclidean cone. A convex
tiling by triangles, squares, or hexagons has the structure of a flat cone sphere by
declaring each tile to be regular of a fixed side length. In 1942, Alexandrov [1] proved
that every flat cone sphere is isometric to a unique convex polyhedron in R3 . Near
each singularity pi the angle of the cone is 2� �˛i for some ˛i 2 .0; 2�/. We call ˛i
the cone angle deficit. The Gauss–Bonnet theorem implies thatX

˛i D 4�:

Thurston [16] studied the moduli space M˛1;:::;˛n
of all flat cone spheres modulo

scaling with specified cone angle deficits at n unmarked points. Using local period
maps to complex hyperbolic space

CHn�3
WD Pfv 2C1;n�3

j v2 > 0g;

Thurston showed that M˛1;:::;˛n
is a complex hyperbolic orbifold. Such moduli

spaces were studied earlier by Deligne and Mostow [7] — see also Looijenga’s survey
paper [9] — in the context of hypergeometric functions and Lauricella differentials, ie
differentials on P1 of the form

�D .z� z1/
�r1 � � � .z� zn�1/

�rn�1 dz;

where ri 2 .0; 1/. When
P
ri 2 .1; 2/, such a differential induces on P1 the structure

of a flat cone sphere by using
R z
0 � as a local flat coordinate.

The moduli space M˛1;:::;˛n
is generally metrically incomplete because the cone

singularities can collide, in which case the cone angle adds. Therefore Thurston
considered the metric completion M˛1;:::;˛n

, which is stratified by moduli spaces of
flat cone spheres in which some collections of singularities have coalesced; see [16,
Theorem 3.4]. If the completion is still a complex hyperbolic orbifold, a generalization
of the Cartan–Hadamard theorem implies that it is a quotient of CHn�3 by the action
of a discrete subgroup P� � PU.1; n� 3/.
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The completion M˛1;:::;˛n
is always an orbifold when nD3, since the moduli space is a

point. For nD 4, there are infinitely many choices of f˛ig for which M˛1;˛2;˛3;˛4
is a

complex hyperbolic orbifold. Indeed, every quotient by a triangle group P��PU.1; 1/

acting on CH1 DH2 appears as a moduli space of tetrahedra. For nD 5, Picard [13]
and his student LeVavasseur found the cone angles for which M˛1;:::;˛5

is an orbifold,
in the guise of determining when the monodromy group of the hypergeometric function

F.x; y/D

Z 1
1

z�r1.z� 1/�r2.z� x/�r3.z�y/�r4 dz

is discrete. For n � 5, Mostow [11] and later Thurston enumerated all 94 values of
the ˛i for which the moduli space is an orbifold.

The highest-dimensional completed moduli space of flat cone spheres which is an
orbifold corresponds to nD 12 and ˛i D �=3 for all i . Every convex triangulation
defines a point in the completion by declaring each triangle metrically equilateral. See
Schwartz [14] for a more detailed treatment of this case. There is a stratification

M�=3;:::;�=3 D

a
P
�iD12

�i2f1;2;3;4;5g

M�1�=3; :::; �n�=3:

Of the 78 completed moduli spaces of flat cone spheres with n� 5 which are orbifold
quotients of CHn�3 by arithmetic groups, 34 are strata in the above example. The
total number of strata is 45.

Let P� denote the monodromy group of M�=3;:::;�=3 , so that

P�nCH9
DM�=3;:::;�=3:

Thurston observed a special feature of this example. The group P� can be lifted to a
subgroup � � U.1; 9/ which preserves a lattice ƒ�C1;9 of geometric significance:
the flat cone spheres which admit a triangulation into metrically equilateral triangles
are those lying in the projectivization of ƒ. In fact, Thurston showed:

Theorem 2.1 [16, Theorem 0.1] There is a bijective correspondence

foriented convex triangulations of S2g  ! �nƒC;

where ƒC is the set of positive-norm vectors in ƒ. The number of triangles is the
norm of the associated vector.
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We generalize this correspondence to square and hexagon tilings in Proposition 2.5,
and construct the lattices explicitly in each case. We first set a convention regarding
hexagon tilings:

Convention 2.2 For the remainder of the paper, a hexagon tiling is a tiling by hexagons
such that (1) the vertices of the tiling are bicolored black and white with adjacent vertices
assigned different colors, and (2) all vertices of nonzero curvature are black.

Remark 2.3 Every hexagon tiling yields a tiling by triangles by connecting the three
black vertices within each hexagon. This triangulation has cone angle deficits which
are even multiples of �=3. Conversely, suppose we have a triangulation with cone
angle deficits which are even multiples of �=3. Because we are tiling the sphere, this
condition on cone angle deficits guarantees the existence of a pair of bicolorings of the
triangles so that no two adjacent triangles have the same color. For each bicoloring,
connect the vertices of every white triangle to its center to produce a hexagon tiling
whose white vertices are the centers of the white triangles.

Having set this convention about hexagon tilings, we may now proceed in a unified
manner for triangles, squares, and hexagons.

Definition 2.4 A Hermitian lattice ƒ over ZŒ�k� is a finitely generated, free ZŒ�k�–
module with a Hermitian pairing valued in ZŒ�k�.

Proposition 2.5 Let k D 6, 4, or 3. There is a Hermitian lattice ƒ of signature
.1; 2k � 3/ defined over ZŒ�k� and a group of Hermitian isometries � � U.ƒ/ such
that the orbits �nƒC of positive-norm vectors are in bijective correspondence with
oriented convex .2k=.k�2//–gon tilings of the sphere.

Proof We follow Section 7 of [16]. Define a rigidified moduli space Mrig
2�=k;:::;2�=k

to be the space of pairs .M;„/, where M 2M2�=k;:::;2�=k and „ is a flat sublattice
of the tangent bundle of Mnfp1; : : : ; png which is locally isometric to ZŒ�k� � C

with the standard metric. Let Mrig
2�=k;:::;2�=k

be open stratum where no singularities
have collided. When k D 3, we include with the data of „ one of the two choices of
hexagon tiling of the tangent space whose black vertices are „. A convex tiling of S2

by .2k=.k�2//–gons determines an element .M;„/ by declaring „p to be the lattice
of differences of vertices (in the case of hexagon tilings, differences of black vertices).
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Figure 1: A flat cone sphere admitting a square tiling with cone angle
deficits 2�=4 in which vi and wi are identified by a rotation

We first define the lattice ƒ based on a number of choices. Choose a point .M;„/ in
the open stratum and a singularity p2k . For j D 1; : : : ; 2k� 1, let 
j be the shortest
path connecting p2k to pj , making a choice if necessary. Relabel the singularities
so that as j increases, the 
j are cyclically ordered about p2k , in clockwise order.
The 
j are straight lines in the flat structure which intersect only at the endpoint p2k .
Finally, choose an isometric trivialization of „ to ZŒ�k� � C over the complement
of
S
j 
j . When k D 3, we require this trivialization to send the tiling of the tangent

space to the standard tiling of C ; see Figure 2. Having made these choices, there is,
up to translation, a unique isometric immersion

M �
[
j


j !C

compatible with the trivialization of „. By Proposition 7.1 of [16], this immersion is
an embedding whose image is the interior of a polygon PM .

Each path 
j corresponds to a pair of adjacent edges vj , wj of PM . Gluing vj to wj
by an oriented isometry of C reproduces .M;„/; see Figure 1. Each directed edge
vj or wj can be viewed as an element of C . The following equations are satisfied:

wj D��kvj ;(1) X
j

.vj Cwj /D 0:(2)

Equation (1) holds because the cone angle deficit at pj is j̨ , hence vj and wj meet
at a vertex of PM with exterior angle j̨ . Equation (2) holds because the vectors
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Figure 2: The standard tiling of C by bicolored hexagons with black vertices
in ZŒ�3�

vj and wj put end-to-end must close up to form PM . By (1) and (2), the vectors
v1; : : : ; v2k�2 determine PM uniquely. A neighborhood of

.v1; : : : ; v2k�2/ 2C2k�2

is an orbifold chart on Mrig
2�=k;:::;2�=k

. A small deformation of .v1; : : : ; v2k�2/ defines
a small deformation of the polygon PM , which in turn defines a small deformation
of .M;„/.

The area of PM is a quadratic form in .v1; : : : ; v2k�2/. By [16, Proposition 3.3], the
area extends naturally to a Hermitian form A whose signature is .1; 2k�3/. We define

ƒ WD ZŒ�k�
2k�2

� .C2k�2; A/:

In the local coordinate chart on Mrig
2�=k;:::;2�=k

defined by .v1; : : : ; v2k�2/, elements
of ƒ correspond to tilings of the flat cone sphere by intersecting PM with the unique
translate of the planar tiling by .2k=.k�2//–gons whose vertices include the vertices
of PM . This correspondence holds even in the closure of the chart, as PM degenerates.
These closed charts cover Mrig

2�=k;:::;2�=k
.

It remains to prove that the construction of ƒ is independent of choice of coordi-
nate chart. Choosing the data of a labeling of the singularities, geodesics 
j , and a
trivialization of „, we have produced an identification

H 1.M;„˝R/ŠC2k�2 and H 1.M;„/Šƒ:

Another choice of coordinate chart will therefore preserve ƒ. The area of .M;„/ is the
same regardless of the chart, so this automorphism also preserves the Hermitian form A.
Alternatively, we may note that A is a rescaling of the cup product on H 1.M;„/
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induced by the Hermitian pairing on „ with values in ZŒ�k�. Therefore the transition
function between two coordinate charts lies in U.ƒ/. Furthermore, since the cup
product on H 1.M;„/ is valued in ZŒ�k�, there is a rescaling of A which induces
on ƒ the structure of a lattice over ZŒ�k�.

Let � � U.ƒ/ be the monodromy group of the principal stratum. Then there is a map

DWMrig
2�=k;:::;2�=k

! �nCC;

where CC �C1;2k�3 is the positive cone. It follows from [16, Theorem 4.1] that the
induced map on the projectivization

PDW PMrig
2�=k;:::;2�=k

DM2�=k;:::;2�=k! P�nCH2k�3

is an isomorphism of complex-hyperbolic orbifolds. The fibers of the projectivization
map are isomorphic on both sides to C�=h�ki. Since D is an isomorphism on an
individual fiber and PD is an isomorphism, so is D . We have shown the map D
identifies convex tilings of the sphere with �nƒC .

Proposition 2.6 Let v 2 �nƒC correspond to a convex tiling T of the sphere with
cone angle deficits f2��i=kg. Let AutC.T / denote the group of oriented isomor-
phisms of the tiling T . Then

jStab�.v/j D jAutC.T /j
Y
i

�i Š

.1��i=k/�i�1
:

Proof By Proposition 2.5, the tiling T defines a point in Mrig
2�=k;:::;2�=k

Š �nCC .
Therefore, the stabilizer Stab�.v/ is isomorphic to the local orbifold group at this point.
The projectivization map

Mrig
2�=k;:::;2�=k

!M2�=k;:::;2�=k

defines an isomorphism of local orbifold groups at any point, because the kernel of
�!P� acts freely on CC . For each cone point of T with cone angle deficit 2��i=k ,
the local orbifold group at ŒT � 2M2�=k;:::;2�=k contains a normal subgroup �i of
order

j�i j D
�i Š

.1��i=k/�i�1

coming from braiding the �i singularities which have collided. Moreover, the discus-
sion after Theorem 4.1 of [16] shows that there is an exact sequence

0!
Y
i

�i ! Stab�.v/! AutC.T /! 0:
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.1� i/x1

.1� i/x2

.1� i/x3

.1� i/x4

.1� i/x5

.1� i/x6

Figure 3: The vectors .1� i/xi . The shaded region is PM .

Definition 2.7 The weight of a tiling T whose deficits form the partition � D

.�1; : : : ; �n/ of 2k is

wt.T /D
1

jAutC.T /j

nY
iD1

.1��i=k/
�i�1

�i Š
D

1

jStab�.v/j
:

Note that the generic weight — when none of the singularities have collided and T has
no nontrivial automorphisms — is one.

3 The Hermitian form on ƒ

We now determine the Hermitian form A explicitly by writing the area of M as a
function of .v1; : : : ; v2k�2/. The Gram matrix is simpler if we change the basis of ƒ
by working in the coordinates xi D

P
j�i vj for i D 1; : : : ; 2k � 2. Equation (1) in

the proof of Proposition 2.5 implies

.1� �k/xi D
X
j�i

vj Cwj :

The area of M is the area of the convex hull of PM minus the sum of the areas of the
triangles with edges vi and wi ; see [16, Section 7] and Figure 3. Since a triangle with
two edges z1; z2 2C has area 1

2
Im.z1z2/, the area of the convex hull is

2k�3X
iD1

1
2

Im
�
.1� �k/xi � .1� �k/xiC1

�
D

2k�3X
iD1

j1� �kj
2

2
Im.xixiC1/:
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Setting x0 D 0, we have vi D xi � xi�1 for all i . Using again wj D��kvj , the area
of the triangle whose edges are vi and wi is

�
1
2

Im.viwi /D 1
2

Im
�
.xi � xi�1/ � �k.xi � xi�1/

�
:

Therefore the area of M is 1
2

Im
�P

i;j xiBijxj
�
, where the matrix B is0BBBBB@

�2�k �k 0 � � � 0

�k �2�k �k � � � 0

0 �k �2�k � � � 0
:::

:::
:::

:::

0 0 0 � � � �2�k

1CCCCCAC
0BBBBB@
0 j1� �kj

2 0 � � � 0

0 0 j1� �kj
2 � � � 0

0 0 0 � � � 0
:::

:::
:::

:::

0 0 0 � � � 0

1CCCCCA :

Proposition 3.1 Let �k WD .1C �k/
�1. The Gram matrix of A in the coordinates

.x1; : : : ; x2k�2/ is

Im �k

0BBBBB@
�1 �k 0 � � � 0

�k �1 �k � � � 0

0 �k �1 � � � 0
:::

:::
:::

:::

0 0 0 � � � �1

1CCCCCA :

Proof The Hermitian inner product is given by AD .B �B�/=4i . The proposition
follows from direct computation.

Definition 3.2 Define two Hermitian inner products ? and � on ƒ by

x ?y WD
j1C �kj

2

Im �k
A.x; y/ and x � y WD

2

j1C �kj
2
.x ? y/:

Define the real inner product � on ƒ by

x �y WD Re.x � y/:

By Proposition 3.1, ? endows ƒ with the structure of a Hermitian lattice over ZŒ�k�.
The real inner product � endows ƒ with the structure of an even Z–lattice. By
comparing with the area of a fundamental tile, x � x is the number of triangles, and
twice the number of squares or hexagons. The Hermitian product � is only used to
aid in computations in Section 4.

Proposition 3.3 Let ƒ_ be the Hermitian dual of ƒ with respect to ? . Then
ƒD .1C �k/ƒ

_.
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Proof Let G be the Gram matrix of .ƒ; ? /. By Proposition 3.1 and Definition 3.2,
every entry of G is divisible by 1C �k . Therefore ƒ � .1C �k/ƒ_ . An inductive
argument shows that det.G/D�j1C �kj2k�2 . The index of ƒ in ƒ_ is the square
norm of det.G/ and .1C �k/ƒ_ already has index j1C �kj4k�4 in ƒ_ . Thus we
conclude ƒD .1C �k/ƒ_ .

Definition 3.4 A Hermitian lattice ƒ over ZŒ�k� is ˛–modular if ƒD ˛ƒ_ .

Proposition 3.5 Let ƒ be a .1C�k/–modular lattice over ZŒ�k�. Define x � y WD
.2=j1C �kj

2/Re.x ? y/ as in Definition 3.2 and let ƒ� denote the dual of ƒ with
respect to � . Then ƒD .1� �k/ƒ�. In particular, .ƒ; � / is an even unimodular lattice
when k D 6.

Proof We compute

x �
y

1� �k
D

2

j1C �kj
2

Re
�
x ?

y

1� �k

�
2

2

j1C �kj
2

Re
�
1C �k

1� �k
ZŒ�k�

�
D Z:

Therefore ƒ� .1� �k/ƒ� . To show the reverse containment, we compute the index
of .ƒ; � / in its dual. The covolume of .ƒ; � / is

CoVol.ƒ; � /D
�

2

j1C �kj
2

�2k�2
CoVol.ƒ; ? /

D

�
2

j1C �kj
2

�2k�2
jdet.G/jCoVol.ZŒ�k��C/2k�2

D

�
2

j1C �kj
2

�2k�2
� j1C �kj

2k�2
� .Im �k/

2k�2

D j1� �kj
2k�2:

The index of a lattice in its dual is the square of its covolume. The proposition follows,
as .1� �k/ƒ� already has index j1� �kj4k�4 in ƒ� .

Proposition 3.6 Let k D 6, 4, or 3. There is at most one .1C�k/–modular lattice
over ZŒ�k� of indefinite signature .r; s/.

Proof When k D 3, the lattice is unimodular, so the result follows from Theorem 7.1
of [3]. Basak [4, Lemma 2.6] proves the k D 6 case. Similarly, the k D 4 case follows
from Basak’s argument, and the uniqueness of odd, indefinite unimodular lattices
over ZŒi �.
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When k D 6, Allcock [2] also identified .ƒ; ? / as the unique .1C�6/–modular lattice
of signature .1; 9/.

Remark 3.7 The Hermitian form for .ƒ; ? / bears a similarity to the Dynkin diagram
for A2k�2 . Let .ˇ1; : : : ; ˇ2k�2/ be the basis of ƒ associated to the coordinates
.x1; : : : ; x2k�2/. Each ˇi defines a complex reflection of ƒ:

rˇ .�/D �� .1C �k/
ˇ ?�

ˇ ?ˇ
ˇ:

The braid group of the singularities admits a representation into the monodromy group �
of the rigidified moduli space, and the braid switching pj with pjC1 maps to the
complex reflection ǰ .

When k D 6, Laza [8] verified that � D U.ƒ/ is the Hermitian isometry group of ƒ,
using that the monodromy group is generated by the reflections ǰ . When k D 3,
Allcock [3] sketched a proof that the reflection group � �U.ƒ/ is an index-2 subgroup
whose center is h�3i. In the following proposition, we prove that �DU.ƒ/ when kD4,
and note that our proof method generalizes to the other two cases.

Proposition 3.8 When kD 6 or 4, �DU.ƒ/. When kD 3, � has index 2 in U.ƒ/.

Proof Allcock and Laza have proven the proposition for k D 6 and k D 3. Suppose
k D 4. There is only one convex tiling of the sphere by one square, given by the
doubling of a 45-45-90 triangle. Therefore, there is only one �–orbit of vectors of
norm 2 in .ƒ; ? /. Hence, there is also only one U.ƒ/–orbit of norm-2 vectors. To
prove � D U.ƒ/ it suffices to show that Stab�.v/ and StabU.ƒ/.v/ are equal for
some v satisfying v ? v D 2. By Proposition 2.6, jStab�.v/j D 21332. On the other
hand, jStabU.ƒ/.v/j D jU.v?/j. Let L be the negative-definite .1Ci/–modular lattice

L WD f.a; b/ 2 ZŒi �2 j u� v mod 1C ig;

where ZŒi �2 has the diagonal Hermitian form diag.�1;�1/. Let H be the unique
.1Ci/–modular lattice of signature .1; 1/, whose Gram matrix is�

0 1� i

1C i 0

�
:

By Proposition 3.6 we have ƒŠL˚L˚H . The orthogonal complement of a vector v
of norm 2 is

v? Š L˚L˚h�2i:

Geometry & Topology, Volume 22 (2018)



The number of convex tilings of the sphere by triangles, squares, or hexagons 2851

The automorphisms of v? act by a fourth root of unity on the vector generating h�2i;
this vector must be preserved up to units since it is perpendicular to all other vectors of
norm �2. In addition, an automorphism can either preserve or switch the two factors
of L and acts by an element of U.L/ on each factor. Thus,

jU.v?/j D 23 � jU.L/j2:

To compute the order of U.L/, note that U.L/ acts transitively on all 24 vectors of
norm �2 in L. Then the stabilizer of, say, .1Ci; 0/2L has order 4, given by multiply-
ing the second coordinate by a fourth root of unity. Hence jU.L/j D 24 � 4D 25 � 3. So

jStabU.ƒ/.v/j D 2
3
� .25 � 3/2 D 213 � 32:

We conclude that � D U.ƒ/.

4 Theta series of Hermitian lattices

In this section, let ƒ denote a .1C�k/–modular Hermitian lattice over ZŒ�k� of
indefinite signature .r; s/, which by Proposition 3.6 is unique if it exists. A point
p 2 GrC.r;ƒ˝C/ in the complex Grassmannian corresponds to a positive definite
subspace V C �ƒ˝C . Let V � denote the negative definite orthogonal complement.
Given any v 2ƒ, let vC 2 V C and v� 2 V � be its projections. Our starting point is
the Siegel theta function [15] on GrC.r;ƒ˝C/�H:

‚.p; �/D
X
v2ƒ

q
1
2
vC�vCq�

1
2
v��v�

D

X
v2ƒ

q
1
2
v�v
jqj�v

��v� ;

where q D e2�i� . More generally, the theta function ‚.p; �/ can be defined in the
same way for any Z–lattice, where p ranges over the positive real Grassmannian.

Definition 4.1 A function f .�/ on the upper half-plane is modular of weight .r; s/
for a subgroup � � SL2.Z/ if

f .
 � �/D .c� C d/r.c� C d/sf .�/ for all 
 D
�
a
c
b
d

�
2 �:

By Proposition 3.3, the Z–lattice .ƒ; � / is abstractly isometric to uƒ� for uD j1��kj.
This implies a nice modularity property of the Siegel theta function:
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Proposition 4.2 Suppose .ƒ; � / is an even Z–lattice of signature .2r; 2s/ such that
ƒ is abstractly isometric to uƒ� with u > 0. Define

�u WD

��
1 1

0 1

�
;

�
1 0

u2 1

��
� SL2.Z/:

Then for fixed p , the theta function ‚.p; �/ is modular of weight .r; s/ for the
group �u .

Proof Note that the integrality of � implies that u2 2 Z. First observe ‚.p; �/ is
invariant under � 7! �C1 because ƒ is even. The Poisson summation formula implies

‚
�
p;�1=.u2�/

�
D is�r.u�/r.u�/s‚.p; �/:

Thus ‚.p; �/ is almost modular with respect to � 7!�1=.u2�/, but for the factor is�r .
Since �

1 0

u2 1

�
D

�
0 �1

u2 0

��
1 1

0 1

��1 �
0 �1

u2 0

��1
;

the powers of i cancel in the transformation rule for the matrix
�
1
u2
0
1

�
.

Corollary 4.3 Suppose kD 6, 4, or 3. Let ƒ be a .1C�k/–modular Hermitian lattice
over ZŒ�k� of signature .r; s/. For fixed p , the Siegel theta function ‚.p; �/ of ƒ is
modular of weight .r; s/ for the group

�1.j1� �kj
2/ WD

�

 2 SL2.Z/

ˇ̌̌

 �

�
1 �

0 1

�
mod j1� �kj

2

�
:

Proof When k D 6, 4, or 3, we have j1� �kj2 D 1, 2, or 3, respectively. In these
cases, SAGE verifies that �u D �1.j1� �kj2/. This is a peculiarity of the small value
of u2 .

For fixed � , the function ‚.p; �/ is absolutely invariant with respect to the action
of U.ƒ/ on GrC.r;ƒ˝C/, that is, the action on the variable p . It defines a theta
correspondence — one can integrate against a function f .�/ on H to produce a function
on U.ƒ/nGrC.r; L˝C/ or vice versa. Much research has focused on the former
process, called the “Borcherds lift”, which has led to beautiful product formulas for
coefficients of modular forms [5]. In this paper, we integrate against the p variable.
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Definition 4.4 Suppose k D 6, 4, or 3. Let .ƒ; ? / be the unique Hermitian lattice
of signature .1; s/ over ZŒ�k� such that ƒD .1C �k/ƒ_ . Suppose s > 1. Define

gƒ.�/ WD
.Im �/s

jZ.U.ƒ//j

Z
U.ƒ/nCHs

‚.p; �/ dp;

where dp is the complex hyperbolic volume form and Z.U.ƒ// is the center.

Note that the center Z.U.ƒ// is isomorphic to the group of units in ZŒ�k�. Satz 1
of Siegel’s foundational paper [15] on theta functions of indefinite Hermitian forms
proves that gƒ.�/ is a Maass form, which we now define:

Definition 4.5 A Maass form of weight w for � � SL2.Z/ is a real-analytic function
f .�/ on H satisfying f .
 � �/D .c� C d/wf .�/ for all 
 2 � which has a Fourier
expansion of the form

c�.0/.Im �/w C
X
n<0

c�.n/�.s; 4�jnj Im �/qnC
X
n�0

cC.n/qn

and polynomial growth as � approaches a rational cusp of H . Here

�.t; z/ WD

Z 1
z

xt�1e�x dx

is the incomplete gamma function.

See Section 7 of Ono [12] for a general introduction to Maass forms.

Remark 4.6 Define the weight w hyperbolic Laplacian to be

�w D�.Im �/2@�@� C iw.Im �/@� :

Then a Maass form f .�/ of weight w is harmonic with respect to �w , that is, �wf D0.
This condition plus polynomial growth at the cusps implies the existence of a Fourier
expansion as above.

In the following lemmas, we explicitly compute the Fourier coefficients of gƒ.�/,
and in Theorem 4.13 reprove Siegel’s theorem. The positive Fourier coefficients are
of particular relevance to the enumeration of tilings, because they are essentially the
weighted number of U.ƒ/–orbits of lattice points.

We first collect the terms of ‚.p; �/ into U.ƒ/–orbits:

‚.p; �/D
X

Œv�2U.ƒ/nƒ

� X
w2Œv�

jqj�w
��w�

�
q

1
2
v�v:
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Since q
1
2
v�v is independent of p , we have

(3) gƒ.�/D
.Im �/s

jZ.U.ƒ//j

X
Œv�2U.ƒ/nƒ

�Z
U.ƒ/nCHs

X
w2Œv�

jqj�w
��w� dp

�
q

1
2
v�v:

It is useful to introduce the following function on U.ƒ/nƒ�H:

(4) F.Œv�; �/ WD
1

jZ.U.ƒ//j

Z
U.ƒ/nCHs

X
w2Œv�

jqj�w
��w� dp:

For v ¤ 0 we have

F.Œv�; �/D

Z
Stab.v/nCHs

jqj�v
��v� dp:

The factor of jZ.U.ƒ//j�1 disappears (except when v D 0) because the scalar ma-
trices in U.ƒ/ act trivially on the fundamental domain U.ƒ/nCHs . There are four
possibilities for the behavior of this integral, depending on whether v2 D 0, v2 > 0,
v2 < 0, or v is isotropic. In the next four lemmas, we compute the integral F.Œv�; �/
in these four cases.

Lemma 4.7 Suppose v D 0. Then

F.Œv�; �/D
Vol.U.ƒ/nCHs/

jZ.U.ƒ//j
:

Proof The lemma follows immediately from (4).

Lemma 4.8 Suppose v � v D 2n > 0. Then

F.Œv�; �/D
.n Im �/�s

jStab.v/j
:

Proof Since Stab.v/ is a finite group, we can rewrite

F.Œv�; �/D
1

jStab.v/j

Z
CHs

jqj�v
��v� dp

D
1

jStab.v/j

Z
CHs

e4�n Im �.e�0 � e
�
0 / dp;

where e0 D v=
p
2n. Extend e0 to an orthonormal basis of .C1;s; � /, where � is

the Hermitian form whose real part is � as in Definition 3.2. In this basis, the Klein
model of CHs is the unit ball in the plane z0 D 1, ie the points p D .1; z1; : : : ; zk/
with

P
jzi j

2 < 1. Let r D
p
jz1j2C � � �C jzkj

2 denote the radial coordinate of this
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unit ball. The volume form of the homogeneous metric whose curvature is pinched
between 1

4
and 1 is

dp D
4sr2s�1 dr d�

.1� r2/sC1
;

where d� is the standard volume form on S2s�1 . To express the projections eC0 and e�0
in terms of p , we need to be careful to use the Hermitian inner product � since we
are projecting to the complex span of p and its orthogonal complement; with this in
mind, eC0 D ..e0 � p/=.p � p//p and so

e�0 � e
�
0 D e0 � e0� e

C
0 � e

C
0 D 1�

je0 � pj
2

p � p
D�

r2

1� r2
:

Let C WD 4�n Im � . Then we have

F.Œv�; �/D
4s Vol.S2s�1/
jStab.v/j

Z 1

0

e�Cr
2=.1�r2/ r2s�1

.1� r2/sC1
dr

D
4s Vol.S2s�1/
2C sjStab.v/j

Z 1
0

e�uus�1 du

D
4s.s� 1/ŠVol.S2s�1/

2C sjStab.v/j

D
.n Im �/�s

jStab.v/j
;

where uD Cr2=.1� r2/.

Lemma 4.9 Suppose that v � v D�2n < 0. Then

F.Œv�; �/D .n Im �/�s�.s; 4�n Im �/
Vol.Xv/
.4�/s�1

;

where Xv is the quotient of CHs�1 by Stab.v/.

Proof We have

F.Œv�; �/D

Z
Stab.v/nCHs

e4�n Im �.e�1 �e
�
1 / dp;

where e1D v=
p
2n. As in Lemma 4.8, extend e1 to an orthonormal basis of .C1;s; � /.

Let p D .1; z1; : : : ; zs/ be an element of CHs and let z0 D .z2; : : : ; zs/. Then

e�1 � e
�
1 D�1�

je1 � pj
2

p � p
D�

1� jz0j2

1� jz1j2� jz0j2
:
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We may rewrite F.Œv�; �/ asZ
Stab.v/nCHs

exp
�
�4�n Im �

1� jz0j2

1� jz1j2� jz0j2

�
4s dV2s

.1� jz1j2� jz0j2/sC1
;

where dV2s is the Euclidean volume form on the unit ball in z0 D 1.

Since Stab.v/ preserves the z1 coordinate, it acts on the totally geodesic copy of CHs�1

on which z1 D 0. Let Xv be a fundamental domain for this action. Then the set of
p D .1; z1; z

0/ such that z0 2 Xv is a fundamental domain for Stab.v/nCHs . To
simplify the notation let C WD 4�n Im � and h.z0/ WD

p
1� jz0j2 . Then

F.Œv�; �/D 4s
Z
Xv

�Z 2�

0

Z h

0

e�Ch
2=.h2�r2/ r dr d�

.h2� r2/sC1

�
dV2s�2

D 4s
Z
Xv

�
�C�sh�2s

Z 1
C

us�1e�u du

�
dV2s�2

D 4�C�s�.s; C /

Z
Xn

4s�1 dV2k�2

.1� jz0j/k

D .n Im �/�s�.s; 4�n Im �/
Vol.Xv/
.4�/s�1

;

where uD Ch2=.h2� r2/.

Since s is a positive integer, the incomplete gamma function has the simple form
�.s; C /D .s� 1/Š e�C

Ps�1
jD0.C

j=j Š/.

Lemma 4.10 Suppose v D ˇe for some e primitive isotropic and nonzero ˇ 2 ZŒ�k�.
Then

F.Œv�; �/D
.2 Im �k/

2s�1.s� 1/Š

.2�ˇˇ Im �/sjAut.e?=e/j
:

Proof Since ƒD .1C�k/ƒ_ , an easy argument shows that there is an isotropic vector
f such that f ?eD 1C�k . So H WDZŒ�k�e˚ZŒ�k�f generates a copy of the unique
.1C�k/–modular lattice of signature .1; 1/. Then H? Š e?=e is a negative definite
.1C�k/–modular lattice. Elements of Stab.v/�U.ƒ/ correspond to triples .T; w0; m/,
where T is a Hermitian isometry of H? , w0 2H? , and m 2 Z through the action

e 7! e;

f 7! f C

�
�
w0 ?w0

j1C �kj
2
C .1� �k/m

�
eCw0;

w 7! �.1C �k/
�1.w0 ?Tw/eCTw for w 2H?:
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Let fe2; : : : ; esg be an orthonormal basis of H?˝C . Define

ze WD 1
2
.1C �k/e;

so that we have f � ze D 1. Let .x; y; z2; : : : ; zs/ be coordinates for C1;s in the basis
fze; f; e2; : : : ; ekg and let z0 D .z2; : : : ; zs/. Setting y D 1, the tuples .x; z0/ such that
2Re.x/� jz0j2 > 0 give coordinates on CHs . Since

vC D
v � p

p � p
p and v � p D

2

j1C �kj
2
v ?p D

2ˇ

1C �k
;

we have

v� � v� D�vC � vC D
�4ˇˇ

j1C �kj
2.2Re.x/� jz0j2/

:

We wish to compute the integral F.Œˇe0�; �/:Z
Stab.v/nCHs

exp
�
�

8�ˇˇ Im �

j1C �kj
2.2Re.x/� jz0j2/

�
4s dV2s

.2Re.x/� jz0j2/sC1
:

Let aD 1=.2Re.x/� jz0j2/ and b D Im.x/. We have

�2 dV2s

.2Re.x/� jz0j2/2
D da db dV2s�2:

Let �0 � Stab.v/ be the finite-index subgroup such that T D Id. We may enlarge the
domain of integration to �0nCHs and divide by the index ŒStab.v/ W�0�D jAut.H?/j.
The subgroup �0 acts by translations in H? on the z0 coordinate and by translations
by 4 Im �k=j1C �kj

2 on the b coordinate. Then

F.Œˇe0�; �/D
4s

2jAut.H?/j

Z
H?nCs�1

Z 4 Im �k

j1C�k j
2

0

Z 1
0

e
�
8�ˇˇ Im �
j1C�k j

2 a
as�1 da db dV2s�2

D
.2 Im �k/4

s.s� 1/Š..8=j1C �kj
2/�ˇˇ Im �/�s CoVol.H?/

j1C �kj
2jAut.H?/j

D

�
2�ˇˇ Im �

.2 Im �k/
2

��s .s� 1/Š

2 Im �kjAut.H?/j
:

Note that CoVol.H?/ D j1 � �kj2s�2 because the lattice .H?; � / satisfies H? D
.1� �k/.H

?/� . The lemma follows because H? Š e?=e .

Proposition 4.11 The orbits of primitive isotropic vectors in ƒ are in bijection with
negative definite .1C�k/–modular lattices of rank s� 1.
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Proof The bijection sends the orbit of e to the lattice e?=e . Every negative definite
.1C�k/–modular lattice L of rank s � 1 embeds into ƒ because ƒ Š L˚H by
Proposition 3.6. Hence, there exists for all L a primitive isotropic vector e 2ƒ such
that e?=e Š L.

On the other hand, if e?1 =e1 Š e
?
2 =e2 , choose as in the proof of Lemma 4.10 primitive

isotropic f1 and f2 such that fi ? ei D 1C �k . Then there is an isometry of ƒ which
sends e1 7! e2 , f1 7! f2 , and

fe1; f1g
?
D e?1 =e 7! e?2 =e2 D fe2; f2g

?:

Definition 4.12 Define the mass by ms�1 WD
P
LjAut.L/j�1, where L ranges over

all isomorphism types of .1C�k/–modular lattices of rank s� 1.

We now combine the previous four lemmas with Proposition 4.11:

Theorem 4.13 The function gƒ.�/ is a Maass form of weight 1�s for �1.j1��kj2/,
whose Fourier coefficients are

c�.0/D
Vol.U.ƒ/nCHs/

jZ.U.ƒ//j
.Im �/s; cC.0/D

.2 Im �k/
2s�1.s� 1/Š

.2�/s
�ZŒ�k�.s/ms�1;

c�.n/D n�s
X

Œv�2U.ƒ/nƒ
v�vD�2n

Vol.Xv/
.4�/s�1

; cC.n/D
X

Œv�2U.ƒ/nƒ
v�vD2n

n�s

jStab.v/j
;

where �ZŒ�k�.s/D
P
.ˇ/¤.0/.ˇˇ/

�s is the Dedekind zeta function.

Proof From (3) and (4), we have

gƒ.�/D .Im �/s
X

Œv�2�nƒ

F.Œv�; �/q
1
2
v�v:

We have computed in Lemmas 4.7, 4.8, 4.9, and 4.10 the value of F.Œv�; �/ for all
Œv�2U.ƒ/nƒ. Grouping the terms for vD 0, v �vD�2n, and v �vD 2n, respectively,
gives the above formulas for c�.0/, c�.n/, and cC.n/. Grouping the terms for v
isotropic gives

cC.0/D
X

Œˇe�2U.ƒ/nƒ
e primitive isotropic

.2 Im �k/
2s�1.s� 1/Š

.2�ˇˇ/sjAut.e?=e/j
:

Summing over ˇ gives the term �ZŒ�k�.s/. Then, by Proposition 4.11, the sum over
orbits of primitive isotropic vectors e gives the mass term ms�1 .
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We have shown that gƒ.�/ has the appropriate Fourier series expansion for a Maass
form. By Corollary 4.3, ‚.p; �/ is modular of weight .1; s/ for �1.j1� �kj2/. Since
Im � is of weight .�1;�1/ for any 
 2SL2.Z/, we conclude gƒ is of weight .1�s; 0/.
That is,

gƒ.
 � �/D .c� C d/
1�sgƒ.�/ for all 
 2 �1.j1� �kj

2/:

Finally, we sketch a proof that gƒ.�/ has polynomial growth at the cusps of H . One
can show ‚.p; �/ is bounded by C.p/..Im �/�s C 1/, where C.p/ is bounded by
an absolute constant times 1C a�1 — here a is the coordinate of p near a cusp as
defined in Lemma 4.10. By the computations in Lemma 4.10, the pushforward of the
complex hyperbolic volume form to the a coordinate is proportional to as�1 da . Thus
the integral of C.p/ dp over U.ƒ/nCHs converges. We conclude that the integral
of ‚.p; �/ dp is bounded by some constant times .Im �/�sC 1. Therefore gƒ.�/ is
bounded by a constant times 1C .Im �/s .

Hence gƒ.�/ is a Maass form of weight 1� s for �1.j1� �kj2/.

Corollary 4.14 Let ƒ be a .1C�k/–modular lattice of signature .1; s/ and let � be a
finite-index subgroup of U.ƒ/. Then

ŒU.ƒ/ W ��
�
1

2�i
@�

�s
gƒ.�/D�

sŠVol.�nCHs/

jZ.�/j.4�/s
C

X
Œv�2�nƒ
v�v>0

1

jStab�.v/j
q

1
2
v�v

is a weight 1C s modular form for �1.j1� �kj2/.

Proof First, we may as well assume �DU.ƒ/ because taking a finite-index subgroup
� � U.ƒ/ multiplies the right-hand side by a factor of

ŒU.ƒ/ W ��D
jZ.U.ƒ//j

jZ.�/j
ŒPU.ƒ/ W P��:

Let D D .1=.2�i//@� D q@q . If f .�/ is a Maass form of weight 1� s with s > 1
then by Theorem 1.1 of [6],

Dsf D .�1/ssŠ
c0

.4�/s
C

X
n>0

cC.n/nsqn

is a holomorphic modular form of weight 1C s . Applying this theorem to gƒ.�/
and multiplying by ŒU.ƒ/ W �� gives the corollary, by the explicit computation of the
coefficients of gƒ.�/ in Theorem 4.13. Note .�1/s D�1 because s must be odd for
there to exist a .1C�k/–modular lattice ƒ of signature .1; s/.
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5 Formulas for numbers of tilings

In this section, we give formulas for the number of convex triangle, square, and
hexagon tilings of the sphere. Recall that the weight of a tiling T by k–gons with
angle deficits f2��i=kg is

wt.T /D
1

jAutC.T /j

nY
iD1

.1��i=k/
�i�1

�i Š
:

Theorem 5.1 The weighted number of oriented convex triangulations of S2 with 2n
triangles is X

jT jD2n

wt.T /D 809

21531352
�9.n/:

The weighted number of oriented convex square tilings with n squares isX
jT jDn

wt.T /D 1

21332
.�5.n/C 8�5.n=2//;

where �m.n/ D 0 when n … Z. The weighted number of oriented, convex hexagon
tilings with n hexagons (see Convention 2.2) isX

jT jDn

wt.T /D 1

2334
.�3.n/� 9�3.n=3//:

Remark 5.2 Using the group of all automorphisms Aut.T / in the definition of the
weight and counting tilings without orientation halves the above formulas.

Proof of Theorem 5.1 By Proposition 2.5, there is a bijective correspondence between
convex tilings T and orbits Œv� 2 �nƒC, where v � v is the number of triangles, or
twice the number of squares or hexagons. Furthermore, by Proposition 2.6, wt.T /D
jStab�.v/j�1 . Hence, the generating function hk.q/ for the weighted number of convex
tilings by .2k=.k�2//–gons is

hk.q/D
X

Œv�2�nƒC

v�v>0

1

jStab�.v/j
q

1
2
v�v:

By Proposition 3.3, the lattice ƒ is the unique .1C�k/–modular lattice of signature
.1; 2k� 3/ over ZŒ�k�. Thus Corollary 4.14 implies that

(5) zhk.q/ WD hk.q/�
.2k� 3/ŠVol.�nCH2k�3/

k.4�/2k�3
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Figure 4: The convex triangulations with two or four triangles

is a modular form of weight 2k � 2 for �1.j1� �kj2/. Note that jZ.�/j D k in all
three cases. We now treat each case.

Triangles We have that zh6.q/ is of weight 10 for �1.1/ D SL2.Z/. The space of
weight 10 modular forms for SL2.Z/ is one-dimensional over C and spanned by
the weight 10 Eisenstein series E10.�/D � 1

264
C
P
n>0 �9.n/q

n. Hence there is a
constant A such that

zh6.q/D AE10.�/:

There are two triangulations consisting of two triangles, depicted on the left in Figure 4.
The corresponding partitions � of 12 are .2; 5; 5/ and .4; 4; 4/ and the oriented
automorphism groups have orders 2 and 6, respectively. Thus

AD
1

2 � .3/.155520/2
C

1

6 � .648/3
D

809

215 � 313 � 52
:

Squares We have that zh4.q/ is of weight 6 for �1.2/. The space of weight 6 modular
forms for �1.2/ is two-dimensional over C and spanned by the weight 6 Eisenstein se-
ries E6.�/D� 1

504
C
P
n>0 �5.n/q

n and E6.2�/. Let B and C be constants such that

zh4.q/D BE6.�/CCE6.2�/:

There is one square tiling consisting of one square, whose partition is .2; 3; 3/ and
whose oriented automorphism group has order 2, on the left in Figure 5. There are three
square tilings with two squares, with partitions .2; 3; 3/, .1; 1; 3; 3/, and .2; 2; 2; 2/
and automorphism groups of orders 2, 2, and 8, respectively, on the right in Figure 5.
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Figure 5: The convex square tilings with one or two squares

Solving the resulting system of equations, we have

B D
1

213 � 32
and C D

1

210 � 32
:

Hexagons We have that zh3.q/ is of weight 4 for �1.3/. The space of weight 4
modular forms for �1.3/ is two-dimensional over C and spanned by the weight 4
Eisenstein series E4.�/D 1

240
C
P
n>0 �3.n/q

n and E4.3�/. Hence there are constants
D and F such that

zh3.�/DDE4.�/CFE4.3�/:

There is one hexagon tiling satisfying Convention 2.2 consisting of one hexagon, with
curvatures .2; 2; 2/ and automorphism group of order 3, on the left in Figure 6. There
is one hexagon tiling with two hexagons, with curvatures .2; 2; 1; 1/ and automorphism
group of order 2, on the right in Figure 6. Therefore

D D
1

23 � 34
and F D�

1

23 � 32
:

Figure 6: The convex hexagon tilings with one or two hexagons

Example 5.3 We verify the formula in Theorem 5.1 for triangulations with four trian-
gles. The right-hand side of Figure 4 depicts the nonnegative curvature triangulations
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with four triangles. The partitions are .3; 4; 5/, .3; 3; 3; 3/, .1; 1; 5; 5/, and .2; 2; 4; 4/
and the oriented automorphism groups have orders 1, 12, 2, and 4, respectively. Then
the formula correctly states that

1

1 � .24/.648/.155520/
C

1

12 � .24/4
C

1

2 � .155520/2
C

1

4 � .3/2.648/2
D

809

21531352
.1C 29/:

Finally, we remark that (5) in the proof of Theorem 5.1 and the determination of the
constants A, B , C , D , and F allows us to compute the complex hyperbolic volumes
of the moduli spaces �nCH2k�3 . When k D 6, we have

Vol.�nCH9/D
6.4�/9

9Š
�
1

264
�

809

21531352
D

809�9

26 � 317 � 53 � 7 � 11
:

This is exactly the volume computed in McMullen [10], which serves as a check for
the formula in Theorem 5.1. Similarly, when k D 4 and s D 5, we have

Vol.�nCH5/D
4.4�/5

5Š
�
1

504
� 9 �

1

21332
D

�5

27 � 33 � 5 � 7
;

which also agrees with the result in [10]. Finally, when k D 3 and s D 3, Theorem 5.1
again correctly predicts

Vol.�nCH3/D
3.4�/3

3Š
�
1

�240
� .�8/ �

1

2334
D
2�3

35 � 5
:
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