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GLC.2 ;R/–orbits in Prym eigenform loci

ERWAN LANNEAU

DUC-MANH NGUYEN

This paper is devoted to the classification of GLC.2;R/–orbit closures of surfaces in
the intersection of the Prym eigenform locus with various strata of abelian differentials.
We show that the following dichotomy holds: an orbit is either closed or dense in a
connected component of the Prym eigenform locus.

The proof uses several topological properties of Prym eigenforms. In particular, the
tools and the proof are independent of the recent results of Eskin and Mirzakhani and
Eskin, Mirzakhani and Mohammadi.

As an application we obtain a finiteness result for the number of closed GLC.2;R/–
orbits (not necessarily primitive) in the Prym eigenform locus �ED.2; 2/ for any
fixed D that is not a square.
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1 Introduction

For any g� 1 and any integer partition �D .�1; : : : ; �r/ of 2g�2 we denote by H.�/
a stratum of the moduli space of marked abelian differentials of type � , ie of pairs
.X; !/, where X is a Riemann surface of genus g and ! is a holomorphic 1–form
having r zeros with prescribed multiplicities �1; : : : ; �r . Analogously, one defines
the strata of the moduli space of marked quadratic differentials Q.�0/ having zeros
and simple poles of multiplicities �01; : : : ; �

0
s with

Ps
iD1 �

0
s D 4g � 4 (simple poles

correspond to “zeros of multiplicity �1”).

The 1–form ! defines a canonical flat metric on S (the underlying topological surface)
with conical singularities at †, the zeros of ! . Therefore we will refer to points of H.�/
as flat surfaces or translation surfaces (two translation surfaces are equivalent if they
differ by precomposition by a homeomorphism of S which fixes † and is isotopic to
the identity rel †). The strata admit a natural action of the group GLC.2;R/ that can be
viewed as a generalization of the GLC.2;R/–action on the space GLC.2;R/=SL.2;Z/
of flat tori. For an introduction to this subject, we refer to the excellent surveys by
Masur and Tabachnikov [17] and Zorich [31].
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It has been discovered that many topological and dynamical properties of a transla-
tion surface can be revealed by its GLC.2;R/–orbit closure. The most spectacular
example of this phenomenon is the case of Veech surfaces, or lattice surfaces, that is,
surfaces whose GLC.2;R/–orbit is a closed subset in its stratum; for such surfaces,
the famous Veech dichotomy holds: the linear flow in any direction is either periodic or
uniquely ergodic.

It follows from the foundational results of Masur and Veech that most GLC.2;R/
orbits are dense in their stratum. However, in any stratum there always exist surfaces
whose orbits are closed: for example, coverings of the standard flat torus, which are
commonly known as square-tiled surfaces.

During the past three decades, much effort has been made in order to obtain the list
of possible GLC.2;R/–orbit closures and to understand their structure as subsets of
strata. So far, such a list is only known in genus two by the work of McMullen [26],
but the problem is widely open in higher genus, even though some breakthroughs have
been achieved recently (see below).

In genus two the complex dimensions of the connected strata H.2/ and H.1; 1/ are,
respectively, 4 and 5. In this situation, McMullen proved that if a GLC.2;R/–orbit
is not dense, then it belongs to a Prym eigenform locus, which is a submanifold of
complex dimension 3. In this case, the orbit is either closed or dense in the whole
Prym eigenform locus. These (closed) invariant submanifolds, which we denote by
�ED , where D is a discriminant (that is D 2N , D � 0; 1 mod 4), are characterized
by the following properties:

(1) Every surface .X; !/ 2�ED has a holomorphic involution � W X !X .

(2) The Prym variety Prym.X; �/ D .��.X; �//�=H1.X;Z/� admits a real mul-
tiplication by some quadratic order OD WD ZŒx�=.x2 C bx C c/, b; c 2 Z,
b2� 4c DD .

(Here ��.X; �/D f� 2�.X/ j ���D��g).

Later, these properties were extended to higher genera (up to genus five); see McMullen
[20; 24] and Lanneau and Nguyen [15] for more details.

Recently, Eskin, Mirzakhani and Mohammadi [7; 8] have announced a proof of the
conjecture that any GLC.2;R/–orbit closure is an affine invariant submanifold of
H.�/. This result is of great importance in view of the classification of orbit closures
as it provides some very important characterizations of such subsets. However a priori
this result does not allow us to construct explicitly such invariant submanifolds.
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So far, most GLC.2;R/–invariant submanifolds of a stratum are obtained from cover-
ings of translation surfaces of lower genera. The only known examples of invariant
submanifolds not arising from this construction belong to one of the following families:

(1) Primitive Teichmüller curves (closed orbits).

(2) Prym eigenforms.

This paper is concerned with the classification of GLC.2;R/–orbit closures in the
space of Prym eigenforms. To be more precise, for any nonempty stratum Q.�0/,
there is a (local) affine map �W Qg 0.�0/ ! Hg.�/ given by the orientation double
covering (the indices g and g0 are the genera of the corresponding Riemann surfaces).
When g � g0 D 2, following McMullen [24] we call the image of � a Prym locus
and denote it by Prym.�/. Those Prym loci contain GLC.2;R/–invariant suborbifolds
denoted by �ED.�/ (see Section 2 for more precise definitions). We will investigate
the GLC.2;R/–orbit closures in �ED.�/. The first main theorem of this paper is
the following:

Theorem 1.1 Let .X; !/ 2�ED.�/ be a Prym eigenform, where �ED.�/ has com-
plex dimension 3 (ie �ED.�/ is contained in one of the Prym loci in Table 1). We
denote by O its orbit under GLC.2;R/. Then:

(1) Either O is closed (ie .X; !/ is a Veech surface), or

(2) O is a connected component of �ED.�/.

Q.�0/ Prym.�/ g.X/

Q0.�16; 2/ Prym.1; 1/'H.1; 1/ 2

Q1.�13; 1; 2/ Prym.1; 1; 2/ 3

Q1.�14; 4/ Prym.2; 2/odd 3

Q2.�12; 6/ Prym.3; 3/'H.1; 1/ 4

Q2.12; 2/ Prym.12; 22/'H.02; 2/ 4

Q2.�1; 2; 3/ Prym.1; 1; 4/ 4

Q2.�1; 1; 4/ Prym.2; 2; 2/even 4

Q3.8/ Prym.4; 4/even 5

Table 1: Prym loci for which the corresponding stratum of quadratic dif-
ferentials has (complex) dimension 5 . The Prym eigenform locus �ED.�/
has complex dimension 3 . Observe that the stratum H.1; 1/ in genus 2 is a
particular case of Prym locus.
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Observe that the case � D .1; 1/ is part of the classification in genus two, which is
obtained via decompositions of translation surfaces of genus two into connected sums
of two tori (see McMullen [26]).

Remark 1.2 We will address the classification of connected components of �ED.2; 2/
and �ED.1; 1; 2/ in a forthcoming paper [14] (see also [15] for related work). The
statement is the following: for any discriminant D � 8 and � 2 f.2; 2/; .1; 1; 2/g, the
locus �ED.�/ is nonempty if and only if D � 0; 1; 4 mod 8, and it is connected if
D � 0; 4 mod 8, and has two connected components otherwise.

Even though Theorem 1.1 is a particular case of the recent results of Eskin and
Mirzakhani [7] and Eskin, Mirzakhani and Mohammadi [8], our proof is independent
from these works. It is based on the geometry of the kernel foliation on the space of Prym
eigenforms. It also seems likely to us that the method introduced here can be generalized
to yield Eskin, Mirzakhani and Mohammadi’s result in invariant submanifolds which
possess the complete periodicity property (see Section 2D).

We will also prove a finiteness result for Teichmüller curves in the locus �ED.2; 2/odd ;
this is our second main result:

Theorem 1.3 If D is not a square, there exist only finitely many closed GLC.2;R/–
orbits in �ED.2; 2/odd .

We end with a few remarks on Theorem 1.3.

Remark 1.4 � To the authors’ knowledge, such a finiteness result is not a direct
consequence of the work by Eskin, Mirzakhani and Mohammadi.

� In Prym.1; 1/ a stronger statement holds: there exist only finitely many closed
GLC.2;R/–orbits in

F
D not a square�ED.1; 1/ (see McMullen [23; 25]). The

same result holds for Prym.1; 1; 2/: this is proved in a forthcoming paper by the
first author and M Möller [13]. However, this is no longer true in Prym.2; 2/odd ,
as we will see in Theorem A.1.

� Other finiteness results on Teichmüller curves have been obtained in other
situations by different methods; see for instance Möller [28], Bainbridge and
Möller [1] and Matheus and Wright [19].

Outline of the paper We end this section with a sketch of the proofs of Theorem 1.1
and Theorem 1.3. Before going into the details, we single out the relevant properties of
�ED.�/ for our purpose. In what follows, .X; !/ will denote a surface in �ED.�/
(sometimes we will simply use X when there is no confusion).
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(1) Each locus is preserved by the kernel foliation, that is, .X; !/Cv is well defined
for any sufficiently small vector v 2 R2 (see Section 3). Up to the action of
GLC.2;R/, there exists " > 0 such that a neighborhood of .X; !/ in �ED.�/
can be identified with the set

f.X; !/C v j jvj< "g:

(2) Every surface in �ED.�/ is completely periodic in the sense of Calta: any
direction of a simple closed geodesic is actually completely periodic, which
means that the surface is decomposed into cylinders in this direction. The number
of cylinders is bounded from above by gCj�j � 1, where j�j is the number of
zeros of ! (see Section 2).

(3) Assume that .X; !/ decomposes into cylinders in the horizontal direction. Then
the moduli of those cylinders are related by some equations with rational coeffi-
cients (see Proposition 5.1).

(4) The cylinder decomposition in a completely periodic direction is said to be stable
if there is no saddle connection connecting two different zeros in this direction.
The stable periodic directions are generic for the kernel foliation in the following
sense: if the horizontal direction is stable for .X; !/, then there exists "> 0 such
that for any v 2 R2 with jvj < ", the horizontal direction is also periodic and
stable on X C v . If the horizontal direction is unstable then there exists " > 0
such that for any v D .x; y/ with jvj< " and y 6D 0 the horizontal direction is
periodic and stable on X C v .

The properties (1)–(3) are explained in Lanneau and Nguyen [16] (see Section 3.1 and
Corollary 3.2; Theorem 1.5; Theorem 7.2, respectively). We will give more details on
property (4) in Section 4.

We now give a sketch of the proof of our results. The first part of the paper (Sections 3–7)
is devoted to the proof of Theorem 1.1, while the second part (Sections 8–12) is
concerned with Theorem 1.3.

Sketch of proof of Theorem 1.1 Let .X; !/ 2 �ED.�/ be a Prym eigenform and
let O WD GLC.2;R/ � .X; !/ be the corresponding GLC.2;R/–orbit. We will show
that if O is not a closed subset in �ED.�/ then it is dense in a connected component
of �ED.�/.

We first prove a weaker version of Theorem 1.1 (see Section 6) under the additional
condition that there exists a completely periodic direction � on .X; !/ that is not
parabolic. We start by applying the horocycle flow in that periodic direction, and
use the classical Kronecker’s theorem to show that the orbit closure contains the set
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.X; !/C xEv , where Ev is the unit vector in direction � , and x 2 .�"; "/ with " > 0
small enough. Then we apply the same argument to the surfaces .X; !/CxEv in another
periodic direction that is transverse to � . It follows that O contains a neighborhood of
.X; !/, and hence, for any g 2 GLC.2;R/, O contains a neighborhood of g � .X; !/.
Using this fact, we show that for any .Y; �/ 2 O nO , the closure O also contains a
neighborhood of .Y; �/, from which we deduce that O is an open subset of �ED.�/.
Hence O must be a connected component of �ED.�/.

In full generality (see Section 7), we show that if the orbit is not closed and all the
periodic directions are parabolic, then it is also dense in a component of �ED.�/.
For this, we consider a surface .Y; �/ 2 O nO for which the horizontal direction is
periodic. From property (1), we see that there is a sequence ..Xn; !n//n2N of surfaces
in O converging to .Y; �/ such that we can write .Xn; !n/D .Y; �/C .xn; yn/, where
.xn; yn/! .0; 0/. Property (4) then implies that the horizontal direction is periodic for
.Xn; !n/. Moreover, we can assume that the corresponding cylinder decomposition in
.Xn; !n/ is stable (for n large enough).

For any x 2 .�"; "/, where " > 0 is small enough, we show that (up to taking a
subsequence) the orbit of the horocycle flow though .Xn; !n/ contains a surface
.Xn; !n/C .xn; 0/ such that the sequence .xn/ converges to x . As a consequence, we
see that O contains .Y; �/C .x; 0/ for every x 2 .�"; "/. We can now conclude that
O is a component of �ED.�/ by the weaker version of Theorem 1.1.

Sketch of proof of Theorem 1.3 We first show a finiteness result up to the (real) kernel
foliation for surfaces in �ED.2; 2/odd (see Theorem 12.2): if D is not a square then
there exists a finite family PD ��ED.2; 2/odd such that any .X; !/ 2�ED.2; 2/odd

having an unstable cylinder decomposition, up to rescaling by GLC.2;R/, satisfies

.X; !/D .Xk; !k/C .x; 0/ for some .Xk; !k/ 2 PD:

Compare to McMullen [22] and Lanneau and Nguyen [15], where a similar result is
established.

Now let us assume that there exists an infinite family, say

Y D
[
i2I

GLC.2;R/ � .Xi ; !i /;

of closed GLC.2;R/–orbits, generated by Veech surfaces .Xi ; !i /, i 2 I .

By the previous finiteness result, up to taking a subsequence, we assume that .Xi ; !i /D
.X; !/C .xi ; 0/ for some .X; !/ 2 PD , where xi belongs to a finite open interval
.a; b/ which is independent of i (see Theorem 9.1). Up to taking a subsequence, one
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can assume that the sequence .xi / converges to some x 2 Œa; b�. Hence the sequence
.Xi ; !i /D .X; !/C .xi ; 0/ converges to .Y; �/ WD .X; !/C .x; 0/.

If x 2 .a; b/ then .Y; �/ belongs to �ED.2; 2/odd ; otherwise (that is, if x 2 fa; bg),
.Y; �/ belongs to one of the loci �ED.0; 0; 0/, �ED.4/, or �ED0.2/� , with D0 2
fD;D=4g (see Section 9). Then by using a by-product of the proof of Theorem 1.1,
replacing O by Y (see Theorem 7.2 and Theorem 10.4) we obtain that Y is dense in a
component of �ED.2; 2/odd . We conclude with Theorem 11.1, which asserts that the
set of closed GLC.2;R/–orbits is not dense in any component of �ED.2; 2/odd when
D is not a square.
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2 Background

For an introduction to translation surfaces, and a nice survey, see eg [17; 31]. In this
section we recall necessary background and relevant properties of �ED.�/ for our
purpose. For a general reference on Prym eigenforms, see [24].

We will use the following notation throughout the paper:
� j � j is the Euclidean norm on R2 .
� k � k is some norm on M .2;R/.
� B."/D fv 2R2 j jvj< "g.
� B.M; "/D fA 2 GLC.2;R/ j kA�Mk< "g.
� !./ WD

R
 ! for any  2H1.X;Z/.

2A Prym loci and Prym eigenforms

Let X be a compact Riemann surface, and � W X ! X be a holomorphic involution
of X . We define the Prym variety of X :

Prym.X; �/D .��.X; �//�=H1.X;Z/�;
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where ��.X; �/D f� 2�.X/ j ���D��g. It is an abelian subvariety of the Jacobian
variety Jac.X/ WD�.X/�=H1.X;Z/.

For any integer vector � D .k1; : : : ; kn/ with nonnegative entries, we denote by
Prym.�/ � H.�/ the subset of pairs .X; !/ such that there exists an involution
� W X!X satisfying ��!D�! , and dimC �

�.X; �/D 2. Following McMullen [24],
we will call an element of Prym.�/ a Prym form. For instance, in genus two, one has
Prym.2/'H.2/ and Prym.1; 1/'H.1; 1/ (the Prym involution being the hyperelliptic
involution).

Let Y be the quotient of X by the Prym involution (here g.Y /D g.X/� 2) and �
the corresponding (possibly ramified) double covering from X to Y . By pushforward,
there exists a meromorphic quadratic differential q on Y (with at most simple poles)
so that ��q D !2 . Let �0 be the integer vector that records the orders of the zeros
and poles of q . Then there is a GLC.2;R/–equivariant bijection between Q.�0/ and
Prym.�/ [12, page 6].

All the strata of quadratic differentials of dimension 5 are recorded in Table 1. It turns
out that the corresponding Prym varieties have complex dimension 2 (ie if .X; !/ is
the orientation double covering of .Y; q/, then g.X/�g.Y /D 2).

We now give the definition of Prym eigenforms. Recall that a quadratic order is a ring
isomorphic to OD DZŒX�=.X2CbXCc/, where DD b2�4c > 0 (quadratic orders
being classified by their discriminant D ).

Definition 2.1 (real multiplication) Let A be an abelian variety of dimension 2. We
say that A admits a real multiplication by OD if there exists an injective homomorphism
iW OD! End.A/ such that i.OD/ is a self-adjoint, proper subring of End.A/ (ie for
any f 2 End.A/, if there exists n 2 Znf0g such that nf 2 i.OD/ then f 2 i.OD/).

Definition 2.2 (Prym eigenform) For any quadratic discriminant D > 0, we denote
by �ED.�/ the set of .X; !/2 Prym.�/ such that dimC Prym.X; �/D 2, Prym.X; �/
admits a multiplication by OD , and ! is an eigenvector of OD . Surfaces in �ED.�/
are called Prym eigenforms.

Prym eigenforms do exist in each Prym locus described in Table 1, as real multiplications
arise naturally from pseudo-Anosov homeomorphisms commuting with � (see [24]).

We now collect several results concerning surfaces having a decomposition into periodic
cylinders.
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2B Periodic directions and cylinder decompositions

Let .X; !/ be a translation surface. A cylinder is a topological annulus embedded
in X , isometric to a flat cylinder R=wZ� .0; h/. In what follows all cylinders are
supposed to be maximal, that is, they are not properly contained in a larger one. If
g � 2, the boundary of a maximal cylinder is a finite union of saddle connections. If
C is a cylinder, we will denote by w.C/, h.C/, �.C/ the width, height, and modulus
of C , respectively (�.C/D h.C/=w.C/).

Another important parameter of a cylinder is its twist t .C/. Note that we only define
t .C/ when C is a horizontal cylinder. For that, we first mark a pair of oriented saddle
connections on the bottom and the top boundaries of C . This allows us to define a
saddle connection contained in C joining the origins of the marked saddle connections.
This gives us a twist vector; its vertical component equals h.C/ and its horizontal com-
ponent is t .C/. We emphasize that t .C/ depends on the marking (see [10, Section 3]).
However, the choice of the marking is irrelevant for our arguments throughout this
paper. Therefore, we will refer to t .C/ as the twist associated to any marking.

A direction � is completely periodic or simply periodic on X if all regular geodesics
in this direction are closed. This means that X is the closure of a finite number of
cylinders in direction � , we will say that X admits a cylinder decomposition in this
direction. Since the Prym involution � preserves the set of cylinders, it naturally
induces an equivalence relation on this set. We will often use the term “number of
cylinders up to Prym involution” for the number of �–equivalence classes of cylinders.

A separatrix is a geodesic ray emanating from a zero of ! . It is a well-known fact
that a direction is periodic if and only if all the separatrices in this direction are saddle
connections. We will often call a separatrix in direction .1; 0/ a positive horizontal
separatrix, and a separatrix in direction .�1; 0/ a negative horizontal separatrix.

2C Combinatorial data of a cylinder decomposition

We can associate to any cylinder decomposition a separatrix diagram which encodes the
way the cylinders are glued together; see [11]. Given such a diagram, one can reconstruct
the surface .X; !/ (up to a rotation) from the widths, heights, and twists of the cylinders.
More precisely, if .X; !/ is horizontally periodic, each saddle connection is contained
in the upper (respectively, lower) boundary of a unique cylinder. We associate to this
cylinder decomposition the following data:
� two partitions of the set of saddle connections into k subsets, where k is the

number of cylinders, each subset in these partitions is equipped with a cyclic
ordering, and

� a pairing of subsets in these two partitions.
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We will call these data the combinatorial data or topological model of the cylinder
decomposition.

2D Complete periodicity

A translation surface .X; !/ is said to be completely periodic if it satisfies the following
property: for a direction � 2RP1 , if the linear flow F� in the direction � has a regular
closed orbit on X , then � is a periodic direction. Flat tori and their ramified coverings
are completely periodic, as well as Veech surfaces.

It turns out that, if the genus is at least two, the set of surfaces having this property has
measure zero. Indeed, complete periodicity is locally expressed via proportionality of
a nonempty set of relative periods, and thus is defined by some quadratic equations in
the period coordinates. This property was introduced by Calta [2] (see also [3]); she
proved that any surface in �ED.2/ and �ED.1; 1/ is completely periodic. Note that
this property can also be deduced from the characterization of eigenforms by McMullen
(see [26, Section 6]). Later the authors extended this property to the Prym eigenforms
given in Table 1. This property is also proved by A Wright [30] in a more general
context by a different argument.

Theorem 2.3 [2; 16; 30] Any Prym eigenform in the loci �ED.�/ � Prym.�/ of
Table 1 is completely periodic.

2E Stable and unstable cylinder decompositions

A cylinder decomposition of .X; !/ is said to be stable if every separatrix joins a zero
of ! to itself. The decomposition is said to be unstable otherwise.

Lemma 2.4 Let � be a periodic direction for .X; !/2H.�/ and g be the genus of X .
If X has gCj�j � 1 cylinders in the direction � , then the cylinder decomposition in
this direction is stable (j�j is the number of zeros of ! ).

Proof Let C1; : : : ; Cn be the cylinders in the direction � of X . For i D 1; : : : ; n, let
ci be a core curve of Ci . Cutting X along ci , we obtain r compact surfaces with
boundary, denoted by X1; : : : ; Xr . Since each of Xi must contain at least a zero of ! ,
we have r � j�j. Let ni be the number of boundary components of Xi . Remark thatP
1�i�r ni D 2n, and �.Xi / � 2� ni , where �. � / is the Euler characteristic. By

construction,

2� 2g D �.X/D

rX
iD1

�.Xi /�

rX
iD1

.2�ni /D 2r �

rX
iD1

ni D 2r � 2n:
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It follows immediately that

n� gC r � 1� gCj�j � 1:

From the previous inequalities, we see that the equality n D gC j�j � 1 is realized
if and only if r D j�j and each Xi has genus zero. In particular, if nD gC j�j � 1,
then each component Xi contains a unique zero of ! . If there is a saddle connection
joining two distinct zeros of ! , then these two zeros must belong to the same Xi , and
we draw a contradiction. Therefore, the cylinder decomposition must be stable.

Remark 2.5 In H.1; 1/ the maximal number of cylinders in a cylinder decomposition
is three, and a cylinder decomposition is stable if and only if this maximal number
is attained. In higher genus, there are stable cylinder decompositions with less than
nCj�j � 1 cylinders.

Lemma 2.6 Let .X; !/2Prym.�/ be a surface in one of the strata given by Table 1. If
the horizontal direction is periodic for .X; !/ then the number n of horizontal cylinders,
counted up to the Prym involution, satisfies n � 3. Moreover, if � 6D .1; 1; 2; 2/ and
nD 3 then the cylinder decomposition in the horizontal direction is stable.

Remark 2.7 Observe that Lemma 2.6 is false for the stratum Prym.1; 1; 2; 2/. How-
ever, using the identification Prym.1; 1; 2; 2/'H.0; 0; 2/, the statement becomes true
with the convention that a cylinder decomposition of .X; !/2 Prym.1; 1; 2; 2/ is stable
if and only if the decomposition of the corresponding surface in H.0; 0; 2/ is.

Proof Let us assume that the horizontal direction is completely periodic. We first
show that the number n of horizontal cylinders, counted up to the Prym involution,
satisfies n� 3. Let nf be the number of fixed cylinders (by the Prym involution) and
let 2 �np be the number of noninvariant cylinders. Obviously nD nf Cnp .

The next observation is that each fixed cylinder contains exactly two regular fixed
points of the Prym involution, which project to simple poles of the corresponding
quadratic differential. Hence if Prym.�/ is the covering of Q.�1p; k1; : : : ; km/ where
ki � 0 then nf �

�
1
2
p
˘

. Now since the number of cylinders is at most gC j�j � 1,
we get np �

�
1
2
.gCj�j � 1�nf /

˘
. Hence

nD nf Cnp �
�
1
2
.gCj�j � 1Cnf /

˘
:

The values of gCj�j � 1 for the different cases of Table 1 are given in Table 2. In the
first four entries of the table, the inequality p � 1 holds for all cases, thus nf D 0.
Therefore n�

�
7
2

˘
D 3.
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Q.�0/ Prym.�/ gCj�j � 1

Q0.�16; 2/ Prym.1; 1/ 3

Q1.�13; 1; 2/ Prym.1; 1; 2/ 5

Q1.�14; 4/ Prym.2; 2/odd 4

Q2.�12; 6/ Prym.3; 3/ 5

Q2.12; 2/ Prym.12; 22/ 7

Q2.�1; 2; 3/ Prym.1; 1; 4/ 6

Q2.�1; 1; 4/ Prym.2; 2; 2/even 6

Q3.8/ Prym.4; 4/even 6

Table 2: Values of gCj�j � 1 for the different cases of Table 1.

For the last four entries of the table, one has, respectively:

(1) If � D .1; 1/ then nf � 3 and n�
�
1
2
.3Cnf /

˘
� 3.

(2) If � D .1; 1; 2/ then nf � 1 and n�
�
1
2
.5Cnf /

˘
� 3.

(3) If � D .2; 2/ then nf � 2 and n�
�
1
2
.4Cnf /

˘
� 3.

(4) If � D .3; 3/ then nf � 1 and n�
�
1
2
.5Cnf /

˘
� 3.

The first statement of the lemma is proved. Now we notice that if n D 3 then, in
every case but � D .1; 1; 2; 2/, one has nf C 2 �np D gCj�j � 1. We conclude with
Lemma 2.4.

2F Action of the horizontal horocycle flow on cylinders

The (horizontal) horocycle flow is defined as the action of the one-parameter subgroup
U D fus j s 2 Rg of GLC.2;R/, where us D

�
1
0
s
1

�
. If the horizontal direction on

.X; !/ is completely periodic, then obviously the action of us on .X; !/ preserves
the cylinder decomposition topologically. Moreover, each cylinder Ci with parameters
.wi ; hi ; ti mod wi / is mapped to a cylinder Ci .s/ WD us.Ci / of us � .X; !/ with the
same width and height, while the twist is given by

(1) t .Ci .s//D ti C shi mod wi :

3 Kernel foliation on Prym loci

We briefly recall the kernel foliation for Prym loci (see [6; 18; 2; 27; 31, Section 9.6]
for related constructions). We refer to [16, Section 3.1] for details. This notion was
introduced by Eskin, Masur and Zorich, and was certainly known to Kontsevich.
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3A Kernel foliation

Let .X; !/2H.�/ be a translation surface with several distinct zeros. Using the period
mapping, we can identify a neighborhood of .X; !/ in H.�/ with an open subset
U � Cd , where d D dimH.�/. There is a foliation of U by subsets consisting of
surfaces having the same absolute periods. The set of surfaces in this neighborhood
that have the same absolute coordinates as X corresponds to the intersection of U
with an affine subspace of dimension j�j � 1. Therefore the leaves of this foliation
have dimension j�j � 1. It is not difficult to see that this foliation is invariant under the
coordinate changes of the period mappings; this globally defines a foliation in H.�/.
We call it the kernel foliation.

It turns out that the kernel foliation also exists in Prym.�/ and �ED.�/, for all � in
Table 1. In particular, in our situation, the leaves of the kernel foliation in �ED.�/
have dimension 1. Hence there is a local action of C on �ED.�/ as follows: for any
Prym eigenform .X; !/ and w 2C with jwj small enough, .X 0; !0/ WD .X; !/Cw
is the unique surface in the neighborhood of .X; !/ (in �ED.�/) such that !0 has
the same absolute periods as ! , and for a chosen relative cycle c 2 H1.X;†;Z/,
!0.c/D!.c/Cw († is the set of zeros of ! ). An explicit construction for .X; !/Cw
will be given in Section 4.

Remark 3.1 There is no global action of C on each leaf of the kernel foliation, ie
even if .X; !/Cw1 and .X; !/Cw2 are well defined, .X; !/Cw1Cw2 may not be
well defined. Nevertheless, there exists a local action of C : there exists a neighborhood
U of 0 2C such that for any w1; w2 2 U we have

.X; !/C .w1Cw2/D ..X; !/Cw1/Cw2 D ..X; !/Cw2/Cw1:

Convention In the sequel we only consider the intersection of kernel foliation leaves
with a neighborhood of .X; !/ on which this local action of C is well defined. Hence
by .X; !/Cw we will mean the surface obtained from .X; !/ by the construction
described above.

The relative periods of .X 0; !0/ WD .X; !/C w are characterized by the following
lemma (see Figure 1 for an example in Prym.1; 1; 2/).

Lemma 3.2 If c is any path on X joining two zeros of ! , and c0 is the corresponding
path on X 0 , then:

(1) If the two endpoints of c are exchanged by � then !0.c0/�!.c/D˙w .

(2) If one endpoint of c is fixed by � , but the other is not, then !0.c0/�!.c/D˙1
2
w .

The sign of the difference is determined by the orientation of c .

Geometry & Topology, Volume 20 (2016)



1372 Erwan Lanneau and Duc-Manh Nguyen

C2

C3

�.C3/

C1

�.C1/

C
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B

A

A

.X;!/

C2

C3

�.C3/

C1

�.C1/

C
C

B

B

A

A

.X;!/C .s; t/

Figure 1: Decomposition of a surface .X; !/ 2 Prym.1; 1; 2/ . The cyl-
inder C2 is fixed by the Prym involution � , while the cylinders Ci and �.Ci /
are exchanged for i D 1; 3 . Along a kernel foliation leaf .X; !/C .s; t/ the
twists and heights change as follows: t1.s/D t1�s , t2.s/D t2 , t3.s/D t3C 1

2
s

and h1.t/D h1 � t , h2.t/D h2 , h3.t/D h3C 1
2
t . We emphasize that the

formula for the twists does not depend on the choice of the marking.

We close this section with a description of a neighborhood of a Prym eigenform: up
to the action of GLC.2;R/, a neighborhood of a point .X; !/ in �ED.�/ can be
identified with the ball f.X; !/Cw j jwj< "g.

Proposition 3.3 [16] For any .X; !/ 2 �ED.�/, if .X 0; !0/ is a Prym eigenform
in �ED.�/ close enough to .X; !/, then there exists a unique pair .g; w/, where
g 2 GLC.2;R/ is close to Id, and w 2 R2 is close to 0, such that .X 0; !0/ D g �

..X; !/Cw/.

Proof For completeness we include the proof here (see [16, Section 3.2]).

Let .Y; �/D .X; !/Cw , with jwj small, be a surface in the leaf of the kernel foliation
through .X; !/. We denote by Œ!� and Œ�� the classes of ! and � in H 1.X;†IC/� .
Let �W H 1.X;†IC/�!H 1.X;C/� be the natural projection. We then have Œ���Œ!�2
ker � . On the other hand, the action of g 2 GLC.2;R/ on H 1.X;†IC/� satisfies
�.g � Œ!�/D g � �.Œ!�/. Therefore the leaves of the kernel foliation and the orbits of
GLC.2;R/ are transversal. Since their dimensions are complementary, the proposition
follows.

3B Horizontal and vertical kernel foliation

The horizontal and vertical kernel foliations were studied in some restricted settings
in [5; 4; 27], where they were called the real and imaginary foliations, respectively.
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Two nearby translation surfaces .X; !/; .X 0; !0/ 2�ED.�/ are in the same leaf of the
horizontal (respectively, vertical) kernel foliation if the integrals of the flat structures
along all closed curves are the same on X and X 0 , and if the integrals along curves join-
ing distinct singularities only differ in their horizontal (respectively, vertical) component.
More precisely, a leaf of the horizontal kernel foliation is parametrized by a continuous
map I !�ED.�/, s 7! .Xs; !s/ on a maximal interval containing 0 such that
� .X0; !0/D .X; !/,
� !s./D !./ for all s 2 I and any  2H1.X;Z/,
� !s1.c/�!s2.c/D .s1 � s2; 0/ for a fixed relative class c 2H1.X;†;Z/ and

for all s1; s2 2 I .

We will write .X; !/C .s; 0/D .Xs; !s/. If I DR then .X; !/C .s; 0/ is defined for
all s . The same description holds for the vertical kernel foliation.

Remark 3.4 If the horizontal direction on .X; !/ is stable then the horizontal kernel
foliation is well defined for all times s 2R.

3C Effect of the kernel foliation on cylinders

Assume that .X; !/ admits a stable cylinder decomposition in the horizontal directions,
with cylinders denoted by C1; : : : ; Ck . Let v D .s; 0/ be a vector such that .X; !/C
.s; 0/ is well defined and admits a stable cylinder decomposition (in the horizontal
direction) with the same combinatorial data and the same widths of cylinders. This
is the case if v is small enough (see Proposition 4.1 below). Let Ci .s; 0/ denote the
cylinder in .X; !/C .s; 0/ corresponding to Ci . Analogously, let Ci .0; t/ denote the
cylinder in .X; !/C .0; t/ that corresponds to Ci .

The widths of cylinders Ci .s; 0/ and Ci .0; t/ are constant functions of s and t , re-
spectively, since they correspond to absolute periods.

Similarly, the heights of the cylinder Ci .s; 0/ are constant functions of s (there is
no vertical deformations along the horizontal kernel foliation) and the twists of the
cylinders Ci .0; t/ are also constant functions of t .

Lemma 3.5 The twist (respectively, height) of the cylinder Ci .s; 0/ (respectively,
Ci .0; t/) is given by ti C˛is (respectively, hi C˛i t ), where ti is the twist of Ci , hi
is the height of Ci and

˛i D

8̂̂<̂
:̂
0 if the zeros in the upper and lower boundaries of Ci are the same,
˙1 if the zeros are exchanged by the Prym involution,
˙
1
2

if one zero is fixed and the other is mapped to the third one
by the Prym involution:
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We emphasize that, despite the fact that the twists depend on the marking, the formulas
above do not depend on the marking. The proof of Lemma 3.5 is elementary and left
to the reader.

4 Kernel foliation and cylinder decompositions

In this section we investigate the kernel foliation leaf near surfaces .X; !/ for which
the horizontal direction is periodic. We separate the discussion into two cases: when
the direction is stable or unstable.

Proposition 4.1 (stable case) If the horizontal direction on .X; !/ is periodic and
stable then there exists a small neighborhood U of 0 2 C such that, for every v D
.s; t/ 2 U , the horizontal direction on .X; !/C v is periodic, stable and has the same
combinatorial data and the same widths of cylinders.

Proposition 4.2 (unstable case) If the horizontal direction on .X; !/ is periodic
and unstable then there exists a small neighborhood U of 0 2 C such that, for every
vD .s; t/ 2U with t ¤ 0, the horizontal direction on .X; !/Cv is periodic and stable.
Moreover, the combinatorial data and the widths of the cylinder decomposition on
.X; !/C v depend only on the sign of t .

The difficulty lies in the fact that the horizontal decomposition on .X; !/C v is not
obviously given from the horizontal decomposition on .X; !/ if v is not horizontal.
At the opposite, for horizontal vectors, the following lemma holds:

Lemma 4.3 If s 2R with jsj< " then the cylinder decompositions of .X; !/C .s; 0/
and .X; !/ have the same combinatorial data and the same width.

Proof of Lemma 4.3 Obviously all the horizontal saddle connections in .X; !/ persist
in .X; !/C.s; 0/ (the lengths of some of them may be changed). Hence .X; !/C.s; 0/
also has a cylinder decomposition in the horizontal direction with the same combinatorial
data as the one of .X; !/. The widths of the corresponding cylinders must be the same
since they are absolute periods of ! .

Since for small s; t 2R the relation .X; !/C .s; t/D ..X; !/C .0; t//C .s; 0/ holds,
in view of Lemma 4.3, it suffices to prove Propositions 4.2 and 4.1 only for vectors
v D .0; t/.

The key to the two propositions is a careful analysis of the kernel foliation leaf near a
surface .X; !/ in term of flat geometry.
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Remark 4.4 The construction we present is general and can be used to describe the
kernel foliation for an affine invariant subvariety obtained by covering. To simplify
the exposition we present the construction when ! has two zeros permuted by the
involution, denoted by P and Q . The general construction is obtained by considering
as many Euclidean discs as the number of zeros of ! .

4A Flat geometry around a singularity

Let " > 0 small enough so that the two discs

D.P; "/ WD fx 2X j d.x; P / < "g and D.Q; "/ WD fx 2X j d.x;Q/ < "g

are embedded and disjoint in X . Taking " smaller if necessary, we can assume that
for any vector v 2 B."/ there is a unique surface .X 0; !0/ (denoted by .X; !/C v )
in a neighborhood of .X; !/ so that !0 and ! have the same absolute periods and
!0.c/�!.c/D v , where c is a fixed relative cycle. Moreover, for any v1; v2 2B."/
such that v1Cv2 2B."/, the equality .X; !/C .v1Cv2/D ..X; !/Cv1/Cv2 holds.

Each of the discs D.P; "/ and D.Q; "/ is homeomorphic to a topological disc. How-
ever, metrically, each has the structure of a regular cone with a cone angle 2�m, where
m� 1� 1 is the multiplicity of the zero P (or Q , since the multiplicity is the same:
the Prym involution permutes P and Q). Each cone can be glued from 2m disjoint
copies of Euclidean half-discs whose boundaries are isometrically glued together in a
circular fashion. Hence their centers are identified with the zero. More precisely, let

D�i D fz 2B."/ j �"� Re.z/� 0g and DCi D fz 2B."/ j 0� Re.z/� "g

be 2m disjoint Euclidean half-discs. We construct D.P; "/ by gluing the half-discs
D˙1 ; : : : ;D

˙
m as follows:

� DCi is glued to D�i along the segment fRe.z/ D 0; 0 � Im.z/ < "g, for i D
1; : : : ; m.

� D�i is glued to DCiC1 along the segment fRe.z/ D 0; �" < Im.z/ � 0g, for
i D 1; : : : ; m� 1.

� D�m is glued to DC1 along the segment fRe.z/D 0; �" < Im.z/� 0g.

Similarly, for D.Q; "/, we glue 2m half-discs D˙mC1; : : : ;D
˙
2m :

� D�i is glued to DCi along the segment fRe.z/ D 0;�" < Im.z/ � 0g, for
i DmC 1; : : : ; 2m.

� DCi is glued to D�iC1 along the segment fRe.z/ D 0; 0 � Im.z/ < "g, for
i DmC 1; : : : ; 2m� 1.

� DC2m is glued to D�mC1 along the segment fRe.z/D 0; 0� Im.z/ < "g.
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Observe that, by construction, �.DCi /DD
�
iCm and �.D�i /DD

C
iCm for i D 1; : : : ; m.

4B Combinatorial data

Any horizontal separatrix from a zero of ! must end in another zero. Thus a positive
horizontal saddle connection connects the “center” of some half-disc DCi to the “center”
of some D�j DD

�
πc.i/

. This defines a permutation πc of f1; : : : ; 2mg.

We can perform the same construction for the “top” and the “bottom” of the half-discs.
More precisely, a positive horizontal ray emanating from the top of the half-disc DCi
will pass through the top of some half-disc D�j , which is identified to the top of
DCjC1 D D

C

πt .i/
. This defines a permutation πt of f1; : : : ; 2mg. We have a similar

permutation πb of f1; : : : ; 2mg.

By construction, the set of cylinders in the horizontal direction is in bijection with the
set of cycles of πt (or πb ). Moreover, the tuple .πc ;πt ;πb/ is independent of " (as
long as D.P; "/ and D.Q; "/ are embedded and disjoint) and it clearly determines the
combinatorial data of the cylinder decomposition of .X; !/.

4C The “moving singularity” surgery

We assume that the horizontal direction on .X; !/ is periodic. Let h be the minimal
height among the heights of the cylinders, and ` be the length of the shortest horizontal
saddle connection. For any 0 < " < 1

2
minfh; `g we describe a local surgery of the

flat structure of .X; !/, without changing the flat structure outside the union of the
discs D.P; "/ and D.Q; "/, in order to recover .X; !/C .0; t/ for any jt j < " (see
Figure 2).

Let us assume that t > 0 (the case t < 0 is completely similar). We change the way of
gluing the half-discs as follows: as patterns we still use the Euclidean half-discs, but
we move slightly the “centers”: the center of D˙i , for i D 1; : : : ; m, will be moved by
the vector

�
0;�1

2
t
�
, while the center of D˙i , for i DmC 1; : : : ; 2m, will be moved

by the vector
�
0; 1
2
t
�
. We alternate half-discs with their centers moved up and down.

All the lengths along identifications are matching:

� DCi is glued to D�i along the segment
˚
Re.z/ D 0; �1

2
t � Im.z/ < "

	
, for

i D 1; : : : ; m.

� D�i is glued to DCiC1 along the segment
˚
Re.z/D 0; �" < Im.z/� �1

2
t
	

, for
i D 1; : : : ; m� 1.

� D�m is glued to DC1 along the segment
˚
Re.z/D 0; �" < Im.z/� �1

2
t
	

.
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Similarly, for D.Q; "/, we glue the discs DmC1; : : : ;D2m :
� D�i is glued to DCi along the segment

˚
Re.z/ D 0;�" < Im.z/ � 1

2
t
	

, for
i DmC 1; : : : ; 2m.

� DCi is glued to D�iC1 along the segment
˚
Re.z/ D 0; 1

2
t � Im.z/ < "

	
, for

i DmC 1; : : : ; 2m� 1.
� DC2m is glued to D�mC1 along the segment

˚
Re.z/D 0; 1

2
t � Im.z/ < "

	
.

Gluing the half-discs in this latter way, we obtain two topological discs, each of them
having a flat metric with a cone-type singularity of angle 2m� . Note that a small tubular
neighborhood of the boundary of the initial cone is isometric to the corresponding
tubular neighborhood of the boundary of the resulting object. Thus we can paste it
back into the surface (with the same angle).

Since this surgery does not change the flat metric outside of D.P; "/ and D.Q; "/, it
is not difficult to see that the resulting surface is .X 0; !0/D .X; !/C .0; t/ (see [16]).

Example 4.5 In Figure 2 we provide an example of a deformation by the kernel
foliation near an unstable decomposition. In this case � D .2; 2/, thus m D 3. The
permutation πc is given by .1; 4; 3; 5; 2; 6/. Similarly, the permutations πb and πt

are πb D .1; 4/.2; 6/.3; 5/ and πt D .1; 6/.2; 5/.3; 4/. Hence the saddle connections
emanating from P 0 (respectively, Q0 ) correspond to cycles of πb (respectively, πt ).
The new cylinder on .X 0; !0/ corresponds to the unique cycle of �c .

Example 4.6 Similarly, in Figure 1 we can encode the (stable) cylinder decomposition
with the help of the permutations �c , �t , �b . In this situation, the two zeros permuted
by the Prym involution have degree 1, thus mD 2. The third (fixed) zero has degree 2.
Hence we need 2C 2C 3 discs. By using a suitable labeling, we find

�cD .1/.2/.3/.4/.5; 7/.6/; �tD .1/.2/.3; 4/.5; 7/.6/; �bD .1; 2/.3/.4/.5/.6; 7/:

The lemma below summarizes how the flat metric changes in the discs. Recall that
t > 0.

Lemma 4.7 For i D 1; : : : ; m, all the points at the coordinates
�
0;�1

2
t
�

in D˙i are
identified to give a point P 0 in .X 0; !0/ with cone angle 2�m.

For i DmC 1; : : : ; 2m, all the points at the coordinates
�
0; 1
2
t
�

in D˙i are identified
to give a point Q0 in .X 0; !0/ with cone angle 2�m.

All the other points of D˙i give regular points in .X 0; !0/.

Moreover, for any i D 1; : : : ; 2m, there is a positive horizontal ray in .X 0; !0/ from
the point at the coordinates

�
0;�1

2
t
�

in DCi to the point at the coordinates
�
0;�1

2
t
�

in
D�
πc.i/

. The same conclusion holds for the point at the coordinates
�
0; 1
2
t
�
.
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Figure 2: Kernel foliation and unstable direction.

4D Proof of Proposition 4.1 and Proposition 4.2

Proof of Proposition 4.1 (stable case) Let 0 < " < 1
2

minfh; `g. Let v D .0; t/ with
0 < t < ".

Since the cylinder decomposition is stable, any positive horizontal saddle connection
connects a zero to itself. Namely, the permutation πc leaves invariant the subsets
f1; : : : ; mg and fmC1; : : : ; 2mg. By Lemma 4.7, for i D 1; : : : ; m, there is a positive
horizontal saddle connection from the singularity in DCi to the point at the coordinate�
0;�1

2
t
�

in D�
πc.i/

, ie from P 0 to P 0 . The same is true for Q0 . Thus the horizontal
direction on .X 0; !0/D .X; !/C v is periodic and stable.

Clearly the permutations πc , πt , πb and π0c , π0t , π
0
b

coincide (do not depend on "
nor t ). Hence the cylinder decomposition of .X; !/C v has the same combinatorial
data as the one of .X; !/. This ends the proof for the case t > 0. If v D .0; t/ with
�" < t < 0, the proof is similar.

Proof of Proposition 4.2 (unstable case) Let 0 < " < 1
2

minfh; `g. Let 0 < t < " (if
�" < t < 0 the proof is similar).

We first claim that any positive horizontal ray emanating from P 0 ends in P 0 . The
key remark is the following: for any i D 1; : : : ; m one can identify the singularity
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at the coordinates
�
0;�1

2
t
�

in D˙i (P 0 in .X 0; !0/) to the bottom of a disc with
radius 1

2
t . Let  be a positive horizontal separatrix from P 0 emanating from DCi for

some i D 1; : : : ; m. Let c D .i; i2; i3; : : : ; ik; : : : ; il/ be the cycle of πb containing i ,
where i2; i3; : : : ; ik 2 fmC1; : : : ; 2mg and ikC1 2 f1; : : : ; mg. Hence  will intersect
the sequence of discs Di2 ; : : : ;Dik , and will pass through the point at the coordinates�
0;�1

2
t
�

(which is regular). Then  will intersect the disc DikC1
, and will pass through

the point
�
0;�1

2
t
�

(which is identified to P 0 in .X 0; !0/).

The same argument shows that any horizontal ray emanating from Q0 ends in Q0 (and
those saddle connections are encoded in πt ). In conclusion, .X; !/C .0; t/ admits a
stable cylinder decomposition in the horizontal direction.

It remains to show that the combinatorial data does not depend on t (recall that t > 0).
There are two kinds of cylinders in .X; !/C .0; t/:
� A cylinder of the first kind corresponds to a cylinder in .X; !/; its central core

curve does not intersect D.P; "/tD.Q; "/. These cylinders are encoded by the
cycles of πt and πb .

� The other possibility is that a cylinder in .X; !/C .0; t/ contains some of the
“centers” of the discs DCi . Hence its core curve is a concatenation of positive
ray passing trough the centers of the discs Di , and thus is encoded by a cycle of
the permutation πc (see Example 4.5 and Figure 2).

Thus the cylinder decomposition depends only on πc ;πt ;πb ; this finishes the proof.

5 Cylinder decomposition: relation of moduli

The aim of this section is to establish the following result:

Proposition 5.1 Let .X; !/ 2�ED.�/ be a Prym eigenform with � in Table 1 such
that the horizontal direction is periodic. Let n be the number of �–equivalence classes
of horizontal cylinders (recall that n � 3), and C1; : : : ; Cn be a family of cylinders
representing the n equivalence classes.
� If nD 3 then there exists .r1; r2; r3/ 2Q3 n f0g such that

(2) r1�1C r�2C r3�3 D 0:

Moreover, let ˛i 2
˚
0;˙1

2
;˙1

	
be the coefficient given by Lemma 3.5 associated

to Ci . Then .r1; r2; r3/ satisfies

(3) r1
˛1

w1
C r2

˛2

w2
C r3

˛3

w3
D 0:

� If the cylinder decomposition is unstable then the horizontal direction is parabolic.
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We first recall the following result dealing with the case when D is not a square.

Theorem 5.2 (McMullen [21]) Let K DQ.
p
D/�R be a real quadratic field and

let .X; !/ 2 �ED.�/ be a Prym eigenform such that all the absolute periods of !
belong to K.{/. If the horizontal direction is periodic with k cylinders then

kX
iD1

w0ihi D 0;

where wi ; hi are respectively the width and the height of the i th cylinder, and w0i is
the Galois conjugate of wi in K .

Sketch of proof A remarkable property of Prym eigenform is that the complex flux
vanishes. Namely (see [21, Theorem 9.7])Z

X

! ^!0 D

Z
X

! ^!0 D 0:

Here ! and !0 are respectively the complex conjugate and the Galois conjugate of ! .
The argument is as follows: let T be a generator of the order OD . The vector space
H 1.X;R/� splits into a pair of 2–dimensional eigenspaces S ˚S 0 DH 1.X;R/� on
which T acts by multiplication by a scalar. More precisely, S is spanned by Re.!/ and
Im.!/, and S 0 is spanned by Re.!0/ and Im.!0/. Since T is self-adjoint, S and S 0

are orthogonal with respect to the cup product. This shows the equalities above. NowZ
Ci

Im.!/^Re.!0/D w0ihi ;

where C1; : : : ; Ck are the horizontal cylinders in X . Since the surface X is covered by
those cylinders, it follows that

kX
iD1

w0ihi D

kX
iD1

Z
Ci

Im.!/^Re.!0/

D

Z
X

Im.!/^Re.!0/

D
1

4{

Z
X

.! �!/^ .!0C!0/D 0:

5A Proof of Proposition 5.1 when D is not a square

Proof Let ˇi 2 f1; 2g be the number of cylinders in the �–equivalence class of Ci
(ˇi D 1 if Ci is fixed by � , ˇi D 2 if Ci is exchanged with another cylinder). Set
ri D ˇiwiw

0
i 2Q.
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For the case nD 3, the first equality follows directly from Theorem 5.2. Namely,

0D

kX
iD1

w0ihi D

3X
iD1

ˇi .wiw
0
i /�i D

3X
iD1

ri�i :

When nD 3, Lemma 2.6 implies that the cylinder decomposition is stable. Thus we
can associate to each cylinder Ci a coefficient ˛i 2

˚
0;˙1

2
;˙1

	
(by Lemma 3.5).

Observe that moving in the leaves of the kernel foliation does not change the area of
the surface, therefore

Area.X; !/D Area..X; !/C .0; s//;

and hence
kX
iD1

wihi D

kX
iD1

wi .hi C˛is/;

which implies that

(4)
kX
iD1

˛iwi D

3X
iD1

˛iˇiwi D 0:

Thus, one has
3X
iD1

ri
˛i

wi
D

3X
iD1

ˇi˛iw
0
i D

� 3X
iD1

˛iˇiwi

�0
D 0;

and (3) is proved.

Consider now the case that the cylinder decomposition is unstable, which means that
n � 2. If n D 1 then X has either a unique horizontal cylinder, or two horizontal
cylinders which are exchanged by � . In both cases, the horizontal direction is clearly
parabolic. If nD 2, then Theorem 5.2 implies that the ratio �1=�2 is rational, which
means that the horizontal is also parabolic. Proposition 5.1 is then proved for the case
that D is not a square.

5B Proof of Proposition 5.1 when D is a square

We will need a technical lemma.

Lemma 5.3 For every i 2 f1; : : : ; kg, either hi is an absolute period, or there exists
j ¤ i and some integers xi ; xj 2 f1; 2g such that xihi C xjhj is an absolute period.
Moreover, if the cylinder decomposition is stable, and ˛i ; j̨ are the coefficients
associated to Ci and Cj (by Lemma 3.5), then xi˛i C xj j̨ D 0.
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Proof If there is a zero of ! that is contained in both the top and bottom borders
of Ci , then hi is an absolute period. Let us assume that this does not occur. There are
two cases.

First case: ! has two zeros P1; P2 Note that in this case P1 and P2 are exchanged
by the Prym involution � . We can assume that the bottom border of Ci contains P1 ,
and its top border contains P2 . By connectedness of X , there must exist a cylinder Cj
whose bottom border contains P2 and whose top border contains P1 . Note that i ¤ j ;
otherwise P1 is contained in both top and bottom borders of Ci . Let �i and �j
be respectively some saddle connections in Ci and Cj which join P1 to P2 . Then
c D �i [ �j is a simple closed curve in X and we conclude that h1C h2 D Im!.c/.

Second case: ! has 3 zeros In this case two zeros are permuted by � ; we denote
them by P1; P2 . The third one is fixed by � ; let us denote this one by Q . We can
always assume that P1 is contained in the bottom border of Ci , but not in the top
border of Ci .

Assume that the top border of Ci contains P2 , and let �i be a saddle connection
in Ci which joins P1 to P2 . If there exists another cylinder whose bottom border
contains P2 and top border contains P1 then we are done. Otherwise, there must exist
a cylinder Cj whose bottom border contains P2 and top border contains Q . Let Cj 0 be
the cylinder which is permuted with Cj by � . Then the top border of Cj 0 contains P1
and the bottom border of Cj 0 contains Q . In particular, Cj 0 ¤ Ci .

If Cj 0 DCj , then the top border of Cj contains P1 , contradicting our hypothesis. Thus
Cj 0 ¤ Cj . Let �j be a saddle connection in Cj which joins P2 to Q . Then �.�j / is
a saddle connection in Cj 0 that joins Q to P1 . Consequently, c WD �.�j /[ �j [ �i is
a simple closed curve in X , and Im!.c/D hi C hj C hj 0 D hi C 2hj .

We are left with the case where the top border of Ci contains Q . Let Ci 0 be the cylinder
which is permuted with Ci by � . Then the top border of Ci 0 contains P2 and the bottom
border contains Q . By assumption, Ci 0 ¤ Ci . By connectedness of X , there exists a
cylinder Cj ¤ Ci which contains P1 in the top border, and P2 or Q in the bottom
border. If P2 is contained in the bottom border of Cj then hj C hi C hi 0 D hj C 2hi
is an absolute period. If Q is an contained in the bottom border of Cj then hi Chj is
an absolute period. Since xihi C xjhj is an absolute period, it is unchanged by the
kernel foliation; Lemma 3.5 then implies that xi˛i C xj j̨ D 0.

Proof of Proposition 5.1 when D is a square We first consider the case nD3. Since
D is a square, one can normalize, using GLC.2;R/, so that all the absolute periods
of ! belong to Q.{/. By Lemma 5.3, one can find .x1; x2; x3/ and .y1; y2; y3/ with
xi ; yi 2 f0; 1; 2g such that x1h1Cx2h2Cx3h3 and y1h1Cy2h2Cy3h3 are absolute

Geometry & Topology, Volume 20 (2016)



GLC.2;R/–orbits in Prym eigenform loci 1383

periods. The vectors .x1; x2; x3/ and .y1; y2; y3/ are chosen so that they are not
collinear. Since all the absolute periods are in Q, there exists r 2Q, r > 0, such that

x1h1C x2h2C x3h3 D r.y1h1Cy2h2Cy3h3/;

or equivalently
3X
iD1

.xi � ryi /hi D 0:

Setting ri WD .xi � ryi /wi , we get

3X
iD1

ri�i D 0:

Lemma 5.3 implies that ˛1x1C˛2x2C˛3x3 D ˛1y1C˛2y2C˛3y3 D 0. Hence

3X
iD1

.xi � ryi /˛i D

3X
iD1

ri
˛i

wi
D 0:

Now let us assume that the horizontal direction is unstable (hence n � 2). We will
show that the horizontal direction is parabolic. Obviously, we only need to consider
the case nD 2. Recall that we can normalize so that all the absolute periods of ! are
in Q.{/. In particular, w1; w2 2Q. We will show that both h1; h2 are also absolute
periods.

First case: ! has two zeros P1; P2 Since the cylinder decomposition is unstable,
there exists a horizontal saddle connection  from P2 to P1 . We can assume that P1
is contained in the bottom border of C1 . If the top border of C1 also contains P1 , then
h1 is an absolute period. Otherwise, let � be a saddle connection joining P1 to P2
which is contained in C1 . Since c WD  [ � is a closed curve and h1 D Im!.c/, we
conclude that h1 2Q. The same arguments show that h2 2Q, hence the horizontal
direction is parabolic.

Second case: ! has 3 zeros Let P1; P2 denote the zeros which are permuted and
Q the zero fixed by � . We first observe that there exists a path from P1 and P2
which is a union of horizontal saddle connection. Indeed, by assumption there exists a
horizontal saddle connection  which joins two different zeros. If  joins P1 to P2
then we are done. Otherwise,  joins Q to either P1 or P2 . In both cases, the union
of  and �./ is the desired path. Let us denote this path by �.

Let us assume that P1 is contained in the bottom border of C1 but not in the top border.
If the top border of C1 contains P2 , then the union of � and a saddle connection in C1
joining P1 to P2 is a closed curve c such that Im!.c/D h1 , which implies h1 2Q.
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If the top border of C1 contains Q , then let C3 be the cylinder which is permuted
with C1 by � . Note that the bottom border of C3 contains Q , and the top border
contains P2 . Let �1 be a saddle connection in C1 joining P1 to Q , and �3 be the
image of �1 by � in C3 . The union c WD �[ �3[ �1 is then a closed curve such that
Im!.c/D 2h1 , hence h1 2Q. Similar arguments show that h2 2Q. The horizontal
direction is then parabolic.

6 Proof of a weaker version of Theorem 1.1

In this section, we prove a weaker version of Theorem 1.1. We say that .X; !/ is not a
Veech surface (or the orbit is not closed) for “the most obvious reason” if there exists a
periodic direction on .X; !/ that is not parabolic (it is a theorem of Veech [29] that on
a Veech surface any periodic direction is parabolic). We will prove Theorem 1.1 under
this additional assumption.

Theorem 6.1 Let .X; !/ 2 �ED.�/ and let us denote by O its GLC.2;R/–orbit.
If O is not closed for the most obvious reason then O is a connected component of
�ED.�/.

We begin with the following key lemma. The proof is classical, but is included here for
completeness.

Lemma 6.2 Let .X; !/ 2�ED.�/ be a Prym eigenform. We assume that the horizon-
tal direction is completely periodic but not parabolic. Then for all s 2 R the surface
.X; !/C .s; 0/ is well defined, and one has

.X; !/C .s; 0/ 2 U � .X; !/:

Before proving the lemma, let us state the following corollary:

Corollary 6.3 Let .X; !/ 2 �ED.�/ be a Prym eigenform. We assume that there
exists

.Y; �/ 2 GLC.2;R/ � .X; !/

and " > 0 such that
.Y; �/C .s; 0/ 2 GLC.2;R/ � .X; !/

for all s 2R with jsj< ". Then there exists "0 > 0 such that

.Y; �/C v 2 GLC.2;R/ � .X; !/

for any v 2R2 such that jvj< "0 .
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Proof of Lemma 6.2 Let C1; : : : ; Ck be the horizontal cylinders in X . Let n be the
number of equivalence classes of cylinders that are permuted by the Prym involution � .
Recall that for all the cases in Table 1 the inequality n � 3 holds. Assume that
fC1; : : : ; Cng is a representative family for the �–equivalence classes of cylinders.

Let us consider the case n D 3. Lemma 2.6 implies in particular that the cylinder
decomposition is stable. The surface is encoded by the topological gluings of the
cylinders Ci , and the width, height and twist of Ci (which will be denoted by wi ; hi ; ti ,
respectively).

The set of surfaces admitting a cylinder decomposition in the horizontal direction with
the same topological gluings, and the same widths and heights of the cylinders as X ,
is parametrized by the 3–dimensional torus

X DN.R/�N.R/�N.R/=N.w1Z/�N.w2Z/�N.w3Z/;

where N.A/D fus j s 2 Ag.

The horocycle flow us preserves the topological decomposition as well as all the
parameters but the twists ti . The new twists zti are given by zti D ti C shi mod wi .
Hence surfaces in the U –orbit of .X; !/ are parametrized by the line

f.t1; t2; t3/C .h1; h2; h3/s j s 2Rg:

By Kronecker’s theorem, the orbit closure U � .X; !/ is a subtorus of X . Since the
moduli are not commensurable (the horizontal direction is not parabolic) the dimension
of this subtorus is at least two. More precisely, the orbit closure U � .X; !/ consists of
the set of all twists .zt1; zt2; zt3/ such that the normalized twists .zti � ti /=wi verify all
nontrivial homogeneous linear relations with rational coefficients that are satisfied by
the moduli �i D hi=wi . Let P be the subspace of R3 which is defined by all such
rational relations. By assumption, dimR P � 2. But we know from Proposition 5.1
that there exists .r1; r2; r3/ 2 Q3 n f.0; 0; 0/g such that

Pn
iD1 ri�i D 0. Therefore

dimR P D 2 and

(5) P D

�
.zt1; zt3; zt3/ 2R3

ˇ̌̌ 3X
iD1

ri

�
zti � ti

wi

�
D 0

�
:

It follows that U � .X; !/ is the projection to X of the plane P � R3 defined by
Equation (5). Hence, all surfaces constructed from the cylinders with the same widths
and heights as those of .X; !/ (by the same gluings), and with the twists zti satisfying
Equation (5) above, belong to U � .X; !/.

Recall that in the horizontal kernel foliation leaf, a surface .X; !/C .s; 0/ is still
completely periodic (for the horizontal direction), and all the data (topological gluings
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of the cylinders, widths, heights) are preserved, except for the twists (see Lemma 3.5).
To be more precise, if C si is the horizontal cylinder in .X; !/C .s; 0/ corresponding to
Ci DC

0
i , then ti .s/D tiC˛is (where the range of ˛i is f�1; 0; 1g or

˚
�1;�1

2
; 0; 1

2
; 1
	

if ! has two or three zeros, respectively). It remains to show that

.t1C˛1s; t2C˛2s; t3C˛3s/D .t1; t2; t3/C .˛1; ˛2; ˛3/s

belongs to P . But

3X
iD1

ri

�
.ti C s˛i /� ti

wi

�
D s

3X
iD1

ri
˛i

wi
D 0

by Equation (3). Thus the lemma is proved for the case nD 3.

Let us now consider the case nD 2. Note that if D is not a square then the horizontal
direction is parabolic in this case (see Theorem 5.2). Therefore, D must be a square.
By Proposition 5.1 we know that the cylinder decomposition is stable, which implies
that .X; !/C .s; 0/ is defined for all s . In this case, the closure of U � .X; !/ can be
identified with the torus

X 0 DN.R/�N.R/=N.w1Z/�N.w2Z/:

Using this identification, the horizontal kernel foliation leaf through .X; !/ corresponds
to the projection of the affine line f.t1; t2/C .˛1; ˛2/s j s 2Rg. Hence

.Xs; !s/D .X; !/C .s; 0/ 2 U � .X; !/;

which concludes the proof of Lemma 6.2.

Proof of Corollary 6.3 We will apply Lemma 6.2 to a transverse direction to .1 W 0/.
By Theorem 2.3, let � be a completely periodic direction on Y which is transverse to
the horizontal direction. Up to the action of U , we can assume that � D .0 W 1/.

By Proposition 4.1 and Proposition 4.2, there exists "0 > 0 such that .Y; �/C v is
well defined, and the direction .0 W 1/ is completely periodic on .Y; �/C v for all
v 2 .�"0; "0/� .�"0; "0/. If s ¤ 0 then the cylinder decomposition of .Y; �/C .s; 0/ in
the direction of .0 W 1/ is stable. Moreover, the combinatorial data of this decomposition
is preserved when s varies in the intervals .�"0; 0/ and .0; "0/. In conclusion, if the
decomposition of .Y; �/ in the vertical direction is stable, then the combinatorial data
of .Y; �/C .s; 0/ is the same for any s 2 .�"0; "0/.

Let fwi .s/giD1;:::;k and fhi .s/giD1;:::;k be the widths and heights of the cylinders
in the vertical direction of .Y; �/C .s; 0/, s ¤ 0. Note that the functions wi .s/ are
constant on each of intervals .�"; 0/ and .0; "/. However, the set of heights hi .s/
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define nonconstant continuous functions of s . To be more precise, hi .s/D hi C˛is ,
where ˛i 2 f�1; 0; 1g or ˛i 2

˚
�1;�1

2
; 0; 1

2
; 1
	

depending on whether � has two or
three zeros. Obviously, at least two of the ˛i are different. Hence the set of moduli

�i .s/D
hi C s˛i

wi

of cylinders (in the vertical direction) define also nonconstant continuous functions
of s . In particular, for almost every s in .�"0; 0/ (resp. .0; "0/), the direction .0 W 1/ is
completely periodic and not parabolic on .Y; �/C .s; 0/. Applying Lemma 6.2 to the
vertical direction on .Y; �/C .s; 0/, we get that, for any t 2 .�"0; "0/, one has

.Y; �/C .s; t/ 2 GLC.2;R/ � ..Y; �/C .s; 0//:

It follows immediately that .Y; �/C v 2 GLC.2;R/ � .X; !/ for every v D .s; t/ 2
.�"0; "0/� .�"0; "0/. This completes the proof of Corollary 6.3.

One can now prove the main result of this section.

Proof of Theorem 6.1 We will show that any .Y; �/ 2 GLC.2;R/ � .X; !/D O has
an open neighborhood contained in O . Let B."/D fv 2R2 j jvj< "g.

First case: .Y; �/ 2 GLC.2 ;R/ � .X;!/ By assumption, there exists a periodic
direction for .X; !/ which is not parabolic. Lemma 6.2 and Corollary 6.3 then imply
that there exists " > 0 such that .X; !/C v 2 O for any v 2 B."/. It follows that
g �..X; !/Cv/2O for all g 2GLC.2;R/. In particular, there exists a neighborhood U
of Id in GLC.2;R/ such that g � ..X; !/C v/ 2 O , for any .g; v/ 2 U �B."/. But
by Proposition 3.3 the set fg � ..X; !/C v/ j .g; v/ 2 U �B."/g is a neighborhood
of .X; !/ in �ED.�/. Hence .X; !/ (and thus .Y; �/) has an open neighborhood
contained in O .

Second case: .Y; �/ 62GLC.2 ;R/ �.X;!/ Let .Xn; !n/Dgn �.X; !/ be a sequence
converging to .Y; �/ with gn 2 GLC.2;R/. By Proposition 3.3, there exist " > 0

and a neighborhood U of Id in GLC.2;R/ such that U � B."/ is identified with
a neighborhood of .Y; �/ via the mapping .g; v/ 7! g � ..Y; �/ C v/. Thus for n
large enough there is a pair .an; vn/, where an 2 U and vn 2 B."/ � R2 , such that
.Xn; !n/D an � ..Y; �/C vn/. Since .Xn; !n/ converges to .Y; �/, .an/n converges
to Id, and .vn/n converges to 0. Multiplying by a�1n , we get

GLC.2;R/ � .X; !/ 3 .X 0n; !
0
n/D a

�1
n � .Xn; !n/D .Y; �/C vn:

Without loss of generality, we also assume that the horizontal direction is completely
periodic on Y . By Propositions 4.1 and 4.2, we can choose r > 0 such that for all
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v D .s; t/ 2B.r/ the surface .Y; �/C v also admits a cylinder decomposition in the
horizontal direction. When t ¤ 0 this decomposition is stable with combinatorial data
depending only on the sign of t . We can assume that vn 2B.r/ (for n large enough).

Since .X 0n; !
0
n/ 2 GLC.2;R/ � .X; !/, the first case implies that GLC.2;R/ � .X; !/

contains a neighborhood of .X 0n; !
0
n/. Hence for each n there exists "n > 0 such that

.X 0n; !
0
n/C v 2O for any v 2B."n/. Now for each n we choose ın 2 .0; "n/ small

enough such that:

(a) un D vnC .0; ın/ 2B.r/.

(b) If vn D .sn; tn/ with tn ¤ 0, then ın < jtnj.

In particular, since un 2 B.r/, (a) implies that .Y; �/C un also admits a cylinder
decomposition in the horizontal direction. Since the ratio of moduli is a continuous
(nonconstant) function of ın , one can choose ın 2 .0; "n/ satisfying (a), (b) and the
following conditions:

(c) The horizontal direction is stable and not parabolic for .Y; �/Cun .

(d) limn!1 ın D 0.

By construction, ın 2 .0; "n/, hence .X 00n ; !
00
n/ WD .X

0
n; !
0
n/C.0; ın/D .Y; �/Cun 2O .

Since the horizontal direction is not parabolic on .X 00n ; !
00
n/, by Lemma 6.2, we derive

that .X 00n ; !
00
n/C .s; 0/ 2O for any s 2R (see Figure 3). Thus

.X 00n ; !
00
n/C .s; 0/ 2O for any s 2

�
�
1
2
r; 1
2
r
�
:

Since .ın/n converges to 0 the sequence .X 00n ; !
00
n/D .X

0
n; !
0
n/C .0; ın/ converges to

.Y; �/. It follows that

.Y; �/C .s; 0/ 2O for all s 2
�
�
1
2
r; 1
2
r
�
:

The theorem then follows from Corollary 6.3.

7 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 in full generality, namely without
the assumption that the orbit O WDGLC.2;R/�.X; !/ is not closed for the most obvious
reason. However, our proof says nothing about the converse of this assumption, ie the
following question remains open in our setting:
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X 0nCB."n/

X 00n

:::

Y

�
1
2
r 0 1

2
r

Figure 3: The convergence of .X 0n; !
0
n/ and .X 00n ; !

00
n/ to .Y; �/ in the kernel

foliation leaf of .Y; �/ .

Question For an orbit O WD GLC.2;R/ � .X; !/, is the property of being not closed
equivalent to being not closed for the most obvious reason?

Proof of Theorem 1.1 We begin by fixing some notation and normalization. As usual,
let .X; !/2�ED.�/ and let us assume that O WDGLC.2;R/ �.X; !/ is not closed. Let
.Y; �/2O n O be some translation surface in the orbit closure, but not in the orbit itself.

Claim 1 There exist a rotation R and a sequence .Xn; !n/n2N converging to R �Y
such that .Xn; !n/DR � .Y; �/C vn 2O for every n 2N , where vn D .xn; yn/ with
yn 6D 0, and the horizontal direction on R �Y is completely periodic.

Proof of the claim We choose a sequence .Xn; !n/ 2 O converging to .Y; �/. As
in the proof of Theorem 6.1 we can assume that .Xn; !n/ D .Y; �/ C vn , where
vn D .xn; yn/ converges to .0; 0/ 2R2 .

Again, up to replacing Y by R� � Y for some suitable � , without loss of generality
we will also assume that the horizontal direction is completely periodic on Y . If
yn 6D 0 infinitely often then the claim follows by taking a subsequence. Otherwise
we assume that yn D 0 for every n > N . We choose another (transverse) completely
periodic direction on Y . We can assume that this direction is vertical by applying a
matrix in U . Note that a matrix in U fixes the vectors .xn; 0/. Then, up to replacing
.Y; �/ and .Xn; !n/ by R�=2 � .Y; �/ and R�=2 � .Xn; !n/, respectively, the claim is
proved (otherwise xn D 0 for n large enough, thus .Y; �/D .Xn; !n/ 2O , which is
a contradiction to our assumption).
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In the sequel, up to replacing Y by R �Y , we assume that the conclusion of Claim 1
holds for Y . We choose some " > 0 so that, for any v D .x; y/ 2 R2 , if v 2 B."/
then the horizontal direction on .Y; �/C v is periodic, and the cylinder decomposition
is stable if y ¤ 0. We can assume that vn 2B."/ and yn > 0 for all n, which implies
that the combinatorial data of the cylinder decomposition in the horizontal direction of
.Xn; !n/ are same for all n. Finally, we also assume that all the horizontal directions
on Xn are parabolic (otherwise we are done by Theorem 6.1).

We sketch the idea of the proof. It makes use of the horocycle flow us acting on Xn . The
key is to show that the actions of the kernel foliation and us coincide for a subsequence.

(1) Since all surfaces .Xn; !n/ are horizontally parabolic, we will show that it is
always possible to find a “good time” sn so that usn �Xn D XnC .xn; 0/ for
some vector .xn; 0/ 2B."/.

(2) One can arrange that .xn; 0/ converges to some arbitrary vector .x; 0/ 2B."/.

These two facts correspond, respectively, to Claim 3 and Claim 4 below. Once we
achieve this, passing to the limit as n!1, we get

usn � .Xn; !n/D .Xn; !n/C .xn; 0/! .Y; �/C .x; 0/:

In other words, .Y; �/C .x; 0/ 2 O for all x 2 .�"; "/. Then Corollary 6.3 applies
and this gives some "0 > 0 so that .Y; �/C v 2O for any v 2B."0/, which proves the
theorem.

C3

C1

�.C1/

C2

C2

˛

˛

ˇ

ˇ

Figure 4: Decomposition into four cylinders of .Xn; !n/D .Y; �/C vn near
.Y; �/ 2 �ED.2; 2/ , where vn D

R
˛
! . The cylinders C2 and C3 are fixed

by the Prym involution � , while the cylinders C1 and �.C1/ are exchanged.
When vn ! 0 the cylinder C2 is destroyed, while C3 remains in the limit
(here we assume h3 > h2 ).
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We now explain how to construct the sequence .sn/n2N . As usual, the cylinders on Xn
are denoted by C.n/i , i D 1; : : : ; k (the numbering is such that for every i 2 f1; 2; 3g,
C.n/j D �.C

.n/
i / implies j D i or j > 3). The width, height, twist, and modulus of C.n/i

are denoted by w.n/i ; h
.n/
i ; t

.n/
i ; �

.n/
i , respectively. Recall that, by Propositions 4.1

and 4.2, w.n/i does not depend on n, therefore we can write w.n/i Dwi . Let us define

h1i D lim
n!1

h
.n/
i :

Since the cylinder decomposition of Xn is stable, we can associate to each family of
cylinders .C.n/i /n a coefficient ˛i 2

˚
0;˙1

2
;˙1

	
. Recall that the kernel foliation action

of a vector vD .x; y/ changes the height h.n/i of C.n/i to h.n/i C˛iy , hence we can write

h
.n/
i D h

1
i C˛iyn:

Note that the horizontal direction on Y is not necessarily stable: some horizontal
cylinders on Xn can be destroyed in the limit (as n tends to infinity). Therefore, some
of the limits h1i may be zero. However, there is at least one cylinder that remains
in the limit, say it is C.n/3 (see Figure 4 where the cylinder C.n/2 is destroyed when
performing the kernel foliation). Actually, since .Xn; !n/ stays in a neighborhood of
.Y; �/, all the cylinders of .Y; �/ persist in .Xn; !n/. Thus, the number of horizontal
cylinders of .Xn; !n/ is always greater than .Y; �/. We denote by C3 the cylinder on Y
corresponding to C.n/3 on Xn . Then the height of C3 is h13 . In particular, h13 > 0.

From Equation (4), we obtain

3X
iD1

ˇiwi˛i D 0:

Since all the ˛i cannot vanish (otherwise for all i 2 f1; : : : ; kg the upper and lower
boundaries of C.n/i contain the same zero, which means that ! has only one zero),
Equation (4) implies that there exist i; j 2 f1; 2; 3g such that ˛i and j̨ are nonzero
and have opposite signs. In particular, there exists i 2 f1; 2; 3g such that ˛i ¤ 0 and
˛i has the opposite sign to ˛3 if ˛3 ¤ 0. In what follows we suppose that ˛1 satisfies
this condition. By a slight abuse of language, we will say that ˛1 and ˛3 have opposite
signs. Since ˛1 ¤ 0, .t .n/1 ; h

.n/
1 / is a relative coordinate. For the surface in Figure 1,

! has three zeros and .˛1; ˛3/D
�
�1; 1

2

�
, and for the one in Figure 4, ! has two zeros

and .˛1; ˛3/D .�1; 1/.

Recall that, by Proposition 5.1, we know that there exists .r1; r2; r3/ 2Q3 n f.0; 0; 0/g

such that

r1�
.n/
1 C r2�

.n/
2 C r3�

.n/
3 D 0 and r1

˛1

w1
C r2

˛2

w2
C r3

˛3

w3
D 0:
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Obviously, we can assume that .r1; r2; r3/2Z3 . Note that .r1; r2; r3/ does not depend
on n. Set �1i D h

1
i =wi . By continuity we have

r1�
1
1 C r2�

1
2 C r3�

1
3 D 0:

Claim 2 r2 ¤ 0.

Proof Suppose r2 D 0. Then8<: r1�
.n/
1 C r3�

.n/
3 D 0;

r1
˛1

w1
C r3

˛3

w3
D 0:

Since �.n/i > 0, wi > 0 and ˛1˛3 � 0, this system with unknowns .r1; r3/ has a
unique solution r1 D r3 D 0. This is a contradiction.

From now on, we fix an integral vector .r1; r2; r3/ 2 Z3 satisfying equations (2)–(3),
with r2 ¤ 0.

Claim 3 Let . zX; z!/ 2�ED.�/ be a surface which admits the same cylinder decom-
position as Xn in the horizontal direction. We denote by Ci the cylinder in zX which
corresponds to the cylinder C.n/i of Xn . Let wi ; hi ; ti ; �i ; ˛i be the parameters of Ci .
Given two integers k1; k3 , if the real numbers s and x.s/ satisfy

(6) x.s/ WD
1

˛3
.sh3� r2k3w3/D

1

˛1
.sh1� r2k1w1/;

then us � . zX; z!/D . zX; z!/C .x.s/; 0/.

Remark 7.1 If ˛3 D 0, we replace Equation (6) by the following system:8<:
sh3 D r2k3w3;

x.s/D
sh1� r2k1w1

˛1
:

Proof of the claim On one hand, the kernel foliation zX C .x; 0/, for small values
of x , maps the twist of the cylinder Ci to ti .x/ D ti C ˛ix . On the other hand, the
action of us on the cylinder Ci maps the twist ti to the twist zti D ti C shi mod wi .
Equation (6) implies

sh1 D ˛1x.s/C r2k1w1 and sh3 D ˛3x.s/C r2k3w3;
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which is equivalent to

(7)

8̂<̂
:
s�1 D

˛1
w1
x.s/C r2k1;

s�3 D
˛3
w3
x.s/C r2k3:

We see that the twist of the cylinder Ci of us � zX is ztiD tiC˛ix.s/ mod wi , for i 2f1; 3g.
It remains to show that sh2 D ˛2x.s/ mod w2 . Using equations (2)–(3), (7) implies

�r2s�2 D�r2
˛2

w2
x.s/C r2.r1k1C r3k3/:

It follows that

sh2 D ˛2x.s/� .r1k1C r3k3/w2:

Thus we can conclude that us � . zX; z!/D . zX; z!/C .x.s/; 0/.

Equation (6) above reads

(8) s D r2
w1k1˛3�w3k3˛1

h1˛3� h3˛1
:

Note that since ˛1 and ˛3 have opposite signs, s is always defined. Substituting this
last equation into (6), we derive the relation

x.s/D
r2

˛3

�
w1k1˛3�w3k3˛1

h1˛3� h3˛1
h3� k3w3

�
D � � � D

r2h3w1

h1˛3� h3˛1

�
k1�

�1

�3
k3

�
:

We now make the additional assumption that the horizontal direction is parabolic, ie
the moduli �i are all commensurable. We thus write the last expression as

x.s/D
r2h3w1

h1˛3� h3˛1

�
k1�

p

q
k3

�
; where

p

q
D
�1

�3
2Q:

We perform this calculation for each surface Xn , so that given a sequence .k.n/1 ; k
.n/
3 /n

we get a sequence

(9) xn D
r2h

.n/
3 w

.n/
1

h
.n/
1 ˛3� h

.n/
3 ˛1

�
k
.n/
1 �

p.n/

q.n/
k
.n/
3

�
;

where .p.n/; q.n// 2 Z2 and gcd.p.n/; q.n//D 1. We want to choose a suitable pair
of integers .k.n/1 ; k

.n/
3 / 2 Z2 in order to make the sequence .xn/n converge to some

arbitrary x .
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Claim 4 There exists a constant C independent of n such that, for any x 2 .�"; "/,
there exists .k.n/1 ; k

.n/
3 / 2 Z2 satisfying the following: if xn is defined by (9), then

jxn� xj<
C

q.n/
:

Proof of the claim For each n 2N , since p.n/ and q.n/ are coprime, we can choose
.k
.n/
1 ; k

.n/
3 / 2 Z2 such that

(10)
ˇ̌̌̌
k
.n/
1 �

p.n/

q.n/
k
.n/
3 �

h
.n/
1 ˛3� h

.n/
3 ˛1

r2h
.n/
3 w

.n/
1

x

ˇ̌̌̌
<

1

q.n/
:

As n tends to infinity, the sequence .h.n/3 /n converges to h13 . Since w.n/1 is constant,
and h.n/1 ˛3 � h

.n/
3 ˛1 converges to a nonzero constant (recall that ˛1 and ˛3 have

opposite signs), there exists some constant C > 0 such that

(11)
r2h

.n/
3 w

.n/
1

h
.n/
1 ˛3� h

.n/
3 ˛1

< C:

From (10) and (11) we obtain

jxn� xj<
C

q.n/
;

which is the desired inequality. The claim is proved.

In order to conclude the proof of Theorem 1.1, one needs to show that q.n/ !1.
Indeed, we then have that xn! x and since x was arbitrary, by Claim 3 this shows

.Y; �/C .x; 0/ 2O for any x 2 .�"; "/:

Then Corollary 6.3 applies and Y has an open neighborhood in O , which proves the
theorem.

We now prove that q.n/!1. Recall that

p.n/

q.n/
D
�
.n/
1

�
.n/
3

D
w
.n/
3

w
.n/
1

�
h
.n/
1

h
.n/
3

D
w3

w1
�
h11 C˛1yn

h13 C˛3yn

and gcd.p.n/; q.n//D 1. Note that since ˛1 and ˛3 have opposite signs, p.n/=q.n/

cannot be a stationary sequence as yn tends to 0. As n tends to infinity, p.n/=q.n/

converges to p1=q1 D w3h11 =w1h
1
3 . But as we have seen, p.n/=q.n/ cannot be

stationary, therefore there are infinitely many n such that p.n/=q.n/ 6D p1=q1 , which
implies that q.n/!1.
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In the remainder of this paper, we will apply Theorem 1.1 (more precisely, the techniques
used in the proof) to show that, for any D which is not a square, there are at most
finitely many closed GLC.2;R/–orbits in �ED.2; 2/odd . Even though we only prove
the result for this case, it seems very likely that one can also obtain similar results for
all strata listed in Table 1. In higher “complexity” (genus and number singularities) the
difficulty comes from the increasing number of degenerated surfaces. Along the way,
we will give description of surfaces in a partial compactification of �ED.2; 2/odd .

We end this section with a by-product theorem which follows from the same arguments
as the proof of Theorem 1.1.

Theorem 7.2 Let .Y; �/2�ED.�/ be a Prym eigenform (where �ED.�/ has complex
dimension 3) satisfying the following properties:

(1) The horizontal direction is completely periodic on .Y; �/.

(2) There exists a sequence .Xn; !n/D .Y; �/C.xn; yn/ converging to .Y; �/, where
yn 6D 0 for any n 2N .

(3) For every n, Xn is horizontally parabolic.

Then there exists " > 0 such that .Y; �/ C .x; 0/ 2 O for all x 2 .�"; "/, where
OD

S
n GLC.2;R/ � .Xn; !n/.

8 Preparation of a surgery toolkit for the proof of
Theorem 1.3

In this section we will describe several useful surgeries for Prym eigenforms. More
precisely, let us fix a surface .X0; !0/ in the following list of strata of �ED.�/:

� �ED.0; 0; 0/ (space of triple tori; see Section 8A),

� �ED.4/ (see Section 8B),

� �ED.2/
� (set of .M;!/ 2 �ED.2/ with a marked Weierstrass point; see

Section 8C).

For each case, we will construct a continuous locally injective map ‰W Dı."/ !

�ED.2; 2/
odd , where Dı."/D fz 2C j 0 < jzj< "g, which induces an embedding of

Dı."/=.z��z/ into �ED.2; 2/odd . Up to the action of GLC.2;R/, the set ‰.Dı."//
will be identified with a neighborhood of .X0; !0/ in �ED.2; 2/odd .

We now describe these surgeries in detail (observe that the second one already appears
in [11] as “breaking up a zero”).
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8A Space of triples of tori

We say that .X; !/2 Prym.2; 2/odd admits a three-torus decomposition if there exists a
triple of homologous saddle connections f�0; �1; �2g on X , each of which connects the
two zeros of ! , such that .X; !/ can be viewed as a connected sum of three tori which
are glued together along the slits corresponding to �j . One can reduce the length of
saddle connections f�0; �1; �2g to zero by moving in the kernel foliation leaf through
.X; !/; the limit surface is then the union of three flat tori .Xj ; !j /, j D 0; 1; 2, which
are joined at a unique common point P .

Recall that H.0/ is the space of triples .X; !; P / where X is an elliptic curve, ! a
nonzero abelian differential on X , and P is a marked point of X . We denote by
Prym.0; 0; 0/ the space of triples f.Xj ; !j ; Pj / j j D 0; 1; 2g, where .Xj ; !j ; Pj / 2
H.0/, such that .X1; !1; P1/ and .X2; !2; P2/ are isometric. The geometric object
corresponding to such a triple is the union of the three tori, where we identify P0; P1; P2
to get a unique common point. By construction, there exists an involution � on the
“surface” X WD f.Xj ; !j ; Pj / j j D 0; 1; 2g which preserves X0 and exchanges X1
and X2 . We will call � the Prym involution.

We define �ED.0; 0; 0/�Prym.0; 0; 0/ to be the space of all triples f.Xj ; !j ; Pj / jj D
0; 1; 2g which can be obtained by collapsing triples of homologous saddle connections
associated to three-torus decompositions of surfaces in �ED.2; 2/odd . The aim of this
section is to show:

Proposition 8.1 For any triple of tori f.Xj ; !j ; Pj / j j D 0; 1; 2g in �ED.0; 0; 0/,
there exist " > 0 and a continuous locally injective map ‰W Dı."/! �ED.2; 2/

odd

satisfying:

(1) For all z 2Dı."/, the surface .X; !/D‰.z/ has a triple of homologous saddle
connections f�0; �1; �2g decomposing X into three tori such that !.�j /D z .

(2) The map ‰ is two-to-one and it induces an embedding of Dı."/=.z ��z/ into
�ED.2; 2/

odd .

(3) Up to the action of GLC.2;R/, the set ‰.Dı."// can be viewed as a neighbor-
hood of f.Xj ; !j ; Pj / j j D 0; 1; 2g in �ED.2; 2/odd .

We postpone the proof of Proposition 8.1 and first provide a description of the space
�ED.0; 0; 0/ (compare with [26, Theorem 8.3]).

Proposition 8.2 Let f.Xj ; !j ; Pj / j j D 0; 1; 2g be a triple of tori in �ED.0; 0; 0/
(where X1; X2 are exchanged by the Prym involution � ). Then there exist .e; d/ 2 Z2 ,
with d > 0, and a covering pW X1!X0 of degree d such that
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� D D e2C 8d ,

� gcd.e; p11; p12; p21; p22/ D 1, where .pij / is the matrix of p in some sym-
plectic bases of H1.X0;Z/ and H1.X1;Z/,

� p�!0 D
1
2
λ!1 , where λ satisfies λ2 D eλC 2d .

Proof Let .aj ; bj / be a symplectic basis of H1.Xj ;Z/, where

a2 D��.a1/; b2 D��.b1/;

and set
yaD a1C a2; yb D b1C b2:

Then .a0; b0; ya; yb/ is a symplectic basis of H1.X;Z/� (here X is the surface obtained
by identifying P0 � P1 � P2 ). There exists a unique generator T of OD such that
the matrix of T in the basis .a0; b0; ya; yb/ is of the form

T D

�
e Id2 2B
B� 0

�
;

where e 2 Z, B 2M2.Z/,

B� D

�
0 �1

1 0

�
�B �

�
0 1

�1 0

�
;

and T �! D λ! , with λ> 0.

Observe that B can be regarded as a map from H1.X1;Z/ to H1.X0;Z/. Set

L0 D Z!0.a0/CZ!0.b0/; L1 D Z!1.a1/CZ!1.b1/:

We can identify .X0; !0/ and .X1; !1/ with .C=L0; dz/ and .C=L1; dz/, respec-
tively. The condition T �! D λ! reads

!0.2B.a1//D λ �!1.a1/ and !0.2B.b1//D λ �!1.b1/:

Hence 1
2
λL1 is a sublattice of L0 . It follows that there exists a covering map

pW C=L1 ! C=L0 such that p�dz D 1
2
λ dz . The degree of p is given by d D

det.B/ > 0. Note that T satisfies

T 2 D eT C 2 det.B/:

Since T is a generator of OD , we have D D e2C 8 det.B/, and λ satisfies the same
equation since λ is an eigenvalue of T .
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Proof of Proposition 8.1 Let " > 0 be small enough so that the set

D.Pj ; "/D fx 2Xj j d.x; Pj / < "g

is an embedded disc in Xj , j D 0; 1; 2. The map ‰ is defined as follows: for any
z 2 Dı."/, let �j be the geodesic segment in Xj whose midpoint is Pj such that
!.�j /D z (since jzj< ", �j is an embedded segment). By slitting Xj along �j , and
gluing X0; X1; X2 along the slits in cyclic order, we get a surface .X; !/ in H.2; 2/.
It is easy to check that .X; !/ 2�ED.2; 2/odd . We define .X; !/D‰.z/. Since we
cannot distinguish the two zeros of ! , one has ‰.z/D‰.�z/.

Clearly, any surface in �ED.2; 2/odd admitting a three-torus decomposition f.X 0j ; !
0
j / j

j D 1; 2; 3g such that .X 0j ; !
0
j /D .Xj ; !j / and where the length of the slit is smaller

than " belongs to the image of ‰ . The proposition follows immediately from this
observation.

8B Collapsing surfaces to �ED.4/

This surgery already appears in [11] (“breaking up a zero”). As in the previous section,
our aim is to show:

Proposition 8.3 For any .X0; !0/ 2 �ED.4/, there exist " > 0 and a continuous
locally injective map ‰W Dı."/!�ED.2; 2/

odd satisfying:

(1) For all z 2Dı."/, the surface .X; !/D‰.z/ has the same absolute periods as
.X0; !0/.

(2) There exists a saddle connection � in X , joining the zeros of ! and invariant
under the Prym involution, such that !.�/D z5 .

(3) ‰.z/D‰.�z/.

(4) Up to the action of GLC.2;R/, a neighborhood of .X0; !0/ 2 �ED.4/ in
�ED.2; 2/

odd is identified with ‰.Dı."//.

The constructive proof we will give is on the level of abelian differentials, ie in
Prym.2; 2/ and Prym.4/. One can interpret this construction on the level of quadratic
differentials, ie Q.�14; 4/ and Q.�13; 3/, respectively. This last approach is related
to the surgery “breaking up a singularity” in [11] (breaking up the zero of degree 3 of
the quadratic differential into a pole and a zero of degree 4).

Proof of Proposition 8.3 Let .X0; !0/2�ED.4/ and let P0 be the unique zero of !0 .
We consider 0<"<1 small enough so that the disc D.P0; "/Dfx 2X0 jd.x; P0/<"g
is embedded into X0 . To define the map ‰ , we will deform the metric structure inside
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D.P0; "/ in a similar manner as was done in Section 4. Let v 2D."/ be a vector with
v ¤ 0. We cut the Euclidean disc D."/ WD fz 2C j jzj< "g by a line in the direction
of v through its center. Let DC."/ and D�."/ be respectively the upper and lower
half-discs. The disc D.P0; "/ can be constructed from five copies of DC."/ and five
copies of D�."/.

We change the method of gluing the half-discs, as follows: we still use the same
Euclidean half-discs, but we move slightly the centers on their diameters (in the
direction of v ). We will use two special half-discs as indicated in Figure 5. They have
two marked points on the diameter at the distance 1

2
jvj from the center. Each of the

remaining half-discs has a single marked point at the distance 1
2
jvj from the center.

We alternate the half-discs with the marked point moved to the right and to the left
from the center (in direction v ). All the lengths along identifications match. We obtain
a new topological disc, but now the flat metric has two cone-type singularities with the
cone angle 6� . Note that a small tubular neighborhood of the boundary of the initial
cone is isometric to the corresponding tubular neighborhood of the boundary of the
resulting object. Thus we can paste it back into the surface.

DC1

D�1

DC2

D�2

DC3

D�3

DC4

D�4

DC5

D�5

�

�

Figure 5: Splitting a zero of order 4 into two zeros of order 2 .

Observe that, by construction, there exists an involution in D.P0; "/ that maps DCi to
D�
.iC2/

. Thus the resulting surface .X; !/ belongs to Prym.2; 2/odd . By construction,
there is a saddle connection � , invariant under the involution with !.�/D v . Since we
have five choices for the pair of half-discs which contain � in their boundary, there are
five surfaces .X; !/2Prym.2; 2/ close to .X0; !0/ satisfying the following conditions:

� The absolute periods of ! and !0 coincide.

� There exists a saddle connection � in X , invariant under the Prym involution
and joining the two zeros of ! , such that !.�/D v .

Since the absolute periods of ! and !0 coincide, the new surfaces actually belong to
the same real multiplication locus as .X0; !0/, that is, .X; !/ 2�ED.2; 2/odd .

Let z be a complex number such that z5 D v . We define the map ‰ by assigning
‰.z/ to be one of the surfaces constructed above. By analytic continuation, this defines
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the desired map ‰W Dı."/! �ED.2; 2/
odd . Since we cannot distinguish the zeros

of ! , the surfaces corresponding to ˙z are the same (with different choices for the
orientation of � ). The properties asserted in the statement of the proposition follow
immediately from the definition of ‰ .

Remark 8.4 The “breaking up a zero” surgery is clearly invertible: we can collapse
the two zeros of .X; !/ along � to get the surface .X0; !0/2�ED.4/. More generally,
let P;Q denote the zeros of ! , where .X; !/ 2�ED.2; 2/odd , and let � be a saddle
connection, which we assume to be horizontal, which joins P to Q and which is
invariant under the involution � (such a saddle connection always exists, for instance
the union of a path of minimal length joining a fixed point of � to P or Q , and its
image under � ). If any other horizontal saddle connection � 0 satisfies j� 0j> 2j� j then
one can collapse the zeros of ! along � by using the kernel foliation (see Section 9).
The resulting surface .X0; !0/ belongs to �ED.4/. However, if � has twins, that is
another saddle connection � 0 such that !.� 0/ D !.�/, then the limit surface is no
longer in �ED.4/, as we will see in the next section.

8C Collapsing surfaces to �ED.2/
�

In this section, we investigate degenerations by shrinking a pair of saddle connections
that are exchanged by the Prym involution. Let �ED0.2/� be the space of triples
.X; !;W /, where .X; !/ 2�ED0.2/ and W is a Weierstrass point of X which is not
the zero of ! . We will prove:

Proposition 8.5 For any .X0; !0; W0/2�ED0.2/� there exist " > 0, D 2 fD0; 4D0g,
and a continuous locally injective map ‰W Dı."/!�ED.2; 2/

odd with the following
properties:

(1) For all z 2Dı."/ the surface .X; !/D‰.z/ has the same absolute periods as
.X0; !0; W0/.

(2) There exists a pair of saddle connections .�1; �2/ on X that are exchanged by
the Prym involution and satisfy !.�1/D !.�2/D z3 .

(3) ‰.z/D‰.�z/.

(4) Up to the action of GLC.2;R/, ‰.Dı."// is a neighborhood of .X0; !0; W0/
in �ED.2; 2/odd .

As for the surgeries described previously, we will describe how one can degenerate
some .X; !/ 2 �ED.2; 2/odd to the boundary of the stratum, ie to .X0; !0; W0/ 2
�ED0.2/

� , by using the kernel foliation. The inverse procedure will give the map ‰
of Proposition 8.5. Hence let us show:
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Theorem 8.6 Let .�1; �2/ be a pair of nonhomologous saddle connections in X that
are exchanged by the Prym involution � . Assume that any other saddle connection � 0

joining P to Q in the same direction as �1 satisfies j� 0j > j�1j. Then as the length
of �1 tends to zero (in the leaf of the kernel foliation), .X; !/ tends to a point in the
boundary of �ED.2; 2/odd which is represented by a triple .X0; !0; W0/ 2�ED0.2/�

for some D0 2 fD;D=4g.

Observe that we consider θ and �θ (θ 2 S1 ) as two distinct directions. As usual,
we choose the orientation for any saddle connection joining P and Q to be from P

to Q . For the remainder of this section, we fix a pair of saddle connections .�1; �2/
satisfying the assumptions of Theorem 8.6. We will need the following:

Lemma 8.7 Construct the translation surface .X 0; !0/ by first cutting .X; !/ along
cD�1�.��2/ and then gluing the resulting pair of geodesic segments in each boundary
component. Then

.X 0; !0/ 2�ED0.1; 1/ for some D0 2 fD;D=4g

(the involution � of X descends to the hyperelliptic involution of X 0 ).

Proof of Lemma 8.7 We first show that .X 0; !0/ 2H.1; 1/. For that, we remark that
the pair of angles specified by these two rays at the zeros P and Q are .2�; 4�/. Since
� sends �1 to ��2 and preserves the orientation of X , necessarily the angle 2� at P
and the angle 2� at Q belong to the same side of c , which proves the first fact.

The surface .X 0; !0/ has two marked segments c1; c2 , where c1 is a saddle connection,
and c2 is simply a geodesic segment which has the same length and the same direction
as c1 . We denote the endpoints of c1 (respectively, c2 ) by P1;Q1 (respectively,
P2;Q2 ), where P1; P2 correspond to P and Q1;Q2 correspond to Q . Note that
P1;Q1 are the zeros of !0 . We choose the orientation of c1 (respectively, c2 ) to be
from P1 to Q1 (respectively, from P2 to Q2 ).

With this notation, � induces an involution � 0 on X 0 such that � 0.c1/ D �c1 and
� 0.c2/D�c2 . It turns out that � 0 has six fixed points on X 0 : these are the four fixed
points of � (none of them are contained in c ) and two additional fixed points in c1
and c2 . By uniqueness, � 0 is therefore the hyperelliptic involution of X 0 .

To conclude the proof, we need to show that .X 0; !0/ is an eigenform. For that we first
need to choose a symplectic basis of H1.X 0;Z/. We proceed as follows (see Figure 6).
Let ˛1;1; ˛1;2; ˛2; ˇ2 be the simple closed curves, and ˇ1;1 and ˇ1;2 be simple arcs
in X 0 as shown in Figure 6, where ˛1;2 D �� 0.˛1;1/ and ˇ1;2 D �� 0.ˇ1;1/. Let ˇ01
denote the simple closed curve which is the concatenation c1[ˇ1;1[ c2[ˇ1;2 . Set
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˛01 D ˛1;1 (the orientations are chosen so that .˛01; ˇ
0
1; ˛2; ˇ2/ is a symplectic basis of

H1.X
0;Z/).

P1

Q1

P2

Q2

ˇ1;1

ˇ1;2

˛1;1

˛1;2

˛2

ˇ2

Figure 6: Surface in H.1; 1/ obtained by cutting and gluing along a pair
of saddle connections exchanged by the Prym involution. The hyperelliptic
involution � 0 exchanges the upper and the lower halves of X 0 .

Observe that ˇ1;1 and ˇ1;2 correspond to two simple closed curves in X , and that ˛1;1
and ˛1;2 are not homologous in H1.X;Z/. Set ˛1 D ˛1;1C˛1;2; ˇ1 D ˇ1;1Cˇ1;2 .
Then .˛1; ˇ1; ˛2; ˇ2/ is a symplectic basis of H1.X;Z/� . In this basis, the intersection
form is given by the matrix

�
2J
0
0
J

�
.

Since .X; !/ 2�ED.2; 2/odd , by definition there exists a unique generator T of OD
that can be expressed (in the basis .˛1; ˇ1; ˛2; ˇ2/ of H1.X;Z/� ) by the matrix

T D

0BB@
e 0 a b

0 e c d

2d �2b 0 0

�2c 2a 0 0

1CCA;
where D D e2C 8.ad � bc/, gcd.a; b; c; d; e/D 1 and T �! D λ �! , with λ> 0. In
the symplectic basis .˛01; ˇ

0
1; ˛2; ˇ2/ of H1.X 0;Z/ we define the endomorphism

T 0 D

0BB@
e 0 2a 2b

0 e c d

d �2b 0 0

�c 2a 0 0

1CCA:
It is easy to check that T 0 is self-adjoint with respect to the symplectic form

�
J
0
0
J

�
and T 02 D eT 0C 2.ad � bc/ Id.
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We now claim that !0 is an eigenform for T 0 , namely .T 0/�!0D λ �!0 , with λ>0. Let
.x; y; z; t/ be the periods of .˛1; ˇ1; ˛2; ˇ2/ by ! . The condition T �! D λ! reads

(12) .x; y; z; t/ �T D λ.x; y; z; t/:

Elementary computation gives

!0.˛01/D !.˛1;1/D
1
2
!.˛1/D

1
2
x;

!0.ˇ01/D�!
0.c1/C!

0.ˇ1;1/C!
0.c2/C!

0.ˇ1;2/

D !.ˇ1;1/C!.ˇ1;2/D !.ˇ1/D y;

!0.˛2/D !.˛2/D z;

!0.ˇ2/D !.ˇ2/D t:

By simple computations, we see that (12) implies

(13)
�
1
2
x; y; z; t

�
�T 0 D λ

�
1
2
x; y; z; t

�
;

which means that !0 is an eigenvector for T 0 . Actually (12) and (13) are equivalent.

Observe that T 0 generates a self-adjoint subring isomorphic to OD in End.Jac.X 0//
for which !0 is an eigenform. In other words, .X 0; !0/ 2 �ED0.1; 1/ for some D0

dividing D . The proper subring isomorphic to OD0 is generated by the matrix T 0=k 2
End.Jac.X 0//, where k D gcd.2a; 2b; c; d; e/. By assumption gcd.a; b; c; d; e/D 1,
therefore k 2 f1; 2g. Since D D k2D0 , the lemma follows.

We can now proceed to the proofs of our results.

Proof of Theorem 8.6 We keep the notation of Lemma 8.7. By construction, there is
no obstruction to collapsing c1 along the kernel foliation leaf through .X 0; !0/, and
the resulting surface belongs to �ED0.2/. Note that when c1 is shrunken to a point,
so is c2 . Since c2 is invariant under the hyperelliptic involution of X 0 , in the limit c2
becomes a marked Weierstrass point.

Proof of Proposition 8.5 The surgery “collapse a pair of saddle connections ex-
changed by � ”, as described above, is invertible: this is the map ‰ of the proposition.
Let us give a more precise definition of this map.

We fix a point .X0; !0; W0/ 2�ED0.2/� , and choose " > 0 small enough so that the
sets D.P0; "/ D fx 2 X0 j d.x; P0/ < "g, where P0 is the unique zero of !0 , and
D.W0; "/D fx 2X0 j d.x;W0/ < "g, are two disjoint embedded discs.

Given any vector v 2 R with jvj < ", we construct a Prym form in Prym.2; 2/ as
follows. We break up the zero P0 into two zeros to get a surface .X 0; !0/ 2H.1; 1/
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having the same absolute periods as ! , with a marked saddle connection, say �1 , that
is invariant under the hyperelliptic involution and such that !0.�1/D v . Note that, by
assumption, �1 is disjoint from D.W0; "/. Let �2 be a geodesic segment in D.W0; "/
such that !0.�2/D v and W0 is the midpoint of �2 . Cutting X 0 along �1 and �2 , then
regluing the resulting boundary components, we get a new surface .X; !/ 2H.2; 2/
together with an involution � W X !X induced by the hyperelliptic involution of X 0 .
Since ��! D�! by construction, one has .X; !/ 2 Prym.2; 2/.

The arguments of the proof of Lemma 8.7 actually show that .X; !/ 2 �ED.2; 2/
for some D 2 fD0; 4D0g. We then define ‰.z/ D .X; !/, where z is a complex
number such that v D z3 (this condition is due to the fact that we have three choices
for the segment �1 ), then extend ‰ to Dı."/ by analytic continuation. It is now
straightforward to check that the map ‰ has the desired properties.

9 Degenerating surfaces of �ED.2 ; 2/odd

In this section, we show that the surgeries described in Section 8 are sufficient to describe
all the degenerations (along the kernel foliation) of Prym eigenforms in �ED.2; 2/odd

having an unstable cylinder decomposition when D is not a square (compare with [14]).

Theorem 9.1 Assume that D is not a square, and .X; !/ 2�ED.2; 2/odd admits an
unstable cylinder decomposition in the horizontal direction. Then there exists a finite
interval Œsmin; smax� such that for any x 2 �smin; smaxŒ, the surface .X; !/C .x; 0/ is
well defined and belongs to �ED.2; 2/odd . Moreover, when x tends to @Œsmin; smax�,
.X; !/C .x; !/ converges to a surface .Y; �/ which belongs to

�ED.0; 0; 0/; �ED.4/ or �ED0.2/
�; with D0 2

˚
D; 1

4
D
	
:

We will use the following elementary lemma.

Lemma 9.2 Let .X; !/ 2�ED.2; 2/odd . Assume that one of the following occurs:

(1) There exists a nontrivial homology class c 2H1.X;Z/� such that !.c/D 0.

(2) There exist two twin saddle connections in X joining the two zeros of ! , both
of which are invariant under the Prym involution.

(3) There exists a triple of twin saddle connections .�0; �1; �2/ (that is, !.�0/ D
!.�1/D !.�2/), where �0 is invariant and �1; �2 are exchanged by the Prym
involution, such that c0 D �1 � .��2/ is nonseparating.

Then D is a square.
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Proof of Lemma 9.2 For the first condition, we set K D Q.
p
D/. If D is not a

square then K is a real quadratic field over Q and, up to a rescaling by GLC.2;R/, the
map H1.X;Q/�!K.i/ given by c 7! !.c/ is an isomorphism of Q–vector spaces.
Thus !.c/D 0 implies c D 0 in H1.X;Z/� .

For the second condition, let �1; �2 be a pair of twin saddle connections which are both
invariant under the Prym involution � . If c D �1 � .��2/ 2H1.X;Z/� is separating,
then by cutting X along �1; �2 and regluing the segments of the boundary of the two
components, we get a pair of translation surfaces each of which has a unique singularity
with cone angle 4� . They thus belong to the stratum H.1/. Since this stratum is empty,
we get a contradiction. Therefore, c must be nonseparating, ie c ¤ 0 2H1.X;Z/� .
One has !.c/D!.�1/�!.�2/D 0, hence the first condition applies and D is a square.

For the last condition, we set cj D �0 � .��j /, j D 1; 2. Remark that �.c1/D �c2
and c0 D c2 � c1 in H1.X;Z/. Since c0 is nonseparating by assumption, it is a
primitive element of H1.X;Z/. Observe that if one of the curves c1 or c2 is separating
then the other is also separating (as �.c1/ D �c2 ) and in this case c0 D c1 � c2 D
0 2 H1.X;Z/, contradicting the assumption. Hence both c1; c2 are nonseparating.
Let c D c1 C c2 . Then �.c/ D �c , or c 2 H1.X;Z/� . If c D 0 2 H1.X;Z/ then
c2D�c1 , ie c0D c1�c2D 2c1 , contradicting the primitivity of c0 2H1.X;Z/. Thus
c ¤ 0 2H1.X;Z/� . Since �0; �1; �2 are twin saddle connections, we conclude

!.c/D !.c1/C!.c2/D 2!.�0/�!.�1/�!.�2/D 0:

Again the first condition applies and D is a square.

Proof of Theorem 9.1 Let P;Q be the zeros of ! . We denote by f�i j i 2I g the set of
horizontal saddle connections on X connecting P to Q . Recall that we always define
the orientation of such a saddle connection to be from P to Q ; it is said to be positively
oriented if the orientation is from the left to the right, otherwise it is said to be negatively
oriented. The corresponding holonomy vectors are f.si ; 0/ D !.�i / 2 R2 j i 2 I g.
For every i 2 I , �i is contained on the lower boundary of a unique cylinder. If �i is
positively oriented (namely si > 0) then there exists �j in the same lower boundary
component as �i which is negatively oriented. In particular, all the numbers fsi j i 2 I g
cannot have the same sign.

Let us define

smin D�minfsi j si > 0g and smax D�maxfsi j si < 0g:

If .Y; �/D .X; !/C .x; 0/ then by construction �.�i /D .si C x; 0/ and the surface
.Y; �/ can be constructed from the same cylinders as .X; !/. For all x 2 �smin; smaxŒ,
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.X; !/C .x; 0/ is a well-defined surface in �ED.2; 2/odd since si C x ¤ 0, proving
the first statement.

We now prove the second assertion. Let us analyze the case when x tends to smin (the
case when x tends to smax being similar). Let

Cmin D f�i j si D�sming and Cmax D f�i j si D�smaxg

(necessarily jCminj � 3, and jCmaxj � 3). When x! smin , only the saddle connections
of Cmin can collapse to a point. We thus have three cases, parametrized by the number
of elements of Cmin :

(1) CminDf�i0g: the unique saddle connection �i0 is invariant under � and .X; !/C
.x; 0/ converges to a surface in �ED.4/.

(2) Cmin D f�i1 ; �i2g: �i1 and �i2 are exchanged by � (otherwise the closed curve
cD�i1�.��i2/2H1.X;Z/

� represents a nonzero element, and since !.c/D 0,
Lemma 9.2 implies that D is a square). By Theorem 8.6, .X; !/ C .x; 0/
converges to a surface in �ED0.2/� , for some D0 2 fD;D=4g.

(3) Cmin D fi0; i1; i2g: if there are two saddle connections in f�i0 ; �i1 ; �i2g that
are invariant under � then D must be square (see Lemma 9.2). Hence one
can assume that � preserves �i0 while it exchanges �i1 and �i2 . If the closed
curve c0 D �i1 � .��i2/ is nonseparating then D must be a square (again by
Lemma 9.2). Thus c0 is separating and f�i0 ; �i1 ; �i2g are homologous saddle
connections. We only need to show that X decomposes into three tori. Indeed,
as x tends to smin the length of these saddle connections tends to zero, and the
limit surface is an element of �ED.0; 0; 0/.

Hence, in view of the above discussion, in order to finish the proof of the theorem, we
need to show that, in case (3), the complement of �i0 [ �i1 [ �i2 has three connected
components, each of which is a one-holed torus.

We begin by observing that �i1 ; �i2 determine a pair of angles .2�; 4�/ at P and Q .
Since � exchanges P and Q and preserves the orientation of X , the angle 2� at P and
the angle 2� at Q belong to the same side of c0 . Cut X along c0 , then glue the two
segments in each boundary component together. We then obtain two closed translation
surfaces. From the observation above, one of the new surfaces has no singularities,
hence it must be a flat torus that will be denoted by .X 0; !0/. The remaining surface is
then a surface .X 00; !00/ in H.1; 1/.

There is a marked geodesic segment � 0 in X 0 which is the identification of �1 and �2 .
We denote the endpoints of this segment by P 0 and Q0 , which correspond to P

and Q , respectively. For .X 00; !00/, we denote the zeros of !00 by P 00 and Q00 , which
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correspond to P and Q , respectively. There is a pair of twin saddle connections �0
and � 00 in X 00 , where � 00 is the identification of �1 and �2 .

The involution � induces an involution � 0 on X 0 and an involution � 00 on X 00 . We can
consider � 0 and � 00 as the restrictions of � in X 0 and X 00 , respectively. Note that � 0

exchanges P 0 and Q0 and satisfies � 0.!0/D�!0 . Since X 0 is an elliptic curve, there
exists only one such involution. We deduce in particular that � 0 has four fixed points
in X 0 , one of which is the midpoint of � 0 ; the other three are the fixed points of � .

Recall that � has four fixed points in X . Therefore, � 00 has exactly two fixed points,
one of which is the midpoint of �0 by assumption (recall that �0 is invariant under � ),
and the other one of which is the midpoint of � 00 . Let ι denote the hyperelliptic
involution of X 00 . Remark that ι has six fixed points. From the observations above, we
can conclude that � 00 ¤ ι.

We now claim that ι.�0/D �� 00 . Indeed, since ι belongs to the center of the group
Aut.X 00/, we have ι ı � 00 D � 00 ı ι. Therefore ι preserves the set of fixed points of � 00 .
If ι fixes the midpoint of �0 , then it follows that ι ı � 00 D Id, since both ι and � 00

are involutions, and hence � 00 D ι. This is a contradiction. Therefore, ι must send
the midpoint of �0 to the midpoint of � 00 . Remark that ι�!00 D �!00 , which means
that ι is an isometry of .X 00; !00/. Thus ι maps �0 to another saddle connection such
that !00.ι.�0// D �!00.�0/. Since ι exchanges the zeros of !00 , we conclude that
ι.�0/D��

00 .

Now, the element in H1.X 00;Z/ represented by the closed curve �0[ � 00 is preserved
by ι, which implies that this curve is separating. Cut X 00 along �0 [ � 00 , then glue
the segments in the boundary of each component together. We then get two flat
tori .X 001 ; !

00
1/ and .X 002 ; !

00
2/ which are exchanged by � 00 . This finishes the proof of

Theorem 9.1.

10 Cylinder decomposition of surfaces near �ED.4/
and �ED.2/�

Let .X0; !0/ be a surface in �ED.4/, and ‰W Dı."/!�ED.2; 2/
odd be the map in

Proposition 8.3.

Proposition 10.1 Assume that the horizontal direction is completely periodic for
.X0; !0/. Then there exists 0 < "1 < " such that for every .X; !/ 2 ‰.Dı."1//, the
horizontal direction is also completely periodic. Set

R.k;5/."1/D f%e
k{�=5

j 0 < %< "1g for k D 0; : : : ; 9
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and

Dı.k;5/."1/D f%e
{θ
j 0 < %< "1; .k� 1/�=5 < θ< k�=5g for k D 1; : : : ; 10:

Then:

(1) The cylinder decompositions in the horizontal direction of all surfaces in
‰.R.k;5/."1// are unstable and have the same combinatorial data.

(2) The cylinder decompositions in the horizontal direction of all surfaces in
‰.Dı

.k;5/
."1// are stable and have the same combinatorial data.

Proof This proposition follows from similar arguments as Proposition 4.2. Let Ci ,
i D 1; : : : ; n, denote the horizontal cylinders of X0 , and i denote the simple closed
geodesic in Ci whose distances to the two boundary components of Ci are equal.
Choose "1 satisfying 0 < "1 <minf"; 1g small enough so that D.P0; "1/D fx 2X0 j
d.x; P0/ < "1g is an embedded disc disjoint from the curves i , where P0 is the
unique zero of !0 . By construction, "51 < "1 < ".

By definition, the surface ‰.%e{θ/ has a small saddle connection (of length %5 ) in
the direction 5θ. It follows immediately that the horizontal direction is periodic for
the surfaces in ‰.R.k;5/."1//. Since there is a horizontal saddle connection with
distinct endpoints, the corresponding cylinder decomposition is unstable. Clearly,
the combinatorial data of the decomposition of ‰.z/ does not change as z varies in
R.k;5/."1/ (see Lemma 4.3).

Let us now consider a surface .X; !/D‰.z/, where z 2Dı
.k;5/

."1/. We will assume
in addition that z5 D 2{h with 0 < h < 1

2
"1 ; the general case then follows from

Lemma 4.3. Recall that D.P0; "1/ is the union of ten half-discs D˙i , with i D

1; : : : ; 5, where DCi is a copy of fz 2C j jzj � "1; Re.z/� 0g and D�i is a copy of
fz 2C j jzj � "1; Re.z/� 0g. Let t˙i ; b

˙
i ; c

˙
i denote the points in the border of D˙i

that correspond to {"1;�{"1; 0, respectively.

Since the horizontal direction is periodic for .X0; !0/, each horizontal separatrix
emanating from the “center” of a half-disc DCi ends at the “center” of a half-disc
D�j WDD

�
π.i/

. Thus we have a permutation π of the index set f1; : : : ; 5g.

We have the same situation for horizontal rays emanating from the “top” (and similarly
the“bottom”) of DCi . The gluing rules then give rise to two permutations πt (corre-
sponding to the top of DCi ) and πb (corresponding to the bottom of DCi ) of the set
f1; : : : ; 5g (see Section 4).

Now, the surface .X; !/ D ‰.z/ is obtained from .X0; !0/ by replacing the disc
D.P0; "1/ by another disc constructed from the half-discs D˙i as follows: pick a
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j 2 f1; : : : ; 5g and apply the following gluing rules (see Figure 7 for the case j D 2;
here we use the convention i � .i � 5/ if i > 5):

� DCi is glued to D�i along the segment fRe.z/ D 0 j h � Im.z/ < "1g for
i 2 fj; j C 1; j C 2g.

� DCi is glued to D�i along the segment fRe.z/ D 0 j �h � Im.z/ < "1g for
i 62 fj; j C 1; j C 2g.

� D�i is glued to DC
.iC1/

along the segment fRe.z/D 0 j �"1 < Im.z/� hg for
i 2 fj; j C 1g.

� D�i is glued to DC
.iC1/

along the segment fRe.z/D 0 j �"1 < Im.z/��hg for
i 62 fj; j C 1g.

� DCj is glued to D�
.jC2/

along the segment fRe.z/D 0;�h� Im.z/� hg.

c�1 cC1

b�1 bC1

t�1 D t
C
1

c�2 cC2

b�2 bC2

t�2 D t
C
2

c�3 cC3

b�3 bC3

t�3 D t
C
3

c�4 cC4

b�4 bC4

t�4 D t
C
4

c�5 cC5

b�5 bC5

t�5 D t
C
5

Figure 7: Splitting a zero of order 4 into two zeros of order 2 (j D 2).

Let P and Q denote the zeros of ! which correspond to the points �{h 2DCj and
{h 2 DCj , respectively. From the gluing rules, horizontal geodesic rays emanating
from P end up at P , and similarly for Q . Moreover, those horizontal saddle con-
nections are encoded in the permutations πb and πt . It follows that .X; !/ admits a
stable cylinder decomposition in the horizontal direction.

By the choice of "1 , .X; !/ has n cylinders associated to the geodesics i , iD1; : : : ; n,
and some additional cylinders which contain some of the points c˙i . The cylinders
associated to i are in bijection with the cycles of πt and πb . For the additional ones,
we remark that the gluing rules imply the following identifications:

� c�i is identified with cCi if i 62 fj; j C 1; j C 2g,

� c�i is identified with cC
.iC1/

if i 2 fj; j C 1g,

� c�
.jC2/

is identified with cCj .

Composing these identifications with π, we get a permutation πc of the set f1; : : : ; 5g.
The horizontal cylinders containing some of the points c˙i are in bijection with the

Geometry & Topology, Volume 20 (2016)



1410 Erwan Lanneau and Duc-Manh Nguyen

cycles of πc . It follows that the permutations πt ;πb;πc completely determine the
combinatorial data of the cylinder decomposition of .X; !/. Hence these combinatorial
data depend only on the sector Dı

k;5
."1/. The proposition is then proved.

Remark 10.2 In general, the topological model of the decomposition of .X; !/
changes if we change the sector Dı

.k;5/
."1/.

By a saddle connection on .X0; !0; W0/ 2�ED0.2/� , we refer to a geodesic segment
whose endpoints are in the set fP0; W0g. We consider, by convention, a cylinder in
.X0; !0; W0/ as the union of all simple closed geodesics in the same free homotopy
class in X0nfP0; W0g. Obviously, a direction θ is periodic for .X0; !0; W0/ if and only
if it is periodic for .X0; !0/, but the associated cylinder decomposition of .X0; !0; W0/
may have one more cylinder than the one of .X0; !0/, since a simple closed geodesic
passing through W0 will cut the corresponding cylinder in .X0; !0/ into two cylinders
in .X0; !0; W0/. The following proposition follows from completely similar arguments
as Proposition 10.1.

Proposition 10.3 Let .X0; !0; W0/ be a surface in �ED0.2/
� . Assume that the

horizontal direction is periodic for .X0; !0; W0/. Let ‰W Dı."/!�ED.2; 2/
odd be

the map defined in Proposition 8.5. Then there exists 0 < "1 < " such that for all
.X; !/ 2‰.Dı."1//, the horizontal direction is also periodic. Set

R.k;3/."1/D f%e
k{�=3

j 0 < %< "1g for k D 0; : : : ; 5

and

Dı.k;3/."1/D f%e
{θ
j 0 < %< "1; .k� 1/�=3 < θ< k�=3g for k D 1; : : : ; 6:

Then the associated cylinder decompositions of surfaces in ‰.R.k;3/."1// or in
‰.Dı

.k;3/
."1// are unstable and have the same combinatorial data.

Having proved Propositions 10.1 and 10.3, using the arguments in Section 7, we get:

Theorem 10.4 Let .X0; !0/ be a surface in �ED.4/ which is horizontally periodic,
and ‰W Dı."/!�ED.2; 2/

odd be the map defined in Proposition 8.3. Let fzngn2N be
a sequence of complex numbers in a fixed sector Dı

.k;n/
."1/, where "1 is the constant

in Proposition 10.1, such that zn ! 0 as n!1. Assume that for all n 2 N , the
horizontal direction is parabolic for the surface .Xn; !n/D‰.zn/. Then the set

O WD
[
n2N

GLC.2;R/ � .Xn; !n/

is dense in a component of �ED.2; 2/odd .
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The same statement also holds with .X0; !0/, �ED.4/, and Propositions 8.3 and 10.1
replaced by .X; !0; W0/, �ED.2/� , and Propositions 8.5 and 10.3, respectively.

Proof Since the arguments for the two cases are the same, we will only consider
the case .X0; !0/ 2�ED.4/. Recall that, by definition, all the surfaces in ‰.Dı."//
belong to the same leaf of the kernel foliation. Set

Dı.k;n/."1/D fz D %e
{θ
2C j 0 < %< "1; .k� 1/�=5� θ� k�=5g:

By a slight abuse of notation, if .X; !/ D ‰.z/, with z 2 Dı
.k;n/

."1/, then we will
write .X; !/D .X0; !0/C z5 . Using this convention, given z1; z2 in Dı

.k;n/
."1/, we

obtain
.X0; !0/C z

5
2 D ..X0; !0/C z

5
1/C .z

5
2 � z

5
1/;

where the expression in the right-hand side corresponds to a move in a leaf of the kernel
foliation in �ED.2; 2/odd .

By assumption, we can write .Xn; !n/D .X0; !0/C .sn; tn/, with .sn; tn/! .0; 0/

as n!1, tn ¤ 0, and .Xn; !n/ admits a parabolic cylinder decomposition in the
horizontal direction. By Proposition 10.1, we know that the topological data and the
widths of the cylinders in this decomposition are the same for all n. Thus, the arguments
in Section 7 allows us to conclude that .X0; !0/C .x; 0/ 2O , for all x 2 .�"51; "

5
1/.

Pick a point x 2 .�"51; "
5
1/nf0g, and set .X; !/D .X0; !0/C .x; 0/. We see that there

exists "0 > 0 such that .X; !/C .s; 0/ 2 O for all s 2 .�"0; "0/. Corollary 6.3 then
allows us to conclude that .X; !/C v 2O for any v 2R2 , with v small enough. We
can then choose v such that .X; !/C v 2‰.Dı

.k;n/
."1// and the horizontal direction

is not parabolic for .X; !/C v . We conclude with Theorem 6.1.

11 The set of Veech surfaces is not dense

In this section we will prove the following theorem:

Theorem 11.1 If D is not a square, then for any connected component C of
�ED.2; 2/

odd there exists an open subset U � C which contains no Veech surfaces.

11A Cylinder decomposition and prototypes

We first prove the following lemma. Informally, if .X; !/ has a three-torus decomposi-
tion such that the direction of the slits is periodic, then up to the action of GLC.2;R/
the surface belongs to the real kernel foliation leaf of some “prototypical surface” in a
finite family.
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Lemma 11.2 Let .X; !/2�ED.2; 2/odd be an eigenform with a triple of homologous
saddle connections f�0; �1; �2g so that .X; !/ admits a three-torus decomposition into
tori .Xj ; !j /, j D 0; 1; 2. Assume that .X; !/ is periodic in the direction of �0 . Let
.zaj ; zbj / be a basis of H1.Xj ;Z/ with zaj parallel to �j , and

�.za1/D�za2; �.zb1/D�zb2;

where � is the Prym involution. Then there exists a 4–tuple .w; h; t; e/ 2Z4 satisfying

(PD.0; 0; 0/)
�
w > 0; h > 0; 0� t < gcd.w; h/; gcd.w; h; t; e/D 1;
D D e2C 8wh

such that up to the action of GLC.2;R/ and Dehn twists, we have

!.Z za0˚Z zb0/D λ �Z
2;

!.Z zaj ˚Z zbj /D Z.w; 0/˚Z.t; h/ for j D 1; 2;

where λ 2Q.
p
D/ is the unique positive root of the equation λ2� eλ� 2whD 0.

Proof Set zaD za1C za2 and zb D zb1C zb2 . Then . za0; zb0; za; zb/ is a symplectic basis of
H1.X;Z/� . The restriction of the intersection form is given by the matrix

�
J
0
0
2J

�
.

Since .X; !/ 2�ED.2; 2/odd , let us denote by T a generator of the order OD . In the
above coordinates, since T is self-adjoint, T has the following form (up to replacing T
by T �f � Id):

T D

0BB@
e 0 2w 2t

0 e 2c 2h

h �t 0 0

�c w 0 0

1CCA;
for some .w; h; t; e; c/ 2 Z5 . Since ! is an eigenform, T �! D λ � ! for some λ

(that can be chosen to be positive by changing T to �T ). Now, up to the action of
GLC.2;R/, one can always assume that !.Z za0˚Z zb0/D λ �Z2 . In our coordinates,
Re.!/D .λ; 0; x; y/ and Im.!/D .0; λ; 0; z/ for some x; y; z > 0. Substituting into
the equation T �! D λ �! , we obtain x D 2w , y D 2t , z D 2h and c D 0. Since T
satisfies the quadratic equation T 2�eT �2wh IdD 0, we get DD e2C8wh. We can
renormalize further using Dehn twists so that 0� t < gcd.w; h/. Finally, properness of
OD implies gcd.w; h; t; e/D 1. All the conditions of (PD.0; 0; 0/) are now fulfilled
and the lemma is proved (compare with [15, Proposition 4.2]).

Definition 11.3 For each D , let PD.0; 0; 0/ denote the set

f.w; h; t; e/ 2 Z4 j .w; h; t; e/ satisfies (PD.0; 0; 0/)g:

We call an element of PD.0; 0; 0/ a prototype. The set of prototypes is clearly finite.
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11B Switching decompositions

Let .X; !/ be a surface in �ED.2; 2/odd which admits a three-torus decomposition by
a triple of saddle connections f�0; �1; �2g. We also assume that the direction of �j is
periodic. Let .Xj ; !j / and .zaj ; zbj / be as in Lemma 11.2. We wish now to investigate
the situation where X admits other three-torus decompositions.

By Proposition 8.2, for any primitive element b0 2H0.X0;Z/, there exists a unique
primitive element bj 2H1.Xj ;Z/, j D 1; 2 such that

!.bj /D
2 ǰ

λ
!.b0/;

with ǰ 2 N . This is because L.Xj ; !j / is a sublattice of .2=λ/L.X0; !0/ (here
L.Xj ; !j / is the lattice associated to .Xj ; !j /; see Proposition 8.2), hence it contains
a vector parallel to .2=λ/!0.b0/. We call bj the shadow of b0 in Xj .

The following lemma provides us with a sufficient condition for the existence of many
other three-torus decompositions. Its proof is inspired by [23, Theorem 5.3].

Lemma 11.4 Let b0 be a primitive element of H1.X0;Z/ n f˙za0g and let bj be the
shadow of b0 in Xj , j D 1; 2. Set cD b0Cb1Cb2 . Then there exists s0>0 such that
if the ratio sDj�0j=jza0j is smaller than s0 , then the surface .X; !/ admits a three-torus
decomposition by a triple of saddle connections fı0; ı1; ı2g such that ıj � .��j /D c .

Proof For vj D .xj ; yj / 2 R2 , j D 1; 2, let us define v1 ^ v2 D det
�
x1

y1

x2

y2

�
. By

assumption b0 62 Zza0 , hence j!.b0/^!.za0/j> 0. Since !.bj / is parallel to !.b0/,
and !.zaj / is parallel to !.za0/, we also have j!.bj /^!.zaj /j> 0.

Choose s0 small enough so that if 0 < s < s0 , then 0 < sj!.bj /^!.zaj /j<Area.Xj /.
Assume that j�j j < s0jzaj j for j D 0; 1; 2. Note that j�0j D j�1j D j�2j, and jza1j D
jza2j D w=λjza0j.

Let y�j be the marked geodesic segment corresponding to f�0; �1; �2g in the torus Xj ,
and let j be a simple closed geodesic representing the homology class bj 2H1.Xj ;Z/.
By assumption 0 < j!.j /^!.y�j /j < Area.Xj /, hence j intersects y�j at at most
one point. Thus the union of all the geodesics representing bj which intersect y�j is an
embedded cylinder yCj in Xj .

Recall that .X; !/ is obtained from X0; X1; X2 by slitting and regluing along y�j . As
a consequence, we see that the union of the cylinders yCj , j D 0; 1; 2, is an embedded
cylinder C whose core curves represent the homology class c D b0C b1C b2 . Let ıj
be the image of �j under a Dehn twist in C . Then fıj j j D 0; 1; 2g is also a triple
of homologous saddle connections which decompose X into three tori (see Figure 8).
The lemma follows from ıj � .��j /D c .
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X1

X0

X2

b1

b0

b2

ı0
ı1

ı2

�0 �0
�1

�2

Figure 8: Switching three-torus decompositions.

Using the same notation as in Lemma 11.4, let .X 0j ; !
0
j /, j D 0; 1; 2, denote the tori in

the decomposition specified by fı0; ı1; ı2g (X 00 is the torus which is fixed by � ). We
regard Xj and X 0j as subsurfaces of X . The following elementary lemma provides us
with an explicit basis of H1.X 00;Z/. Its proof is left to the reader.

Lemma 11.5 Let a0 be a primitive element of H1.X0;Z/ such that .a0; b0/ is a
basis of H1.X0;Z/. Then H1.X 00;Z/D Z � .a0C c/CZ � b0 .

Lemma 11.6 Let .X; !/ be a surface in �ED.2; 2/odd satisfying the hypothesis of
Lemma 11.4. Let a0 be a primitive element of H1.X0;Z/ such that .a0; b0/ is
a basis of H1.X0;Z/. There exists .p; q/ 2 Z2 such that za0 D pa0 C qb0 . Set
ˇ D 2ˇ1C 2ˇ2 D 4ˇ1 2 Z, where !.bj / D .2 ǰ =λ/!.b0/. If the direction of ı0 is
completely periodic, then

(14) s D
λCˇ

.rpCp� q/λCpˇ
with r 2Q:

Proof We know that the saddle connections fı0; ı1; ı2g decompose X into three tori
X 00; X

0
1; X

0
2 , where X 00 is preserved by � . By Lemma 11.5 we have

H1.X
0
0;Z/D Z � .a0C b0C b1C b2/CZ � b0:

Set AD!.a0Cb0Cb1Cb2/ and BD!.b0/. Then L.X 00/DZACZB , where L.X 00/
is the lattice associated to X 00 . Setting v D !.�0/, w D !.ı0/, simple computation
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shows that

AD !.a0/C!.b0/C .ˇ=λ/!.b0/D !.a0/C .1Cˇ=λ/B:

Thus

!.a0/D A� .1Cˇ=λ/B:

Using za0 D pa0C qb0 , we obtain

v D s!.za0/D s.p!.a0/C q!.b0//

D s
�
p.A� .1Cˇ=λ/B/C qB

�
D s

�
pAC .q�p.1Cˇ=λ//B

�
:

Now

w D vC!.b0C b1C b2/

D spAC s.q�p.1Cˇ=λ//BC .1Cˇ=λ/B

D spAC
�
sqC .1� sp/.1Cˇ=λ/

�
B:

The direction of ı0 is periodic if and only if w is parallel to a vector in the lattice
ZACZB , which is equivalent to

r D
sqC .1� sp/.1Cˇ=λ/

sp
D
sqλC .1� sp/.λCˇ/

spλ
2Q:

It follows that

srpλD sqλC .λCˇ/� sp.λCˇ/;

or equivalently

s D
λCˇ

rpλ� qλCp.λCˇ/
D

λCˇ

.rpCp� q/λCpˇ
:

We can now prove:

Proposition 11.7 Let .X; !/ be a surface in �ED.2; 2/odd , where D is not a square.
Assume that there exists a triple of homologous saddle connections f�0; �1; �2g which
decompose .X; !/ into three tori, and the direction of �j is periodic. Set sD j�0j=jza0j,
where za0 is a simple closed geodesic parallel to �0 in the torus which is preserved by
the involution. Then there exists a constant s0 > 0 depending only on D such that if
s < s0 then .X; !/ is not a Veech surface.
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Proof Let .zaj ; zbj /, j D 0; 1; 2, be as in Lemma 11.2. Let .e; w; h; t/ be the prototype
in PD.0; 0; 0/ which is associated to the cylinder decomposition in the direction of �0 .
Set .a0; b0/ D .za0; zb0/, and .a00; b

0
0/ D .za0C

zb0; za0C 2zb0/. Let bj and b0j be the
shadows of b0 and b00 in Xj , respectively, for j D 1; 2. Then

!.b1C b2/D .ˇ=λ/!.b0/; !.b01C b
0
2/D .ˇ

0=λ/!.b00/;

where ˇ; ˇ0 2N are determined by the prototype .e; w; h; t/. From Lemma 11.4, there
exists s1 > 0 such that if s < s1 , then .X; !/ admits three-torus decompositions by the
triples of saddle connections fıj j j D 0; 1; 2g and fı0j j j D 0; 1; 2g, where ı0 and ı00
satisfy

ı0 � .��0/D b0C b1C b2 2H1.X;Z/;

ı00 � .��0/D b
0
0C b

0
1C b

0
2 2H1.X;Z/:

By definition, za0 D a0 D 2a00� b
0
0 . Assume that .X; !/ is a Veech surface. Then the

directions of ı and ı0 must be periodic. Lemma 11.6 then implies

(15) s D
λCˇ

.r C 1/λCˇ
D

λCˇ0

.2r 0C 3/λC 2ˇ0

with r; r 0 2Q. Set RD r C 1, R0 D 2r 0C 3. We see that (15) is equivalent to

R0λ2C .R0ˇC 2ˇ0/λC 2ˇˇ0 DRλ2C .Rˇ0Cˇ/λCˇˇ0:

Using λ2 D eλC 2wh, we get

R0.eλC 2wh/C .R0ˇC 2ˇ0/λC 2ˇˇ0 DR.eλC 2wh/C .ˇCRˇ0/λCˇˇ0;

which holds if and only if

.R0eCR0ˇC 2ˇ0/λC .2whR0C 2ˇˇ0/D .ReCˇCRˇ0/λC .2whRCˇˇ0/:

It follows that �
R0.eCˇ/C 2ˇ0 DR.eCˇ0/Cˇ;

2whR0C 2ˇˇ0 D 2whRCˇˇ0;

or

(16)

8<:
R.eCˇ0/�R0.eCˇ/D 2ˇ0�ˇ;

R�R0 D
ˇˇ0

2wh
:

We first remark that ˇ ¤ ˇ0 , otherwise (15) would imply that .R �R0/λ D ˇ , and
hence R�R0 62 Q since ˇ ¤ 0. It follows that the linear system (16) has a unique
solution. Let s2 be the value of s corresponding to this solution given by Equation (15).
It follows that if s < minfs1; s2g then the directions of ı0 and ı00 cannot be both
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periodic, hence .X; !/ cannot be a Veech surface. Since the set PD.0; 0; 0/ is finite,
the proposition follows.

The next proposition is a direct consequence of Proposition 11.7.

Proposition 11.8 Let f.Xj ; !j ; Pj / j j D 0; 1; 2g be an element of �ED.0; 0; 0/, and
‰W Dı."/!�ED.2; 2/

odd be the map in Proposition 8.1. Then there exists 0 < ı < "
such that if .X; !/ 2‰.Dı.ı//, then .X; !/ is not a Veech surface.

Proof Let `0 be the length of the shortest simple closed geodesic in the torus .X0; !0/.
Let s0 be the constant in Proposition 11.7. Pick ı < minf"; s0`0g. By definition, if
.X; !/D‰.z/, then there is a triple of homologous saddle connections f�0; �1; �2g
which decompose X into three tori such that !.�j /D z . Assume that z 2Dı.ı/. We
claim that .X; !/ is not a Veech surface. There are two cases:

� z is not parallel to any vector in the lattice L0 associated to .X0; !0/. In this
case, the direction of �j is not periodic, hence .X; !/ is not a Veech surface.

� z is parallel to some vector in L0 . In this case, .X; !/ admits a decomposition
into three cylinders, which correspond to the tori X0; X1; X2 , in the direction
of z . Let v be the primitive vector in L0 in the same direction as z . Then the
width of the cylinder corresponding to X0 is jvj. By assumption,

j�0j

jvj
�
j�0j

`0
< s0:

Therefore, .X; !/ cannot be a Veech surface by Proposition 11.7.

Using Proposition 11.8, we can now prove the theorem announced at the beginning of
the section.

Proof of Theorem 11.1 Fix a connected component C of �ED.2; 2/odd . By the
main result of [14], we know that there exists a surface .X; !/ 2 C which admits a
three-torus decomposition by a triple of homologous saddle connections f�0; �1; �2g.

By moving in the kernel foliation leaves, we can assume that the direction of �j is
periodic on .X; !/. By Lemma 11.2, we get a corresponding prototype .w; h; t; e/ in
PD.0; 0; 0/. Set

L0 D Z.λ; 0/CZ.0; λ/; L1 D L2 D Z.w; 0/CZ.t; h/; .Xj ; !j /D .C=Lj ; dz/;

for j D0; 1; 2. Let Pj be the projection of 02C in Xj . Then the triple f.Xj ; !j ; Pj / j
j D 0; 1; 2g belongs to �ED.0; 0; 0/. Note that we obtain this triple of tori as the limit
surface when �0; �1; �2 are collapsed.
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Let ‰W Dı."/! �ED.2; 2/
odd be the map in Proposition 8.1. It is easy to see that

‰.Dı."//� C. From Proposition 11.8, we know that there exists 0 < ı < " such that
the set V D‰.Dı.ı// does not contain any Veech surface. As a consequence, the set
U D GLC.2;R/ �V does not contain any Veech surface either. It is easy to see that U
is an open subset of C. The theorem is then proved.

12 Finiteness of closed orbits

In this section we will prove our second main result, namely:

Theorem 12.1 If D is not a square then the number of closed GLC.2;R/–orbits in
�ED.2; 2/

odd is finite.

We first show a useful finiteness result up to the kernel foliation for surfaces in
�ED.2; 2/

odd . Recall that .X; !/ admits an unstable cylinder decomposition in the
horizontal direction if and only if this direction is periodic, and there exists at least one
horizontal saddle connection whose endpoints are distinct zeros of ! .

Theorem 12.2 If D is not a square then there exists a finite family PD of surfaces in
�ED.2; 2/

odd such that if .X; !/ 2�ED.2; 2/odd admits an unstable cylinder decom-
position, then up to rescaling by GLC.2;R/, one has

.X; !/D .Xi ; !i /C .x; 0/ for some .Xi ; !i / 2 PD:

If we label the zeros of ! by P and Q , we always choose the orientation for any
saddle connection joining P and Q to be from P to Q ; this defines in a unique way
the surface .X; !/C .x; 0/.

Proof of Theorem 12.2 By [22], for any D0� 0; 1 mod 4;D0 >0, the set �ED0.2/�

is a finite union of GLC.2;R/–closed orbits. More precisely, there exists a finite family
PD0.2/ of surfaces (prototypical splittings) such that any .X; !/ 2�ED0.2/� which
is horizontally periodic belongs to the P –orbit

�
here P D

˚�
�

0
�

�

�
� GLC.2;R/

	�
of

some surface in PD0.2/.

In [15], we proved the same result for the stratum �ED.4/: there exists a finite family
PD.4/ of surfaces such that any horizontally periodic surface .X; !/2�ED.4/ belongs
to the P –orbit of a surface in PD.4/. The corresponding statement for the stratum
�ED.0; 0; 0/ is Lemma 11.2. Let PD.0; 0; 0/ be the set of corresponding surfaces in
�ED.0; 0; 0/. We will call the surfaces in the families PD0.2/, PD.4/, PD.0; 0; 0/
prototypical surfaces.
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Given a discriminant D > 0, for each prototypical surface X1 in these finite fami-
lies PD.0; 0; 0/, PD.4/ and PD0.2/, where D0 2 fD;D=4g, we apply, respectively,
Propositions 8.1, 8.3 and 8.5. This furnishes a map ‰W Dı."/!�ED.2; 2/

odd , where
" > 0.

By construction, the surfaces in �ED.2; 2/odd whose horizontal kernel foliation leaves
contain X1 (ie X1 is a limit of the real kernel foliation leaf through such surfaces)
and which are close enough to X1 are contained in the set ‰.R.k;n/."//, where
n 2 f1; 3; 5g, k 2 f0; : : : ; 2n � 1g, depending on the space to which X1 belongs.
For each prototypical surface, and each admissible pair .k; n/, we pick a surface in
‰.R.k;n/."//. Let PD denote this (finite) family. Note that for all the surfaces in this
family, the cylinder decomposition in the horizontal direction is unstable.

Now, thanks to Theorem 9.1, if .X; !/ 2 �ED.2; 2/odd admits an unstable cylinder
decomposition, then up to the action of GLC.2;R/, the horizontal kernel foliation
leaf through .X; !/ contains some prototypical surface. Therefore .X; !/ belongs
to the same horizontal kernel foliation leaf of a surface in the family PD , and the
theorem follows.

We now have all necessary tools to prove our main result.

Proof of Theorem 12.1 Let f.Xi ; !i / j i 2 I g be a family of Veech surfaces that
generates an infinite family of closed GLC.2;R/–orbits in �ED.2; 2/odd . We will
show that the set

OD
[
i2I

GLC.2;R/ � .Xi ; !i /

is dense in a component of �ED.2; 2/odd , contradicting Theorem 11.1.

Since the direction of any saddle connection on a Veech surface is periodic, each surface
in the family f.Xi ; !i / j i 2 I g admits infinitely many unstable cylinder decompositions.
Therefore, we can assume that each of the surfaces .Xi ; !i / belongs to the horizontal
kernel foliation leaf of one surface in the family PD of Theorem 12.2. Since the set
PD is finite, there exists a surface .X; !/ 2 PD and an infinite subfamily I0 � I such
that .Xi ; !i /D .X; !/C .xi ; 0/ for any i 2 I0 . By Theorem 9.1, xi 2 �a; bŒ, where
a; b do not depend on i .

The compactness of the interval Œa; b� implies that there is a subsequence fikgk2N � I0
such that fxikg converges to some x 2 Œa; b�. The sequence .Xik ; !ik / D .X; !/C
.xik ; 0/ thus converges to .Y; �/ WD .X; !/C.x; 0/. If x 2 �a; bŒ, then .Y; �/ belongs to
�ED.2; 2/

odd . However, if x 2 fa; bg, then by Theorem 9.1 .Y; �/ belongs to a bound-
ary component of �ED.2; 2/odd , namely �ED.4/;�ED0.2/� with D0 2 fD;D=4g, or
�ED.0; 0; 0/. We distinguish separately the four cases below.
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Case .Y; �/ 2�ED.2 ; 2/
odd Let � be a periodic direction on .Y; �/ that is different

from .˙1; 0/. Set

.Y � ; �� / WDR�� � .Y; �/ and .X�ik ; !
�
ik
/DR�� � .Xik ; !ik /;

where R�� D
� cos �
� sin �

sin �
cos �

�
. Observe that .Y � ; �� / is horizontally periodic and

.X�ik ; !
�
ik
/D .Y � ; �� /C vk;

where vk D R�� � .x � xik ; 0/. Thus vk ! .0; 0/ as k ! 1. Note that, since
� ¤ .˙1; 0/, vk does not belong to R� f0g.

By Propositions 4.1 and 4.2, for k large enough, .X�ik ; !
�
ik
/ admits a stable cylinder

decomposition in the horizontal direction. Moreover, we can assume that the cylinder
decompositions of .X�ik ; !

�
ik
/ in the horizontal direction share the same combinatorial

data, and the same widths of cylinders. Finally, since .X�ik ; !
�
ik
/ are Veech surfaces,

the horizontal direction is parabolic. The assumptions of Theorem 7.2 are therefore
fulfilled, and we derive that there exists "1 > 0 such that .Y � ; �� /C .s; 0/ 2 O for
all s 2 .�"1; "1/. It follows from Corollary 6.3 that there exists "01 > 0 such that
.Y � ; �� /C v 2 O for any v 2 R2 such that jvj < "01 . One can find a vector v with
jvj< "0 such that the surface .Y � ; �� /C v is horizontally periodic but not parabolic.
By Theorem 6.1, the GLC.2;R/–orbit of .Y � ; �� /C v is dense in a component of
�ED.2; 2/

odd . Since this GLC.2;R/–orbit is contained in O , we conclude that O
contains a component of �ED.2; 2/odd .

Case .Y; �/ 2 �ED.4/ In this case .Y; �/ is a Veech surface. Choose a periodic
direction � for .Y; �/ that is different from .˙1; 0/. We define .Y � ; �� / and .X�ik ; !

�
ik
/

as in the previous case.

Let ‰W Dı."/!�ED.2; 2/
odd be the map in Proposition 8.3 associated to .Y � ; �� /.

Recall that, by construction, the set ‰.R.k;5/."// consists of surfaces in �ED.2; 2/odd

close to .Y � ; �� / which have a small horizontal saddle connection invariant under the
Prym involution.

By the choice of � , .X�ik ; !
�
ik
/ is not contained in ‰.R.k;5/."// for any k 2 f0; : : : ; 9g.

Thus, there must exist k 2 f1; : : : ; 10g such that the sector ‰.Dı
.k;5/

."// contains
infinitely many elements of the family f.X�ik ; !

�
ik
/g. Note that every surface in

‰.Dı
.k;5/

."// admits a stable cylinder decomposition in the horizontal direction with
the same combinatorial data and the same widths of cylinders (see Proposition 10.1). By
assumption, the horizontal direction is parabolic for all .X�ik ; !

�
ik
/. Thus Theorem 10.4

allows us to conclude that O is dense in a component of �ED.2; 2/odd .
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Case .Y; �/ 2�ED0.2/� In particular, .Y; �/ is a Veech surface (viewed as a surface
of �ED0.2/). The same arguments as the case .Y; �/ 2�ED.4/ show that O contains
a component of �ED.2; 2/odd .

Case .Y; �/ 2 �ED.0; 0; 0/ In this case .X; !/ has a triple of horizontal saddle
connections f�0; �1; �2g that decompose the surface into a connected sum of three
tori, and .Y; �/ can be viewed as the limit when the length of �j goes to zero. By
Proposition 11.8, there is no Veech surface in the neighborhood of .Y; �/. Thus this
case does not occur.

From above discussion, we conclude that O is always dense in a component of
�ED.2; 2/

odd , but this is a contradiction with Theorem 11.1. The proof of Theorem 12.1
is now complete.

Appendix: Existence of Veech surfaces in infinitely many
Prym eigenform loci

It follows from the work of McMullen [25] that there exist only finitely many closed
GLC.2;R/–orbits in the union

S
D not a square�ED.1; 1/ (see [13] for a similar re-

sult in �ED.1; 1; 2/). However, the situation is different in �ED.2; 2/
odd . We

will show that, for infinitely many discriminants D that are not squares, the locus
�ED.2; 2/

odd contains at least one closed GLC.2;R/–orbit (we will prove in [14]
that �ED1

.2; 2/odd and �ED2
.2; 2/odd are disjoint if D1 ¤ D2 ). Remark that the

corresponding Veech surfaces we found are not primitive; they are double coverings of
surfaces in �ED.2/. It is unknown to the authors if there exists any primitive Veech
surface in

S
D not a square�ED.2; 2/

odd .

Following [22] we say that a quadruple of integers .w; h; t; e/ is a splitting prototype
of discriminant D if the conditions below are fulfilled:8̂̂̂<̂

ˆ̂:
w > 0; h > 0; 0� t < gcd.w; h/;
gcd.w; h; t; e/D 1;
D D e2C 4wh;

0 < λ WD 1
2
.eC
p
D/ < w:

To each splitting prototype one can associate a Veech surface .X; !/ 2 �ED.2/ as
follows (see Figure 9).

Define a pair of lattices in C by ƒ1 DZ.λ; 0/˚Z.0; λ/ and ƒ2 DZ.w; 0/˚Z.t; h/
(recall that λ WD 1

2
.eC

p
D/ > 0). We construct the corresponding tori .Ei ; !i / D

.C=ƒi ; dz/ and the genus-two surface .X; !/, where X DE1#E2 and ! D !1C!2 .
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a1
b1

a2
b2

Figure 9: Prototypical splitting of type .w; h; 0; e/ , where !.a1/D .λ; 0/ ,
!.b1/ D .0; λ/ , !.a2/ D .w; 0/ and !.b2/ D .0; h/ . Parallel edges are
identified to obtain a surface .X; !/ 2�ED.2/ .

Geometrically, the surface .X; !/ is made of two horizontal cylinders whose core
curves are denoted by a1 and a2 (see [22] and Figure 9 for details).

Let fa1; b1; a2; b2g be the symplectic basis of H1.X;Z/ such that !.a1/ D .λ; 0/,
!.b1/D .0; λ/, !.a2/D .w; 0/ and !.b2/D .t; h/. A generator of the order OD is
given (in the above basis) by the matrix

T D

0BB@
e 0 w t

0 e 0 h

h �t 0 0

0 w 0 0

1CCA:
It is straightforward to check that T is self-adjoint with respect to the intersection form
of H1.X;Z/, that T 2 D eT Cwh Id, and that T satisfies T �! D λ! . It follows that
T generates a proper subring in End.Jac.X// for which ! is an eigenvector. Thus
.X; !/ 2�ED.2/, and therefore .X; !/ is a Veech surface (see [24] for more details).

Theorem A.1 Let .w; h; t; e/ be a splitting prototype for a discriminant D , and
.X; !/ be the associated Veech surface in �ED.2/. Let .Y1; �1/ and .Y2; �2/ be two
surfaces in H.2; 2/ constructed from .w; h; t; e/ as shown in Figure 10. Then both
.Y1; �1/ and .Y2; �2/ are Veech surfaces in some Prym eigenform loci in H.2; 2/odd .
More specifically:

(i) .Y1; !1/ 2�E4D.2; 2/
odd if h is odd, otherwise .Y1; �1/ 2�ED.2; 2/odd .

(ii) .Y2; !2/ 2�E4D.2; 2/
odd if w is odd, otherwise .Y2; �2/ 2�ED.2; 2/odd .

Remark A.2 � In general, the Teichmüller discs generated by .Y1; !1/ and by
.Y2; !2/ are different, for instance when h is odd, and w is even.

� If D� 5 mod 8, then it is easy to see that e; w; h are all odd. Therefore, in both
constructions .Yi ; �i / belongs to �E4D.2; 2/odd .
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a11

a12

a21

a22

b11

b12

b21

b22

.Y1; �1/

a11

a12

a21

a22

b11

b12

b21

b22

.Y2; �2/

Figure 10: Double coverings of a surface in �ED.2/: �i .a11/D�i .a12/Dλ ,
�i .b11/D �i .b12/D {λ , �i .a21/D �i .a22/Dw , �i .b21/D �i .b22/D tC{h ,
i D 1; 2 . The cylinders fixed by the Prym involution are colored.

Proof It is easy to see that both .Y1; �1/ and .Y2; �2/ are double coverings of .X; !/,
and the deck transformation sends aij to ai jC1 and bij to bi jC1 (here we use the
convention .i3/� .i1/). Since .X; !/ is a Veech surface, both .Y1; !1/ and .Y2; !2/
are Veech surfaces (see [9; 17]).

Remark that Yi has an involution �i that exchanges the zeros of �i such that ��i �iD��i ;
in Figure 10 the cylinders fixed by �i are colored. It follows that .Yi ; �i / belongs to
the Prym locus Prym.2; 2/�H.2; 2/odd (Prym.2; 2/ consists of double coverings of
quadratic differentials in Q.�14; 4/). By some standard arguments (see [15; 24]), we
can conclude that .Yi ; �i / is a Prym eigenform, thus .Yi ; �i / is contained in some
locus �E zD.2; 2/

odd . It remains to determine the discriminant zD .

Set H1.Yi ;Z/� D f˛ 2 H1.Yi ;Z/ j �i .˛/ D �˛g. Since .Yi ; �i / 2 Prym.2; 2/, we
have H1.Yi ;Z/� ' Z4 . We choose a basis of H1.Yi ;Z/� as follows:

� For .Y1; �1/, set ˛1Da11Da12 and ˛2Da21Ca22 . We choose ˇ1Db11Cb12
and ˇ2 D b21C b22 . In particular, the restriction of the symplectic form has the
matrix

�
J
0
0
2J

�
.

� For .Y2; �2/, set ˛1 D a11 C a12 , ˛2 D a21 D a22 , ˇ1 D b11 C b12 , ˇ2 D
b21C b22 . In this basis, the restriction of the intersection form to H1.Y2;Z/�

is given by
�
2J
0
0
J

�
.

In the above bases, the coordinates of �i are the following:

Re.�1/D .λ; 0; 2w; 2t/ and Im.�1/D .0; 2λ; 0; 2h/;

Re.�2/D .2λ; 0; w; 2t/ and Im.�2/D .0; 2λ; 0; 2h/:
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Let zT1 be the following self-adjoint endomorphism of H1.Y1;Z/� (given in the basis
f˛1; ˇ1; ˛2; ˇ2g):

zT1 D

0BB@
2e 0 4w 4t

0 2e 0 2h

h �2t 0 0

0 2w 0 0

1CCA:
Similarly, let zT2 be the self-adjoint endomorphism of H1.Y2;Z/� (given in the basis
f˛1; ˇ1; ˛2; ˇ2g) by the following matrix:

zT2 WD

0BB@
2e 0 w 2t

0 2e 0 2h

4h �4t 0 0

0 2w 0 0

1CCA :
It is straightforward to check that zT �i �i D .2λ/ � �i , thus �i is an eigenform of zTi .
Both zTi satisfy zT 2i �2e zTi�4wh IdD 0, which implies that zTi generates a self-adjoint
subring of End.Prym.Yi // isomorphic to OD0 , where

D0 D .2e/2C 16whD 4.e2C 4wh/D 4D:

There exists a unique proper subring of End.Prym.Yi // for which �i is an eigenform;
this proper subring is isomorphic to a quadratic order O zDi

. Clearly, this subring must
contain zTi , hence it is generated by zTi=ki , where

k1 D gcd.2e; 4w; 2h; 2w; h; 4t; 2t/D gcd.2e; 2w; h; 2t/; k2 D gcd.2e; w; 2h; 2t/:

The relation gcd.w; h; t; e/D 1 implies ki 2 f1; 2g. Note that 4D D k2i zDi , therefore
zDi D 4D if ki D 1, and zDi DD if ki D 2. We can now conclude by noticing that
k1 D 1 if and only if h is odd, and k2 D 1 if and only if w is odd.
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