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Concordance maps in knot Floer homology

ANDRAS JUHASZ
MARCO MARENGON

We show that a decorated knot concordance C from K to K’ induces a homomor-
phism F¢ on knot Floer homology that preserves the Alexander and Maslov gradings.
Furthermore, it induces a morphism of the spectral sequences to HF (S?) = Z, that
agrees with F¢ onthe E! page and is the identity on the E* page. It follows that
F¢ is nonvanishing on Irﬁ:‘T(o(K ,7(K)). We also obtain an invariant of slice disks
in homology 4-balls bounding S3.

If C is invertible, then F¢ is injective, hence
dim HFK ; (K., i) < dim HFK (K", i)

for every i, j € Z. This implies an unpublished result of Ruberman that if there is an
invertible concordance from the knot K to K’, then g(K) < g(K’), where g denotes
the Seifert genus. Furthermore, if g(K) = g(K’) and K’ is fibred, then so is K.

57TM27, 57R58

1 Introduction

Knot Floer homology was introduced independently by Ozsvéth and Szabé [28] and
Rasmussen [31], and the first author [16] defined maps induced on it by decorated knot
cobordisms. Given a knot K in S3, its knot Floer homology with Z, coefficients is a
finite dimensional bigraded Z,—vector space

D HrK; (K1),

i,jezL
well-defined up to isomorphism, where i is called the Alexander grading and j is the
homological grading. The Euler characteristic of Pﬁ3\1(*(1< ,i) is the i™ coefficient
of the symmetrized Alexander polynomial of K, and hence knot Floer homology can
be viewed as a categorification of the Alexander polynomial. First, we recall [16,
Definition 4.1].

Definition 1.1 For i € {0, 1}, let Y; be a connected, oriented 3—manifold, and let L;
be a nonempty link in Y;. Then a link cobordism from (Yy, Lg) to (Y1,L1) is a
pair (X, F), where
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(1) X is a connected, oriented cobordism from Y, to Y7,
(2) F is aproperly embedded, compact, orientable surface in X', and
3) 0OF=LoUL;.

Knots Ko and K in S? are said to be concordant if there is a cobordism (X, F)
from (S3, Ko) to (S3, K;) such that X = S3 x I and F is diffeomorphic to S! x I.
In this case, we call (X, F) a concordance from Ky to K. In this paper, we also
allow more general concordances where X is a cobordism from S3 to S* such that
Hy(X) = Hy(X) =0.

In this paper, a decorated knot is a pair (K, P) such that K is a knot, P is a pair of
points in K, and we are given a decomposition of K into compact 1-manifolds R (P)
and R_(P) such that R4y (P) N R_(P) = P. Given decorated knots (Kq, Pp)
and (K, P;) in S*, a decorated concordance from (Ko, Py) to (K, Py) is a
triple (X, F, o) such that (X, F) is a concordance from Ky to K;, and o consists
of two disjoint, properly embedded arcs in F, one connecting R4 (Ky) and Ry (Ky),
the other R_(Kj) and R_(Ky).

Dylan Thurston and the first author [17] showed that knot Floer homology is natural for
decorated knots, and Sarkar [35] proved that moving the basepoints P around the knot
induces a nontrivial automorphism in many cases. Hence only decorated concordances
induce maps on knot Floer homology.

Recall from [28, Lemma 3.6] that for every decorated knot (K, P) in S3, there is a
corresponding spectral sequence

HFK (K, P) = HF(S%) ~7,.

Given an admissible doubly pointed Heegaard diagram (X, e, 8, w, z) for (K, P),
the singly pointed diagram (X, a, 8, w) represents (S, w), and z gives rise to the
knot filtration on CF (X,a,8,w). The spectral sequence arises from this filtered
complex. The E° page is the associated graded complex C/ﬁ((E o, B, w,z), whose
homology is HFK(K P), the E! page. The spectral sequence limits to the homology
of CF(Z o, B, w), which is HF(S ) = 7Z, . The filtration level of the generator of Z,
in the E*° page is the Ozsvath—-Szabd t invariant [26], denoted by t(K).

The main result of this paper is that a decorated concordance C induces a nonvanishing
homomorphism F¢ on knot Floer homology that preserves the Alexander and homo-
logical gradings, and also induces a morphism of the corresponding spectral sequences.
The map F¢ is functorial and depends only on the decorated concordance C, while the
chain map f¢ (or even its filtered homotopy type) need not be functorial, and it can
depend on auxiliary data other than C.
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Theorem 1.2 Let (K¢, Py) and (K, P;) be decorated knots in S3. Let C= (X, F, o)
be a decorated concordance between them such that Hy(X) = H(X) = 0. Then

Fe(HFK (Ko, Po,i)) < HFK (K, Py, i)
foreveryi,jeZ.

Furthermore, given an admissible diagram (X,,a,,B,,w,,z,) of (K,, P,) for r
in {0, 1}, there is a filtered chain map

fC: C/:F:(EOaaO’ﬂ()?U)O) — @(Elvalyﬂl’wl)

of homological degree zero such that the induced morphism of spectral sequences agrees
with F¢ on the E'! page and with Idz, on the total homology and on the E*° page.

Note that the fact that the map induced by a filtered map f on the total homology
is an isomorphism in general does not imply that the map f°° induced between
the E°° pages is also an isomorphism. As an example, consider a complex C = Z,
in filtration level one, and a complex C = Z, in filtration level zero. If f: C — C is
an isomorphism, then H( f) is an isomorphism but f*° is not.

In the case of the filtered map f- induced by a decorated concordance C, the fact that
J&° is an isomorphism follows from the fact that 7(Ko) = 7(Ky), which was shown
by Ozsvéth and Szabé [26, Theorem 1.1]. An alternative proof of this can be given
by observing that a decorated concordance gives filtered maps both ways that induce
isomorphisms on the total homology, as in the proofs of Theorem 1 in Rasmussen [32]
and Theorem 3.4 in Sarkar [34].

The invariant 7(K) can also be defined as the smallest Alexander grading of an element
of I-fﬁ((K , P) that represents a cycle on each page of the spectral sequence, and
whose homology class in the E°° page is 1. We denote the set of such elements
by A;(K). Then we have the following nonvanishing result for the knot concordance
maps:

Corollary 1.3 Let (K¢, Py) and (K, P;) be decorated knots in S3, and suppose that
C = (X, F,0) is a decorated concordance between them. Let t = 1(Ky) = t(K).
Then, the map

Fo: HFK (Ko, Py. 1) — HFK (K}, Py, 7)

is nonzero, and Fe(A1(Kp)) € A1(Ky).

In fact, for any decorated knot (K, P) in S 3 we shall see that

A(K) := Ay (K) N HFK o(K, P, 7(K)) # @,
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and the map Fe: A’ (Ko) — A’ (K) is nonzero.

Let B be an integral homology 4—ball with boundary S3. Suppose that S C B is a
slice disk for the decorated knot (K, P) in S3. If we remove a ball from B about a
point of S, we obtain a concordance C(S) from the unknot U to K. By Lemma 3.11,
the element e

ts,p = Fes)(1) € HFK( (K, P, 0)

is independent of what decoration we choose on C(S). It is nonzero by Corollary 1.3,
and is an invariant of the surface S up to isotopy in B fixing K.

Question 1.4 Can tg p distinguish different slice disks? More precisely, is there a
decorated knot (K, P) in S? that has two different slice disks S and S’ in D* such

that 15 p #ts/ p?

Note that, given different decorations P and P’ on K, the basepoint moving map
of Sarkar [35] takes 7g p to fg ps, so the answer is independent of the choice of
basepoints.

We can use the above viewpoint to refine the approach of Freedman, Gompf, Morrison
and Walker [6] for disproving the smooth 4—dimensional Poincaré conjecture (SPC4).
Suppose that we are given a counterexample to SPC4 with no 3-handles and a single
4-handle. Removing the 4-handle, we obtain an exotic 4-ball B with boundary
homeomorphic to S3. The belt circles of the 2-handles give a link L C 3B, and the
cocores of the 2—handles give a collection of disks C C B with boundary L. If we
band sum the components of L in some way, we obtain a knot K C dB, together with
adisk D C B obtained from C. Hence D induces an element /p p € IﬁJ\K(K , P) for
any decoration P. If tp p # tg p for S an arbitrary slice disk of K, then this implies
that B is indeed exotic.

The approach of Freedman et al only works if K is not slice in the standard 4-ball, but
it is in the homotopy 4-ball B. By the work of Ozsvéth and Szab6 [26, Theorem 1.1],
the 7 invariant vanishes if K bounds a disk in a homotopy ball, and so does Rasmussen’s
s invariant according to Kronheimer and Mrowka [19], so neither can be used for the
above purpose. We could use any other theory equipped with knot concordance maps
in manifolds homeomorphic to S3 x 7. However, note that the Khovanov homology
concordance maps of Jacobsson [12] are only defined when the ambient manifold is
diffeomorphic to S3 x I.

A knot is called doubly slice if it is a hyperplane cross-section of an unknotted S?2 in S*.
Motivated by a question of Fox [5] asking which knots are doubly slice, Sumners [38]
introduced the notion of invertible knot cobordisms. In his terminology, cobordism
stands for concordance; we use the latter for clarity.
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Definition 1.5 Let K and K; be knots in S3. We say that a concordance (S3x I, F)
from K, to K is invertible if there is a concordance (S>x I, F’) from K; to K such
that the composition of (S3x 7, F) and (S3x 1, F’) from K to Ky is equivalent to the
trivial cobordism. We write K < K if there is an invertible cobordism from K to K.

In other words, F is invertible if and only if (S x I, F) has a left inverse in the
cobordism category of links. A knot K is doubly slice if and only if U < K. The
relation < is a partial order on the set of knots in S, which follows from Silver and
Whitten [36], as we shall explain later.

Theorem 1.6 If there is an invertible concordance from Ky to K1, then
dim HFK ; (Ko, i) < dim HFK (K, i)

forevery i, j € 7.

This provides an obstruction to the existence of an invertible concordance from K
to K. According to the work of Manolescu, Ozsvéth and Sarkar [23], knot Floer ho-
mology is algorithmically computable, and Baldwin and Gillam [3] used this algorithm
to compute it for knots with at most 12 crossings.

For a knot K in S3, we denote its Seifert genus by g(K). Ozsvith and Szabé [27]
proved that knot Floer homology detects the genus of a knot, in the sense that

g(K)=max{i €Z: I-Tﬁ(*(K, i) #0}.

For a simpler proof of this fact, see Ni [25]. Furthermore, knot Floer homology also
detects fibredness of knots, as dim H/F\K*(K, g(K)) =1 if and only if K is fibred.
This was shown by Ghiggini [8] in the genus one case, and by Ni [25] and the first
author [14; 15] in the general case. These two results, together with Theorem 1.6,
immediately imply the following unpublished result of Ruberman.

Corollary 1.7 The function g is monotonic with respect to the partial order < induced
by invertible concordance. More concretely, if there is an invertible concordance
from Ky to K, then g(Ky) < g(Ky). Furthermore, it K; is fibred and g(Kg) is
equal to g(K,), then K is also fibred.

We now outline a more elementary proof of these results communicated to us by
Ruberman, and which does not use the assumption g(Ky) = g(K) for the second
statement. Also see the proof of Silver and Whitten [36, Proposition 3.7] and the
paragraph following it.
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Proof Let F be an invertible concordance from K, to K; with inverse F’. Then
there is a diffeomorphism d: S3 x I — S3 x I such that d(F' o F) = Ko x I
and d|g3; is the identity. Let i: S* — $3 x I be the embedding i (x) = (x, 3),
and let p: S3 x I — S3 be the projection. Then the composition

f=podoi: S*—S?

maps K to Kg such that f~!(K) = K;. We can isotope d such that d(K1 X {%})
becomes transverse to the /—fibration of Ko x 7, and hence f|g, is an embedding
with image Kg. If S is a minimal genus Seifert surface for K1, then f|g satisfies the
conditions of [7, Corollary 6.23], hence there exists a Seifert surface T of Ko = f(K;)
such that g(7') < g(S). It follows that g(K¢) < g(K1). Recall that [7, Corollary 6.23]
is a deep generalization of Dehn’s lemma to higher genus surfaces due to Gabai. It
states that if M is a compact oriented 3—manifold, S a compact oriented surface
with connected boundary, and f: S — M a map such that f|yg is an embedding
and f~1(f(dS)) = S, then there exists an embedded surface 7 in M such that
AT = f(3S) and g(T) = g(S).

Let E(K;) denote the exterior of the knot K; for i € {0, 1}. Then

flEk): E(K1) — E(Kop)

is a degree-one map as it is an orientation-preserving diffeomorphism between the
boundary tori. Hence, by Rong [33, Lemma 1.2], it induces a surjection on the
fundamental groups, and also on the commutator subgroups. If K; is fibred, then the
commutator subgroup 71 (E(K)) is finitely generated, hence 7{(E(Kp)) is also
finitely generated, so K is fibred by a result of Stallings [37]. a

Let K and K’ be knots in S3 such that there is an epimorphism 7;(E(K))—m{(E(K"))
preserving peripheral structure. By Silver and Whitten [36], this induces a partial
order > on the set of knots. For example, if there is a degree-one map

(E(K),0E(K)) — (E(K"), 0E(K")),

in particular if K > K’, then K > K’. Notice that this implies that > is also a partial
order. Based on the above proof and Theorem 1.6, it is natural to ask whether K > K’
also implies that

(-1 dim HFK (K, i) > dim HFK (K', i)

for every i € Z. Note that this would imply [36, Conjecture 3.6] claiming that, if K > K’,
then g(K) > g(K’). Compare this with Karakurt and Lidman [18, Conjecture 9.4],
which claims that if f/: Y — Y’ is a nonzero-degree map between integer homology
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spheres, then dim ﬁ?(Y) > dim ﬁF(Y ’). However, inequality (1-1) turns out to be
false due to the following example constructed by Jennifer Hom.

Example 1.8 Let K = (73 3)2,3 be the (2, 3)—cable of the right-handed trefoil 73 3,
and let K’ =T, 3. Then K > K’ In fact, there is a degree-one map

(E(K),dE(K)) — (E(K"),dE(K")).

Indeed, let T C E(K) be the boundary of the solid torus used in the satellite construction
for K. Then the exterior of T is E(K’), hence fibred over S'. If we collapse the fibres
to disks, we obtain a degree-one map from the exterior of 7' to D*x S, and hence
from E(K) to E(K’). Butboth K and K’ are determined by their Alexander polyno-
mials, K’ because it is alternating, and K by the work of Hedden [9, Theorem 1.0.6].
The symmetrized Alexander polynomial of K is

B 1—t72 4173

while the symmetrized Alexander polynomial of K’ is r—14¢71. So I-ﬁJ\K(K ,1)=0
and HFK (K, 1) = Z,, violating inequality (1-1).

In light of this, we propose the following weaker question.

Question 1.9 Suppose that K > K'. Then is it true that
dim HFK (K) > dim HFK (K')?

The paper is organized as follows: In Section 2, we review sutured manifold cobor-
disms and the maps induced by them on sutured Floer homology. In Section 3, we
define the knot concordance maps, show that they preserve the Alexander grading
(Proposition 3.10), and prove Theorem 1.6. Section 4 gives a brief overview of spectral
sequences arising from a filtered complex. In Section 5, we show that, on the chain
level, a knot concordance map can be represented by a chain map that preserves
the Alexander filtration (Theorem 5.4) and therefore induces a morphism of spectral
sequences (Theorem 5.5); this is precisely the second part of Theorem 1.2. Corollary 1.3
follows from Corollary 5.7. Finally, we prove in Section 6 that the knot concordance
maps preserve the homological grading, which concludes the proof of Theorem 1.2.
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2 Cobordisms of sutured manifolds

In this section, we briefly review sutured manifold cobordisms, and the maps they
induce on sutured Floer homology, as defined by the first author [16].

2A Sutured manifolds and sutured cobordisms

Definition 2.1 [7, Definition 2.6] A sutured manifold is a compact oriented 3—
manifold M with boundary together with a set y CdM of pairwise disjoint annuli 4(y)
and tori T (y). Furthermore, the interior of each component of A(y) contains a
homologically nontrivial oriented simple closed curve, called a suture. We denote the
set of sutures by s(y).

Finally, every component of R(y) = dM \ Int(y) is oriented such that dR(y) is
coherent with the sutures. Let Ry (y) (or R_(y)) denote the components of R(y)
whose normal vectors points out of (into) M .

Definition 2.2 [13, Definition2.2] We say that a sutured manifold (M, y) is balanced
if M has no closed components, x(R+(y)) is equal to x(R—-(y)), and the map
mo(A(y)) = mo(dM) is surjective.

From now on, we only consider sutured manifolds where 7'(y) = &, and view y as a
“thickened” oriented 1-manifold. So we often do not distinguish between y and s(y);
it shall be clear from the context which one we mean.

Definition 2.3 [16, Definition 2.3] Let (M, y) be a sutured manifold, and suppose
that & and &; are contact structures on M such that dM is a convex surface with
dividing set y with respect to both &y and &;. Then we say that & and &; are equivalent
if there is a 1-parameter family {&; : ¢ € I} of contact structures such that dM is
convex with dividing set y with respect to &; for every ¢ € I. In this case, we write
&o ~ &1, and we denote by [£] the equivalence class of the contact structure &.

Definition 2.4 [16, Definitions 2.4 and 2.14] Let (M, yo) and (M, y1) be sutured
manifolds. A cobordism from (My, yo) to (M7, y1) is atriple W = (W, Z, [£]), where

e W is a compact oriented 4—manifold with boundary,
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e Z C 0W is a compact, codimension-0 submanifold with boundary (viewed
within W), such that oW \ Int(Z) = —My Ll M7, and we view Z as a sutured
manifold with sutures 3o U yq,

e & is a positive contact structure on Z such that dZ is a convex surface with
dividing set y; on dM; for i € {0, 1}.

Finally, a cobordism is called balanced if both (Mg, yo) and (M7, y1) are balanced.

In this paper, we will only consider balanced sutured manifolds and balanced cobor-
disms.

Definition 2.5 [16, Definition 2.7] We call two cobordisms W = (W, Z, [£]) and
W = W', Z'[¢']) from (My, yo) to (My, y1) equivalent if there is an orientation-
preserving diffeomorphism ¢: W — W’ such that d(Z) = Z’, d«(§) = & and
d|pmyum, =1d.

Definition 2.6 [16, Definition 10.4] A cobordism W = (W, Z,[§]) from (My, yo)
to (N, y1) is a boundary cobordism if W is balanced, N is parallel to My U (—Z),
and we are also given a deformation retraction r: W x [0, 1] - My U (—Z) such

that ro|r = Idp and r{|n is an orientation-preserving diffeomorphism from N
to MoU (—Z2).

Definition 2.7 [16, Definition 5.1] We say that a cobordism W = (W, Z,[£])
from (My, yo) to (M1, y1) is special if

(1) W is balanced,
(2) OMy=0M;,and Z = M x I is the trivial cobordism between them,

(3) £ is an [-invariant contact structure on Z such that each dM, x {t} is a convex
surface with dividing set yo x {¢t} for every ¢ € I with respect to the contact
vector field d/0d¢.

In particular, it follows from (3) that yo = ;.

Remark 2.8 Every sutured cobordism can be seen as the composition of a boundary
cobordism and a special cobordism; see [16, Definition 10.1]. Let W = (W, Z, [£]) be
a balanced cobordism from (M, yo) to (M7, y1). Let (N, y1) be the sutured manifold
(Mo U (—Z),y1). Then we can think of the cobordism W as a composition W* o W? |
where WP is a boundary cobordism from (Mg, o) to (N, y;) and W* is a special
cobordism from (&, y;) to (M1, y1).
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2B Relative Spin° structures

Definition 2.9 [16, Definition 3.1] Given a sutured manifold (M, y), we say that a
vector field v defined on a subset of M containing dM is admissible if it is nowhere
vanishing, it points into M along R_(y), it points out of M along R4 (y), and vl is
tangent to dM and either points into R () or is positively tangent to y (we think
of dM as a smooth surface, and of y as a 1-manifold).

Let v and w be admissible vector fields on M . We say that v and w are homologous,
and we write v ~ w, if there is a collection of balls B € M, one in each component
of M, such that v and w are homotopic on M \ B through admissible vector fields.
Then Spin€(M, y) is the set of homology classes of admissible vector fields on M .

If (M, y) is balanced, Spin®(M, y) is an affine space over H?(M, dM ). Throughout
this paper, we will denote relative Spin® structures by s°, to distinguish them from
ordinary Spin® structures on oriented 3—manifolds, usually denoted by s.

Remark 2.10 Let vy be a fixed vector field on dM arising as v|gps for some admissi-
ble vector field v on M . We define Spin, , (M, y) as the set of nowhere vanishing vector
fields on M that restrict to vy on dM , up to isotopy through such vector fields relative
to dM in the complement of a collection of balls. Since the space of all possible vy is
contractible, Spini0 (M, y) can be canonically identified with Spin®(M, y). This was
the approach taken in [13].

Definition 2.11 [16, Definition 3.2] Let (M, y) be a sutured manifold. We say that
an oriented 2—plane field & defined on a subset of M containing dM is admissible if
there exists a Riemannian metric g on M such that £1¢ is an admissible vector field.
If £ is defined on the whole manifold M , we write

sg = [£1¢] € Spin®(M, y).
This is independent of the choice of g since the space of metrics g for which & Lo is

an admissible vector field is convex.

We now recall the notion of relative Spin® structures on sutured cobordisms. If J is an
almost complex structure on a 4—manifold W and H is a 3—dimensional submanifold,
then there is a 2—plane field induced on H called the field of complex tangencies
along H; see [16, Lemma 3.4].

Definition 2.12 [16, Definition 3.5] Suppose that W = (W, Z, [£]) is a cobordism
from the sutured manifold (My, yp) to (M7, y;). We say that an almost complex
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structure J defined on a subset of W containing 0Z is admissible if the field of
complex tangencies on M; (defined on a subset of M; containing dM; ) is admissible
in (M;, y;) for i € {0, 1}, and the field £; of complex tangencies on Z (defined on a
subset of Z containing dZ) is admissible in (Z, yo U y1).

A relative Spin® structure on YV is a homology class of pairs (J, P), where

e P CInt(W) is a finite collection of points,

e J is an admissible almost complex structure defined over W \ P,

o if &y is the field of complex tangencies along Z, then 5§ = 5gJ.

We say that (J, P) and (J', P’) are homologous if there exists a compact 1-manifold
C € W\ 9Z such that P, P’ € C; furthermore, J|p\¢c and J'|p\c are isotopic
through admissible almost complex structures. We denote by Spin©(WV) the set of
relative Spin® structures over W.

Remark 2.13 As in the case of sutured manifolds, we will denote relative Spin®
structures on sutured cobordisms by s°, in order to distinguish them from ordinary
Spin¢ structures on oriented 4-manifolds, which we denote by s, in analogy with the
case of oriented 3—manifolds.

Remark 2.14 Spin®(W) is an affine space over
ker(H*(W,0Z) — H*(Z,0Z)).
There are restriction maps

Spin (W) — Spin‘(M;, y;)
for i € {0, 1}.

2C Sutured Floer homology

The first author [13] associated an F,—vector space SFH(M, y) to each balanced
sutured manifold (M, y), called the sutured Floer homology of (M, y). It splits along
the relative Spin® structures on (M, y):

SFH(M.y)= @5  SFH(M.y.s°).
5°€Spin‘ (M,y)

Each vector space SFH(M, y, s°) is an invariant of the sutured manifold together with
the relative Spin® structure. Sutured Floer homology is a common generalization
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of Heegaard Floer homology of closed oriented 3—manifolds [29] and knot Floer
homology [28; 31].

The first author proved [16] that a balanced cobordism W from (M, yo) to (M1, y1)
induces a homomorphism

Fy: SFH(My, yo) — SFH(M, y1).
If W is endowed with a relative Spin® structure s°, then we also have a map
FW’SO: SFH(MO’ Yo, 50|M()) g SFH(MI > V1, 5olM[)'

Let BSut denote the category of balanced sutured manifolds and equivalence classes
of cobordisms, whereas Vecty, denotes the category of vector spaces over .

Theorem 2.15 [16, Theorem 11.12] SFH defines a functor BSut — Vecty, , which
is a (3+1)—dimensional TQFT in the sense of [2] and [4].

We conclude this section by outlining the construction of the cobordism map associated
to a balanced cobordism. Let W = (W, Z, [£]) be a balanced cobordism from (My, o)
to (My,y1), and suppose that every component Zy of Z intersects M; (this last
hypothesis can actually be dropped; see [16, Section 10]). According to Remark 2.8,
we can view W as the composition of a boundary cobordism W? from (My, o)
to (V, y1) and a special cobordism WS from (N, y1) to (My, y;). Using the contact
gluing map defined by Honda, Kazez and Mati¢ [11], the first author [16, Section 9]
constructed a map
Fy»: SFH(My, yo) — SFH(N, y1)

associated to the special cobordism wh.

The special cobordism W* also induces a map: Choose a decomposition of W*
as Wj3 oW, o Wy, where W; is the trace of i —handle attachments. The first author [16]
defined a map Fyy, associated to each cobordism WV;, and the map associated to W?*
is defined as

FWS = FW3 OFWZ (¢] FW1: SFH(N, )/1) - SFH(Mls 7/1)

Finally, the cobordism map Fjy is the composition Fyys o F),», which is independent
of all the choices made.

All cobordism maps above admit refinements Fyy_so along relative Spin® structures.
The map Fyy can be recovered from the maps Fjy o for all Spin® structures [16,
Definition 10.9 and Proposition 10.11], and the Spin® cobordism maps satisfy a type
of composition law [16, Theorem 11.3].
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3 Knot concordance maps

In [16], the first author constructed maps induced on knot Floer homology by decorated
link cobordisms. We recall the necessary definitions, starting with reviewing the real
blowup procedure.

Definition 3.1 Suppose that M is a smooth manifold, and let L C M be a properly
embedded submanifold. For every p € L, let N,L = T,M/T,L be the fibre of
the normal bundle of L over p, and let UN,L = (N,L \ {0})/R4 be the fibre of
the unit normal bundle of L over p. Then the (spherical) blowup of M along L,
denoted by Bl (M), is a manifold with boundary obtained from M by replacing each
point p € L by UN,L. There is a natural projection Bly (M) — M . For further
details, see Arone and Kankaanrinta [1].

We now review decorated links, required to define knot Floer homology functorially.
The following is [16, Definition 4.4].

Definition 3.2 A decorated link is a triple (Y, L, P), where L is a nonempty link
in the connected oriented 3—manifold Y, and P C L is a finite set of points. We
require that for every component L of L, the number |Ly N P| is positive and even.
Furthermore, we are given a decomposition of L into compact 1-manifolds Ry (P)
and R_(P) such that R4 (P)NR_(P)=P.

We can canonically assign a balanced sutured manifold Y (L, P) = (M, y) to every
decorated link (Y, L, P), as follows. Let M = Bl (Y) and ¥y = U,ep UN, L.
Furthermore,

Ri(y):= |J UNL,
xeRi(P)

oriented as +dM , and we orient y as R4 (y).
The following is [16, Definiton 4.2].

Definition 3.3 A surface with divides (S, o) is a compact orientable surface .S, pos-
sibly with boundary, together with a properly embedded 1-manifold o that divides S
into two compact subsurfaces that meet along o .

We are now ready to define decorated link cobordisms. The following is [16, Defini-
tion 4.5].

Definition 3.4 We say that the triple X = (X, F, o) is a decorated link cobordism
from (Yy, Lo, Pg) to (Y1, Ly, Py) if
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(1) (X, F) is alink cobordism from (Yy, Lg) to (Y1, Lq),

(2) (F,o0) is a surface with divides such that the map

7o(d0) = mo((Lo \ Po) U (L1 \ P1))
is a bijection,
(3) we can orient each component R of F \ ¢ such that whenever R crosses a

point of Py, it goes from R (Py) to R_(Py), and whenever it crosses a point
of Py, it goes from R_(Py) to R (Py),

(4) if Fy is a closed component of F, then o N Fy # .

Finally, we recall how to associate a sutured manifold cobordism complementary to
a decorated link cobordism. For this purpose, we first discuss S '—invariant contact
structures on circle bundles; see also [16, Section 4]. Let 7: M — F be a principal
circle bundle over a compact oriented surface F. An S !—invariant contact structure £
on M determines a diving set o on the base F, by requiring that x € o if and only if
£ is tangent to 7' (x), and a splitting of F as R4 (o) U R_(c). The image of any
local section of  is a convex surface with dividing set projecting onto 0. According
to Lutz [21] and Honda [10, Theorem 2.11 and Section 4], given a dividing set o
on F that intersects each component of F nontrivially and divides F into subsurfaces
R, (0) and R_(0), there is a unique S '—invariant contact structure £ on M , up to
isotopy, such that the dividing set associated to &, is exactly o, the coorientation of &4
induces the splitting R4 (o), and the boundary dM is a convex.

The following is [16, Definition 4.9].

Definition 3.5 Let (X, F,o0) be a decorated link cobordism from the decorated
link (Yo, Lo, Po) to (Y1, L1, Py). We define the sutured cobordism W = W(JX, F, o)
as follows. Choose an arbitrary splitting of F into R4 (o) and R_(o) such that
Ri(0) N R_(0) = o0, and orient F such that 0R; (o) (with R4 (o) oriented as
a subsurface of F) crosses Py from R (Py) to R_(Py) and P; from R_(P;)
to R4 (Py). Then W is defined to be the triple (W, Z,[£]), where W = Blg(X)
and Z = UNF, oriented as a submanifold of W , finally £ = £, is an S '-invariant
contact structure with dividing set & on F and convex boundary 0Z with dividing set
projecting to Py U P;.

The contact vector fields with respect to which a local section of UNF — F and 0Z are

transverse are different, so they can project to different subsets of LyU L. Specifically,
the dividing set for dZ projects to Py U Py, while do is disjoint from Py U Py .
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Notice that if F' does not have any closed component, then it deformation retracts onto
a l-dimensional CW complex, and therefore any S'-bundle on it has a section, hence
is trivial if the bundle is orientable. In particular, UNF ~ F x S,

In the present paper, we only consider decorated links (Y, L, P) where ¥ = S3, the
link L has a single component, and | P| = 2. Hence, we drop Y from the notation
and only write (K, P) for such a decorated knot.

Definition 3.6 A decorated concordance is a decorated link cobordism (X, F, o)
such that

(1) X is an integer homology S3 x I with boundary (—S3) L S?3,

(2) the surface F' is an annulus, and

(3) o consists of two arcs connecting the two components of dF.
If X =531, wedrop X from the notation and only write (F,0).

Lemma 3.7 Let X be an oriented cobordism from S3 to S3. Then X has the same
homology and cohomology as S* x I if and only if H(X) = Hy(X) =0.

Proof The “only if” part is obvious. So suppose that H;(X) = H,(X) = 0. Then
let X be the closed 4—manifold obtained by gluing two 4-balls to dX . We denote
by B C X the union of these 4-balls. Then, for i € {1, 2}, we have

0=H;(X)~ H* (X,0X) =~ H* (X, B) ~ H*(X).

Here, the first isomorphism follows from Poincaré-Lefschetz duality, the second from
excision, and the third from the cohomological long exact sequence of the pair (X, B).
So H*(X) = H3(X) =0, hence

Hi(X)=H>(X)=0 and H'(X)=Hom(H;(X),Z)=0.

As X has the same integral cohomology is S, after removing two balls, X has the
same integral homology and cohomology as S3 x I. a

It follows from [16, Proposition 4.10] that a decorated concordance C = (X, F, o)
from (K, Pg) to (Ky, P1) induces a homomorphism

Fe: HFK (Ko, Py) — HFK (K, Py),

where Pfﬁ((Ki, P;) are the natural knot Floer homology groups defined in [17].
Indeed, W = W(X, F,0) is a cobordism from the sutured manifold S3 (K, Py)
to S3(Ky, P;), and hence induces a homomorphism

Fyy: SFH(S3(Kg, Py)) — SFH(S3 (K, P})).

Geometry & Topology, Volume 20 (2016)



3638 Andrds Juhdsz and Marco Marengon

But SFH(S3 (Ko, Po)) = HFK (K. Py) and SFH(S3(K;. P;)) =~ HFK (K, P;) tau-
tologically. This assignment is functorial under composition of link cobordisms.

3A Relative Spin® structures and knot concordances

In the case of knot concordances, the relative Spin® structures behave nicely, as
explained in this section.

Lemma 3.8 Suppose C = (X, F,o) is a decorated concordance from (Kg, Py)
to (K, Py). If (M;,y;) = S3(K;, P;) is the balanced sutured manifold complemen-
tary to (K;, P;) fori € {0,1}, and W = W(C) = (W, Z,[§]) is the sutured manifold
cobordism from (My, o) to (M1, Y1) complementary to C, then

(3-1) Fyy = EB Fyy, .
5°€Spin® (W)

Furthermore, Spin®(W) is an affine space over H*>(W, Z) = 7., and the restriction
maps

ri: Spin(W) — Spin‘(M;, y;)
are isomorphisms for i € {0, 1}.
Proof Asin Remark 2.8, we write W = WS oW?  where W? isa boundary cobordism
from (My, vp) to (N, y1), where N = MyU (—Z), and W? is a special cobordism

from (N, y1) to (M1, y1). As Z is aproduct, N is diffeomorphic to the knot comple-
ment My~ S\ N(Kj), and hence H,(N) = 0. So, by [16, Remark 10.10] and [16,

Proposition 10.11],
Fv= P Fue
5°€Spin® (W)
As H*¥(Z,0M;) = 0 for k € {1,2}, we can apply [16, Lemma 3.7] to conclude that
Spin (W) =~ H*(W, dM,).

Of course, H>(W,0M,) = H*(W,dM,) = H*(W, Z). By excision, we have that
H*(W,Z)=>~ H*(X, N(F)), where N(F) is a regular neighbourhood of F. From the
long exact sequence of the pair (X, N(F)) and the fact that H!(X) = H?>(X) =0,
and since H!(N(F)) = H'(S') = Z, we obtain that H>(X, N(F)) = Z.

The restriction maps
ri: Spin® (W) — Spin®(M;, i)
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for i € {0,1} are modelled on the restriction maps H2(W, 0M;) — H?*(M;, IM;)
for i € {0, 1}. From the long exact sequence of the triple (W, M;, dM;), the sequence

(3-2) H?*(W, M;) — H*(W, dM;) — H*(M;, d0M;) — H*(W, M;)

is exact. Now consider the relative Mayer—Vietoris sequence of the pairs (W, M;)
and (N(F), N(K;)), whose union is (X,9;X), where 9; X ~ S3 is the ingoing
boundary component of X when i = 0 and is the outgoing boundary component
when i = 1:

H*(X,0;X) —> H*(W, M;) ® HK (N (F), N(K;)) > H*(Z,0M;).

Here, H*(X,0;X) =~ H*(S3 x I, 8% x {0}) = 0, and the last term is zero as Z
deformation retracts onto dM;. Consequently, H%(W, M;) = 0 for every k, and by
the exact sequence (3-2), this means that the restriction maps r; are isomorphisms
fori € {0, 1}. a

In the following lemma, vo denotes any fixed vector field on a balanced sutured mani-
fold (M, y) obtained by restricting an admissible vector field to dM ; see Definition 2.9
and Remark 2.10.

Lemma 3.9 Let C = (X, F,0) be a knot concordance from (Kq, Py) to (Ky, Py).
As in Lemma 3.8, let (M;, ;) = S3(K;, P;) fori € {0, 1}, and let
W=W(EC) =W, ZI[)).

Fori € {0, 1}, let S; be a Seifert surface for K;, and let t; be the trivialization of v(J)-
given by a vector field tangent to 0M; in the meridional direction. Then, for any relative
Spin® structure s° € Spin® (W),

(3-3) {c1(ro(s°),10). [Sol) = {c1(r1(s°), 11), [S1]),

where ry and rq are the restriction maps in Lemma 3.8.

From Lemma 3.9, we can already deduce the following proposition, which can be seen
as a first step towards the proof of Theorem 1.2.

Proposition 3.10 If C is a decorated concordance between two knots (Kg, Pg)
and (K, Py), then the map induced between the knot Floer homologies preserves the
Alexander grading; that is,

Fe(HFK (Ko, Po,i)) < HFK (K|, Py.i)

forevery i € 7.
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Proof We use the same notation as in Lemmas 3.8 and 3.9. It follows from Lemma 3.8
that the map F¢ = Fyy splits as the sum of the maps Fyy, so for s° € Spin®(W); see (3-1).
It is therefore sufficient to check that, for every relative Spin¢ structure s° € Spin® (W),
the map

FW,SO: SFH(MO’ V0»5°|M0) - SFH(MI > V1, 5O|M1)
preserves the Alexander grading.

According to the proof of [14, Theorem 1.5] on page 333, if ¢; is the trivialization
of v(J)- given by a vector field tangent to dM; in the meridional direction, then

SFH(M;, ;,5°) = HFK (K, P, —1(c1(s°, 1), [Si])),

where S; is a Seifert surface of K; for i € {0,1}. The result now follows from
Lemma 3.9, which states that

{c1(5% - 20). [Sol) = {c1(5°|agy. 11). [S1])- ul

Proof of Lemma 3.9 Choose an admissible almost complex structure J on W \ P
whose homology class is s°, where P C Int(W) is a finite set of points, as in
Definition 2.12. Let £ be the field of complex tangencies of J along Z. Then,
by definition, 5§ = 5§J. In fact, we can choose J such that £; = &. Choose a
trivialization of the normal S!-bundle of F whose total space is Z . If we identify F
with ST x I such that o maps to Py x I for Py = o N Ky, then this identification,
together with the above trivialization, induces a diffeomorphism d: Z — S x ST x I,
where the first factor is the fibre direction, and such that & is mapped to an /—invariant
contact structure with dividing set S x Py x {a} on S! x S! x {a} forevery a € I,
and {#} x Py x I on {#} x S x I for every § € S!. Hence, we can perturb the 2—
plane field £ such that it is always tangent to the second S factor, ie the longitudinal
direction. So we can choose J such that £ is also invariant in the o direction, and it
contains the longitude direction. If v is a nowhere zero section of £; tangent to the
longitude direction, then—under a homotopy of &7y, to v(J)- through admissible
2—plane fields — the vector field v|ypy, represents a trivialization 7o that corresponds
to 7o and v|yps, represents a trivialization 7y that corresponds to 71 .

The 2—plane field &, together with the trivialization given by v, gives a complex 1-
dimensional subbundle of (TW |z, J) together with a trivialization. The complement
of &y is also trivial, canonically trivialized by its intersection with 7Z, which then
gives rise to a trivialization t of TW|z. As J is defined over the 3—skeleton of W,
it makes sense to talk about the relative Chern class ¢;(TW, J, 1) € H*(W, Z). If £ ’J
denotes the field of complex tangencies of J along M;, then the complement of & ’J is
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a trivial bundle (trivialized by its intersection with 7'M;), so
c1(Ey.t) =t (TWpg,. J. 1) = et (TW. J, ) |ag;.

where the second equality follows from the naturality of Chern classes. By construction,
&', represents s; .

Recall that S; is a Seifert surface of K; for i € {0, 1}. Note that H,(W, Z) = 7Z, and
that there is a bilinear intersection pairing

Hy(W,Z)® Hy(W, My U M) — Z.

Consider the cycle m = S x {pt} x I in Co(W, My U M;). As both Sy and S;
intersect m once positively, they both represent the generator of H,(W,Z) = Z.
Hence

(c1(sg. 70).[Sol) = (1 W, J, 1), [Sol) = (c1(TW, J, 1), [S1]) = (c1(s]. 11). [S1]),

and (3-3) follows as we saw that 7y corresponds to 7y and t; corresponds to #;. O
As a consequence of Proposition 3.10, we can prove Theorem 1.6.

Proof of Theorem 1.6 Suppose that F is an invertible concordance from Ky to Kj.
Choose an arbitrary pair of points Py on Ko and P; on K, making them into decorated
knots, and an arbitrary pair of arcs 0 on F making F into a decorated concordance
from (Kg, Pg) to (K1, P1). Let F’ be the inverse of F, and choose a decoration ¢’
on it such that (F’,0”) is a decorated concordance from (K1, P;) to (Kq, Py). As
the composition of F and F’ is equivalent to the trivial cobordism K¢y x I from Ky
to Ko, we can choose ¢’ such that the composition of C = (F,0) and C' = (F’/,0")
is equivalent to the product decorated cobordism (Ko x I, P x I'), where P =0 N K|
is a pair of points. By the functoriality of F¢ and the fact that a product cobordism
induces the identity map,

Foro Fp = IdI?FT((KO,PO)’

and so F¢ is injective. We shall see in Section 6 that Fi preserves the homological
grading. Hence Proposition 3.10 implies that

dim HFK (Ko, Po. i) < dim HFK; (K1, Py, i)

for every i, j € Z. Up to isomorphism, HFK i (K;, P;) is independent of the choice
of P;, and the result follows. O

We shall see in Section 6 that the concordance maps also preserve the homological
grading. Then we have the following.
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Lemma 3.11 Suppose C = (X, F,0) is a decorated concordance from (K, Py)
to (Ky, P1). If Ky is the unknot U , then the element

Fe(1) € HFK o (K7, Py, 0)
is independent of the decorations o and Py, where 1 € H/F\K(KO, Py) =7,.

Proof Suppose that ¢’ is another decoration with the same endpoints as o, let
C'= (X, F,o'), and define

k=[o'—0]e H(F)x=Z.

Consider the decorated concordance C; = (S3 x I, U x I, 03), where oy spirals
around k times. Then C' = Co (. As H/ﬁ((U) = Z,, we have F¢, =1dz,. By
the functoriality of the knot concordance maps, we obtain that Fr = F¢. Since
PfF\K(U ) = Z, has no nontrivial automorphisms, it does not matter how we choose
the markings Py. a

4 Filtered complexes and spectral sequences

In this section, we briefly recall the definitions and properties of spectral sequences
that we need. We mainly refer to the book of McCleary [24]. The spectral sequences
we are interested in arise from filtered chain complexes, so we focus on this case only.

Definition 4.1 A filtered chain complex is a chain complex (C =®rez Ck. 8), such
that dCy, € Cj_1, with a nested sequence of subcomplexes

e CFp i CCFCC FpCCee
such that ez FpC = C and 9(FpC) € FpC.
We say that the filtered chain complex is bounded if there are integers @ < b such that
{0} =F,Cc---CFC=C.

We obtain a spectral sequence from a filtered chain complex as follows; see [24, Proof
of Theorem 2.6].

Definition 4.2 For p,q,r € Z, we define
Zp 4= FpCptg N0~ (Fp—rCpag—1).
B;,q =FpCpiqg N 8(-7:17+rcp+q+1)’
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For 0 < r < o0, the r—page (or r—term) is the complex (E" =@, ,cz Ep4.9")>
where ,

r ZPJI

pﬂ-_ r—l r_l’

2, 1q+1 T Bog

and the differential

r. r r

I Ep g = Ep rgir

is induced by the differential d on the complex C.

Sometimes we only focus on the p grading. In such cases, we drop ¢ from the notation,
and write E 1’, = @qu E 1’,’ 4 For the following, see [24, Proof of Theorem 2.6].

Theorem 4.3 The pages {(E”",0")} induced by a filtered chain complex form a
spectral sequence in the sense of [24, Definition 2.2]; ie

ker(d" |g5,)

im(ar | E1r7+r.c1—r+l

Eptl = Hy (E} . 0") =

k%

)
If the filtration is bounded, then there is a canonical isomorphism

er (Hp—i-q (C))
]:p—l(Hp+q(C)) ’
where the filtration on the total homology H(C) = .y Hi(C) is the one induced
from C :

EP:‘I

I

Fp(H(C)) :=im(H(F,C,d|5,c) - H(C,D)).

Remark 4.4 Notice that EI(,), ¢ 18 the graded module
FpCrtq
Fp—1Cptq

associated with the filtration. The page E, , is the homology Hy(Ej ,.d3°) of the

associated graded module with the induced differential.

%2

4A Morphisms of spectral sequences

According to McCleary [24], we have the following.
Definition 4.5 Let (E”,d") and (E”,d") be spectral sequences. A morphism of

spectral sequences is a sequence of module homomorphisms f": Ef , — Ei,*
for r € N, of bidegree (0,0), such that f" commutes with the differentials; that
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is, 708" =93" o f7,and each f"*! is induced by f” on homology;ie /7! is the
composite

~ H( r — —_— ~ —
S B = H(EL,, o) YD m(EY L 8 = BN

k% — k% k%
Remark 4.6 Let f: C — C be a map of filtered complexes of homological degree
Zero; ie
« f(Cp) SCy,
e fod=20dof,
e f(FC)C FyC.

Then f induces a morphism between the spectral sequences associated to C and C.

Remark 4.7 If (E”,9") and (E”, d") are bounded spectral sequences, { f”: E"—E"}
is a morphism of spectral sequences, and f°° is nonzero on E;%,, then f” is nonzero
on E, , forall r € N.

4B The 7 invariant

In this subsection, we recall the definition and few properties of the Ozsvath—Szab6 t
invariant, and we discuss it in a slightly more general setting.

Definition 4.8 If C is a nonacyclic bounded filtered complex over [, we define

7(C) :=min{p € Z : H(F,C) — H(C) is nontrivial}.

Definition 4.8 generalizes the Ozsvath—Szabé 7 invariant in the sense that, if C= CF (H)
for some Heegaard diagram for a decorated knot (K, P), then t(C)=1(K).

Remark 4.9 An alternative definition of 7(C) is given by the following property:
=0 if p<1(C),

£0 if p=1(C).

Furthermore, if the total homology H(C) = F,, then

=0 if p#1(C),

#0 if p=1(C).

We conclude the section with a technical lemma that we will use to prove that a

decorated concordance induces a nontrivial map between the £E°° pages of the spectral
sequences arising from the knot filtrations.

EX(C) {

EX(C) {
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Lemma 4.10 Let f: C — C be a filtered map of degree zero between nonacyclic
bounded filtered complexes over IF, such that

(1) H(C)=z=T, and H(C) = F,,
(2) ©(C)=1(C), and
(3) H(f): H(C) — H(C) is an isomorphism.

Then EX°(C) = F, and 530(6) =~ IF,, and the map f*°: EX°(C) — Eroo(f) is also
an isomorphism.

Proof Since (1) and (2) hold, by Theorem 4.3 and Definition 4.8, there are canonical
isomorphisms

EX(C)= H(C)=TF, and EX(C)=x= H(C)=T,.
The commutativity of the following diagram concludes the proof:

E®(C) L= EX(C)

.

H(C) — s H(C) -

5 Concordance maps preserve the knot filtration

5A The knot filtration

Let K be a null-homologous knot in a closed oriented 3—manifold Y. Ozsvath and
Szab6 [28], and independently Rasmussen [31], proved that K gives rise to a filtration of
the Heegaard Floer chain complex CF (Y'), well-defined up to filtered chain homotopy
equivalence, called the knot filtration. Such a filtration can be defined in terms of the
Alexander grading; see also [28, Section 2.3].

Definition 5.1 Let S be a Seifert surface for the knot K, and let (X, e, 8, w,z) bea
doubly pointed Heegaard diagram for K, as defined by Ozsvath and Szab6 [28]. Given
a generator x € Ty N Tg, its S—Alexander grading is

As(x) = 3{c1(s(x)). [S]),

where s(x) is the Spin® structure on Yy (K) extending s(x) € Spin°(Y). We denote
the corresponding filtration by Fg.
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Remark 5.2 Consider the sutured manifold Y (K) = (M, y) complementary to K.
As in the proof of [14, Theorem 1.5] on page 333, let ¢ be the trivialization of v(J)-
given by a vector field tangent to dM in the meridional direction. Then

As(x) = 3(c1(s°(x), 1), [S]),
where 5°(x) now denotes an element of Spin®(M, y).

If Y is a rational homology 3—sphere, all Seifert surfaces of K are homologous in the
knot exterior, so the Alexander grading does not depend on S, and we simply denote
it by A(x), and the filtration by F(x).

The following lemma describes how the relative Alexander grading can be read off the
Heegaard diagram; see [28, Lemma 2.5] and [31, page 25].

Lemma 5.3 Let (X, a,f,w,z) be a Heegaard diagram for a null-homologous knot K
in a 3—manifold Y , and let S be a Seifert surface for K. If ¢ € m,(x, y), then

nz(¢) —ny(@) = As(x) —As(p).
5B Knot filtration and concordances

Our aim is to prove that the knot filtration is preserved by the chain maps induced by
concordances.

Theorem 5.4 Let C be a decorated concordance from (K, Py) to (K1, Py), and let
(2i, e, B;, wi, z;) be a doubly pointed diagram representing (K;, P;) fori € {0,1}.
Then there is a chain map

fc: @(201“0’ ﬂO? U)(),Z()) - @(Elval’ﬂl’ wl’Zl)
preserving the knot filtration; ie for every generator x € Ty, N Tg,,

A(fe(x)) = A(x),

such that fq induces the identity of ﬁ?(53) on the total homology, and F: on the
homology of the associated graded complexes.

Theorem 5.4 yields a morphism of spectral sequences in the sense of Definition 4.5,
hence we have the following corollary.

Theorem 5.5 Suppose that C is a decorated concordance from (K, Py) to (Kq, Py).
Then there is a morphism of spectral sequences from HFK (K, Py) = HF(S?)
to HFK (K, P;) = HF(S?) such that the map induced on the E' page is Fc, and

the map induced on the E° page is Idﬁ*p(ss)-
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Proof Suppose that C = (X, F,0). Since Hi(X) = H,(X) = 0, it follows from
the work of Ozsvéth and Szabd [26, Theorem 1.1] that 7(Kg) = t(K1). Indeed, the
knot K = Ko # K; bounds a disk in a homology 4-ball W with boundary S3, and
hence t(K) = 1(Ko) —t(K1) = 0 by [26, Theorem 1.1]. By Theorem 5.4, we have a
filtered map f¢ that induces an isomorphism on the total homology. We can therefore
apply Lemma 4.10 to conclude that the map induced on the E°° page is also an
isomorphism. a

Definition 5.6 We say that an element x € H/F\K(K , P) survives the spectral sequence
to ﬁ?(S3) >~ 7., if there is a sequence of cycles x; € E* for i > 1 such that x; = x
and x; 41 = [x;]; we denote the set of such elements by A(K). Furthermore, we have
a partition A(K) = Ao(K) U A;(K), where 4;(K) consists of those elements for
which x; = j € Z, for i sufficiently large (note that the spectral sequence is bounded).

The subset Ag(K) is a linear subspace of A4(K), and A;(K) is an affine translate
of Ag(K). Each of the sets A(K), A¢(K) and 4;(K) is a knot invariant.

It follows from the definition of the Ozsvath—Szabd t invariant [26] that

=g ifi # 1(K),
#o ifi =1(K).

If a e A1(K), let ay denote the homogeneous component of a in homological grading
zero. It is straightforward to check that ag survives the spectral sequence. Since
the homological grading on CFK is inherited from the one on CF, and since the
homological grading of 1 € ﬁF(S 3) is zero, it follows that ag € A;(K). Combined
with (5-1), this implies that

(5-1) A(K)N }fﬁ((K,i){

(5-2) A (K) := A1 (K) N HFK o(K, 7(K)) # 2.
Notice that A’ (K) is also a knot invariant.

The following result is a straightforward consequence of Theorem 5.5, Proposition 3.10
and (5-2), and implies Corollary 1.3 of the introduction.

Corollary 5.7 Suppose C = (X, F,0) is a decorated concordance from (K, Py)
to (K4, P1),and let t = 1(Kg) = t(Ky). Then, for j € {0, 1},

Fe(A4j(Ko)) € 4 (K1)

and hence it is nonzero from H/F\KO(KO, Py, 1) to H/F\KO(Kl, P, 7).
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Proof The fact that F¢(A4;(Ko)) € 4;(K;) follows from Theorem 5.5. In Section 6,
we shall see that F¢ preserves the homological grading. Then, by Proposition 3.10,
Fe maps H/F\KO(KO, Py, 1) to H/F\KO(KI, Py, 7). So we only need to prove that this
map is nonzero.

By (5-2), we have A’ (Ko) # @; let x € A (Ky). Then, by the previous paragraph,
Fe(x) € A1(K1) N HFKo(K1.7) = 4] (K1),

hence Fe(x) #0. a

We now turn to the proof of Theorem 5.4, which will take the rest of this section.

5C Triviality of the gluing map

Given a sutured manifold cobordism W = (W, Z, [£]) from (M, yp) to (M1, y1), the
map

FW: SFH(M(), )/0) —> SFH(MI s )/1)
is the composition Fyys o ®_g, where
®_g: SFH(Mo, yo) — SFH(V, y1)

is the gluing map given by Honda, Kazez and Mati¢ [11] for the sutured submanifold
(—My, —yo) of (—N,—y;1) with N = My U (—Z), and Fyys is a “surgery map”
corresponding to handles attached along the interior of the sutured manifold N . The
cobordism W* is a special cobordism, meaning its vertical part is a product and the
contact structure on it is /—invariant.

If C= (X, F, o) is adecorated concordance from (K¢, Py) to (K1, P1),let W=W(C)
be the complementary sutured manifold cobordism from S3(Kg, Py) = (Mo, o)
to S3(Ky, P) = (My,y1). Let T?x1I be a collar neighbourhood of dM, such
that T2 x {1} is identified with dM. Since the dividing set on F consists of two
arcs connecting the two components of dF, there is a diffeomorphism d: T2xI —
Z such that & = d*(£) is an [—invariant contact structure on 72 x I, and hence
induces the trivial gluing map by [11, Theorem 6.1]. More precisely, if we write
Mj = Mo\(T?xI) and y, for the projection of yo to T?x{0}, then there is a
diffeomorphism ¢: (M. y]) — (Mo, yo) supported in a neighbourhood of T 2% {0}
such that

®_z = @« SFH(M{, v5) — SFH(My, o).

Geometry & Topology, Volume 20 (2016)



Concordance maps in knot Floer homology 3649

Let D: My — N be the diffeomorphism that agrees with ¢ on M(; and with d
on T2 x I, smoothed along T2 x {0}. By the diffeomorphism invariance of the gluing
construction, the diagram

©Ox
SFH(M(, y5) — SFH(My, yo)

l @,é/ l P_¢
D

SFH(My, vo) —— SFH(N, y)

is commutative, hence ®_g = Dy.

We now show that D, preserves the Alexander grading on the chain level. If we glue
D? x S to N along N such that the meridian is glued to a suture in s(y;), we
obtain a 3-manifold Y diffeomorphic to S3, and the image of {0} x S! is a knot K’
in Y. We can canonically extend D to a diffeomorphism from (S3, K) to (Y, K').
Given a knot diagram Ho = (g, &g, B . o, zo) for (S, Ky), its image D(H,) is a
diagram of (Y, K’). Given a Seifert surface S of Ko and a generator x € To, NTg,,
the image D(S) is a Seifert surface of K’, and D(x) satisfies

(e1(5°(x). 1), [S]) = {e1(s°(D(x)). D (1)), [D(S)])-

As D(yg) = y1, the trivialization D (¢) points in the meridional direction for K’, and
it follows that A(x) = A(D(x)). It is apparent from the above discussion that we can
identify (S3, Ko) and (Y, K’) via D, so from now on we will think of W as a special
cobordism from (S3, Kg) to (S3, K).

5D Notation

In this subsection, we fix the notation for the rest of the paper. Recall that (Kg, Py)
and (K1, P;) denote two decorated knots in S3, and that we have a decorated concor-
dance C = (X, F,0) from (Ky, Py) to (K, Py).

We denote by W = (W, Z, [£]) the sutured cobordism W(C) associated to the knot
concordance C. It follows from the discussion in Section 5C that WV can be thought of
as a special cobordism. The 4-manifold W can be obtained by attaching to My x
along the interior of My x {1} a sequence of 4-dimensional 1-handles, followed
by 2-handles, and finally 3-handles. We denote the number of i—handles by c¢;
for i €{1,2, 3}, and often write p for ¢; and £ for ¢,. We split the cobordism W into
three parts Wy, W, and Wjs, in such a way that W; = (W}, Z;, [&;]) is a cobordism
from (M;_1, yi—1) to (M, y;), and is the trace of the i —handle attachments; see the left-
hand side of Figure 1. Notice that (My, o) = S3(Kg, Pp) and (M3, y3) = S3 (K4, P;)
by construction.
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M3 Y3 = S3
W3 X3
Mg M; = My s Yp.s Yy =Yos
W Wa W, X XA X
My =M,pg Yi =Y,p
W X1
My Yo=293

Figure 1: The left-hand side shows the sutured cobordism W = (W, Z,[§]),
and how we split it into different pieces. The picture on the right-hand side
shows the cobordism of 3—manifolds X', and the corresponding decomposi-
tion into smaller cobordisms.

In order to represent sutured manifolds, we use Heegaard diagrams with basepoints.
If w,z e ¥\ (¢ U pB), the Heegaard diagram H = (X, a, 8, w, z) represents the
complement of a knot in a 3—manifold. In order to recover the sutured Heegaard
diagram as originally defined by the first author [13], one should remove a small disk
around each basepoint.

Let T=(X,a,B,8,w,z) be adoubly pointed triple diagram for the cobordism W,
(see Section SH), where d = || = |B| = |8|. Furthermore, suppose that the 2-handles
are attached along an £—component framed link IL.. We further split the manifold W,
into two pieces according to [16, Proposition 6.6]: The piece Wy g5 = (Wa, Za.é)
denotes the sutured manifold cobordism obtained from the triangle construction in [16,
Sections 5 and 6], while Wg(IL) = (W, Z. SA ) is a sutured manifold cobordism from

d—{
(R+(y1), IR+ (y1) ¥ 1)#( # (S? x Sl))
i=1
to @. The horizontal boundary of W is the sutured manifold M, 8,5 » defined by the
diagram (X, 8,48, w, z). By analogy, we also use the notation My g = (M, y;) and
MO(,(S = (M27 VZ)

We can fill in the vertical boundary of the sutured cobordism W by gluing D? x S x I
along S! x S x I to Z such that S! x {(1,0)} is glued to a meridian of Ky to
obtain cobordisms of closed 3—manifolds rather than knot complements. In terms of
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Heegaard diagrams, this amounts to forgetting the z basepoints. We denote the closed
3—manifolds by the letter Y rather than M . As for the cobordisms, we use the letter X'
instead of the letter W . See the right-hand side of Figure 1.

Lastly, let So € My and S3 € M3 be Seifert surfaces for Ky and K, respectively.
Since (M, y;) is obtained from (My, y5) by taking connected sums with copies
of ST x S2, the surface S, also defines a surface S; € M;, which is contained
in the M, summand of M;. Analogously, the Seifert surface S3 induces a Seifert
surface S, € M,.

5E Definition of the chain map f,

We now define the chain map f-. Given an admissible doubly pointed diagram
H=(Z,a, B, w,z) for a decorated knot (Y, K, P), we denote by CF (H) the Hee-
gaard Floer chain complex that counts disks avoiding w and filtered by z. Its homol-
ogy is ﬁ?(Y, w), while the homology of the associated graded complex C/F\K(H)
is HFK (Y, K, P).

Suppose that the 1-handles are attached along p framed pairs of points P C My . Pick
an admissible diagram H° of (M, y) subordinate to IP, and let

frop: CE(H®) — CE(HD)

be the 1-handle map defined in [16, Definition 7.5]. The 2-handles are attached along
an {—component framed link I. C M. Choose an admissible diagram 7! subordinate
to L, and let

furn: CE(H') — CE(H})

be the 2-handle map defined in [16, Definition 6.8], on the chain level. This map counts
triangles that avoid w but might pass through z. Finally, let 4> be an admissible
diagram of (M,,y) subordinate to framed spheres S C M, corresponding to the
3-handles. The corresponding 3—handle map

frzs: CE(H?) — CF(H3)
was introduced in [16, Definition 7.8].

Given admissible diagrams H and H' of a sutured manifold (M, y), we refer the
reader to [16, Section 5.2] for the definition of the canonical isomorphism

Fa 72 SFH(H) — SFH(#H).

We can obtain a chain level representative by connecting H and H’ through a sequence
of ambient isotopies, (de)stabilizations, and equivalences of the attaching sets. If (M, )
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is complementary to a knot (Y, K), we can view this as a sequence of moves on knot
diagrams. Each induces a chain homotopy equivalence on CF preserving the knot
filtration according to [28; 31], and induces an isomorphism both on the homology of
the whole complex (isomorphic to ﬁ?(Y) ), and the homology of the associated graded
complex (isomorphic to H/F\K(Y, K)). Note that the triangle maps corresponding to
changing the attaching curves do not pass over w but might cross z, so they are in fact
naturality maps for the closed 3—manifold and not the knot. We proved in [17] that
the maps on the homology are independent of the sequence of moves connecting H
and H'. We write f3, 3 for the chain level representative of Fy 3, described above.
With the above notation in place, we set

Je = frrs © Jal 02 © St L © Fug w1 © Jrop

from CF (H°) to (/II\J(Hé). Note that each of the diagrams involved in the above
formula can be viewed as a knot diagram after gluing disks along s(y) that do not
change during the cobordism, so we can distinguish z and w throughout. If we
are given diagrams H of (M, o) and H' of (M3, y3), then we have to pre- and
postcompose the above map fe with fHé ¢ and S0

We split the proof of Theorem 5.4 into a number of steps, and we prove that for each W;
the knot filtration is preserved.

SF 1- and 3-handles

First, consider the case of the 1-handle attachments along the framed pairs of points
P C Int(My). As in Section 5D, we write Wy := W(IP) for the trace of the surgery
along PP; this is a cobordism from (M, o) to (M1, y1). Recall [16, Section 7] that
there is an isomorphism Spin®(Wj) = Spin‘(My, o). Furthermore, a Spin® structure
5° € Spin® (M7, y1) extends to W if and only if ¢1(s°) vanishes on the belt spheres
of all the 1-handles. Given s° € Spin®(W), we write 5 for its restriction to (Mo, o),
and s for its restriction to (M7, y1).

Lemma 5.8 Let 53 € Spin®(My, yo), and let 57 € Spin®(M,y;) denote the corre-
sponding Spin® structure. Then

{c1(sg. ). [Sol) = {c1(s7.0). [S1])-

Proof This is a consequence of the naturality of the first Chern class and the fact
that both Sy and S; are actually contained in My \ N(P). We can suppose that
So is properly embedded in My \ N(PP). By definition, S; is a surface contained
in Mo\ N(IP) € M that is isotopic to Sg in My \ N(PP).
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Since S and S are isotopic in Mo \ N(PP) and 57 |a,\N(P) = gl Mo\N(P)- DY the
naturality of the first Chern class

(c1(s7.0).[S1]) = {c1(sT | pmo\ NPy 1) [S1])
= {c1(sg|m\N(P)- 1). [Sol)
= (Cl (5(0)’ t)’ [SO])

Notice that the trivialization ¢ of the vector field vy on dMy = dM; does not change
because the boundary is left unaffected by the surgery. a

Remark 5.9  Since ¢ (s], ) vanishes on the belt spheres of the 1-handles, the above

result also holds for an arbitrary Seifert surface S .

Corollary 5.10 The map fy0p: CF (H) — CF (HI%) preserves the Alexander grad-
ing (see Definition 5.1) with respect to arbitrary Seifert surfaces Sy and S ; ie

As, (fyop(x)) = As, (x)

for any x € Tyo NTgo, where HO = (22 a B wO, 20).

Proof This is a straightforward consequence of Lemma 5.8, Remark 5.9, and the fact
that the relative Spin® structure induced by s°(x) on (M, y) is exactly 5°( f30 p(X)).
O

A dual reasoning gives the following results for the map f;,2 g, which are analogous
to Lemma 5.8 and Corollary 5.10.

Lemma 5.11 Let s§ € Spin“(M3, y3), and let 55 € Spin“(M3, y») denote the corre-
sponding Spin® structure. Then

{c1(s3.0).[S2]) = {e1(s3.0). [S3]).

Corollary 5.12 The map f3,2 5: CF (H?) — CF (Hé) preserves the Alexander grad-
ing with respect to arbitrary Seifert surfaces S, and S3; ie

As; (frzs(x)) = As, (x)

for any x € Ty2 NTp2 such that f;2 g(x) # 0, where H2 = (2%, a2, B2 w2, 22).
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5G 2-handles

The proof that the Alexander grading is preserved under the attachment of the 2-handles
is less straightforward than in the case of 1-handles and 3—handles.

Lemma 5.13 Let C be a decorated concordance from (K, Py) to (K, Py). With
the notation of Section 5D, let VW, denote the 2—handle cobordism from (M, y;)
to (M3, y,) obtained by surgery along a framed link L, and let S; and S, be
corresponding Seifert surfaces. Then there is an admissible doubly pointed triple
diagram (X, a, 8,8, w, z) subordinate to a bouquet for IL. as follows: If x € T, N'Tg
is such that s(x) € Spin®(Yy, g) extends to X, then for any y € T, N Ty that appears
with nonzero coefficient in f3;11,(x), and such that 5(y) € Spin“(Yy 5) extends to X3,
we have

Fs5, () = Fsy (x).

Moreover, if Y is a holomorphic triangle connecting x , 6 (the top-graded generator
of CF(X,p,8,w,z)), and y that does not cross w, then

(5-3) Fs,(¥) = Fs, (x) —nz(¥).

Notice that, in Lemma 5.13, we consider ordinary Spin® structures rather than relative
ones. Recall that relative Spin® structures are defined for sutured cobordisms, which
we denote by the letter 1V, while ordinary Spin® structures are defined for cobordisms
of 3—manifolds, which we denote by the letter X ; see Figure 1.

Idea of the proof Consider an admissible Heegaard triple diagram (X, e, 8,8) sub-
ordinate to a bouquet for a framed link IL, as explained in [16, Section 6]. Suppose that
x € ToNTg is such t/h\at s(x) € Spin‘ (Y, g) extends to X;. Let 6 € TgNTs be the top-
graded generator of CF(X, B, 68), and let y € Ty N'T be such that s(y) € Spin®(Yy,.5)
extends to X3. Given a holomorphic triangle ¥ € m,(x, 6, y), let

c=As,(y)—As, (x) + nz(¥) —ny(¥).

First, we prove that ¢ is independent of ¢, x and y. If ¥, ¥, € mo(x, 60, y), then
the domain D () —D(y,) is triply periodic. If we prove that, for every triply periodic
domain D, we have

nz(D)—ny(D) =0,

then c¢ is independent of . For this reason, the next subsection is devoted to the study
of triply periodic domains in the setting of Lemma 5.13.

Given two different intersection points x’ € To, N Tg and y’ € Ty N Ty such that
s(x’) € Spin®(Y,,g) extends to X; and s(y’) € Spin®(Yy 5) extends to X3, there
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are domains Dy connecting x with x’ and D, connecting y with y’ that do not
pass through w (but might have nontrivial multiplicities at z). Adding these domains
to D(y¥), we get a triangle domain connecting x’, 6 and y’ with the same ¢ by
Lemma 5.3.

Then we show that ¢ = 0 by isotoping « to obtain a diagram where such x, y and ¥ as
above exist, and invoke Lemma 3.9. Finally, if Y appears in the surgery map f3;1 p,(x),
then n4,(¥) = 0 and it has a pseudoholomorphic representative, so 7, () > 0. Conse-
quently, Ag,(y) < Ag, (x), as desired. a

We now explain the missing details in the above outline.

SH Triply periodic domains

The following argument was motivated by the work of Manolescu and Ozsvath [22].

Definition 5.14 A doubly pointed triple Heegaard diagram is a tuple
T=CZ,ap,8w,2),

where X is a closed, oriented surface, and there is an integer d > 0 such that the sets
o, B and § all consist of d pairwise disjoint simple closed curves in ¥ \ {w, z} that
are linearly independent in Hq (X \ {w, z}).

We denote by Y, g, Yo and Yg s the 3—manifolds represented by the Heegaard
diagrams (X, «, ), (X,a,d) and (X, B8, d), respectively.

Definition 5.15 Let 7 = (X, &, 8,8, w, z) be a doubly pointed triple Heegaard dia-
gram. Let Dy, ..., D; denote the closures of the components of X\ (¢ UB U4J). Then
the set of domains in T is

D(T)=7Z(Dy,..., D).

We denote by n,(D) (respectively ny, (D)) the multiplicity of a domain D € D(T) in
the region D; that contains z (respectively w).

A triply periodic domain is an element P € D(T) such that P is a Z-linear combina-
tion of curves in & U B U §. We denote the set of triply periodic domains by Il g 5.

A doubly periodic domain is an element P € D(7) such that 9P is a Z-linear
combination of curves either in « U 8, orin B U4, orin & U§. We denote the set of
the three types of doubly periodic domains by Il g, Iy s and Ilg s, respectively.
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The following result states that every triply periodic domain in the diagram describing
the surgery map for W, can be written as a sum of doubly periodic domains.

Proposition 5.16 Let (X, «, B8,8) denote a Heegaard diagram associated to the cobor-
dism X,. Then

Hy,ps=1g,p+ a5+ Igs.

Given a triple diagram associated to a surgery on an {—component link IL, one can
construct a 4—manifold XA asin [30, Section 2.2]; see [16, Section 5] for the analogous
construction in the sutured setting. The 3—manifolds Y, g, Yy s and Yg s, defined by
the Heegaard diagrams (X, &, 8), (2,«,d) and (X, B8, §), respectively, naturally sit in
0Xa . The cobordism X3 correspondlng to the attachment of the 2—handles is obtained
by gluing the 4-manifold X = D (S1 x D3) to X along Ygs = ,_I(Sl x §?).

Lemma 5.17 [29, Propositions 2.15 and 8.3] Given a pointed triple Heegaard diagram
(X,a,B,4,z2), there are isomorphisms

T, B Ha,ﬂ =7 HZ(Ya,ﬂ) and Ty, B,5: Ha,ﬂ,(g =7 ® Hy(Xp).
In both cases, the projection onto the 7 summand is given by n .

Lemma 5.18 Given a pointed triple Heegaard diagram (X, e, 8,8, z), the isomor-
phisms from Lemma 5.17 fit into the commutative diagram

T.p
Ha,ﬂ —— 7 ® Hz(Ya’ﬂ)

J/ lldz@i*

T, B.8
g5 — Z® Hy(Xp)

where i: Yy g — X is the embedding.

Proof Let P be a doubly periodic domain in I14 g. By construction, the 2—chain
in XA associated to P — thought of as a triply periodic domain — is homotopic, hence
homologous to ix(H(P)), where H(P) is the 2—chain in Y, g obtained by capping
off the boundary of the doubly periodic domain P. Therefore, the projections onto the
second summand commute. The projections onto the Z summands commute because
in both cases they are obtained by taking 7. a
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Proof of Proposition 5.16 By Lemmas 5.17 and 5.18, it is sufficient to prove that the
map
X Hy(Yo,p) ® Hy(Yy,5) ® Ha(Yp5) = Ha(Xa)

is surjective.

From the long exact sequence associated to the pair (Xa, Yy gL Yy 50U Yg ), we see
that the map y is surjective if and only if

@: Hy(Xa, Yo pUYasUYps) —> Hi (Yo pUYysUYps)
is injective. From the inclusion of pairs
inps (Xa, YupgUYasUYgs) > (X, X; UX30X),
we obtain the commutativity of the following diagram:
Hy(Xp, Yo pUYa,5UYp5) —— Hi (Yo p) & Hi(Yo5) ® Hi(Ygs)
(ia.ﬁ.é)*lm l(ia,ﬁ)*@(ia,rﬁ)*@(iﬁﬁ)*
Hy (X, X1 U X5 U X) ———— Hi(X1) & Hi (X3) @ Hy (X)

where iy g, iy and igs are the restrictions of iy gs to Yy g, Y, 5 and Yg 5, re-
spectively. The map (iq,g,s)« is an isomorphism by excision. The fact that ¢ is an

isomorphism follows from the long exact sequence in homology associated with the
pair (X, X7 U X3 U X), together with the fact that H,(X) = H{(X) = 0.
The commutativity of the above diagram implies that the map ¢ is injective, and

therefore concludes the proof of the proposition. a

Remark 5.19 The important condition in Proposition 5.16 is that the map
pr Hy(X1) @ Ha(X3) ® Hy(X) — Hy(X)

is surjective, which is obviously true as H,(X) = 0. The surjectivity of p is equivalent
to the injectivity of ¢, which implies the injectivity of ¢.

In Proposition 5.16, we saw that, in the case of a triple diagram describing the 2—handle
attachments in the cobordism X, every triply periodic domain can be expressed as a
sum of doubly periodic domains. We now analyze the doubly periodic domains.

Proposition 5.20 Consider a null-homologous knot K in a 3—manifold Y . Given a
doubly pointed Heegaard diagram (X, &, 8, w, z) for (Y, K), every periodic domain P
satisfies

nz(P)—nw(P) = 0.
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Proof Let H(P) € C,(Y) be the 2—cycle obtained by capping off the boundary
of P with the cores of the 3—dimensional 2-handles attached to X x I along & x {0}
and B x {1}. Then n;(P) — ny(P) is precisely the algebraic intersection number
of H(P) and K, which is zero as K is null-homologous. o

51 Representing homology classes

Let (X, a, B) be a Heegaard diagram for a 3—manifold Y . It is straightforward to see
that any element of H{(Y) can be represented by a 1—cycle in X. In this subsection,
we strengthen this result for the case of concordances in the following sense.

Lemma 5.21 Choose an arbitrary handle decomposition of the cobordism X from S
to S3, and let X, denote the trace of the 2—handle attachments. Suppose that
(X,a,B,8,w, z) is a doubly pointed triple Heegaard diagram subordinate to a bouquet
for a link L that defines X,. Then the map

i: Hi(X) — H; (Ya,ﬂ) & H; (Ya,é)»

induced by the inclusions X < Y, g and ¥ — Y, s, is surjective.

In other words, given any two classes in the first homologies of Y g and Y, s, there is
a l-cycle in X that represents both simultaneously.

Proof Consider the following short exact sequence of abelian groups:
mE) HE)  H(E) | H(E)
(. )N (e, 8) (. B) = (. 8)  (a,B.6)

The middle term is isomorphic to H;(Yy,g)® Hi(Yg,s), and the last term is isomorphic
to H{(Xa), where Xa is the 4-manifold obtained by the triangle construction; see [29,
Proposition 8.2]. The short exact sequence above can then be rewritten as

H, (%)
(e, B) N (e, )
If we prove that H;(Xa) = 0, then by exactness we have that the map f is surjective.

So the map i in the statement of the lemma is surjective too, because it is obtained by
composing the following two maps:

Hy(%)
(a, B) N {a,d)

0—

0— L Hy (Yy.p) ® Hi (Ya5) & Hy(Xp) — 0.

Hy(Z) - L Hy (Yo p) ® Hi (Ya.s5).
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Therefore, we only need to prove that H;(Xa) = 0. For this purpose, consider the
Mayer—Vietoris long exact sequence associated to the decomposition X = AU B,
where 4 = XA and B = X; U X3 U X . A portion of the long exact sequence is

Since X has trivial first and second homology groups, by exactness the map ¢ gives an
isomorphism
(5-4) Hy(Ya,p)® Hy (Yo,5)® Hi (Yp,5) => Hi(X2)® Hi (X1) ® Hi (X3) @ Hy (X).

If ¢ denotes the number of k—handles in the decomposition of the cobordism X
and d = |e|, then it is straightforward to check that

H\(Yyp) = Hi(X;) = Z,
Hy(Ygg) = Hy(X) =297,
Hy(Yy5) = Hi(X3) = Z°.

It now follows from (5-4) that H{(Xa) = 0, which concludes the proof. a

5J Proof of Lemma 5.13

The cobordism W, can be represented via surgery on a framed {—component link L.
Let T =(X,a, 8,8, w,z) be adoubly pointed triple Heegaard diagram subordinate to
a bouquet for the framed link IL.. As in [16, Section 6], we suppose d = |a| = |B| = ||
and that the curve §; is an isotopic translate of 8; fori e {{+1,...,d}.

Following notation established in Section 5D and in Figure 1, let Y, g, Y, 5 and Yg 5
denote the closed manifolds associated to the Heegaard diagrams (X, &, 8), (¥, «,3d),
and (X, B8, 4), respectively. Each of these closed manifolds contains a knot, defined
by the basepoints w and z. We denote the knot exteriors — thought of as sutured
manifolds—by M, g, My s and Mgs. We let y denote the sutures of all three
sutured manifolds.

Let s be the unique Spin® structure on X. By definition, s|y, is the unique Spin®
structure on XA that extends to the whole cobordism X'. Suppose that x € Ty N Tg
and y € Ty N Ty are such that s(x) = sy, , and s(y) = s|y, ;. Let 6 € TgN Ty
denote the top-graded generator. Consider a Whitney triangle ¢ € w5 (x, 6, y), possibly
crossing the basepoints z and w, and let

(5-5) c=As,(¥) —As, (x) +nz(¢) —ny ().

Our aim is to show that ¢ = 0. First, we show that ¢ is independent of the triangle
in mp(x, 0, y) for fixed x and y. Indeed, let V1, ¥, € m2(x,0, y). The domain
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P =D(y1) —D(y) is triply periodic. By Proposition 5.16, P can be expressed as
the sum of three doubly periodic domains Py g, Pgs and Py 5.

Since (X, a, B,8) is subordinate to a bouquet for IL, the diagrams (X, e, 8, w, z),
(X,B8,6,w,z) and (X, «,d,w, z) each define a null-homologous knot in a connected
sum of a number of copies of S! x S2. Hence, by Proposition 5.20, 1, (P) = 1y (P)
for every P € {Py g. Pg,s- Pa,5}- S0 nz(P) = ny(P), and

nz(Y1) —nw (Y1) = nz(Y2) — ny (Y2).
Therefore, ¢ is independent of the triangle ¥ for fixed x and y; see (5-5).

To check that ¢ is independent of x, we consider another generator x’ such that
s(x’) = sly, , = s5(x). Since x and x’ represent the same Spin® structure, there
is a Whitney disk ¢ € m,(x’, x) (that possibly crosses the basepoints w and z).
If Y € m5(x,60,y), then ¢ #v € mp(x’, 0, y). By Lemma 5.3, the number ¢ defined
in (5-5) is the same for y and ¢ #, so ¢ does not depend on x. A similar reasoning
also proves that ¢ is independent of y .

What remains to prove is that ¢ = 0. We do this by constructing a Whitney triangle v
for which ¢ = 0.

Ol,'-\
J71 gl o 01' j71 51
6 Z
Bi G Bi

Figure 2: This shows the domain of the Whitney triangle {& The curves
Bi and §;,fori e {€ +1,...,d}, are small isotopic translates of each other,
and — after isotoping o; — we can find a “small” triangle bounded by «;, f;
and §;, shown shaded on the left. For i € {1,...,{}, after applying finger
moves to the o—curves, we can assume that there is a triangle, shown shaded
on the right. The sum of all these triangles is the domain of 1;

By isotoping the a—curves, we can create intersection points X in To N Tg and y
in Ty N Ty such that there is a “small” triangle 1/f € my(X,0,y). The domain of 1// is
shown in Figure 2. Foreach i € {{ + 1,...,d}, we isotope «; — pushing the other
a—curves alongside — until it intersects both §; and §; near 6;, and consider the shaded
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triangle shown on the left-hand side of the figure. For each i € {1,...,{}, after some
finger moves on the a—curves — again, pushing the other «¢—curves along — we can
assume that there is a small triangle near each intersection point ; = ; N J;, as shown
shaded on the right-hand side of the figure. The sum of all these small triangles is
the domain of the Whitney triangle 1}7 We denote the generators connected by J
by X € Top and § € Ty 5; ie ¥ € 12(X, 6, 7).

The Whitney triangle 1; satisfies nz(J) = nw({ﬁ) = 0, but the constant ¢ is not
necessarily defined for it, because s(¥) and s(y) might not coincide with sly, ,
and sy, ;. respectively, where s € Spin“(X) is the unique Spin® structure; see (5-5).
The next lemma proves that we can replace {5 with a Whitney triangle ¥ for which
the constant ¢ is defined.

Lemma 5.22 We can further isotope the a—curves so that there is a Whitney triangle
in wy(x, 0, y) satisfying
o nz(¥) =ny)=0,

* s(x)=sly,, and 5(y) = sly, -
Proof Given generators x" = (x{,...,x}) and x” = (x{,...,x})) in Ty N Tg,

Ozsvith and Szab associate to them [29, Definition 2.11] a class e(x’, x”) € H; (Y g).
Choose 1—chains a C o and b C B such that

— — U / /
aa—ab—xl +"'+Xd—xl—---—xd.

Then a — b represents an element of H;(X) whose image in H; (Y, g) under the
inclusion map is e(x’, x”"). Ozsvéth and Szabé proved [29, Lemma 2.19] that

(5-6) s(x”) —s(x") = PD(e(x’, x")).

Consider the Whitney triangle 1; € m,(X, 0, y) defined above, and whose domain is
shown in Figure 2. Its domain is the disjoint union of d triangles 7T7y,...,T,.

We define the homology classes iy € Hi(Y,, g) and hy € Hi(Y, 5) as

(5-7a) hy =PD(sly, , — (X)),

(5-7b) hy =PD(sly, s —s(¥)),

where s is the unique Spin® structure on X. By Lemma 5.21, there is a homology
class h € H{(X) such that i(h) = (hy,hy); ie h represents hy in H(Yy g) and hj

in H;(Yy s). We can represent /1 as mA, where A is a simple closed curve on X that
satisfies the following conditions:

e ) intersects the triangle T; as on the left-hand side of Figure 3,
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e A is disjoint from all the triangles T s T 4, and

e ) is disjoint from the basepoints z and w.

A
\
AN _ /(Xl /
V1 Vxl VILTXX1\ possible other
6, 9 a—curves
1
B1 81

Figure 3: The pictures above show how to modify the Whitney triangle 1/~/
defined in Figure 2 to obtain a Whitney triangle ¥ satisfying the requirements
of Lemma 5.22. The picture on the left shows the loop A near the triangle Ty.
The picture on the right shows the new triangle 77 in the triple Heegaard
diagram obtained after performing a finger move on the a—curves along A.

If we perform a finger move on the a—curves along the loop mA, the result will
look like the right-hand side of Figure 3. If x; and y; are as on the right-hand side
of Figure 3, we define x = (x1,X5,...,Xg) and y = (¥1, ¥2,..., y4). Notice that,
by construction,

(5-8) e(X,x)=hy and e(y,y)=h,.

Let ¢ be a Whitney triangle with domain 77 LI Tou---uT,, where Tj is the shaded
triangle on the right-hand side of Figure 3. By construction, n(y) = ny(y) = 0.
Furthermore, by (5-6), (5-8) and (5-7), we have
s(x) =s(X) +PD(e(x, x))
=5(X) +PD(/;)
=6(X) + (sly, 5 — (X)) =5y, 4-

Analogously, we have s(y) = sy, ;- O

Before showing that ¢ = 0 for the triangle ¥ € m,(x, 6, y) constructed above, we
prove that the relative Spin® structure s°(y) € Spin®(W,) extends to a relative Spin®
structure on W.

Recall that Y1 = Y, g is obtained from Y, by performing surgery along some framed
O-spheres. The belt circles of the 1-handles involved give rise to embedded 2—spheres
O1,...,0, CY;. Similarly, Y, =Y, 5 is obtained from Y3 by surgery along some
framed O-spheres, giving rise to embedded spheres 01, ..., Oy C Y;. In Lemma 5.22,
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we achieved that 5(x) = sy, , and s(y) = sly, ;. This implies that 5(x) extends
to X7, or equivalently, that {c;(s(x)),[O;]) = 0 for every i € {1,..., p}. Similarly,
(cl(s(y)),[OJ/.]) =0 forevery j €{1,...,s}. However

(c1(s(x)), [O]) = (e1(s°(x)). [Oi]) = {1 (s°(x). ). [Oi]),

as 5°(x) and s(x) are represented by the same vector field on M; C Y;. Since M is
obtained from M/ by compressing the 2—spheres Oy, ..., Op, the equality

(c1(s°(x),1),[0i]) =0

implies s°(x) extends to s§ € Spin®(WW;). Similarly, s°(y) extends to 53 € Spin®(WV3).
The Mayer—Vietoris sequence now implies that there is a Spin® structure s° € Spin® (W)
such that 5°|yy, = 57, 5°|w, =5°(¥) and 5°|)y; = 3.

We are now ready to prove that, for the Whitney triangle ¥ constructed above, ¢ = 0.
Recall that, by definition,

¢ =As,(¥) = Ag, (x) = (2(s° (). ). [S2]) = {e1 (s°(x). ). [S1]):

see (5-5), Definition 5.1 and Remark 5.2. Since v is a Whitney triangle connecting
x, 0 and y, we have that s°(y)|ar, = 5°(x) and s°(¥)|am, = s°(y), and therefore

¢ ={c1(s°(¥). 0).[S2]) — (c1(s° (W), 1), [S]).

Notice that we can omit the restrictions of the (relative) Spin® structures by the naturality
of Chern classes.

Now the relative Spin structure s°(y) extends to some relative Spin® structure
s° € Spin®(W). Then, by Lemmas 5.8 and 5.11, we have

¢ = (c1(°.1).[S3]) — {c1(s°, 1), [Sol).
From Lemma 3.9, it finally follows that ¢ = 0.

We can now conclude the proof of Lemma 5.13. By (5-5), for any Whitney triangle
in my(x,0,y), where x € Ty NTg and y € Ty N Ty are such that s(x) and s(y)
extend to X7 and X3, respectively, we have

As, (¥) — As, (x) +nz(¥) —ny (¥) = 0.

If ¢ contributes to the surgery map f3,11,(x), then ny () = 0, and it has a pseudo-
holomorphic representative, so n;(y) > 0. Consequently, Ag,(y) < Ag,(x), as
desired. a
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5K Naturality maps

Recall from [17] that, given two admissible Heegaard diagrams # and H’ for the same
3-manifold Y, there is a naturality map

frn: CE(H) — CE(H'),

which is the composition of maps associated to isotopies of the attaching sets, han-
dleslides, (de)stabilisations, and diffeomorphisms of the Heegaard surface isotopic to
the identity in Y. On the homology, it induces an isomorphism

FH,H/: ﬁ(%) — ﬁ?(H/)
that is independent of the sequence of Heegaard moves.

In our case, H and H’ are doubly pointed Heegaard diagrams, which define the same
decorated knot (Y, K, P). Together with Dylan Thurston, the first author proved [17,
Proposition 2.37] that H# and H’ can be connected by a sequence of Heegaard moves
that do not cross the basepoints w and z. If we forget about the z basepoint, this
sequence induces the naturality map fy 3 CF (H)— CF (H) above. As we explained,
the z basepoints on H and H’ induce filtrations on a:(H) and CF (H). It follows
from the work of Ozsvith and Szabé [28] and Rasmussen [31] that, if f3; 4 is the map
associated to either an isotopy, a handleslide, a (de)stabilization, or a diffeomorphism
of the Heegaard surface isotopic to the identity in Y, then it preserves the knot filtration.
If f3,3 is an isotopy map or a handleslide map, then the map induced on the E! page
is the corresponding naturality map f%; 7 on HFK; ie it is the map obtained by
counting all holomorphic triangles that do not cross z. If f3, 7, is a (de)stabilization
or diffeomorphism map, then it is an isomorphism of filtered complexes.

As the above result is only outlined in the works of Ozsvath and Szabd [28] and
Rasmussen [31], we provide a bit more detail. With the techniques of this paper, we
can prove the following analogue of Lemma 5.13.

Lemma 5.23 Let K be a null-homologous knot in ¥ = #f’:l(S1 x §?). Choose
a Seifert surface S for K. Suppose that H and H' are admissible doubly pointed
Heegaard diagrams for (Y, K, P) that only differ by an isotopy or a handleslide.

Given an admissible doubly pointed triple diagram (X, &, 8,8, w, z) for the Heegaard
move H — H', if x € To NTg, then for any y € To N'Ty that has nontrivial coefficient
in the expansion of f3; 3 (x), we have that

Fs(y) = Fs(x).
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Furthermore, if ¥ is a holomorphm triangle connecting x € T, NTg, 6 € TgN T;
(the top-dimensional generator of CF(E B.8,w,z))and y € Ty N'Ty that does not
cross w, then

(5-9) Fs(y) = Fs(x) —nz ().

Remark 5.24 The (de)stabilization and diffeomorphism maps do not appear in the
statement of Lemma 5.23 because they are not triangle maps. They are already isomor-
phisms at the level of filtered chain complexes.

Idea of the proof As in the proof of Lemma 5.13, we let
c=As(y)—As(x) —nw ) +nz (),

and prove that this is independent of v, x and y . The main differences from the proof
of Lemma 5.13 are the following:

Triply periodic domains We closely follow the proof of Proposition 5.16. In this
case, X = Y x I, the boundary of the 4-manifold Xo consists of ¥ LIY U Yg 5, and
the cobordisms X7 and X3 are replaced by identity cobordisms Y x I. Finally, the
proof of the injectivity of ¢ follows from the surjectivity of the map

o Hy(Y x 1)@ Hy(Y x I) ® Hy(X ) — Ha(X),
as noted in Remark 5.19.

Doubly periodic domains One can use Proposition 5.20 for the two copies of Y and
for Yg 5.

Proving that ¢ = 0 This is easier than in the case of the 2—handle maps, because we
already know that the naturality map preserves the graded Euler characteristic, and this
forces the grading shift ¢ to be 0. Also, as X7 and X3 are products, Spin® structures
automatically extend to them, hence we do not need to isotope the o—curves. a

SL Proof of Theorem 5.4

We are now ready to prove Theorem 5.4. In the proof we use the notation introduced
in Section 5D, and we assume that the gluing map is the identity map, as explained in
Section 5C.

Suppose that x is a generator of CF (#°) such that fz(x) # 0. Let y be a generator
of CF (HS) that appears in the expresswn of fe(x) Wlth nonzero coefﬁc1ent Then there
exist generators x’ € CF (Hp), x" € CF(#!), y" e CF (H{)and y’'e CF(#?2) that ap—

pear with nonzero coefficient in f3,0 p(x), f%% Ay (x"), f1,L(x") and fH]lL 22",
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respectively, and such that y appears with nonzero coefficient in f;,2 5(»’). Notice
that, by construction, s(x”) extends to X7 and s(p”) extends to X3.

By Lemma 5.23, we know that the naturality maps preserve the knot filtration, and
by Corollaries 5.10 and 5.12 so do the maps f;,0p and f;2 . Finally, Lemma 5.13
proves that Fg,(y”) < Fs, (x”). By putting all these together, we obtain that

(5-10) Fs;(») =Fs,(y") = Fs,(»") < Fs, (x") = Fs, (x) = Fs, (x).

Thus f¢ is a map of filtered complexes and so, by Remark 4.6, it induces a morphism
of spectral sequences.

Furthermore, each of the maps f3,0 p, fHo x> L fH1 22 and fy2 g is a map
of filtered complexes. The map induced by fc onthe E' page is the composition of
the maps induced by each of the above maps on the E! page.

We now consider the case when the inequalities in (5-10) are all equalities. Lemmas 5.8
and 5.11 imply that the maps induced by f30p and f;2 g onthe E I page are the 1—
and 3-handle maps for HFK . As for the 2-handle map f311,, by (5-3) in Lemma 5.13,
we have that F(y”) = F(x”) if and only if there is a pseudoholomorphic triangle
connecting x”, 6 and y” such that ny () = nz(y) = 0, and in this case all such
holomorphic triangles satisfy this equahty Hence, the map induced by f;,1 1, on
the E' page is the 2-handle map for HFK . Finally, it follows from the dlscussmn
in Section 5K that the maps induced on the E! page by the naturality maps for CF
are the naturality maps for HFK. Alternatively, one can use (5-9) in Lemma 5.23 and
argue in the same way as for the 2-handle maps.

This immediately implies that the map induced by f; on the E! page is obtained
by counting (for the naturality maps and the 2—handle map) the pseudoholomorphic
triangles that do not cross w and z, and so itis F¢.

On the other hand, the map induced by f¢ on the total homology is given by count-
ing all holomorphic triangles that do not cross w but might cross z. This is pre-
cisely the map Fy: HF(S?) — HF(S?) induced by the cobordism X . Because

Hy(X) = Hy(X) =0, we have Fy =1dg, ) by [26, Lemma 3.4]. O

6 Concordance maps preserve the homological grading

In this section, we show that concordance maps also behave well with respect to another
grading of CF, namely the homological grading.

Let H be an admissible pointed Heegaard diagram for the closed, connected, oriented,
based 3-manifold (Y, w), together with a Spin® structure s € Spin®(Y) such that
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c1(s) € H*(Y) is torsion. Ozsvath and Szabé [29, Section 4] showed that CF (H.s)
admits a relative Z—grading. For generators x, y € CF(#,s) and ¢ € m(x,y), we
have

(6-1) gr(x, y) = u(@) —2ny(9).

They showed [30, Theorem 7.1] that this can be lifted to an absolute Q—grading gr, in
the sense that gr(x, y) = gr(x) — gr(y). Such a grading is called the Maslov grading
or homological grading.

Example 6.1 If Y = S? with its unique Spin® structure s, and if # is a Heegaard
diagram of Y, then on CF(H,so) the absolute Q-grading is actually an absolute
Z—grading. The generator of HF(S?,s¢) = Z5 is homogeneous of grading zero.

More generally, if ¥ = #*_, (S1x §2) with Heegaard diagram , and s € Spin®(Y)
is such that ¢y (s9) = 0, then gr is an absolute Z—grading on CF (%, sg).

The main result of this section is the following.

Theorem 6.2 Let C be a decorated concordance from (S 3 K. Py) to (S 3 Ky, Py),
and let H; be an admissible doubly pointed diagram of (S3, K;, P;) fori € {0, 1}.
Then, the chain map . -

Je: CF(Ho) — CF(Hy)

preserves the absolute homological grading; that is, if x € CF (Ho) is gr—homogeneous,
sois fe(x), and if fo(x) # 0, then

gr(fe(x)) = gr(x).

Remark 6.3 Notice that the statement of Theorem 6.2 is stronger than the fact that
fc preserves the Maslov filtration. We actually claim that the Maslov grading is not
decreased by fc.

Idea of the proof We proceed similarly to the proof of Theorem 5.4, and use the
notation from Section 5D and Figure 1. As the diffeomorphism D constructed in
Section 5C induces a homomorphism D, that preserves the homological grading, we
can assume the gluing map is trivial and we are dealing with a special cobordism.

First, we prove that, in the right Spin® structure, the maps f3,0p, fH% > JuiLo
fH]lL 2 and f2 ¢ each preserve the relative Maslov grading gr. This is only implicit
in the work of Ozsvath and Szabé [30], so we provide more detail. Then we show that
the absolute grading shift of f, which is the composition of all the above maps, is
zero.
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For the 1- and 3-handle maps f3,0 p and f;2 g, it is straightforward to check that the
relative Maslov grading is preserved using (6-1) above.

Now consider the 2-handle map f3, 1. Let (X,a,8,8,w,z) be an admissible triple
Heegaard diagram subordinate to a bouquet for L. For generators x € Ty N Tg
and y € Ty N'Ts such that s(x) = sly, , and s(y) = sy, 5, where s denotes the
unique Spin® structure on X, and for every Whitney triangle ¥ € m,(x, 0, y), we let

d =gr(y)—gr(x) 4+ pny) —2nw ().

We show that d is independent of ¥, x and y. Since the triangles v contributing
to f31 1, have u(¥) =0 and ny () = 0, it follows that the absolute grading is shifted
by d, so the relative grading is preserved.

We already know from the work of Ozsvath and Szab6 [29] that the naturality maps
fﬂ% 41 and ]’;{i 72 preserve the relative homological grading gr. Alternatively, this
can also be shown using the techniques of Section 5K.

Finally, fc, which is the composition of all the above maps, preserves the relative
homological grading, or equivalently, it shifts the absolute homological grading by some
constant e. This implies that, for every r € N, the map E” (f¢) shifts the homological
grading by the same constant e independent of r. Since we know that the map in
total homology is Id 4 (%) and preserves the absolute grading by [26, Lemma 3.4], it
immediately follows that e = 0. a

The rest of this section is devoted to filling in the details of the above outline.

6A Spin® structures

Let s be the unique Spin® structure on X . Then

Je=Je,s = f?—l,z,S,s 0---0 fHO,]P’,5’
where the restrictions of s are omitted for the sake of clarity.

So it suffices to consider the above maps in the Spin® structure s. In the rest of the
section, we will focus on the maps f2g ¢ - - -, /30 p, s> and for simplicity, we will
denote the restrictions of s by the same letter.

6B 1- and 3-handles

The 1-handle map f;0p ; satisfies the following.
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Lemma 6.4 Let x”, " € CF(H°, s) be generators. Then

gr(x". X") = gr(fop s (x"). frop s (X))

ie the relative homological grading is preserved under the 1-handle map.

Proof Let ¢ € m(x”, X”). Then the domain of ¢ also represents a Whitney disk
between f0p(x”) and fy,0 p(X”) in the Heegaard diagram 7£J, that we also denote
by ¢. By (6-1), we have

gr(x”, ") = (¢) — 2nw(¢) = gr(frop.o(x"), frop (X")). a
A dual argument gives the following result for the 3—handle map f32 -
Lemma 6.5 Let y', 7' € CF(H2 s) be generators such that fuzs, s(¥") # 0 and
fruzs,s(¥') #0. Then
g 7)) =gr(fzs,s (V). frzs,s(F)):

ie the relative homological grading is preserved under the 3—handle map.

6C 2-handles

For 2-handles, we have the following.

Lemma 6.6 Let x,X € aj(?—[l) be generators such that s(x) = s(X) = s. Then
S L, s(x) and fy1 1, o(X) are gt—homogeneous, and if they are nonzero, then

gr(x,x) = gr(f’Hl,IL,s(x)’ f’Hl,]L,s(f))'

Proof For x € (/31\3(7-[1), y € @(Hi) and ¥ € my(x, 0, y) such that s(y) = s, let

(6-2) d=gr(y)—gr(x) + pn(¥) —2nw ().

First, we check that d is independent of 1. As in the proof of Lemma 5.13, it suffices
to show that, for every triply periodic domain P,

(6-3) p(P) = 2ny(P).

Since, by Proposition 5.16, every triply periodic domain is the sum of doubly periodic
domains, it is sufficient to prove (6-3) in the case of doubly periodic domains in Heegaard
diagrams of Y, g, Y, 5 and Yg 5.

Consider, for example, Y, g and z € Ty, N Ty, with a periodic domain P € I1, g based
at z. As s(z) extends to the cobordism X7, we see that ¢;(s(z)) vanishes on the belt
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spheres of the 1-handles. Furthermore, since H(P) € H,(Y) is a linear combination
of the belt spheres, we obtain that

{c1(s(2)), H(P)) = 0.
By the work of Ozsvéth and Szabé [29, Theorem 4.9] and Lipshitz [20, Lemma 4.10],
p(P) = (c1(s(2)), H(P)) + 2ny (P),
and the result follows. This proves that d is independent of .

Next, we check that d is independent of x and y. Let X be another generator
of CF(#') such that 5(¥) = s. Then there is a Whitney disk ¢ € 7,(X, x), hence
o#Y e my(X,0,y). Then, by (6-1),

d =gr(y) —gr(x) + u(¥) —2ny(¥)
= gr(y) —gr(x) + pn(¥) = 2nw (¥) + (&r(x) — g(X) + 11(¢) — 21w (4))
=gr(y) —gH(X) + (P # ) —2nw(p # V).
Thus, d is independent of x. An analogous argument shows independence of y .

Finally, all the holomorphic triangles that appear in the definition of the map f3;1 1, .
satisfy w(y¥) = 0 and ny () = 0. Then, it follows from (6-2) that /3,1, , increases
the absolute grading gr by d. In particular, it preserves the relative grading gr. O

6D Naturality maps

We already know from the work of Ozsvath and Szab6 [29] that the naturality maps
preserve the Maslov grading. Alternatively, one can prove that the handleslide and
isotopy maps preserve the Maslov grading using the techniques of Lemma 6.6. The
(de)stabilization maps are already isomorphisms on the chain level.

6E Proof of Theorem 6.2
As explained in Section 6A,

Je= fHZ,S,s ° fyi,y{s o le,L,s 0 f?—[%,?—(l,s ° f?—l",]P’,S‘

All the above maps preserve the relative Maslov grading by Lemmas 6.4, 6.5 and 6.6,
so fc shifts the absolute Maslov grading by some constant e. It follows that the maps
induced between the spectral sequences E” ( f¢) shift the absolute Maslov grading by
the same constant e. On the other hand, the map in total homology is Id (S3)° which
is homogeneous of degree 0, so we obtain that e = 0. a
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