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Hyperbolic Dehn filling in dimension four

BRUNO MARTELLI

STEFANO RIOLO

We introduce and study some deformations of complete finite-volume hyperbolic
four-manifolds that may be interpreted as four-dimensional analogues of Thurston’s
hyperbolic Dehn filling.

We construct in particular an analytic path of complete, finite-volume cone four-
manifolds Mt that interpolates between two hyperbolic four-manifolds M0 and M1

with the same volume 8
3
�2 . The deformation looks like the familiar hyperbolic Dehn

filling paths that occur in dimension three, where the cone angle of a core simple
closed geodesic varies monotonically from 0 to 2� . Here, the singularity of Mt is
an immersed geodesic surface whose cone angles also vary monotonically from 0

to 2� . When a cone angle tends to 0 a small core surface (a torus or Klein bottle) is
drilled, producing a new cusp.

We show that various instances of hyperbolic Dehn fillings may arise, including one
case where a degeneration occurs when the cone angles tend to 2� , like in the famous
figure-eight knot complement example.

The construction makes an essential use of a family of four-dimensional deforming
hyperbolic polytopes recently discovered by Kerckhoff and Storm.

57M50

1 Introduction

By Mostow–Prasad rigidity [21; 22], complete finite-volume hyperbolic manifolds
can be deformed only in dimension two. Some deformations may arise also in higher
dimension if one works in the more general setting of hyperbolic cone manifolds: the
celebrated Thurston hyperbolic Dehn filling theorem states that every cusped hyperbolic
three-manifold may be deformed to a hyperbolic cone manifold, whose singular locus
consists of small simple closed geodesics with small cone angles. As the deformation
goes on, both the geodesic length and the cone angle increase: if the cone angle
reaches 2� we get a genuine hyperbolic manifold without singularities.

The aim of this paper is to show that this phenomenon occurs sometimes also in
dimension four. We prove this by constructing some examples explicitly.
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Hyperbolic cone manifolds

Hyperbolic cone manifolds were defined in every dimension by Thurston [26]; see also
Boileau, Leeb and Porti [3], Cooper, Hodgson and Kerckhoff [5] and McMullen [18].
Hyperbolic cone surfaces and three-manifolds are widely studied; see for instance
Bromberg [4], Hodgson and Kerckhoff [11], Kojima [14], Mazzeo and Montcouquiol
[17] and Weiss [28; 29]. The singular locus in an orientable hyperbolic cone three-
manifold consists of closed geodesics or more complicated graphs. Not much seems to
be known in dimension four or higher.

We construct here some hyperbolic cone four-manifolds M whose singular locus † is
the image of a (possibly disconnected) geodesically immersed hyperbolic cone surface
i W z†# M that self-intersects orthogonally at its cone points. This seems a natural
kind of hyperbolic cone four-manifold to study; see Section 2.3 for a precise definition.
The image of every connected component of z† has some cone angle in M, and at
each double point p 2† two components of z† with (possibly different) cone angles
˛ and ˇ meet orthogonally. Note that every component of z† is a hyperbolic cone
surface and as such it can also be topologically a sphere or a torus.

Main result

The main result of this paper is Theorem 1.1 below. It shows a number of new
phenomena. First, it shows that complete finite-volume hyperbolic cone four-manifolds
with singular locus a geodesically immersed surface exist. Then, it shows that these cone
manifolds can sometimes be deformed, via a deformation that varies the cone angles
of the strata, like in dimensions two and three. Finally, it displays an example where
the deformation can be carried in both directions until a torus or Klein bottle is drilled,
interpolating between two cusped hyperbolic four-manifolds. Such a deformation may
be interpreted as a four-dimensional hyperbolic Dehn filling (at both endpoints of the
deformation path).

Theorem 1.1 There is a compact smooth nonorientable four-manifold M with @M
diffeomorphic to a three-torus, which contains a smooth two-torus and a smooth Klein
bottle T;K � int.M /, both with trivial normal bundle, that intersect transversely in
two points (see Figure 1), such that the following holds.

There is an analytic path fMtgt2.0;1/ of complete finite-volume hyperbolic cone man-
ifold structures on int.M / with singular locus the immersed geodesic cone surface
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Figure 1: A schematic picture of M and the immersed surface †D T [K

† D T [K . The two cone surfaces T and K have cone angles 0 < ˛ < 2� and
0< ˇ < 2� , respectively. We have

Area.T /D 4� � 2ˇ; Area.K/D 4� � 2˛:

When t varies from 0 to 1 the angle ˛ goes from 0 to 2� and ˇ goes from 2� to 0.
The path converges as t ! 0 and t ! 1 to two complete, finite-volume hyperbolic
four-manifolds M0 D int.M / nT and M1 D int.M / nK .

The deformation interpolates analytically between two cusped hyperbolic four-manifolds
M0 and M1 . In contrast to Mt with t 2 .0; 1/, the manifolds M0 and M1 are genuine
hyperbolic manifolds, with no cone singularities. The boundary three-torus @M gives
rise to a cusp in Mt for all t 2 Œ0; 1� diffeomorphic to S1�S1�S1� Œ0;C1/ whose
Euclidean shape varies with t . The manifolds M0 and M1 have also one additional
cusp each, obtained by drilling T or K , respectively, whose Euclidean section is
diffeomorphic to T �S1 or K �S1 .

We recall that an important theorem of Garland and Raghunathan [9] implies that the
holonomy of a complete finite-volume hyperbolic n–manifold cannot be perturbed
when n� 4. Of course, we are not violating this theorem here, because the holonomy
that is moving is that of the noncomplete hyperbolic manifold M n .T [K/. When
we say that the deformation varies analytically, we mean that this holonomy does.

The overall picture has some evident similarities with some familiar two- and three-
dimensional deformations. The interpolation looks like an analytic path in the moduli or
Teichmüller space of a surface connecting two points at infinity, where two intersecting
simple closed curves as in Figure 1 are shrunk in opposite directions of the path.

If we look at the deformation by starting at one extreme t0D 0 or t0D 1 and moving t

towards the other extreme t1 D 1� t0 , we get a hyperbolic Dehn filling path as in
dimension three: the topology of the manifold is modified as soon as we move away
from t0 by a topological Dehn filling (we close a cusp by adding a two-torus or a
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Figure 2: The function Vol.Mt /

Klein bottle), and the metric changes by adding a small core geodesic cone surface
St0
2fT;Kg with small cone angle. The deformation can be pursued until, at time 1�t0 ,

the core geodesic cone surface St0
reaches a cone angle of 2� . At the same time the

other cone surface St1
disappears and the two cone points of St0

become two cusps.

The manifolds M0 and M1 have the same small Euler characteristic �D 2, and hence
the same volume

Vol.M0/D Vol.M1/D
8�2

3
:

The volume of Mt is easily expressed in terms of the cone angles ˛ and ˇ as

Vol.Mt /D
8�2

3

�
2�

˛Cˇ

2�
C
˛ˇ

4�2

�
:

The volume of Mt is shown in Figure 2. In contrast to dimension three, in our case the
volume increases under hyperbolic Dehn filling (at both endpoints of the deformation
path).

The manifolds M0 and M1 are clearly not diffeomorphic; we show that they are not
even commensurable: the manifold M0 is commensurable with the integral lattice
in O.4; 1/, and M1 appears to be at the time of writing the smallest known hyperbolic
four-manifold that is not commensurable with that lattice. Both manifolds are arithmetic.
More recently, some more examples have been constructed by Riolo and Slavich [23],
using Slavich [24]. We can in fact interpret M1 as a new hyperbolic manifold con-
structed by deforming M0 . It would be interesting to understand in more generality
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whether one can vary the cone angles along immersed geodesic cone surfaces in
hyperbolic cone four-manifolds, as a tool to construct new hyperbolic manifolds. Some
infinitesimal rigidity and existence results were obtained by Montcouquiol [19; 20] for
(nonsingular) closed surfaces in the wider context of Einstein deformations.

We note that the manifolds Mt that we construct here are nonorientable. One may
build a similar family of orientable deforming cone manifolds by taking the orientable
double cover �Mt . The cone surfaces T and K lift to three cone tori in �Mt , two of
cone angle ˛ lying above T and one of cone angle ˇ above K . The manifolds �M0

and �M1 have three and two cusps, respectively, all of three-torus type.

Sketch of the proof

Theorem 1.1 is proved by constructing the family of hyperbolic cone manifolds Mt

explicitly.

The construction goes as follows. The fundamental ingredient is a deforming family
Ft �H4 of infinite-volume polytopes built by Kerckhoff and Storm [13]. We truncate
here Ft via two additional hyperplanes to get a deforming family of finite-volume
polytopes Pt �H4 . These polytopes are quite remarkable, because they have for all
times t only few nonright dihedral angles. In particular, for the times t that are relevant
for the proof of Theorem 1.1, the (two-dimensional) faces with nonright dihedral angles
intersect pairwise only at some vertices.

The family Pt interpolates between two Coxeter polytopes of the same volume: the
familiar ideal right-angled 24–cell and another interesting polytope with dihedral angles
�
2

and �
3

. We then employ some mirroring and assembling techniques similar to those
used by Kolpakov and Martelli [15] to promote each polytope Pt to a hyperbolic cone
manifold Mt . Since Pt has few nonright dihedral angles, the manifold Mt has few
controlled singularities.

More hyperbolic Dehn fillings

In the Dehn fillings that we have considered in Theorem 1.1, the cusp shape is a flat
three-manifold that fibres over a torus or a Klein bottle, and the filling collapses the
S1 fibres. In the deforming cone manifolds context, more different kinds of Dehn
fillings may arise that are also interesting. For instance, one may close a cusp of type
S1 � S1 � S1 by collapsing a S1 � S1 factor: in this case we add a closed curve
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instead of a two-torus, and the resulting space is not a topological manifold. This kind
of topological Dehn filling was considered by Fujiwara and Manning [7; 8].

Another variation occurs when the Euclidean cusp section is not a three-torus. For
instance, a Euclidean cusp section of a hyperbolic cone four-manifold may be one of
the types

S2
�S1; S3;

where we see Sn as the Euclidean cone manifold obtained by doubling the regular
Euclidean n–simplex along its boundary. In this case one may Dehn fill this cusp by
collapsing one of the spheres S1 , S2 or S3 . This corresponds to adding a core S2 ,
S1 or a couple of points.

We will show in this paper that all the examples of Dehn fillings mentioned in the above
paragraphs arise geometrically as hyperbolic Dehn fillings of some hyperbolic cone
manifolds. It is also possible to perform a hyperbolic Dehn surgery, the concatenation
of a hyperbolic drilling and a hyperbolic filling along an analytic path, that substitutes
a small geodesic Sk with a small geodesic S3�k . Topologically, this is just the usual
surgery along k –spheres with trivial normal bundles, that is, the substitution of a
Sk �D4�k with a DkC1 �S3�k . See Theorem 1.2 below.

Degeneration

An important phenomenon in dimension three, first described by Thurston [25], is that
of a hyperbolic Dehn filling that degenerates when the cone angle tends to 2� into a
Seifert manifold with hyperbolic base.

We show here a similar phenomenon: a four-dimensional hyperbolic Dehn filling
Wt that degenerates as the cone angle tends to 2� into a product C �S1 , where C

is a cusped hyperbolic 3–manifold. (The manifold C found here is tessellated into
four copies of the ideal right-angled cuboctahedron, and we call it the cuboctahedral
manifold.) In the following theorem, we think of the time t running backwards from
t D 1 to t D 0, in accordance with Kerckhoff and Storm [13].

Theorem 1.2 There is an analytic path fWtgt2.0;1� of complete finite-volume hyper-
bolic cone four-manifolds with cone angles < 2� , with some times 1> t1 > t2 > Nt > 0,
such that W1 is a manifold, and Wt1

and WNt are orbifolds. At the critical times
1; t1; t2; 0 the topology of Wt changes as follows:

� at t D 1 by hyperbolic Dehn filling 12 three-torus cusps by adding 12 tori;
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Figure 3: The function Vol.Wt /

� at t D t1 by hyperbolic Dehn surgering eight small S2 with eight small S1 ;

� at t D t2 by hyperbolic Dehn surgering four small S3 with four S0 ;

� at t D 0, the cone angles tend to 2� and Wt degenerates into C �S1 .

When t 2 .t1; 1/, the singular set of Wt is an immersed geodesic surface made of 12

cone tori and 8 cone spheres. When t 2 .0; t1/, the singular set is a 2–complex with
generic singularities.

The manifolds or orbifolds Wt at the times t D 1; t1; Nt have Euler characteristic 8, 8

and 5. The volume of Wt is shown in Figure 3. In the degeneration, the holonomy of
Wt tends algebraically to the holonomy of C .

The behaviour of Wt when t 2 Œt1; 1� is much similar to the one of Mt from Theorem 1.1
when t 2 Œ0; 1�, as will be evident from the construction. The cone manifolds Wt are
also constructed using the Kerckhoff–Storm deforming polytopes mentioned above.

Structure of the paper

The paper is organised as follows. In Section 2 we recall some well-known facts about
(acute-angled) polytopes, Coxeter diagrams and cone manifolds. The main references
are the seminal papers of Vinberg [27] and McMullen [18].

In Section 3 we define and study the family of finite-volume polytopes Pt �H4 . The
quite long section is almost entirely self-contained: many arguments were taken from
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the paper of Kerckhoff and Storm [13], which is fundamental for our constructions,
and are included for the sake of completeness.

Finally, the deforming cone manifolds Wt , Nt and Mt are constructed in Section 4
by assembling carefully some copies of Pt . Theorems 1.1 and 1.2 are proved there.

Acknowledgements

We thank Joan Porti and the anonymous referee for pointing out a mistake in an earlier
version of Theorem 1.1.

2 Preliminaries

We introduce in this section some preliminaries on polytopes and cone manifolds,
focussing mostly on dimension four.

2.1 Polytopes

We represent the hyperbolic four-space H4 as the upper sheet of the hyperboloid
hv; vi D �1 in R5 with respect to the Lorentzian product

hv;wi D �v0w0C v1w1C v2w2C v3w3C v4w4:

Halfspaces

Every space-like vector v determines a halfspace in H4 that consists of all w 2H4

with hv;wi � 0. We are interested in the case where two space-like vectors v and v0

determine two halfspaces whose intersection is nonempty and is a proper subset of
both halfspaces. There are three possible configurations to consider, easily determined
by the number

(1) ˛ D
�hv; v0ip
hv; vihv0; v0i

as follows:

� if �1< ˛ < 1, the boundary hyperplanes of the two halfspaces intersect with a
dihedral angle � such that cos � D ˛ ;

� if ˛ D 1, the boundary hyperplanes are asymptotically parallel;

� if ˛ > 1, the boundary hyperplanes are ultraparallel, and their distance d is such
that cosh d D ˛ .
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Finite polytopes

We define as usual a ( finite convex) polytope to be the intersection P of finitely many
halfspaces in H4 , with the additional hypothesis that int.P /¤∅. The boundary @P
is naturally stratified into vertices, edges, faces and walls (also called facets).

If the closure P of P in the compactification H4 intersects @H4 in finitely many
(possibly zero) points, the volume of P is finite; otherwise it is infinite. These points
in @H4 are called ideal vertices.

Volume

To compute the volume of a finite-volume, even-dimensional polytope P there is a
formula due to Poincaré (see [1, page 120]). Denoting by LS the spherical link of the
stratum S and by ˛F the dihedral angle at the (two-dimensional) face F, in dimension
four the formula is

Vol.P /D 4�2

3

�
1�

1

2
NC

1

2�

X
F face

˛F�
1

4�

X
E edge

Area.LE/C
1

2�2

X
V vertex

Vol.LV /

�
;

where N is the number of walls.

In any dimension, there is also the well-known Schläfli formula (also on [1, page 122])
that expresses the variation of the volume of a deforming polytope P (whose com-
binatorics stays constant) in terms of the area of the faces and of the variation of the
dihedral angles. In dimension four, it is

dVol.P /D� 1

3

X
F face

Area.F / d˛F :

To apply that formula, recall that the area of a hyperbolic k –gon F with inner angles
˛1; : : : ; ˛k is

Area.F /D .k � 2/� �

kX
iD1

˛i :

Topology

Let X be a compact metric space. Recall that the Hausdorff distance defines a topology
on the closed subsets of X which depends only on the topology of X.

Every polytope and more generally every closed subset C �Hn has a compactification
C � Hn . We endow the family of all closed subsets C � Hn with the Hausdorff
distance topology of their compactifications in Hn (here Hn is equipped with any
compatible metric). Note that the volume function on this family is not continuous.
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This topology will be used tacitly throughout all the paper. The situation that is
relevant here is when a family of polytopes is defined as the intersection of some
moving halfspaces determined by some space-like vectors v1; : : : ; vm . If the vectors
v1; : : : ; vm move continuously, the polytope deforms continuously.

2.2 Acute-angled polytopes

The theory of acute-angled hyperbolic polytopes is beautifully introduced in a paper of
Vinberg [27] and we briefly recall some of the facts described in that paper. We stick
to dimension four for simplicity, although everything applies to any dimension.

Gram matrix

Let P �H4 be a polytope, defined as the intersection of the halfspaces dual to some
unit space-like vectors v1; : : : ; vm . We calculate ˛ij from vi and vj using (1) for any
i and j . The m�m matrix �˛ij is the Gram matrix of P ; see [27].

We say that P is acute-angled if ˛ij � 0 for all i ¤ j . Acute-angled polytopes have
many nice properties. In this section, we will always suppose that P is acute-angled.

Remark 2.1 By a theorem of Andreev [2], a generic polytope P is acute-angled if
and only if all its dihedral angles are � �

2
, and this explains the terminology.

Generalised Coxeter diagrams

The Gram matrix of an acute-angled polytope P is nicely encoded via the generalised
Coxeter diagram D of P, which is constructed as follows: every vertex of D represents
a vector vi and every edge between two distinct vertices vi and vj has a label that
depends on ˛ij � 0 as follows:

� If ˛ij > 1, the edge is dashed (and sometimes labelled with the number d > 0

such that cosh d D ˛ij , but we will not do that).

� If ˛ij D 1, the edge is thickened.

� If 0�˛ij <1, the edge is labelled with the angle �
2
�� >0 such that cos �D˛ij .

To simplify the picture, the edges labelled with an angle �
2

are not drawn, and in those
with �

3
the label is omitted.

Strata

The following facts are proved in [27, Section 3]. Every acute-angled polytope P is
simple, that is, each stratum S of P of codimension k is contained in exactly k walls.
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All the strata of P may be easily determined from D as follows:

� The vertices vi represent the walls of P.

� The pairs of vertices connected by an edge labelled with some angle � represent
the faces of P ; the angle � is the dihedral angle of that face.

� More generally, the strata S of codimension k correspond to the k –tuples of
vertices of D whose subdiagram represents a .k�1/–dimensional spherical
simplex LS ; the spherical simplex LS is geometrically the link of S .

In particular, the set of vectors v1; : : : ; vm defining P is minimal (no proper subset
defines P ), and k walls in P intersect if and only if the hyperplanes containing them
do. These nice facts are not true in general for non-acute-angled polytopes.

Diagrams of the strata

Every stratum S of an acute-angled polytope P is also acute-angled, and one can
deduce a Coxeter diagram DS for S from the diagram D of P. We explain how this
works in the easier case when S is a wall; the procedure can then be applied iteratively.

The diagram DS is formed by all the vertices of D that represent walls that are incident
to S ; that is, DS is constructed from D by removing the vertex vi corresponding to S

and all the vertices vj that are connected to vi by either a dashed or a thickened edge.

The resulting diagram DS is not yet a generalised Coxeter diagram for S , because
the value of ˛ from formula (1) needs to be recomputed for every edge. To do so we
must substitute each space-like vector vj with its projection P .vj / in the time-like
hyperplane v?i containing S , using the formula

P .vj /D vj �
hvj ; vii

hvi ; vii
vi :

The new ˛ � 0 is computed using the projections P .vj / and is equal to or bigger than
the original one (in particular, S is still acute-angled).

Ideal vertices

The ideal vertices v of P are also detected in a similar fashion: they correspond to the
subdiagrams of D that represent some compact 3–dimensional Euclidean acute-angled
polyhedron Q, which is in fact the link of v . The polyhedron Q must be a product of
simplexes, so the subdiagram is a disjoint union of diagrams representing Euclidean
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simplexes. (In all dimensions, every acute-angled spherical polytope without antipodal
points is a simplex, and every acute-angled compact Euclidean polytope is a product of
Euclidean simplexes.)

There is a combinatorial criterion that one can use to check from D whether P is
compact and/or has finite volume; see [27, Proposition 4.2]. We suppose that P

contains at least one (finite or ideal) vertex.

Theorem 2.2 The polytope P is compact (resp. has finite volume) if and only if each
of its edges joins exactly two finite (resp. finite or ideal) vertices.

This condition is designed to exclude the presence of hyperideal vertices; see [27]. In
this paper we will only deal with finite-volume polytopes.

Coxeter polytopes

If all the dihedral angles of P are of type �
n

for some n � 2, then P is a Coxeter
polytope. In this case the group � < Isom.H4/ generated by the reflections along its
walls is discrete and has P as a fundamental domain, so that P D H4=� may be
interpreted as an orbifold.

Recall that the orbifold Euler characteristic of a Coxeter polytope P is given by the
formula

�.P /D
X

s

.�1/dim.s/

jStab.s/j
;

where the sum is over all the strata s of the polytope (ideal vertices are excluded) and
Stab.s/ is the stabiliser of a stratum inside the Coxeter reflection group of P.

2.3 Cone manifolds

Constant-curvature cone manifolds (and more generally .X;G/–cone manifolds) were
defined by Thurston [26] inductively on the dimension as follows: a cone 1–manifold
is an ordinary Riemannian 1–manifold, and a hyperbolic (or Euclidean, spherical)
cone n–manifold is locally a hyperbolic (or Euclidean, spherical) cone over a compact
connected spherical cone .n�1/–manifold.

Every point p 2M in a hyperbolic (or Euclidean, spherical) cone n–manifold M is
locally a cone over a compact spherical cone .n�1/–manifold Sp.M /, called the unit
tangent space to M at p . If Sp.M / is isometric to Sn�1 , the point is regular, and it
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is singular otherwise. The singular points form the singular set †�M. McMullen
defined a natural stratification on † that we now recall; see [18] for more details (and
proofs).

Let EA denote the Euclidean cone over a spherical cone manifold A. The join A�B

of two spherical cone manifolds A and B is defined as

A�B D S.0;0/.EA�EB/:

In particular we have Sm � Sn Š SmCnC1 . We set S�1 D ∅. It is proved in [18,
Theorem 5.1] that every compact spherical cone manifold N decomposes uniquely as
a join

N Š Sk�1
�B

for some k � 0 and some prime B , that is, a B that does not decompose further as
B D S0 �C . Let now M be a hyperbolic (or Euclidean, spherical) cone n–manifold.
We define

M Œk�D fp 2M j Sp.M /Š Sk�1
�B with B primeg:

A k –stratum of M is a connected component of M Œk�. It is a totally geodesic k –
dimensional hyperbolic (or Euclidean, spherical) manifold. Points lying in the same
k –stratum have isometric unit tangent spaces.

The regular points form the open dense set M Œn�, and M Œn�1� is empty. The singular
set †D

S
k<n M Œk� has codimension at least two. If M is complete (as will always

be the case in this paper) then M is the metric completion of M Œn�DM n†.

We denote by C� the Riemannian circle of length � . The unit tangent space of a point
p 2M Œn� 2� is a join Sn�3 �C� for some number � ¤ 2� that depends only on the
stratum containing p , called the cone angle of that stratum.

We list some examples of constant-curvature cone manifolds.

Cone surfaces

A hyperbolic (or Euclidean, spherical) cone surface S has some isolated singularities,
each with a cone angle � ¤ 2� . Simple examples may be constructed by doubling
polygons along their boundaries.

If we double a spherical bigon with inner angles �
2

, we get a cone sphere with two
singular points of angle � , which is isometric to the join S0 � C� . If we double a
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S0 �C�

�

�

S2.˛; ˇ; 
 /

˛ ˇ




Figure 4: The elliptic cone surfaces S0 �C� and S2.˛; ˇ; 
 /

spherical triangle with inner angles ˛
2

, ˇ
2

, 

2

, we get a cone sphere with three singular
points of cone angles ˛ , ˇ , 
 . This is a prime spherical cone surface and we denote it
by S2.˛; ˇ; 
 /. See Figure 4.

By Gauss–Bonnet, every compact connected orientable spherical cone surface with
cone angles < 2� is a sphere with some singular points (possibly none).

Cone three-manifolds

On a hyperbolic (or Euclidean, spherical) cone 3–manifold M the singular set †D
M Œ0�[M Œ1� has dimension � 1. Each 1–stratum has some cone angle � , while the
unit tangent space at every point p 2M Œ0� is some prime spherical cone surface. For
instance, it may be S2.˛; ˇ; 
 /.

Some spherical cone 3–manifolds are shown in Figure 5. The join S1 � C� is S3

with an unknotted closed geodesic of length 2� and of cone angle � . The join
S0 �S2.˛; ˇ; 
 / is S3 with singular set and cone angles ˛ , ˇ , 
 . If we double a
spherical tetrahedron with dihedral angles ˛

2
; : : : ; �

2
, we get S3 with singular set the

1–skeleton of a tetrahedron and cone angles ˛; : : : ; � ; this is a prime spherical cone
3–manifold.

A spherical cone 3–manifold that is crucial in this paper is the join C� � C' with
�; ' ¤ 2� shown in Figure 5, right. This is S3 with singular set the Hopf link: one

S1 �C�

�

S0 �S2.˛; ˇ; 
 /

˛

ˇ



˛

ˇ

ı�

"


C� �C'

�

'

Figure 5: Some simple spherical cone 3–manifolds. In all cases the underly-
ing manifold is S3 .
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� ˛

ˇ




˛ˇ


ı
" �

'

Figure 6: Singular points in a cone four-manifold with unit tangent space as
in Figure 5. In the right picture we have two discs intersecting transversely
in a point, with cone angles � and ' . In all cases the singularity lies locally
in a topological four-ball; a cone manifold with this kind of singularity is
topologically a manifold.

component of the Hopf link has length � and cone angle ' , while the other has length '
and cone angle � . This is a prime spherical cone 3–manifold (although it decomposes
nontrivially as a join).

If we assume that all cone angles are < 2� , then every orientable hyperbolic (or
Euclidean, spherical) cone 3–manifold is supported on a manifold.

Cone four-manifolds

On a hyperbolic (or Euclidean, spherical) cone 4–manifold M, the singular set †D
M Œ0�[M Œ1�[M Œ2� has dimension � 2. Each 2–stratum has some cone angle � . In
each 1–stratum the unit tangent space of a point is S0 �B for some prime spherical
cone surface B . At each 0–stratum, the unit tangent space is a prime spherical cone
3–manifold.

Figure 6 shows the types of singularities in a cone 4–manifold that we will encounter in
this paper; they are obtained by coning the spherical cone manifolds shown in Figure 5,
and are in some sense the simplest kind of singularities that may occur in dimension
four. A hyperbolic cone four-manifold with these types of singularities is topologically
a manifold.

Example 2.3 If we pick a compact acute-angled (hence simple) polytope P �H4

and double it along its boundary, we get a hyperbolic cone manifold with underlying
space S4 and singularities of the first three kinds shown in Figure 6. A 2–complex †
with these generic local singularities is sometimes called a foam.

If M Œ1�D∅ and the unit tangent space at every point in M Œ0� is isometric to C� �C'

(that is, if the only singularities in M are like the first and the last one in Figure 6),
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we say that † is an immersed geodesic cone surface. In this case we may see † as
the image of a geodesic immersion z†# M of a hyperbolic cone surface z† obtained
by resolving the double points of † lying in M Œ0�. Every point p in M Œ0� with unit
tangent space C� �C' is the image of two singular points in z† with cone angles �
and ' . The hyperbolic cone four-manifolds that arise in Theorem 1.1 are of this kind.

3 The polytopes

We now introduce a family of finite-volume polytopes Pt � H4 that depend on a
parameter t 2 .0; 1�, obtained by deforming the ideal right-angled 24–cell P1 . The
family is constructed by truncating the infinite-volume polytopes Ft built by Kerckhoff
and Storm [13] with two additional hyperplanes. We try to follow [13] as much as
we can, reproducing all the notation used there. As in [13], we will think of this
deformation running backwards from t D 1, starting with the ideal 24–cell P1 and
eventually degenerating to a three-dimensional polyhedron (an ideal cuboctahedron)
when t ! 0.

In Section 4 we will use Pt to construct the deforming hyperbolic cone manifolds
Mt and Wt needed to prove Theorems 1.1 and 1.2. We warn the reader that the time
parameter t used for Pt and Wt differ from that employed to define Mt by a linear
rescaling: the manifold Mt of Theorem 1.1 will be constructed by employing Pt

within the segment
t 2

�p
3=5; 1

�
:

The times t<
p

3=5 will not be used to prove Theorem 1.1, but only to prove Theorem 1.2.
The reader interested only in Theorem 1.1 may thus ignore our discussion on Pt when
t <

p
3=5.

There are in fact two very important times in the deformation Pt where the polytope
changes its combinatorics. These are

t2 D
p

1=2; t1 D
p

3=5:

The combinatorics also changes at the initial time t D 1 and at the final time t D 0

where Pt degenerates to a three-dimensional polyhedron. We will sometimes call 0,
t2 , t1 and 1 the critical times of the family Pt .

Many of the results presented in this section were first proved in [13] and we include
them here only for the sake of completeness.
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0C D .
p

2; 1; 1; 1; 1=t/; 0� D .
p

2; 1; 1; 1;�t/;

1C D .
p

2; 1;�1; 1;�1=t/; 1� D .
p

2; 1;�1; 1; t/;

2C D .
p

2; 1;�1;�1; 1=t/; 2� D .
p

2; 1;�1;�1;�t/;

3C D .
p

2; 1; 1;�1;�1=t/; 3� D .
p

2; 1; 1;�1; t/;

4C D .
p

2;�1; 1;�1; 1=t/; 4� D .
p

2;�1; 1;�1;�t/;

5C D .
p

2;�1; 1; 1;�1=t/; 5� D .
p

2;�1; 1; 1; t/;

6C D .
p

2;�1;�1; 1; 1=t/; 6� D .
p

2;�1;�1; 1;�t/;

7C D .
p

2;�1;�1;�1;�1=t/; 7� D .
p

2;�1;�1;�1; t/;

A D .1;
p

2; 0; 0; 0/; B D .1; 0;
p

2; 0; 0/;

C D .1; 0; 0;
p

2; 0/; D D .1; 0; 0;�
p

2; 0/;

E D .1; 0;�
p

2; 0; 0/; F D .1;�
p

2; 0; 0; 0/;

G D .1; 0; 0; 0;�
p

2t/; H D .1; 0; 0; 0;
p

2t/:

Table 1: The halfspaces that define Pt are the duals of these space-like
vectors: we denote vectors and halfspaces by the same letters. These vectors
are indeed space-like for all t 2 .0; 1� , except G and H that are space-like
only for t 2 .t2; 1� .

3.1 The family Pt

We define
t2 D

p
1=2

and we consider the 24 halfspaces 0C; 0�; : : : ;G ;H listed in Table 1, which depend
on some parameter t . The parameter t varies in .0; 1� for 0C; 0�; : : : ;E ;F and only
in .t2; 1� for G and H . The reader may check that for these values the vectors listed
in the table are indeed space-like and hence determine some halfspaces in H4 .

For every t 2 .0; 1� we define Pt as the intersection of all the halfspaces in the table
that are present at the time t . That is:

Definition 3.1 Let Pt be the intersection of the 24 halfspaces 0C; 0�; : : : ;G ;H

when t 2 .t2; 1�, and of the 22 halfspaces 0C; 0�; : : : ;E ;F when t 2 .0; t2�.

Proposition 3.2 The set Pt is a polytope for all t 2 .0; 1� that deforms continuously
in t 2 .0; 1�.

Geometry & Topology, Volume 22 (2018)



1664 Bruno Martelli and Stefano Riolo

Proof To prove that Pt is a polytope we only need to check that its interior is nonempty.
The set Pt contains a small ball centred at the point .1; 0; 0; 0; 0/, because the first
entry of each vector in Table 1 is positive for every t 2 .0; 1�.

The deformation is clearly continuous, also at the singular time t D t2 because the
halfspaces G and H tend to the full H4 as t ! t2 (the space-like vertices defining
them tend to light-like vertices).

The walls

The walls of Pt are easily determined. We prove that the set of halfspaces that defines
Pt is minimal.

Proposition 3.3 The boundary of each halfspace 0C; 0� : : : ;G ;H intersects Pt in
a wall for all t 2 .0; 1� for 0C; 0�; : : : ;E ;F and for all t 2 .t2; 1� for G and H .

Proof The point
�p

2; 2
3
; 2

3
; 2

3
; 0
�

belongs to the boundaries of both 0C and 0� and
lies in the interior of all the other halfspaces: this proves the assertion for 0C and 0� .
By changing the signs of the 2

3
entries we obtain the same for the other positive and

negative faces.

The point .
p

2; 1; 0; 0; 0/ belongs to the boundary of A and lies in the interior of the
other halfspaces. Similar points work for B ; : : : ;F . The points .

p
2t; 0; 0; 0;�1/

work for G and H when t > t2 .

The polytope Pt has 24 walls if t 2 .t2; 1� and 22 walls if t 2 .0; t2�. We denote the
walls of Pt by the same symbols 0C; 0�; : : : ;G ;H of the corresponding halfspaces.

Remark 3.4 Kerckhoff and Storm define for every t 2 .0; 1� a bigger polytope Ft as
the intersection of the 22 halfspaces 0C; 0�; : : : ;E ;F . The polytope Ft coincides
with Pt for t 2 .0; t2�; it has infinite volume for t 2 .t2; 1� and finite volume for
t 2 .0; t2�. We will soon check that Pt has finite volume for all t 2 .0; 1�.

The right-angled ideal regular 24–cell

As remarked in [13, Section 3], the polytope P1 is the regular right-angled ideal 24–
cell. The adjacencies between the walls 0C; 0�; : : : ;G ;H of P1 are nicely codified
in [13, Figure 3.1].
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The 24 walls of P1 are subdivided into three octets: the positive, the negative and
the letter walls; see Table 1. Two walls of the same octet are never adjacent; this is
the standard three-colouring of the 24–cell that was used in [15] to construct many
hyperbolic four-manifolds.

The right-angled ideal cuboctahedron

What happens as t ! 0? When t D 0, the negative 0�; : : : ; 7� and letter half-
spaces A; : : :F are still defined. As t ! 0, every positive halfspace converges to
.0; 0; 0; 0;˙1/, so they are also still defined (we keep identifying space-like vec-
tors and halfspaces). We may still set P0 to be the intersection of the halfspaces
0C; 0�; : : : ;E ;F . As t ! 0, the polytope Pt converges to P0 .

Among the halfspaces defining P0 we find both .0; 0; 0; 0; 1/ and .0; 0; 0; 0;�1/, hence
P0 is contained in the hyperbolic hyperplane fx4 D 0g isometric to H3 . Therefore,
P0 is some lower-dimensional object. It is proved in [13] that P0 � H3 is a three-
dimensional ideal polyhedron, and more precisely a right-angled ideal cuboctahedron;
see also Proposition 3.19 below. It has 14 faces, defined by the intersections of the 14

walls 0�; 1�; : : : ;E ;F with H3 .

Summing up, the family Pt is a continuous deformation of polytopes that starts with
the ideal regular right-angled 24–cell P1 and eventually degenerates to the ideal
right-angled cuboctahedron P0 .

3.2 Symmetries

In the next sections, we will determine the combinatorics of the polytope Pt for all
times t 2 .0; 1/. Luckily, each Pt has a big group of symmetries that will simplify our
arguments significantly.

Consider the halfspaces determined by the space-like vectors

LD .0;�1; 1; 0; 0/; M D .0; 0;�1; 1; 0/; N D .0; 0;�1;�1; 0/:

We denote by the same symbols the halfspaces and the reflections in the corresponding
hyperplanes. These reflections act as follows:

LW .x0;x1;x2;x3;x4/ 7! .x0;x2;x1;x3;x4/;

M W .x0;x1;x2;x3;x4/ 7! .x0;x1;x3;x2;x4/;

N W .x0;x1;x2;x3;x4/ 7! .x0;x1;�x3;�x2;x4/:
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Consider the group
H D hL;M ;N i:

The group H is isomorphic to the symmetric group S4 (note that .MN /2D .LN /3D

.LM /3D1). Moreover, in [13, Section 4] it is shown that H is the group of symmetries
of the 24–cell P1 that preserve

� the positive/negative/letter colours of the walls;

� the even/odd parity of the numbered walls;

� the walls G and H (individually).

The group H acts on the set of four positive (or negative) even (or odd) walls as its full
permutation group. Up to the action of H, the 24 walls f0C; 0�; : : : ;G ;H g reduce
to the set

f0C; 0�; 3C; 3�;A;G ;H g:

Now, consider the order-two rotation

RW .x0;x1;x2;x3;x4/ 7! .x0;x1;x2;�x3;�x4/:

This rotation is called the roll symmetry in [13]. It still preserves P1 and the posi-
tive/negative/letter colours of the walls, but it changes the parity of any numbered wall
and it exchanges the walls G and H . Kerckhoff and Storm prove that the extension

K D hL;M ;N ;Ri

has order 48 and consists precisely of the symmetries of P1 that preserve the colours
of the walls and the pair fG ;H g. Up to the action of K the set of walls is further
reduced to

f3C; 0�;A;G g:

It is immediate to note that K is also a group of symmetries of Pt for every t (in fact,
it will be clear later that K is the full group of symmetries of Pt when t < 1). Up to
symmetries the polytope Pt has only four types of walls.

3.3 The quotient polytope Qt

As in [13], we can quotient Pt by the group H of symmetries, and obtain an interesting
smaller polytope Qt with a smaller number of walls. (If we quotient Pt by K we do
not get a polytope!)
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The quotient polytope Qt may be identified with the intersection of Pt with the
halfspaces L, M and N . The walls of Qt are

f0C; 0�; 3C; 3�;A;G ;H ;L;M ;N g

when t 2 .t2; 1�, and the same list with G and H removed when t 2 .0; t2�. The roll
symmetry R is a symmetry of Qt that permutes each pair

f0C; 3Cg; f0�; 3�g; fG ;H g; fM ;N g

and preserves the walls L and A . We introduce another critical time,

t1 D
p

3=5:

Note that 0< t2 < t1 < 1. We now show that the quotient polytope Qt is acute-angled
for all t 2 .0; 1� and may be fully described by some reasonable Coxeter diagrams,
whose combinatorics changes at the critical times 1, t1 and t2 .

Proposition 3.5 The polytope Qt is acute-angled for all t 2 .0; 1�. Its generalised
Coxeter diagram Dt is shown in Figure 7 for all t 2 .0; 1�. The dihedral angles �

2
and

' are such that

cos � D
3t2� 1

1C t2
; cos' D

p
2.1� t2/p

.2t2� 1/.t2C 1/
:

The dihedral angles �
2

and ' are defined for t 2 .0; 1/ and t 2 .t1; 1�, respectively.
They both vary strictly monotonically in t . We have

lim
t!1

�
2
.t/D 0; �

2
.t1/D

�
6
; lim

t!0

�
2
.t/D �

2
; '.1/D �

2
; lim

t!t1

'.t/D 0:

We plot the functions �.t/ and '.t/ in Figure 8.

Proof We use the formula (1) for every pair of walls in the set

(2) f0C; 0�; 3C; 3�;A;G ;H ;L;M ;N g:

We use the roll symmetry R to reduce the number of pairs to be investigated. A simple
inspection shows that we get ˛ � 0 for every pair and at every time t 2 .0; 1�. More
precisely, for most pairs we get ˛ > 1, ˛D 1, ˛D 1

2
or ˛D 0 for all t 2 .0; 1�, except

(up to the roll symmetry) for the following:

(1) With the pair f0C;N g we get

˛ D

p
2tp

1C t2
> 0:
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Figure 7: The generalised Coxeter diagram Dt of Qt when tD1 , t 2 .t1; 1/ ,
t D t1 , t 2 .t2; t1/ and t 2 .0; t2� , respectively. The green and red edges
indicate the faces with varying dihedral angle ' and �

2
.

(2) With the pair f0�;G g we get

˛ D

p
2.1� t2/p

.2t2� 1/.t2C 1/
� 0I

recall that G exists only for t > t2 D
p

1=2.

(3) With the pairs f0�;N g and fA;G g we get ˛D 1 at t D 1 and ˛ > 1 for t < 1.
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�.t/

t1t2Nt

�

�
2

�
3

'.t/

t1

�
2

Figure 8: The functions � and ' . We note the critical times t2 and t1 . At
the noncritical time Nt D

p
1=3 we get � D �

2
.

Therefore Qt is acute-angled for all t 2 .0; 1�. Concerning the Coxeter diagrams, we
note that:

(1) With the pair f0C;N g, we get ˛D 1 at t D 1 and ˛ < 1 for all t < 1. Therefore
when t < 1 the walls intersect with dihedral angle �

2
such that cos �

2
D ˛ , that

is,

cos � D 2 cos2 �

2
� 1D 2˛2

� 1D 2
2t2

1C t2
� 1D

3t2� 1

1C t2
:

In particular when t D t1 we get cos � D 1
2

and hence �
2
D

�
6

. By calculating
the derivative one sees that � varies strictly monotonically in t .

(2) With the pair f0�;G g, we get ˛ D 0 at t D 1. When t 2 .t1; 1/ we get
0<˛ < 1 and the halfspaces intersect with dihedral angle ' such that cos'D ˛ .
By calculating the derivative we see that ' varies monotonically in t . When
t D t1 we get ˛ D 1 and when t < t1 we get ˛ > 1.

The roll symmetry R acts on the Coxeter diagram of Qt as a reflection with horizontal
axis. The polytopes Qt are remarkable because they are acute-angled and have only
few nonright dihedral angles for every t .

Coxeter polytopes

Recall that a Coxeter polytope is a polytope whose dihedral angles divide � . As noted
in [13], the polytope Qt is Coxeter at the times

1; t1 D
p

3=5;
cos �

5p
1C sin2�=5

;
p

1=3;
p

1=7:
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For these times, the dihedral angle �
2

is, respectively,

0; �
6
; �

5
; �

4
; �

3
:

The dihedral angle ' is �
2

and 0 in the first two cases. We get five Coxeter polytopes
overall in the family Qt . Using Vinberg’s criterion, in [13] it is proved that they are
all arithmetic, except the one with �

2
D

�
5

.

The walls

We now describe the 3–dimensional walls of Qt . Up to the roll symmetry R, there
are only six walls to analyse in Qt , namely

0�; 3C; A; G ; L; M :

Each such wall is an acute-angled polyhedron, because Qt is acute-angled. We are
only interested in the first four, 0�; 3C;A , G , which are quotients of some walls
in Pt ; understanding these will be enough to determine the combinatorics of all the
walls in the original polytope Pt . We ignore the case t D 1 for simplicity: we already
know that P1 is the ideal regular 24–cell.

Lemma 3.6 The generalised Coxeter diagrams of the acute-angled polyhedra A , G ,
0� and 3C are shown in Figure 9 for all t 2 .0; 1/. The (yellow) dihedral angle  

2
of

3C is defined for t 2 .0; t1� and is such that

cos D
cos �

1� cos �
D

1� 3t2

2.t2� 1/
:

In particular, the angle  
2

varies strictly monotonically in t . Its extremal values are

lim
t!t1

 

2
.t/D 0; lim

t!0

 

2
.t/D

�

3
:

Proof For every W 2 fA;G ; 0�; 3Cg and every time t , we construct the Coxeter
diagram DW;t of W at time t following the instructions of Section 2.2.

The diagram DW;t is built from Dt by removing W and all the vertices that are
connected to W by either a dashed or a thickened edge. We need then to recompute ˛
from formula (1) for every pair of vectors. To do so we must substitute each space-like
vector

v 2 f0C; 0�; 3C; 3�;A;G ;H ;L;M ;N g
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A

G
.t1; 1/

G
.t2; t1�

0�

.t1; 1/
0�

.0; t1�

3C

.t1; 1/
3C
t1

3C

.t2; t1/
3C

.0; t2�

Figure 9: The generalised Coxeter diagrams of some walls of Qt . Specifically, that
of A for t 2 .0; 1/; G for t 2 .t1; 1/ and t 2 .t2; t1�; 0� for t 2 .t1; 1/ and t 2 .0; t1�;
3C for t 2 .t1; 1/ , t D t1 , t 2 .t2; t1/ and t 2 .0; t2� . The red and green vertices
indicate the (two-dimensional) faces in Qt with nonright dihedral angles �

2
and ' ,

coherently with Figure 7. The green, red and yellow edges indicate the edges of the
wall with varying dihedral angle ' , �

2
and  

2
.
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with its projection P .v/ in the time-like hyperplane W ? , using the formula

P .v/D v�
hv;W i

hW;W i
W :

We then calculate the new values of ˛ on every pair P .v/, P .w/ instead of v , w .
This will determine the labels on the edges of DW;t .

Given the abundance of right angles, in most cases ˛ remains unaffected. More
specifically:

� A is orthogonal to all the incident walls, hence P .v/D v for every such wall v
and all the values ˛ remain unaffected: the diagram DA;t is just a subdiagram of Dt

and is shown in Figure 9, first line, for all t 2 .0; 1/.

� G is orthogonal to all the incident walls except 0� , which is however orthogonal
to all the walls incident to both G and 0� : this implies easily that all the values ˛ � 1

remain unaffected also in this case; hence DG ;t is just a subdiagram of Dt as in
Figure 9, second line, for the times .t1; 1/ and .t2; t1�, respectively.

� 0� is orthogonal to all the incident walls except G , which is orthogonal to all
the walls incident to both 0� and G : again the values ˛ � 1 are unaffected and
D0�;t is a subdiagram of Dt as in Figure 9, third line, for the times .t1; 1/ and .0; t1�,
respectively.

� 3C is orthogonal to all the incident walls except M, which is in turn not orthogonal
to L; this is the only label that changes from Figure 7 to 9, namely that of the edge
connecting M and L. We have

P .L/DL; P .M /DM C
2t2

t2C 1
3C

and we easily deduce that

hP .M /;P .L/i D �1; hP .M /;P .M /i D 2
1� t2

1C t2
; hP .L/;P .L/i D 2

and therefore

˛ D

p
1C t2

2
p

1� t2
D

1C t2

2
p

1� t4
:

In particular,

(1) when t 2 .t1; 1/ we have ˛ > 1 and the faces are ultraparallel;

(2) when t D t1 we have ˛ D 1 and the faces are asymptotically parallel;
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(3) when t 2 .0; t1/ the faces meet at a dihedral angle  
2

that satisfies

cos  
2
D

p
1C t2

2
p

1� t2
D

1C t2

2
p

1� t4
:

The diagram D3C;t is shown in Figure 9, fourth line, at all times.

We note that

cos D 2 cos2  

2
� 1D

1C t2

2.1� t2/
� 1D

1� 3t2

2.t2� 1/
:

The proof is complete.

We can now easily draw the walls A , G , 0� and 3C of Qt at all times.

Corollary 3.7 The combinatorics and geometry of the polyhedra A , G , 0� and 3C

of Qt is shown in Figure 10. In particular, they all have finite volume.

Proof All the strata of each acute-angled polyhedron are easily deduced from its
corresponding Coxeter diagram, using the algorithms described in Section 2.2, which
allow one to determine first the edges and then the vertices of each polyhedron.

Recall in particular that every finite vertex arises from a triple of nodes of the Coxeter
diagram of elliptic type, and every ideal vertex arises from a triple or 4–tuple of vertices
of Euclidean type. The reader is invited to check that the vertices are those shown
in Figure 10, and in particular the crucial fact that every edge has two vertices as its
endpoints; hence, the polyhedra have all finite volume (there are no hyperideal vertices;
see Theorem 2.2).

For instance, one checks that the polyhedron A contains 6 finite vertices, which
correspond to an elliptic Coxeter subdiagram with tree nodes, and an ideal vertex, which
corresponds to the Euclidean Coxeter subgraph with four nodes f0�; 0C; 3�; 3Cg,
which represents a rectangle.

Similarly, the polyhedron G contains some finite vertices, and one ideal vertex only
at the time t D t1 corresponding to the subdiagram with nodes f3C;L;M g, which
represents a Euclidean triangle with angles �

2
, �

3
and �

2
D

�
6

. When t < t1 we get
�
2
> �

6
and the triple represents a finite vertex instead. The polyhedra 0� and 3C are

treated similarly.
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A

0� 3C

0C

3�

M

N

G

0�

N

3C L
M

0�
G

M

3C
L

A

0C

3C

M

NA

0�

G

3�

L

.t1; 1/

A

0� 3C

0C

3�

M

N

G

N

3C L
M

0�

M

3C
L

A

0C

3C

M

NA

0�

G

3�

L

t1

A

0� 3C

0C

3�

M

N

G

N

3C L
M

0�

M

3C
L

A

0C

3C

M

NA

0�

G

3�

L

.t2; t1/

3C

L

N

M

A

0�

3�

3C

L

N

M

A

0�

3�
t2 .0; t2/

Figure 10: The walls A , G , 0� and 3C of the quotient polytope Qt at the times .t1; 1/ in the
first line, t1 in the second line and .t2; t1/ in the third line. The combinatorics of A and 0� is
constant in .0; t1/ , but that of 3C changes further at the times t2 and .0; t2/ as shown in the
fourth line. Every face is labelled with the name of the adjacent wall: front faces are labelled in
black and back faces in blue. On each wall, the red, green, black, grey and yellow edges have
dihedral angle �

2
, ' , �

2
, �

3
and  

2
, respectively. Similarly, on the polytope Qt the red, green

and white faces have dihedral angle �
2

, ' and �
2

. The ideal vertices are indicated as white dots.
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Figure 10 shows both the four-dimensional dihedral angles along the faces and the
three-dimensional dihedral angles of the single walls along the edges: on each wall,
the red, green, black, grey and yellow edges have dihedral angle �

2
, ' , �

2
, �

3
and  

2
,

respectively. Similarly, on the polytope Qt the red, green and white faces have dihedral
angle �

2
, ' and �

2
. The ideal vertices are indicated as white dots.

Corollary 3.8 The polytope Qt has finite volume for all t 2 .0; 1�. Its combinatorics
is constant on each of the time intervals

.0; t2/; .t2; t1/; .t1; 1/

and changes precisely at the critical times t2 , t1 and 1.

Proof We only need to prove that Qt has finite volume. By Theorem 2.2 it suffices
to check that every edge of Qt has two (finite or ideal) vertices as endpoints. All the
edges that belong to one of the walls A , G , 0� or 3C have this property, as already
checked. There is yet one last edge to investigate in Figure 7, determined by the triple
fL;M ;N g. That edge joins the finite vertices fL;M ;N ;G g and fL;M ;N ;H g

when t > t2 , and the vertices fL;M ;N ; 3Cg and fL;M ;N ; 0Cg when t � t2 , which
are ideal at t D t2 and finite when t < t2 .

We now finally use all the information that we gathered on the quotient polytope Qt

to analyse the original polytope Pt .

3.4 Back to the original polytope Pt

We recall that Pt has 24 walls when t > t2 and 22 when t � t2 , and up to the action
of its symmetry group these walls reduce to four elements only,

f3C; 0�;A;G g;

where G exists only for t > t2 . We start by showing the following.

Proposition 3.9 For all t 2 .0; 1�, the polytope Pt has finite volume. Moreover, its
combinatorics is constant on each of the time intervals

.0; t2/; .t2; t1/; .t1; 1/

and changes precisely at the critical times t2 , t1 and 1. The combinatorics and geometry
of the walls 3C , 0� , A , G is fully described in Figures 11, 12, 13 and 14.
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3C

2�1C

1�

0C 2C3�

G

7C

5C1C

3C

2�

0�

6�

4�

0�

A
0C

B C

3C 1C

5C

3C
G

B A
D
3�

0�

7C

5C 1C

4� 2�

G

Figure 11: Combinatorial pictures of the walls A , G , 0� and 3C of Pt at
the times t 2 .t1; 1/ . Every face is labelled with the name of the adjacent
wall: front faces are labelled in black and back faces in blue. On each wall,
the red, green and black edges have dihedral angle � , ' and �

2
, respectively.

Similarly, on the polytope Pt the red, green and white faces have dihedral
angle � , ' and �

2
. The ideal vertices are indicated as white dots.

Proof The walls of Pt are obtained by mirroring the corresponding walls of Qt from
Figure 10 along the faces L, M and N .

The figures show both the four-dimensional dihedral angles along the faces and the
three-dimensional dihedral angles of the single walls along the edges. An overview of
the evolving walls is shown in Figure 15.

Dihedral angles

A remarkable aspect of the deformation Pt is that most of the dihedral angles stay
constantly right during the whole process. In the following proposition we write a face
of Pt as a pair of intersecting walls.
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3C 1C

5C

3C

B AD
3�

0�

7C

5C 1C

4� 2�
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Figure 12: Combinatorial pictures of the walls A , G , 0� and 3C at the
critical time t1 . We use the same notations as in Figure 11. The dihedral
angles are either �

3
(on the red faces and edges) or �

2
(on the rest).

Proposition 3.10 All the faces of Pt have right dihedral angles, except:

� The 8 green triangles

fG ; 0�g; fG ; 2�g; fG ; 4�g; fG ; 6�g;

fH ; 1�g; fH ; 3�g; fH ; 5�g; fH ; 7�g

have dihedral angle ' when t 2 .t1; 1/.

� The 12 red polygons

f1C; 3Cg; f3C; 5Cg; f5C; 7Cg; f7C; 1Cg; f1C; 5Cg; f3C; 7Cg;

f2C; 0Cg; f0C; 4Cg; f4C; 6Cg; f6C; 2Cg; f2C; 4Cg; f0C; 6Cg

have dihedral angle � for all t 2 .0; 1/.

The evolution of the green and red faces is shown in Figure 16.
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Figure 13: Combinatorial pictures of the walls A , G , 0� and 3C at the
times t 2 .t2; t1/ . We use the same notations as in Figure 11. The dihedral
angles are either � (on the red faces and edges),  (on the yellow edges)
or �

2
(on the rest).

It is remarkable that for all t 2 .t1; 1/ the non-right-angled faces intersect only in pairs
at some vertices. Where this happens, the dihedral angle ' or � of one face equals the
interior angle of the other; see Figure 16.

Corollary 3.11 The polytope Pt is acute-angled precisely when t � Nt D
p

1=3.

The polytope PNt is right-angled. We will soon determine the Coxeter polytopes in the
family Pt .

Simple polytopes

During our analysis we have also proved the following.

Proposition 3.12 The polytope Pt is simple for all t 2 .0; 1�.
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3C

B AD
3�

0�
7C

5C 1C

4� 2�

3C

B AD
3�

0�
7C

5C 1C

4� 2�

Figure 14: Combinatorial pictures of the wall 3C at the critical time t2 and
in the interval t 2 .0; t2/ . We use the same notations as in Figure 11. The
four-dimensional and three-dimensional dihedral angles are either � (on the
red faces),  (on the yellow edges) or �

2
(on the rest). The only nonright

angle of each red pentagon is at the bottom vertex. The only difference
between the two figures is the bottom vertex, which is either ideal (left) or
finite (right).

.t1; 1/ t1 .t2; t1/ t2 .0; t2/

A

G

0�

3C

Figure 15: An overview of the combinatorics of the evolving walls. At the
initial time t D 1 all the walls are regular ideal octahedra.
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.t1; 1/ t1 .t2; t1/ t2 .0; t2/

� �

�

' '

` ` `

d

`

�

`

Figure 16: The evolving green and red faces. The green face is an equilateral
triangle and exists only for t 2 .t1; 1/ . Vertices with big white dots are
ideal. All the finite vertices are right-angled, except those labelled with some
explicit angle � , ' , or � . The angles �; '; � and the lengths ` , d depend
on t . All the red faces are symmetric with respect to a vertical axis. A small
green or red dot indicates the presence of an incident green or red face.

Proof The polytope Pt is acute-angled and hence [27, Section 3] simple for all
t �

p
1=3. If t <

p
1=3, the polytope Pt has the same combinatorics of Pt2�" and is

hence also simple.

We are now interested in the links of the vertices of the polytope Pt . The initial
polytope P1 is the ideal 24–cell: it has 24 ideal vertices, each with a Euclidean cube
as a link. We now study separately the first time interval .t1; 1/, the first critical time t1 ,
the second time interval .t2; t1/ and the last time interval .0; t2�. (The discussion for
.0; t2� also includes the second critical time t2 .)

The first time interval

When t 2 .t1; 1/, the combinatorial change from the 24–cell P1 consists in the sub-
stitution of 12 ideal vertices with 12 quadrilateral red faces. Each of these new 12

red faces is the intersection (with dihedral angle � ) of two positive walls that were
asymptotically parallel in P1 .

Geometrically, all the other faces remain right-angled except six green triangles that
were right-angled in the ideal 24–cell P1 and have now dihedral angle ' .

Proposition 3.13 When t 2 .t1; 1/, the polytope Pt has 24 walls, 108 faces, 144

edges and 60 vertices. The combinatorics can be recovered from Figure 11. In particular,
the vertices are of three kinds:
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I�=2 � I�

N

L
P

P

I' � I�

N

L
P

P

P

P
L

P

�3.�/

P

P
P

P

Figure 17: The links of the finite vertices of the polytope Pt are spherical
tetrahedra. The black, red and green edges have dihedral angle �

2
, � and ' ,

respectively. The faces of these tetrahedra are labelled (front faces in black,
back faces in blue) with the type of the corresponding wall of Pt : P for
positive, N for negative and L for letter. The first two tetrahedra are spherical
joins of segments I�=2 � I� and I' � I� , where I˛ � S1 indicates a circular
arc of length ˛ . The last is the regular spherical tetrahedron �3.�/ with
dihedral angles � .

(1) 12 ideal vertices (which actually exist for all t 2 .0; 1�), whose link is a Euclidean
rectangular parallelepiped, represented in Figure 18, left. For every odd i 2

f0; : : : ; 7g there are three ideal vertices of type

@1i \ @1i�\ @1jC\ @1j�\ @1X \ @1Y

for some even j and some letter walls X and Y of type A; : : : ;F .

(2) 24 finite vertices, whose link is the spherical tetrahedron I�=2 � I� represented
in Figure 17. Each of these vertices is the intersection of two positive walls, a
negative wall and a letter wall of type A; : : : ;F .

N

N
P P

L

L

PP
P

L

N

P P

P
P

Figure 18: The Euclidean links of the ideal vertices of the polytope Pt . The
conventions as the same of Figure 17. Left: a rectangular parallelepiped,
whose edge lengths vary smoothly on t . Centre: a prism with equilateral
base and appears only at the time t1 , when the red edges have dihedral angle
� D �

3
. Right: a regular tetrahedron and it appears only at the time t2 when

the red edges have dihedral angle � with cos � D 1
3

.
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(3) 24 finite vertices, whose link is the spherical tetrahedron I' � I� represented
in Figure 17. Each of these vertices is the intersection of two positive walls, a
negative wall and a wall G or H .

Proof The 48 finite vertices are the 4� 12 vertices of the new 12 red quadrilateral
faces; among these, 8� 3D 24 are also vertices of the 8 triangular green faces. Recall
that the polytope Pt is simple. The links of the finite vertices are therefore tetrahedra,
whose dihedral angles are all right except those corresponding to red or green faces.

The ideal vertex of the quotient polytope Qt is (see Figure 7)

@13C\ @13�\ @10C\ @10�\ @1A\ @1L:

Its link is a product of three intervals, that is, a Euclidean rectangular parallelepiped.
Letting the group of symmetries K act, we get the 4� 3 D 12 ideal vertices of Pt .
Note that since that ideal vertex exists in Qt for all t 2 .0; 1�, these 12 ideal vertices
of Pt exist for all t 2 .0; 1�.

We note in particular that the green and red faces intersect only at the 24 finite vertices
of type (3).

The first critical time

At the critical time tD t1 , the 8 green triangular faces collapse into 8 new ideal vertices.
The only nonright dihedral angle is now � D �

3
, hence Pt1

is a Coxeter polytope.

Proposition 3.14 The Coxeter polytope Pt1
has 24 walls, 100 faces, 120 edges and

44 vertices. The combinatorics can be recovered from Figure 12. In particular, the
vertices are of three kinds:

(1) 12 ideal vertices, whose link is a Euclidean rectangular parallelepiped repre-
sented in Figure 18, left.

(2) 8 ideal vertices, whose link is a Euclidean right prism over an equilateral triangle,
represented in Figure 18, centre. Each of these vertices is the ideal vertex of a
negative wall, three positive walls and a wall G or H .

(3) 24 finite vertices, whose link is the spherical tetrahedron I�=2 � I� represented
in Figure 17. Each of these vertices is the intersection of two positive walls, a
negative wall and a letter wall of type A; : : : ;F .
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The second time interval

When t 2 .t2; t1/, the combinatorial change from the Coxeter polytope Pt1
consists in

the substitution of 8 ideal vertices with 8 new edges, drawn in yellow in Figure 13.
Each yellow edge is the intersection of three positive walls, and also of three red faces.
Each red face is now a right-angled hexagon.

Proposition 3.15 When t 2 .t2; t1/, the polytope Pt has 24 walls, 100 faces, 128

edges and 52 vertices. The combinatorics can be recovered from Figure 13. In
particular, the vertices are of three kinds:

(1) 12 ideal vertices, whose link is a Euclidean rectangular parallelepiped repre-
sented in Figure 18, left.

(2) 24 finite vertices, whose link is the spherical tetrahedron I�=2 � I� represented
in Figure 17. Each of these vertices is the intersection of two positive walls, a
negative wall and a letter wall of type A; : : : ;F .

(3) 16 finite vertices, whose link is the spherical tetrahedron represented in Figure 17,
centre-right. Each of these vertices is the intersection of three positive walls and
a negative wall, or three positive walls and a wall G or H .

The last time interval

When t 2 .0; t2�, the polytope Pt coincides with the Ft of [13]. At the critical time t2 ,
the walls G and H collapse into two new ideal vertices, which become finite as
soon as t < t2 . Indeed, the vectors defining G and H transform from space-like to
light-like and then time-like. The combinatorial change at t2 is the inverse operation
of a truncation.

The two new vertices in Pt are quadruple intersections of positive walls. Their link is
a regular tetrahedron with dihedral angles � . At t D t2 the two new vertices are ideal,
we have cos � D 1

3
and the link is a regular Euclidean tetrahedron; as soon as t < t2

the angle � increases and the link is a regular spherical tetrahedron.

Proposition 3.16 When t 2 .0; t2�, the polytope Pt has 22 walls, 92 faces, 116 edges
and 46 vertices. The combinatorics can be recovered from Figure 14 for positive walls
and from Figure 13 for the other walls. In particular, the vertices are of four kinds:

(1) 12 ideal vertices, whose link is a Euclidean rectangular parallelepiped repre-
sented in Figure 18, left.
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(2) 24 finite vertices, whose link is the spherical tetrahedron I�=2 � I� represented
in Figure 17. Each of these vertices is the intersection of two positive walls, a
negative wall and a letter wall of type A; : : : ;F .

(3) 8 finite vertices, whose link is the spherical tetrahedron represented in Figure 17,
centre-right. Each of these vertices is the intersection of three positive walls and
a negative wall.

(4) 2 vertices, ideal for t D t2 and finite for t < t2 , whose link is the regular
tetrahedron represented in Figures 18, right, and 17 (�3.�/), respectively. Each
of these vertices is the intersection of four positive walls of the same parity.

Note that in this time interval, the (yellow) angle

 D arccos
�

cos �
1� cos �

�
of Lemma 3.6 equals the inner angle of a face of a regular spherical tetrahedron with
dihedral angles � . In the polytope Pt , the red faces are now pentagons with four right
angles and a new angle �, that must equal the length of an edge of such a spherical
tetrahedron.

Proposition 3.17 When t 2 .0; t2�, the inner angle � between the two yellow edges
of each red face is such that

cos �D
cos �

1� 2 cos �
D

3t2� 1

3� 5t2
:

First proof Denote by P the orthogonal projection of R1;4 onto the vector subspace
W ? D .3C/? \ .7C/? , where W is generated by the vectors 3C and 7C . An
orthogonal basis for W is given by u1 D 3C and u2 D 7CC cos � 3C . Therefore,
denoting by Pi the orthogonal projection onto the subspace Rui for i D 1; 2, for every
v 2R1;4 ,

P .v/D v�P1.v/�P2.v/:

The angle � is thus given applying (1) to the vectors

P .1C/D 1CC cos 3CC cos 7C; P .5C/D 5CC cos 3CC cos 7C:

Second proof For every n> 1, denote by Gn the Gram matrix of a regular spherical
n–simplex with dihedral angles � , that is the .nC 1/� .nC 1/ matrix with ones on
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the diagonal and �cos � on the other entries. As we said, � is the length of an edge of
a regular spherical 3–simplex with dihedral angles � . By the sine law [6] we get

sin2 �

sin2 �
D

det.G3/

det.G2/2
D

1� 3 cos �
.1� 2 cos �/2.1C cos �/

:

This easily implies the statement.

The angle � tends to arccos
�
�

1
3

�
as t ! 0.

The fixed ideal cuboctahedron

Let H3�H4 be the hyperplane fx4D0g defined by the space-like vector .0; 0; 0; 0; 1/.

Lemma 3.18 The 12 ideal vertices of Pt that exist for all t 2 .0; 1� are all in @1H3

and do not depend on t .

Proof Recall Section 3.2 and the quotient polytope Qt . The fixed points of the roll
symmetry R form a 2–plane contained in H3 . The roll symmetry R fixes the ideal
vertex of Qt that exists for all t . The hyperplanes L, M and N are orthogonal to H3 .
Therefore, letting the group K act, we get that the 12 ideal vertices are contained
in @1H3 .

Now, by solving a simple linear system in R1;4 , we get

3C
?
\ 3�?\ 0C

?
\ 0�?\A?\B? D .

p
2; 1; 1; 0; 0/R;

showing that the ideal vertex

@13C\ @13�\ @10C\ @10�\ @1A\ @1B

does not depend on t , nor hence the other 11 by symmetry.

Proposition 3.19 The intersection Pt \H3 does not depend on t and is an ideal,
right-angled cuboctahedron. The quadrilateral faces are X \H3 for every letter wall
X 2 fA; : : : ;F g, while the triangular faces are the 2–faces of Pt given by i \ i� for
every i 2 f0; : : : ; 7g. Moreover, we have Pt \H3 D P0 D

T
s Ps .

Proof For every t 2 .0; 1� we have @1A � @1H3 . Thus A\H3 must be the ideal
quadrilateral containing the ideal points of A . It is easy to see that the hyperplanes
containing the walls 0� , 0C and H3 intersect in the same 2–plane. Therefore the
ideal triangle 0�\ 0C is contained in H3 .
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By the previous lemma, such ideal polygons do not depend on t . As before, since H3

is orthogonal to the hyperplanes L, M and N , it suffices to let the group K act to
conclude the same for the other walls.

Finally, since P0 is the convex hull of its (ideal) vertices, that are fixed, the last
statement is proved.

All these intersections do not depend on t . Moreover, X ?H3 for all t 2 .0; 1� and
every X 2 fA; : : : ;F g. What varies is the (acute) angle of intersection between H3

and the numbered hyperplanes:

Proposition 3.20 The letter hyperplanes are orthogonal to the hyperplane H3 for
all t 2 Œ0; 1�. Moreover, for every i 2 f0; : : : ; 7g, the functions Angle.i ;H3/ and
Angle.i�;H3/ are strictly monotone in t , they take the value �

4
at t D 1, and

lim
t!0

Angle.iC;H3/D 0; lim
t!0

Angle.i�;H3/D �
2
:

Proof These assertions can be verified as usual by formula (1).

3.5 Coxeter polytopes

The dihedral angles � and ' are strictly monotone in t . We have

lim
t!1

�.t/D 0; �.t1/D
�
3
; �

�p
1=3
�
D

�
2
;

lim
t!0

�.t/D �; '.1/D �
2
; lim

t!t1

'.t/D 0:

In particular the polytope Pt is Coxeter at the times

1; t1 D
p

3=5; Nt D
p

1=3:

The polytope Pt is right-angled both at times t D 1 and t D Nt . Note that in P1 all
vertices are ideal, while PNt contains both ideal and finite vertices and is quite interesting.
The Coxeter polytope Pt1

has dihedral angles �
2

and �
3

.

The orbifold Euler characteristic of these Coxeter polytopes is calculated below (for
the 24–cell P1 , it is well known that �.P1/D 1).

Proposition 3.21 The Coxeter polytope Pt1
has Euler characteristic �.Pt1

/D 1.

Proof The isomorphism classes of the stabilisers are obtained from the information
about the dihedral angles of the faces of every dimension, that are either �

3
, �

2
or 0.
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Precisely, Figure 12 and Proposition 3.14 give

� 24 walls (with stabiliser Z=2Z);

� 88 faces with stabiliser Z=2Z�Z=2Z;

� 12 faces with stabiliser the dihedral group D3 (of order 6);

� 72 edges with stabiliser Z=2Z�Z=2Z�Z=2Z;

� 48 edges with stabiliser D3 �Z=2Z;

� 24 finite vertices with stabiliser D3 �Z=2Z�Z=2Z;

� 20 ideal vertices (with infinite stabiliser).

Therefore, we get

�D 1C 24 �
�
�

1
2

�
C 88 � 1

4
C 12 � 1

6
C 72 �

�
�

1
8

�
C 48 �

�
�

1
12

�
C 24 � 1

24

D 1� 12C 22C 2� 9� 4C 1D 1:

The proof is complete.

We will reprove that �.Pt1
/D �.P1/D 1 later on using two more different arguments.

Proposition 3.22 The Coxeter polytope PNt has Euler characteristic �.PNt /D
5
8

.

Proof This is easier than above: since the polytope is right-angled, the stabiliser of a
k –dimensional face is isomorphic to .Z=2Z/4�k . Therefore Proposition 3.16 gives

�D 1C 22 �
�
�

1
2

�
C 92 � 1

4
C 116 �

�
�

1
8

�
C 34 � 1

16
D

1
8
.8� 88C 184� 116C 17/D 5

8
;

and the proof is complete.

There are also two more interesting times t when � equals 2�
5

and 2�
3

. In both cases
the resulting Pt is however not a Coxeter polytope, because the angles do not divide � .

3.6 Volume

We now study the volume Vol.Pt / of the polytope Pt . Instead of a long computation
using the Poincaré formula, we just exhibit the value of the volume and verify it by
the Schläfli formula. Recall that the Schläfli formula can be applied only while the
combinatorics stays constant, therefore we need to consider three cases separately,
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for the first, second and last time interval. We know the initial data of these three
differential equations, because the Gauss–Bonnet formula for 4–orbifolds

Vol.O/D 4�2

3
�.O/

furnishes the volume of the Coxeter polytopes P1 and of Pt1
.

Instead of using t as a parameter, it is much more convenient to write Vol.Pt / in
function of the angles � and ' .

Proposition 3.23 When t 2 Œt1; 1�, the volume of Pt depends on the dihedral angles
� and ' as follows:

Vol.Pt /D
4�2

3

�
2�

3

�
� �

2

�
'C

6

�2
�'

�
:

Proof By Proposition 3.10 the only nonconstant dihedral angles are

� � at 12 red quadrilateral faces with angles �
2

, �
2

, ' , ' ;

� ' at 8 green triangular faces with angles � , � , � .

Therefore, the Schläfli formula gives

1

8
dVolD

�
' �

�

2

�
d� C

�
� �

�

3

�
d':

The orbifold Euler characteristic of the extremes is �.P1/D1D�.Pt1
/. The first equal-

ity is well-known, the second is proved in Proposition 3.21. (Actually, we only need
the first, and we reobtain the second now, providing a new proof of Proposition 3.21.)
Hence, by Gauss–Bonnet, the initial and final value of the volume is 4

3
�2 .

It is easy to check that the formula in the statement of the proposition satisfies this
Cauchy problem (recall that at the extremes the values of the angles are � D 0, ' D �

2

and � D �
3

, ' D 0, respectively). By uniqueness of the solution, the statement is
proved.

In the second and last time intervals, the only nonconstant dihedral angle is � , therefore
the volume decreases with � by the Schläfli formula. In the second time interval, the
formula for the volume simplifies and becomes linear in � .

Proposition 3.24 When t 2 Œt2; t1�, the volume of Pt depends on the dihedral angle
� as follows:

Vol.Pt /D
4�2

3

�
2�

3

�
�
�
:
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Proof The nonconstant dihedral angle is � at 12 right-angled red hexagons. Therefore,
the Schläfli formula gives

dVolD�4� d�:

Moreover, we know that Vol.Pt1
/D 4

3
�2 and �.t1/D �

3
.

We now analyse the last time interval. Recall the final collapse as t ! 0.

Proposition 3.25 When t 2 Œ0; t2�, the volume of Pt depends on the dihedral angle � ,
as follows:

Vol.Pt /D
4�2

3

�
2�

3

�
� C

3

�2

Z �

a

�.z�/ d z�

�
;

where aD arccos 1
3

and � depends on � as prescribed by Proposition 3.17. Moreover,
the volume tends to zero as t ! 0.

Proof Looking at Figure 14, the nonconstant dihedral angle is � at the 12 red
pentagons of Proposition 3.17. Therefore, the Schläfli formula gives

dVolD�4.� � �/ d�:

We know the initial datum at t D t2 from Proposition 3.24. The Schläfli formula is
satisfied and the first statement is proved.

The last statement may be proved geometrically by showing that Pt collapses onto the
three-dimensional P0 , with its ideal vertices staying fixed and the finite ones converging
to H3 . Alternatively, we can show that the value of the following Coxeter integral isZ �

a

arccos
�

cos �
1� 2 cos �

�
d� D

�2

3
:

This integral is not easy to compute directly; we instead give a geometric argument.
The Schläfli formula for a spherical polyhedron P is

dVol.P /D 1

2

X
i

li d˛i :

We apply that formula to the regular spherical tetrahedron T with dihedral angles � .
Recall that � is the length of an edge of T . Therefore, denoting by V .�/ the volume
of T , the formula becomes

dV .�/D 3� d�:
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t1t2Nt

4
3
�2

5
6
�2

Figure 19: The function Vol.Pt / . The polytope Pt changes its combinatorics
at the times t2 , t1 , 1 and is Coxeter at the times Nt , t1 , 1 .

Now, to get the initial and final data of the last differential equation, we analyse the
limit cases where � D aD arccos 1

3
and � D � . In the first case, the tetrahedron is a

point, thus

V .�/D 3

Z �

a

�.z�/ d z�

(this is not so surprising: compare with the Poincaré formula in Section 2.1). When
�D� , instead, the tetrahedron becomes a halfspace of S3 (the surface of the tetrahedron
becomes S2 tessellated by four regular spherical triangles with inner angles  D 2�

3
),

therefore

V .�/D 1
2

Vol.S3/D �2;

which gives the desired value for the Coxeter integral.

Corollary 3.26 The function t 7! Vol.Pt / is of class C 1 and shown in Figure 19.

4 The manifolds

We now use the deforming polytopes Pt to construct some deforming hyperbolic cone
four-manifolds Wt , Nt and Mt , each tessellated into a fixed number of copies of Pt .
The manifolds Wt and Mt are those needed for Theorems 1.2 and 1.1.
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Overview

We first construct a hyperbolic cone manifold Wt tessellated into eight copies of Pt .
The manifold Wt is constructed by mirroring Pt three times, one for each wall octet;
this is a particularly simple application of a colouring technique that we introduce in
Section 4.1. In fact Wt is the simplest interesting cone manifold that we can construct
from Pt .

The deforming cone manifold Wt has many symmetries and is relatively easy to analyse,
so we do this in some detail. As usual, we think of t moving backwards from the
initial time 1 in the interval .0; 1�. Along the path in .0; 1� we discover various types
of hyperbolic Dehn surgeries, and a final degeneration at t ! 0 similar to the one
described by Thurston in his notes [25]. This proves Theorem 1.2.

When t varies in the interval Œt1; 1�, the manifold Wt is quite like the one needed
for Theorem 1.1, except that it interpolates between a manifold and an orbifold. To
promote the orbifold to a manifold, we need to modify the construction: we build a
new cone manifold deformation Nt via a more complicated pattern, and then further
quotient it to get the Mt of Theorem 1.1.

The cone manifolds Wt , Mt and Nt that we construct here are not special in any
sense: there are many ways one can modify their construction to produce different
deforming cone manifolds from Pt with different types of behaviour. By taking finite
covers, one can also get infinitely many examples of various kinds. The only difficulty
in the overall process is, of course, that we are working in dimension four and hence
the combinatorial patterns are more complicated than in dimension three.

4.1 The colouring technique

How can we construct a hyperbolic cone manifold from a single polytope P ? A simple
method consists of colouring its walls and then mirroring P iteratively along them.

That is, we take a palette fc1; : : : ; ckg of colours and assign arbitrarily a colour to every
wall of P (we suppose that each colour ci is assigned to P at least once); then we
mirror P iteratively k times along its walls, one colour at a time.

More specifically, for every I D .i1; : : : ; ik/ 2 f0; 1g
k we fix a copy P I of P, and we

identify every point in a wall of P I coloured with ci with the corresponding point
in P I 0, where I 0 differs from I only in its i th coordinate.
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The resulting space is a hyperbolic cone manifold M tessellated into 2k copies of P.
If P is right-angled and all pairs of adjacent walls have different colours, then M is a
hyperbolic manifold (with no singularities).

This construction works in all dimensions and was used for instance in [15] with the
standard three-colouring of the ideal 24–cell P1 . It is now natural to extend it to Pt

for all t 2 .0; 1�.

4.2 A family Wt of hyperbolic cone four-manifolds

We now apply the colouring technique to our family Pt of deforming polytopes for
all t 2 .0; 1�.

Each polytope Pt in the family has either 24 or 22 walls, partitioned into letter,
negative and positive walls. We interpret this as a colouring of the walls of Pt with
three colours fL, N, Pg, and we define Wt to be the space obtained from Pt by
mirroring it as prescribed by this colouring, as explained above.

The space Wt is a hyperbolic cone manifold for all t 2 .0; 1�. It is tessellated into
23D 8 copies P

ijk
t of Pt , whose walls are identified according to the following cubic

scheme:
P000

t
N

L

P001
t

LP100
t

P

N

L

P101
t

P

L

P010
t

N
P011

t

P110
t N

P

P111
t

P

When t D 1, the polytope P1 is the right-angled ideal 24–cell and W1 is a nice and
very symmetric hyperbolic four-manifold with 24 cusps, each cusp having a cubic
3–torus section; this hyperbolic four-manifold was first described in [15, Example 2.9].
We now study Wt when t < 1.

The singular set †

When t < 1, the polytope Pt is not right-angled anymore, hence some singularities
appear in Wt . Luckily, only few faces in Pt are not right-angled, so the singularities
are easily detected.
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Proposition 4.1 The singular set † of Wt is the union of the green and red faces of
the eight copies of Pt .

Proof At every point x 2 @P that does not lie in a green or red face, the polytope is
locally right-angled and the adjacent walls have distinct colours. Therefore x becomes
a smooth point in Wt .

In particular, † is the closure of its 2–strata and we can describe it quite easily. Recall
from Figure 5 the names of some elliptic cone three-manifolds. We will also use the
following terminology.

Definition 4.2 We denote by Sn.˛/ the (hyperbolic, Euclidean or spherical) cone
n–manifold obtained by doubling the regular (hyperbolic, Euclidean or spherical)
n–simplex with dihedral angle ˛

2
(when it exists). All the .n�2/–dimensional strata

in Sn.˛/ have cone angle ˛ . In the Euclidean case we have cos ˛
2
D

1
n

and Sn.˛/ is
defined only up to rescaling.

By a closed k –stratum we mean the closure of a k –stratum.

Proposition 4.3 Each closed 2–stratum of †�Wt is either a green or red hyperbolic
surface as shown in Figure 20. Its cone angle is 4' and 2� , respectively.

There are 1–strata only when t 2 .0; t1/. The unit tangent space at a point in a 1–stratum
is S0 �S2.2�/.

There are 0–strata only in two disjoint time intervals, and these are the following:

� When t 2 .t1; 1/, there are 24 points with unit tangent space C2� �C4' .

� When t 2 .0; t2/, there are 8 points with unit tangent space S3.2�/.

Proof To understand †, we analyse all the vertices v of Pt and determine the
unit tangent space of their images in Wt . The vertices of Pt are fully described in
Propositions 3.13, 3.14, 3.15 and 3.16, and we refer to them.

We analyse the finite vertices v of Pt case by case. The link of v in Pt is always
some spherical tetrahedron � whose four faces are naturally coloured like the walls
they are contained in. We refer to Figure 17.

The unit tangent space of v in Mt is obtained by mirroring � along its faces according
to the colours.
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.t1; 1/ t1 .t2; t1/ t2 .0; t2/

2�2�
2�

4' 4'
�

�

�

�

Figure 20: Each closed 2–stratum of the singular set † of Wt is either
green or red and its topology is shown here, depending on t 2 .0; 1/ . The
green closed stratum is a sphere with three cone points of angle 2� (the cone
points are 0–strata) and arises only when t > t1 . The red closed stratum is
a cone torus for t > t1 , a twice-punctured torus for t D t1 and a compact
twice-holed torus with geodesic boundary for t 2 .t2; t1/; the topology of the
red closed stratum changes at t D t2 into an annulus: the geodesic boundary
is noncompact at t D t2 , and two boundary cone points arise when t 2 .0; t2/

with some angle � .

We note that a spherical tetrahedron with 4 right dihedral angles �
2

and two opposite
edges with dihedral angles ˛ and ˇ is a spherical join I˛ � Iˇ of two circle arcs of
length ˛ and ˇ .

(1) For every t 2 .0; 1/ the polytope Pt has 24 finite vertices v with link the
spherical join �D I� � I�=2 . The four faces of � are coloured as P, P, N, L,
with
� the edge I�=2 lying between the two faces coloured by P, that form a dihedral

angle � , and
� the edge I� lying between N and L, that form a dihedral angle �

2
.

By mirroring � along L we get I� � I� and by then mirroring along N we get
I� �S1 . Finally, by mirroring the result along P we get C2� �S1 . Therefore
the vertex v in Wt is an interior point of some 2–stratum of †.

(2) When t 2 .t1; 1/ the polytope Pt has 24 vertices v with link I� �I' . Similarly
as before, the resulting unit tangent space in Wt is C2� �C4' .

(3) When t 2 .0; t1/, the polytope Pt contains some (either 16 or 8) vertices v with
link a spherical tetrahedron with three edges sharing a vertex having dihedral
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angle � , while the other three have dihedral angle �
2

. Three faces are coloured
with P and one with either N or L. By mirroring along N or L we get S0 �T ,
where T is the equilateral spherical triangle with inner angles � . By mirroring
the result along P we get S0 � S2.2�/. Therefore v in Wt belongs to the
1–stratum of †.

(4) When t 2 .0; t2�, the polytope Pt contains 2 vertices v with link a spherical
regular tetrahedron with all dihedral angles � and all faces coloured by P. By
mirroring it we get S3.2�/.

This discussion determines the possible unit tangent spaces at every point of Wt for all
times t 2 .0; 1/, since the vertices contain all the relevant information.

The 2–strata in Figure 20 are obtained by analysing the effect of the mirroring to the
green and red polygons of Figure 16. Each side e of every green or red polygon f is
naturally coloured by the colour of the unique wall that is incident to e but does not
contain f (every edge in a simple polytope is incident to three walls). By applying the
mirroring technique we get the 2–stratum. Here are the details:

� The three sides of the green triangles are coloured with P, the triangle is mirrored
and gives a green sphere S2.2�/ with three cone points of angle 2� , and this is a
closed 2–stratum.

� The horizontal and vertical sides of the red polygon in Figure 16 are coloured by L
and N, so at t > t1 the polygon is a quadrilateral and is mirrored twice to give a torus
with two cone points of angle 4' , and each torus is tessellated by four rectangles and
forms a closed stratum; when t < t1 , the diagonal sides are coloured with P and are not
mirrored: they form the (yellow) boundary of the 2–stratum (which consists of closed
1–strata).

The proof is complete.

Corollary 4.4 When t 2 .t1; 1/, the singular set † is an immersed geodesic surface
made of 12 cone tori and 8 cone spheres, intersecting in 24 points.

The intersection pattern of the red cone tori and green cone spheres is shown in Figure 21,
left. The figure then shows the evolution of † when t > t2 .

Note that for all t 2 .0; 1� the unit tangent spaces are cone manifolds always supported
on the sphere S3 . Therefore the cone manifold Wt is always supported on a four-
manifold.

Here is another important consequence of Proposition 4.3.
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.t1; 1/ t1 .t2; t1/

Wt Wt1 Wt

Figure 21: The evolution of the singular locus † of Wt . Left: when t 2 .t1; 1/ ,
the singular locus † consists of 12 red cone tori (with two singular points)
and 8 green cone spheres (with three singular points) that intersect transversely
precisely in their 24 singular points. Centre: when t D t1 , the cone spheres
disappear to infinity and the 12 cone tori transform into punctured tori: triples
of punctures of distinct tori go to the same cusp in Wt1 . Right: when t 2 .t2; t1/ ,
the cusps in Wt1 are filled with small simple closed geodesics and each twice-
punctured torus transforms into a twice-holed compact torus with geodesic
boundary consisting of two of these small geodesics; twice-holed tori and
closed geodesics are represented as red edges and yellow vertices, respectively.
The evolution continues with the interval .0; t2� , but we do not draw it here.

Corollary 4.5 When t D t1 , the hyperbolic cone manifold Wt1
is an orbifold. Its

singular set † consists of 12 red twice-punctured tori with cone angle 2�
3

.

Proof At t D t1 , we have 2� D 2�
3

.

We have shown that the family Wt with t 2 Œt1; 1� interpolates between a manifold for
t D 1 and an orbifold for t D t1 . We now analyse the cusps of the whole family.

The cusps

Recall the notation introduced in Definition 4.2. The type of a cusp is the homeo-
morphism type of a Euclidean cone 3–manifold section (we only determine the homeo-
morphism type, not the isometry type.)
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Proposition 4.6 For every t 2 .0; 1� the hyperbolic cone four-manifold Wt has 12

cusps of three-torus type, plus some additional cusps only at the critical times:

� When t D 1, there are 12 additional cusps of three-torus type.

� When t D t1 , there are 8 additional cusps of type S2
�

2�
3

�
�S1 .

� When t D t2 , there are 8 additional cusps of type S3
�
2 arccos 1

3

�
.

Proof Every ideal vertex v of Pt has a Euclidean link �, a Euclidean polyhedron
whose faces are coloured by the walls in Pt they are contained in. Each ideal vertex of
Pt gives rise to some cusps in Wt whose Euclidean sections are obtained by mirroring
� according to the colours. We refer to Figure 18. Here are the details:

� For every t 2 .0; 1/ the polytope Pt has 12 ideal vertices v whose link is a
parallelepiped, with opposite faces coloured with P, N and L. Each parallelepiped gives
rise to a cusp of three-torus type.

� When tD1, the 24–cell P1 has 12 more ideal vertices, identical to the 12 analysed
above.

� When t D t1 , the polytope Pt has 8 additional ideal vertices, whose link is a right
prism with triangular base. The two base triangles are coloured in N and L, while the
lateral faces have P. By mirroring we get the 8 additional cusps of type S2

�
2�
3

�
�S1 .

� When t D t2 , the polytope Pt has 2 additional ideal vertices, whose link is a regular
tetrahedron �, with all faces coloured with P. By mirroring we get 8 cusps of type
S3
�
2 arccos 1

3

�
. (If we mirror along a colour that is not there, we just take two disjoint

copies of the object, and this applies here twice to the missing colours L and N.)

The proof is complete.

The surgeries

At the critical times 1, t1 and t2 , the cone manifold Wt changes by some surgeries
that we now analyse. Recall that W1 is a cusped hyperbolic four-manifold with 24

cusps and no singularities. As usual, we start with W1 and we run t backwards.

Proposition 4.7 As soon as t < 1, the cone manifold Wt modifies from W1 by Dehn
filling twelve cusps with twelve red cone tori.

Topologically, each of these 12 cusps is diffeomorphic to S1 �S1 �S1 � Œ0;C1/

and is replaced by a “solid torus” S1 �S1 �D2 . Each new red cone torus is a core
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S1 �S1 � f0g of one such solid torus: its area, 4� � 8' , and its cone angle, 2� , are
both arbitrarily small when t is close to 1, and they increase as t tends to t1 , like in
the familiar three-dimensional hyperbolic Dehn filling picture. When t ! t1 , the cone
angle 2� tends to 2�

3
.

Recall that the singular set † contains also 8 green cone spheres whose cone angles
vary from 2� to 0 as t goes from 1 to t1 .

Proposition 4.8 At the critical time t1 the 8 green cone spheres are drilled and create
8 new cusps. As soon as t < t1 , the 8 cusps are filled with 8 yellow small closed
geodesics.

Every green cone sphere has a tubular neighbourhood homeomorphic to S2�D2 , and
the drilling substitutes it with a cusp homeomorphic to S2�S1� Œ0;C1/. Recall that
we are in a cone manifold (or orbifold) context: the S2 factor is the flat cone sphere
S2
�

2�
3

�
, hence S2 �S1 is a flat cone three-manifold.

As soon as t < t1 , each such cusp is substituted with a D3 �S1 . The new core closed
curve f0g �S1 is a small closed geodesic.

Remark 4.9 The substitution of an S2 (with trivial normal bundle) with an S1 is a
common topological surgery in dimension four: it consists in replacing an embedded
S2 �D2 with D3 � S1 , glued along the same boundary S2 � S1 . We have just
discovered an example where the surgery may be realised as a smooth path of hyperbolic
cone four-manifolds. Both the cores S2 and S1 are geodesic all along the path. We
call this path a hyperbolic Dehn surgery in Theorem 1.2.

A similar, but different, kind of hyperbolic surgery arises at the next critical time. We
start by noticing the following:

Proposition 4.10 When t 2 .t2; t1/, the manifold Wt contains four geodesic copies
of the hyperbolic cone three-manifold S3.2�/, which collapse when t ! t2 . At the
critical time t2 , these are drilled and create 8 new cusps. As soon as t < t2 , the 8 cusps
are filled with 8 four-balls.

Proof When t 2 .t2; t1/, each letter wall G and H is a hyperbolic regular tetrahedron
with dihedral angle � ; when mirrored in Wt , these walls form four geodesic copies
of S3.2�/. When t ! t2 , these walls collapse to ideal vertices, which become finite
as soon as t < t2 .
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Each geodesic S3.2�/ has a tubular neighbourhood homeomorphic to S3 � Œ�1; 1�,
and the drilling substitutes it with two cusps, each homeomorphic to S3 � Œ0;C1/.
Here S3 is the flat S3.2�/, since cos.�/D 1

3
at the critical time t2 .

As soon as t < t2 , each cusp is filled with a D4 . We will determine the topology of Wt

when t < t2 in the next section.

Remark 4.11 The substitution of an S3 (with trivial normal bundle) with an S0 is
another common topological surgery in dimension four: we substitute S3 �D1 with
D4�S0 , glued along the same boundary S3�S0 , and we have just discovered that it
can also be realised as a smooth path of hyperbolic cone manifolds. It is also called a
hyperbolic Dehn surgery in Theorem 1.2.

Remark 4.12 The topology of Wt in the last interval .0; t2/ is surprisingly simple:
we will show in Proposition 4.13 below that Wt is diffeomorphic to a product C �S1 ,
where C is some cusped hyperbolic 3–manifold when t 2 .0; t2/.

Therefore the manifold Wt for t 2 .t2; t1/ is obtained from C �S1 by a simple surgery,
the replacement of four copies of S0 with four S3 , and hence Wt is diffeomorphic to
.C �S1/ #4 .S

1 �S3/ when t 2 .t2; t1/.

Finally, the manifold Wt for t 2 .t1; 1/ is obtained from the latter by one more surgery,
which replaces eight copies of S1 with eight S2 . We can build a five-dimensional film
interpretation of this topological process: start with C �D2 , then add four 1–handles,
and eight 2–handles.

Orbifolds

We have already noted that Wt is an orbifold at t D t1 , whose singular locus is a
surface with cone angle 2�

3
. There is also one more orbifold in the family Wt , of a

quite different nature: at the time t D Nt the singular set † is a foam (a two-dimensional
complex with generic singularities) with all cone angles � ; the singularities are locally
like those of the double of a right-angled polytope.

Summing up, the cone manifold Wt is an orbifold at the times

1; t1 D
p

3=5; Nt D
p

1=3:

These correspond to the times when Pt is a Coxeter polytope. In fact the colouring
technique furnishes regular orbifold coverings such that

P1 DW1=.Z=2Z/3; Pt1
DWt1

=.Z=2Z/3; PNt DWNt=.Z=2Z/3:
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Figure 22: In the last time interval .0; t2/ , the four odd (or even) positive
walls of the polytope Pt form an ideal right-angled cuboctahedron Q with
centre v , pleated along six red pentagons. In the picture, the edges of Q are
black. The faces of Q are divided as follows: (i) four ideal triangles, each a
common face of an odd wall iC with its negative counterpart i� ; (ii) four
ideal triangles, each subdivided by the red pleats into three quadrilaterals,
all faces of the same even negative wall; (iii) six ideal quadrilaterals, each
subdivided by a red pleat into two quadrilaterals, both faces of the same letter
wall. The edges of each positive wall are coloured as follows: the black edges
are contained in edges of Q , the blue edges are contained in faces of Q (they
are the red edges of the even negative and letter walls in Figure 13), the yellow
edges are contained in the interior of Q and intersect in the centre v of Q .
Each pleating pentagon is a red face of an odd positive wall and in the picture
has three blue edges and two yellow edges.

The three orbifolds Wt are arithmetic, since Pt is (see Section 3.3). Moreover,

�.W1/D 8; �.Wt1
/D 8; �.WNt /D 5

as a consequence of Propositions 3.21 and 3.22. We will prove in Proposition 4.13 that
the underlying space of WNt is topologically a product C �S1 .

The final degeneration

We now study Wt as t ! 0 and show that Wt degenerates to a hyperbolic three-
manifold.

We already know that the polytope Pt tends to the three-dimensional ideal right-angled
cuboctahedron P0 shown in Figure 22. The cuboctahedron P0 can be naturally coloured
with two colours, one assigned to the triangles and the other to the quadrilaterals. Let C
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be the hyperbolic three-manifold constructed from P0 by mirroring it according to this
colouring: the three-manifold C is tessellated into four copies of P0 and we call it the
cuboctahedral manifold. The cuboctahedral manifold has 12 toric cusps, one for each
ideal vertex of P0 .

We now completely determine the topology of Wt in the last interval .0; t2/, as
anticipated in Remark 4.12.

Proposition 4.13 When t 2 .0; t2/, the manifold Wt is diffeomorphic to C �S1 .

Proof When t 2 .0; t2/, we see from Figure 14 that the four positive walls of the same
parity (say odd, hence 1C , 3C , 5C and 7C ) intersect in a vertex v of Pt whose link
is a regular tetrahedron with dihedral angles � ; there are two vertices like that — see
Proposition 3.16(4).

We now consider these four positive walls altogether as a single wall Q, pleated along
some faces; Figure 22 shows that Q is a cuboctahedron, pleated along six red pentagons
with pleating angle � . Since we are interested only in the topology of Wt , we may
ignore the pleating (that is, we pretend that � D � ).

Combinatorially, the polytope Pt is isomorphic to the prism Q � I over Q. The
horizontal walls Q� f0; 1g are the two positive (even and odd) cuboctahedra. The
lateral walls are

� the 6 letter walls, which are prisms over the ideal quadrilaterals of Q, and

� the 8 negative walls, which are prisms over the ideal triangles.

(Remember that we ignore the pleats and treat two faces of a wall adjacent along a red
edge as the same face). The manifold Wt is obtained from Q� I via the colouring
technique and is hence diffeomorphic to C �S1 .

Now, recall the fixed cuboctahedron P0DPt \H3 described at the end of Section 3.4.
As t ! 0, the nonright dihedral angles of Pt tend to � and the polytope collapses
to the polyhedron P0 . Correspondingly, when the cone angles of the hyperbolic
cone manifold Wt tend to 2� , the hyperbolic structure degenerates to that of the
cuboctahedral manifold C , in a way that we now state precisely.

Let a holonomy representation of a hyperbolic cone manifold be a holonomy represen-
tation of its regular locus (the representation is unique up to conjugation). Here our
construction furnishes for every t 2 .0; 1/ a holonomy representation

�t W �1.Wtn†t /! Isom.H4/:
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Let �W �1.C /! Isom.H3/ < Isom.H4/ be the faithful and discrete representation of
the cuboctahedral manifold C .

Proposition 4.14 As t ! 0, the representation �t converges algebraically to a repre-
sentation �0 with Im.�0/D Im.�/.

Proof For every g 2 �1.Wt n†t / the isometry �t .g/ is a composition of reflections
along the hyperplanes defining the polytope Pt .

As t! 0, each halfspace 0C; 0�; : : : ;E ;F converges to some halfspace whose bound-
ary hyperplane is either H3 or orthogonal to H3 . This shows that �t .g/ converges to
a �0.g/ contained in the image of � . By analysing the generators of �1.Wt n†t / we
get Im.�0/D Im.�/.

This degeneration is similar to the one famously described by Thurston [25], where a
family of hyperbolic cone structures on a Seifert fibred manifold degenerates to the
hyperbolic structure of the base orbifold as the cone angle approaches 2� .

The proof of Theorem 1.2 is complete.

The family is analytic

We remark that the deformation Wt is analytic in the following sense: the holonomy
�t .
 / of an element 
 2 �1.Wt n†t / varies analytically in t , because it is a product
of reflections along hyperplanes dual to space-like vectors that vary analytically in t .

Note that the topology of Wt n†t changes only at the critical times 1 and t2 . One can
check that there is a natural embedding �1.Wt2�" n†t2�"/ ,! �1.Wt2C" n†t2C"/, so
the above definition actually makes sense also when t crosses t2 .

4.3 The deforming cone manifolds Nt

In the previous section we have constructed an interpolation between a manifold W1

and an orbifold Wt1
through hyperbolic cone manifolds Wt with t 2 Œt1; 1�, whose

singular locus † is an immersed surface with varying cone angles. This interpolation
is similar to the one required by Theorem 1.1, the main difference being that Wt1

is
“only” an orbifold and not a manifold. In order to prove Theorem 1.1, in this section
we now need to promote the orbifold Wt1

to a manifold. To do so, we construct a new
manifold Nt by assembling some copies of Pt via a more complicated pattern than
the one realising Wt .
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The orbifold Wt1
contains a singular red surface (which consists of some punctured

tori) with cone angle 2�
3
D 2� . We get this cone angle because every red quadrilateral

in Pt has dihedral angle � , and meets two copies of Pt in Wt . We now modify the
construction of the previous section, so that each quadrilateral will meet six copies of Pt ;
this will make a total cone angle 6� D 2� at t1 and hence the singularity will disappear.

To this purpose, we still use the P/N/L colouring of the walls of Pt , we still mirror
Pt along N and L, but we glue the positive walls altogether with a more complicate
pattern, that ensures that each red quadrilateral in the resulting complex has valence
6 instead of 2. This more complicate pattern is constructed by transposing into this
context the famous triangulation of the figure-eight complement with two tetrahedra:
the nice feature of this triangulation is that all edges have valence 6, and this is exactly
what we need here.

The figure-eight knot pattern

We start by studying the symmetries of Pt .

Lemma 4.15 For every bijection

� W f1C; 3C; 5C; 7Cg ! f0C; 2C; 4C; 6Cg

there exists a unique symmetry s 2K of the polytope Pt such that s.i /D �.i / for
every i 2 f1C; 3C; 5C; 7Cg and for all t 2 .0; 1�.

Proof Recall from Section 3.2 the group of symmetries K of Pt and its subgroup H.
The group H acts on both sets f1C; 3C; 5C; 7Cg and f0C; 2C; 4C; 6Cg as their per-
mutation group, and the roll symmetry R exchanges the two sets.

Note that, when t 2 .t1; 1/, each positive wall is adjacent to all the other positive
walls of the same parity and there are no triple intersections among positive walls;
see Figure 11. Therefore, the four odd (resp. even) positive walls are arranged with
the combinatorial pattern of a three-dimensional regular ideal tetrahedron: each wall
corresponds to a face of the tetrahedron, while each red quadrilateral (intersection of
two walls) corresponds to an edge of the ideal tetrahedron.

Consider the two ideal regular tetrahedra of Figure 23. We identify each four-tuple of
walls

f1C; 3C; 5C; 7Cg; f0C; 2C; 4C; 6Cg

with the faces of the left and right ideal tetrahedron, as shown in the figure.
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F

J

J

RP F
P R

3C

1C

7C
5C

4C

0C

2C
6C

Figure 23: This is the ideal triangulation of the figure eight knot complement.
We identify the odd (even) positive walls with the four faces of the left (right)
tetrahedron, as shown here. Front faces are labelled in black and back faces
in blue. The two resulting edges of the triangulation have valence six and are
dotted in red and white.

The letters F, J, P, R in the figure determine a well-known face-pairing of the two
tetrahedra: this is the face-pairing giving rise to the ideal triangulation of the figure-eight
knot complement. It has the following nice combinatorial features:

� Each edge in the resulting combinatorial triangulation has valence 6.

� The return maps around the two edges are trivial.

The face-pairing of Figure 23 induces a wall-pairing

S D fs1C ; s3C ; s5C ; s7Cg

between the odd and even positive walls of Pt . Each si is an isometry from i to some
even positive wall, determined as follows. Every i 2 f1C; 3C; 5C; 7Cg corresponds to
a face of the left tetrahedron, which is glued to some face of the right one according to
the pattern shown in Figure 23. The gluing extends to a unique isometry between the
two tetrahedra, which induces a bijection

� W f1C; 3C; 5C; 7Cg ! f0C; 2C; 4C; 6Cg:

The bijection in turns determines a symmetry si of Pt by Lemma 4.15, that restricts
to an isometry between i and �.i /. Note that the face-pairing S glues the wall G

to H exactly with the pattern of Figure 23.

For instance, the symmetry s1C sends 1C to 0C (the two faces in Figure 23 have the
same letter P), and by looking at the orientation of the letter P we also see that s1C
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acts as follows:
3C! 4C; 7C! 6C; 5C! 2C:

This determines the isometry s1C between the walls 1C and 0C . Following this recipe,
it is not difficult to check that the wall-pairings in S are restrictions of the following
isometries of H4 and symmetries of Pt :

s1C W .x0;x1;x2;x3;x4/ 7! .x0;x3;x1;�x2;�x4/;

s3C W .x0;x1;x2;x3;x4/ 7! .x0;x2;x3;�x1;�x4/;

s5C W .x0;x1;x2;x3;x4/ 7! .x0;�x3;x1;x2;�x4/;

s7C W .x0;x1;x2;x3;x4/ 7! .x0;x2;�x3;x1;�x4/:

Note that all such symmetries are orientation-preserving. This implies that the resulting
cone manifold Nt (defined in the following paragraph) will not be orientable.

The manifolds Nt

Finally, we are ready to define the desired cone manifold Nt .

Definition 4.16 Let Nt be the hyperbolic cone manifold obtained by picking four
copies P

ij
t for i; j 2 f0; 1g of the polytope Pt and by pairing their walls as follows:

(1) Identify every L wall in P
0j
t with the corresponding wall in P

1j
t .

(2) Identify every N wall in P i0
t with the corresponding wall in P i1

t .

(3) Identify the P walls in P
ij
t in pairs via the wall-pairing S .

In (1) and (2) we identify the corresponding walls using the identity map. We do the
identifications (1), (2) and (3) for all i; j 2 f0; 1g.

The hyperbolic cone manifold Nt is defined for all t 2 .0; 1�, but we will be interested
essentially in the interval Œt1; 1�.

The idea lying behind this construction is that everything should work locally like
with Wt , except that now every red quadrilateral is incident to six copies of Pt instead of
two and hence Nt1

will be a manifold and not an orbifold. We now analyse Nt carefully.

The singular set †

As for Wt , we start by analysing the singular set †.

Proposition 4.17 The singular set † of Nt is the union of the green and red faces of
the four copies of Pt .
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Proof Let x 2 @Pt be a point that does not lie in a green or red face. The point x is
contained in one, two or three walls that are pairwise at right angles and have distinct
colours. Since the identifications of the walls L and N are just mirrors, and that of the
walls P preserves the colourings L and N, one sees easily that x becomes a smooth
point in Nt .

As for Wt , to understand the singular set † of Nt it suffices to analyse the green and
red faces of Pt .

Proposition 4.18 When t 2 .t1; 1/, the singular set † is a geodesically immersed
surface †D T0[T 0

0
[T1 , the union of two disjoint red cone tori T0 tT 0

0
and a green

cone torus T1 , with cone angles 6� and 4' , respectively, intersecting in four points.
The three tori have trivial normal bundles.

Proof To understand †, we analyse all the finite vertices v in Pt and determine the
unit tangent space of their images in Nt , as in the proof of Proposition 4.3. We refer
to Figure 17.

By Proposition 3.13 there are two types of vertices v to analyse, with spherical link
�D I�=2 �I� or I' �I� . The two types are considered similarly, so we only focus on
I' � I� . The four faces of � are coloured as P, P, N, L. After mirroring along negative
walls, the link becomes I2' � I� and then, mirroring along the letter walls, we get a
link C4' � I� .

The join C4' �I� has two “faces” coloured as P, each isometric to a spherical disc with
a cone point 4' in its centre, tessellated into four triangles. In contrast to Wt , the P
faces here are not doubled: they are paired according to the pattern of Figure 23. Since
every edge has valence 6 in this pattern, 6 copies of C4'�I� are glued cyclically. Since
the return map around every edge in Figure 23 is the identity (and not an edge reversal),
the 6 copies are glued cyclically also with a trivial return map, giving rise to C4' �C6� .

We have discovered that the link of v is S1 � C6� or C4' � C6� , according to the
vertex type. We deduce that † is an immersed geodesic surface, made up of embedded
orthogonal red and green surfaces having cone angles 6� and 4' .

A simple analysis on the topology of † shows that it consists of:

� Two red cone tori as in Figure 20, bottom-left, each with two cone points of
angle 4' , as we had in Wt .
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� One green cone torus with four cone points of angle 6� , which decomposes
into eight green equilateral triangles like the single torus cusp section of the
figure-eight knot complement triangulation in Figure 23.

It is also quite easy to check that their normal bundles are trivial.

Corollary 4.19 When t 2 Œt1; 1�, the family Nt interpolates analytically between two
cusped hyperbolic manifolds N1 and Nt1

.

Proof The cone manifolds N1 and Nt1
have no singularities, since 4' and 6� are

either 0 or 2� for these values.

In the interpolation, the red tori are drilled at t D 1 and the green tori are drilled at
t D t1 , producing new cusps.

The cusps

We now study the cusps of Nt .

Proposition 4.20 The cone manifold Nt has

� three cusps at t D t1 ,

� two cusps when t 2 .t1; 1/,

� four cusps at t D 1.

The section of each cusp is a flat three-torus.

Proof We refer to Figure 18 for the links of the ideal vertices of Pt .

For t 2 .t1; 1/, consider the 12 ideal vertices v of Pt . The link of v is a parallelepiped
with faces coloured in P, N, L. Recall that opposite faces share the same colour, and if
their colour is P or N, then they have opposite parity. By mirroring the parallelepiped
along N and L we get S1 �S1 � I. The pairing of the P faces then form some cycles.
Each cycle gives a cusp and is a flat mapping torus with fibre S1 �S1 .

We now determine these cycles and the resulting mapping tori. We denote the 12

parallelepipeds as

C01; C21; C61; C03; C23; C43; C05; C45; C65; C27; C47; C67;

where Cij is the link of the ideal vertex of Pt adjacent to the four numbered walls i˙

and j˙ (and two letter walls; see Proposition 3.13). A computation shows that there
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are two cycles,

C01[s
1C

C03[s
3C

C23[s
3C

C27[s
7C

C45[s
5C

C61[s
1C

C01;

C05[s
5C

C65[s
5C

C67[s
7C

C47[s
7C

C43[s
3C

C21[s
1C

C05:

Therefore there are two cusps. The fact that each cycle has an even number of elements
implies that both cusp sections are three-tori. Indeed, each si glues the odd P rectangle
of a parallelepiped to the even P rectangle of the subsequent one; the opposite edges
of each such rectangle are both coloured in N or L, and si preserves the colouring
but exchanges the parity of N; it also inverts the natural orientation of the rectangle;
however, since we compose an even number 6 of them, we get a mapping torus with
monodromy

�
�1

0
0
1

�6
D
�

1
0

0
1

�
.

The additional cusps are obtained by drilling tori having trivial normal bundles, therefore
they are also of three-torus type.

Remark 4.21 We have here a third independent argument to show that Vol.Pt1
/D

Vol.P1/D
4�2

3
, after Propositions 3.21 and 3.23. The manifold Nt1

is topologically
obtained from N1 by Dehn surgeries (first filling and then drilling along different tori),
and these operations do not modify the Euler characteristic of a four-manifold. Therefore
�.Nt1

/D �.N1/, which implies Vol.Nt1
/DVol.N1/ and hence Vol.Pt1

/DVol.P1/.

Actually, an analogous reasoning could have been done in the previous section for W1

and Wt1
in the orbifold context.

Remark 4.22 The hyperbolic manifold Nt1
contains a geodesic hypersurface diffeo-

morphic to the figure-eight knot complement. It comes from gluing together the walls
G and H in P00

t , which are regular ideal tetrahedra when t D t1 . This confirms the
recent discovery that the figure-eight knot complement embeds geodesically [24].

The cone manifold Wt is tessellated into eight copies of Pt , while Nt is tessellated into
only four. Therefore we have �.N1/D �.Nt1

/D 4. (Recall that Vol.N /D 4�2

3
�.N /

for every hyperbolic 4–dimensional orbifold N .)

In the next section we will quotient Nt to a new cone manifold Mt and further cut the
Euler characteristic by two.

Another Dehn filling

We only say few words on the cone manifolds Nt when t < t1 . We note that as soon
as t < t1 the cone angle 6� is greater than 2� and Nt is not supported on a manifold

Geometry & Topology, Volume 22 (2018)



Hyperbolic Dehn filling in dimension four 1709

any more. Indeed, as soon as t < t1 , the topology of Nt changes from that of Nt1
by a

Dehn filling that is different from the ones already considered and that was mentioned in
the introduction: it consists of the collapsing of one S1�S1 factor in the S1�S1�S1

shape of the cusp, which produces a small simple closed geodesic (as was mentioned
in the introduction). This type of Dehn filling was already considered in [7; 8].

4.4 The manifolds Mt

The family Nt with t 2 Œt1; 0� is quite like the Mt required for proving Theorem 1.1,
except that the singular set † contains two red tori instead of one and a green torus
instead of a green Klein bottle (see Proposition 4.18). We now construct Mt as a
quotient Mt DNt=�, where � is an appropriate fixed-point-free isometric involution
that interchanges the two red tori (and the two cusps of Mt ).

To construct �, we exploit the well-known fact that the figure-eight knot complement
has a fixed-point-free isometric involution � that permutes the two ideal tetrahedra
in Figure 23 and the two edges, producing the nonorientable Gieseking manifold as
a quotient (with a single tetrahedron and a single edge). Looking at Figure 23, the
involution � sends the left tetrahedron to the right by acting on the faces as

1C! 4C; 3C! 6C; 5C! 2C; 7C! 0C:

This corresponds to the isometric involution of Pt

r W .x0;x1;x2;x3;x4/ 7! .x0;�x1;�x2;�x3;�x4/:

The fact that � is an isometry of the figure-eight knot complement implies that �
preserves the identifications of the faces in Figure 23, and this translates into the
following equalities for r that one can verify directly, since s7C D s�1

1C
, s5C D s�1

3C
,

and r commutes with them:

r D s7Crs1C D s5Crs3C D s3Crs5C D s1Crs7C :

These equalities say that r preserves the identification between the positive walls of Pt

and, since r also preserves the N and L colours, it descends to an isometric involution
r W Nt !Nt that acts as described on each copy P

ij
t of Pt .

The involution r W Nt !Nt has four fixed points: the four centres of the P
ij
t (there is

no x 2 Pt that is identified with r.x/ through the wall-pairing S ). To eliminate these
fixed points, we define

�D h ı r;
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where h is the isometric involution of Nt that sends P
ij
t to P

1�i;1�j
t via the identity

map for each i; j 2 f0; 1g. (The isometries h and r commute.) The isometry � is
fixed-point-free. Therefore the quotient Mt DNt=� is a hyperbolic cone manifold.

The involution � exchanges the two red tori in the singular set of Mt , hence the
singular set † of Mt contains a single red torus; it acts on the green torus as a
fixed-point-free orientation-reversing involution, hence † also contains a green Klein
bottle, tessellated into four equilateral green triangles like in a cusp section of the
Gieseking manifold. (Similar to Remark 4.22, the hyperbolic manifold Mt1

contains a
geodesically embedded copy of the Gieseking manifold.)

Proposition 4.23 Both T and K have trivial normal bundle in Mt .

Proof The tori T0 , T 0
0

and T1 in Nt have trivial normal bundles. Therefore T does
too, and the normal bundle of K is .T1 �D2/=�, where � sends .x; z/ to .i.x/;�z/.
The resulting bundle is easily seen to be isomorphic to K �D2 .

The proof of Theorem 1.1 is complete — it only remains to rescale and invert linearly
the time parameter t from Œ1; t1� to Œ0; 1�.

4.5 Commensurability

We prove here the following:

Proposition 4.24 The hyperbolic arithmetic four-manifolds M0 and M1 of Theorem
1.1 are not commensurable.

Proof We first prove that the manifolds M0 and M1 are commensurable to the
orbifolds P1 and Pt1

, respectively (recall the time reparametrisation for Mt at the
end of the last section).

The manifold M0 is clearly commensurable with N1 . The manifold N1 is constructed
by gluing some identical copies of P1 along some isometric pairings of their facets.
The isometric pairings that we used are in fact all restrictions of some isometry of P1 ,
hence M0 is a covering of the orbifold P1=Isom.P1/ and therefore M0 and P1 are
commensurable. The argument for M1 and Pt1

is the same.

The thesis now follows from Proposition 4.25 below.
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We now concentrate on the Coxeter polytopes P1 and Pt1
, and actually on their

quotients Q1 and Qt1
. We already know that they are both arithmetic, hence the

manifolds M0 and M1 also are.

Recall that two subgroups �1; �2 < Isom.Hn/ are commensurable (in a wide sense) if
there is a g 2 Isom.Hn/ such that the intersection of g�1�1g and �2 has finite index
in both. This is an equivalence relation.

We briefly describe a procedure due to Maclachlan [16] to detect the commensurability
class of any arithmetic hyperbolic reflection group � < Isom.Hn/ of finite covolume.
We assume for simplicity that nD 4 and � is not cocompact (thus the field of definition
is Q). We also refer to [10, Section 4; 12, Section 5.1.2].

Notation and facts

We use the following notation:

� For a; b 2Q� , we denote by .a; b/ the associated quaternion algebra over Q.
� The symbol ˝ is the tensor product over Q.
� Br.Q/ is the Brauer group of the field Q.
� For a central simple Q–algebra B , we let ŒB�2Br.Q/ be the Brauer equivalence

class of B .

Recall that the Brauer group is an abelian group. The group operation is given by
ŒB1� � ŒB2�D ŒB1˝B2�. In the Brauer group, the class of any quaternion algebra has
order two. Vice versa, any order-two element of Br.Q/ is represented by a quaternion
algebra.

For any Q–quaternion algebra B there are algorithms to compute its ramification set,
which is a finite set of even cardinality whose elements are prime numbers or 1. The
ramification set is a complete invariant of the isomorphism class of B as a quaternion
algebra. It is empty if and only if B 'M2.Q/ if and only if ŒB�D 1 2 Br.Q/.

Moreover, for any Q–quaternion algebras B1 and B2 , up to equivalence there exists
a unique quaternion algebra B such that ŒB1� � ŒB2�D ŒB� 2 Br.Q/. Hence, it makes
sense to talk about the ramification set of ŒB1 ˝B2� as the ramification set of the
quaternion algebra B . This set is the symmetric difference of the ramification sets of
B1 and B2 .

The commensurability classes of nonuniform arithmetic lattices of the Lie group
Isom.H4/ are in bijection with the isomorphism classes of quaternion algebras over Q,
which are classified by their ramification sets.
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The algorithm

Given N unit space-like vectors ei 2 R1;4 for i D 1; : : : ;N defining the reflection
group � , the following algorithm gives a finite set of prime numbers or 1 which
characterises the commensurability class of � :

(1) Compute the Gram matrix G D .gij /ij of � , that is, gij D hei ; ej i.

(2) Determine all vectors of the form vi1;:::;ik
D g1;i1

gi1;i2
: : :gik�1;ik

eik
.

(3) The Q–vector space V D spanQfvi1;:::;ik
g has dimension 5. Determine a Q–

basis B D fv1; : : : ; v5g of V .

(4) Consider the associated quadratic form qG over V ; it is of signature .4; 1/.
Compute the matrix Q of the form qG with respect to the basis B . Diagonalise
the form, to get a diagonal matrix D D diag.a1; : : : ; a5/, with ai 2Q� .

(5) Compute the Hasse invariant s.qG/ D
�N

i<j .ai ; aj /
�
2 Br.Q/ and the Witt

invariant c.qG/D s.qG/ � Œ.�1;�1/� 2 Br.Q/.

(6) Compute the ramification sets of s.qG/ and c.qG/. To this aim, we will often
use [10, Propositions 4.13 and 4.15].

We apply the algorithm to discover the following.

Proposition 4.25 The 24–cell P1 is commensurable with PNt and is not commensu-
rable with Pt1

.

Proof We apply the algorithm to the arithmetic Coxeter polytopes Q1 , Qt1
and QNt .

Recall that the vectors A , L, M, N are constant, in contrast with 0C , 0� , 3C , 3� ,
G , H , which depend on t .

We start with Q1 and find

e0C D
�
1;
p

2
2
;
p

2
2
;
p

2
2
;
p

2
2

�
; e0� D

�
1;
p

2
2
;
p

2
2
;
p

2
2
;�
p

2
2

�
;

e3C D
�
1;
p

2
2
;
p

2
2
;�
p

2
2
;�
p

2
2

�
; e3� D

�
1;
p

2
2
;
p

2
2
;�
p

2
2
;
p

2
2

�
;

eG D
�
1; 0; 0; 0;�

p
2
�
; eH D

�
1; 0; 0; 0;

p
2
�
;

eA D
�
1;
p

2; 0; 0; 0
�
; eL D

�
0;�

p
2

2
;
p

2
2
; 0; 0

�
;

eM D
�
0; 0;�

p
2

2
;
p

2
2
; 0
�
; eN D

�
0; 0;�

p
2

2
;�
p

2
2
; 0
�
:

The Gram matrix is
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G D

2666666666666666664

1 0 �1 0 �2 0 0 0 0 �1

0 1 0 �1 0 �2 0 0 0 �1

�1 0 1 0 0 �2 0 0 �1 0

0 �1 0 1 �2 0 0 0 �1 0

�2 0 0 �2 1 �3 �1 0 0 0

0 �2 �2 0 �3 1 �1 0 0 0

0 0 0 0 �1 �1 1 �1 0 0

0 0 0 0 0 0 �1 1 �1
2
�

1
2

0 0 �1 �1 0 0 0 �1
2

1 0

�1 �1 0 0 0 0 0 �1
2

0 1

3777777777777777775

:

We can choose B D .eH ; eA; eL; eM ; eN /, so that here Q is just a submatrix of G :

QD

26666664
1 �1 0 0 0

�1 1 �1 0 0

0 �1 1 �1
2
�

1
2

0 0 �1
2

1 0

0 0 �1
2

0 1

37777775 :

A diagonal form is DD diag.1; 1;�1; 1; 1/, thus the Hasse invariant is trivial. We now
turn to Qt1

and find

e0C D
�p

3
2
;
p

6
4
;
p

6
4
;
p

6
4
;
p

10
4

�
; e0� D

�p
5

2
;
p

10
4
;
p

10
4
;
p

10
4
;�
p

6
4

�
;

e3C D
�p

3
2
;
p

6
4
;
p

6
4
;�
p

6
4
;�
p

10
4

�
; e3� D

�p
5

2
;
p

10
4
;
p

10
4
;�
p

10
4
;
p

6
4

�
;

eG D .
p

5; 0; 0; 0;�
p

6/; eH D .
p

5; 0; 0; 0;
p

6/;

eA D .1;
p

2; 0; 0; 0/; eL D
�
0;�

p
2

2
;
p

2
2
; 0; 0

�
;

eM D
�
0; 0;�

p
2

2
;
p

2
2
; 0
�
; eN D

�
0; 0;�

p
2

2
;�
p

2
2
; 0
�
:

The Gram matrix is

G D

266666666666666666664

1 0 �1 0 �
p

15 0 0 0 0 �

p
3

2

0 1 0 �1 �1 �4 0 0 0 �

p
5

2

�1 0 1 0 0 �
p

15 0 0 �
p

3
2

0

0 �1 0 1 �4 �1 0 0 �
p

5
2

0

�
p

15 �1 0 �4 1 �11 �
p

5 0 0 0

0 �4 �
p

15 �1 �11 1 �
p

5 0 0 0

0 0 0 0 �
p

5 �
p

5 1 �1 0 0

0 0 0 0 0 0 �1 1 �
1
2
�

1
2

0 0 �

p
3

2
�

p
5

2
0 0 0 �

1
2

1 0

�

p
3

2
�

p
5

2
0 0 0 0 0 �

1
2

0 1

377777777777777777775

:
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We can choose B D .
p

5eH ; eA; eL; eM ; eN /, to get

QD

26666664
5 �5 0 0 0

�5 1 �1 0 0

0 �1 1 �1
2
�

1
2

0 0 �1
2

1 0

0 0 �1
2

0 1

37777775 :

A diagonal form is D D diag.5;�1; 3; 1; 1/. Thus, the Hasse invariant is

Œ.5;�1/� � Œ.5; 3/� � Œ.�1; 3/�D Œ.5;�3/� � Œ.�1; 3/�:

The ramification points of Œ.5;�3/� and Œ.�1; 3/� are f3; 5g and f2; 3g, respectively;
hence, the ramification points of the product are f2; 5g and hence the element is
nontrivial in the Brauer group Br.Q/.

We finally look at QNt and find

e0C D
�p

2
2
; 1

2
; 1

2
; 1

2
;
p

3
2

�
; e0� D

�p
6

2
;
p

3
2
;
p

3
2
;
p

3
2
;�1

2

�
;

e3C D
�p

2
2
; 1

2
; 1

2
;�1

2
;�
p

3
2

�
; e3� D

�p
6

2
;
p

3
2
;
p

3
2
;�
p

3
2
; 1

2

�
;

eA D .1;
p

2; 0; 0; 0/; eL D
�
0;�

p
2

2
;
p

2
2
; 0; 0

�
;

eM D
�
0; 0;�

p
2

2
;
p

2
2
; 0
�
; eN D

�
0; 0;�

p
2

2
;�
p

2
2
; 0
�
:

The Gram matrix is

G D

2666666666666664

1 0 �1 0 0 0 0 �

p
2

2

0 1 0 �1 0 0 0 �

p
6

2

�1 0 1 0 0 0 �
p

2
2

0

0 �1 0 1 0 0 �
p

6
2

0

0 0 0 0 1 �1 0 0

0 0 0 0 �1 1 �
1
2
�

1
2

0 0 �

p
2

2
�

p
6

2
0 �1

2
1 0

�

p
2

2
�

p
6

2
0 0 0 �1

2
0 1

3777777777777775
:

We can choose B D .
p

3e3� ;
p

2eA;
p

2eL;
p

2eM ;
p

2eN /, to get

QD

2666664
3 0 0 �3 0

0 2 �2 0 0

0 �2 2 �1 �1

�3 0 �1 2 0

0 0 �1 0 2

3777775 :
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A diagonal form is D D diag.3; 2; 2;�1; 2/. Thus, the Hasse invariant is

Œ.3; 2/�3 � Œ.3;�1/�D Œ.3; 2/� � Œ.3;�1/�D Œ.3;�2/�D Œ.3; 1� 3/�D 1 2 Br.Q/:

This completes the proof.
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