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GL* (2, R)-orbits in Prym eigenform loci

ERWAN LANNEAU
Duc-MANH NGUYEN

This paper is devoted to the classification of GL™ (2, R)—orbit closures of surfaces in
the intersection of the Prym eigenform locus with various strata of abelian differentials.
We show that the following dichotomy holds: an orbit is either closed or dense in a
connected component of the Prym eigenform locus.

The proof uses several topological properties of Prym eigenforms. In particular, the
tools and the proof are independent of the recent results of Eskin and Mirzakhani and
Eskin, Mirzakhani and Mohammadi.

As an application we obtain a finiteness result for the number of closed GL™ (2, R)—
orbits (not necessarily primitive) in the Prym eigenform locus Q2Ep(2,2) for any
fixed D that is not a square.

30F30, 32G15, 37D40, 54H20, 57R30

1 Introduction

For any g > 1 and any integer partition x = (k1,..., k) of 2g —2 we denote by H (k)
a stratum of the moduli space of marked abelian differentials of type «, ie of pairs
(X, w), where X is a Riemann surface of genus g and w is a holomorphic 1-form
having r zeros with prescribed multiplicities 1, ..., k. Analogously, one defines
the strata of the moduli space of marked quadratic differentials Q(x’) having zeros
and simple poles of multiplicities 7, ...k, with Y i_, k5 = 4g — 4 (simple poles
correspond to “zeros of multiplicity —17).

The 1-form w defines a canonical flat metric on S (the underlying topological surface)
with conical singularities at X, the zeros of @. Therefore we will refer to points of H (x)
as flat surfaces or translation surfaces (two translation surfaces are equivalent if they
differ by precomposition by a homeomorphism of S which fixes £ and is isotopic to
the identity rel ). The strata admit a natural action of the group GL™ (2, R) that can be
viewed as a generalization of the GL™ (2, R)—action on the space GL™ (2, R)/ SL(2, Z)
of flat tori. For an introduction to this subject, we refer to the excellent surveys by
Masur and Tabachnikov [17] and Zorich [31].
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It has been discovered that many topological and dynamical properties of a transla-
tion surface can be revealed by its GL™ (2, R)—orbit closure. The most spectacular
example of this phenomenon is the case of Veech surfaces, or lattice surfaces, that is,
surfaces whose GL T (2, R)—orbit is a closed subset in its stratum; for such surfaces,
the famous Veech dichotomy holds: the linear flow in any direction is either periodic or
uniquely ergodic.

It follows from the foundational results of Masur and Veech that most GL™ (2, R)
orbits are dense in their stratum. However, in any stratum there always exist surfaces
whose orbits are closed: for example, coverings of the standard flat torus, which are
commonly known as square-tiled surfaces.

During the past three decades, much effort has been made in order to obtain the list
of possible GL™ (2, R)-orbit closures and to understand their structure as subsets of
strata. So far, such a list is only known in genus two by the work of McMullen [26],
but the problem is widely open in higher genus, even though some breakthroughs have
been achieved recently (see below).

In genus two the complex dimensions of the connected strata 7 (2) and H(1, 1) are,
respectively, 4 and 5. In this situation, McMullen proved that if a GL™ (2, R)—orbit
is not dense, then it belongs to a Prym eigenform locus, which is a submanifold of
complex dimension 3. In this case, the orbit is either closed or dense in the whole
Prym eigenform locus. These (closed) invariant submanifolds, which we denote by
QFEp, where D is a discriminant (thatis D € N, D = 0,1 mod 4), are characterized
by the following properties:

(1) Every surface (X, ®) € QEp has a holomorphic involution 7: X — X.

(2) The Prym variety Prym(X,t) = (27 (X, 1))*/H(X,Z)~ admits a real mul-
tiplication by some quadratic order Op := Z[x]/(x?> + bx +¢), b,c € Z,
b?>—4c=D.

(Here Q7(X,7) = {n € Q(X) [ t*n=—n}).

Later, these properties were extended to higher genera (up to genus five); see McMullen
[20; 24] and Lanneau and Nguyen [15] for more details.

Recently, Eskin, Mirzakhani and Mohammadi [7; 8] have announced a proof of the
conjecture that any GL™1 (2, R)-orbit closure is an affine invariant submanifold of
H (k). This result is of great importance in view of the classification of orbit closures
as it provides some very important characterizations of such subsets. However a priori
this result does not allow us to construct explicitly such invariant submanifolds.
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So far, most GL™ (2, R)—invariant submanifolds of a stratum are obtained from cover-
ings of translation surfaces of lower genera. The only known examples of invariant
submanifolds not arising from this construction belong to one of the following families:

(1) Primitive Teichmiiller curves (closed orbits).

(2) Prym eigenforms.

This paper is concerned with the classification of GL™ (2, R)—orbit closures in the
space of Prym eigenforms. To be more precise, for any nonempty stratum Q(k’),
there is a (local) affine map ¢: Qg/(k’) — Hg (k) given by the orientation double
covering (the indices g and g’ are the genera of the corresponding Riemann surfaces).
When g — g’ = 2, following McMullen [24] we call the image of ¢ a Prym locus
and denote it by Prym(k). Those Prym loci contain GL™ (2, R)—invariant suborbifolds
denoted by QEp (k) (see Section 2 for more precise definitions). We will investigate
the GL™ (2, R)—orbit closures in QEp(«). The first main theorem of this paper is
the following:

Theorem 1.1 Let (X, w) € QEp (k) be a Prym eigenform, where QEp (k) has com-
plex dimension 3 (ie QEp (x) is contained in one of the Prym loci in Table 1). We
denote by O its orbit under GL™* (2, R). Then:

(1) Either O is closed (ie (X, w) is a Veech surface), or

(2) O is a connected component of QEp (k).

(k") Prym(k) g(X)
Qo(—1%,2)  Prym(1,1) ~ H(1,1) 2
Q1(—13,1,2) Prym(1,1,2) 3
Q1(—1%,4)  Prym(2,2)°4 3
Q5(—12,6)  Prym(3,3) ~ H(1,1) 4
4
4
4

Q,(12,2) Prym(12,22) ~ #(02,2)
Q>(—1,2,3) Prym(1,1,4)

Q>(—1,1,4) Prym(2,2,2)e"

Q3(8) Prym(4, 4)°ven 5

Table 1: Prym loci for which the corresponding stratum of quadratic dif-
ferentials has (complex) dimension 5. The Prym eigenform locus QEp (k)
has complex dimension 3. Observe that the stratum #(1, 1) in genus 2 is a
particular case of Prym locus.
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Observe that the case x = (1, 1) is part of the classification in genus two, which is
obtained via decompositions of translation surfaces of genus two into connected sums
of two tori (see McMullen [26]).

Remark 1.2 We will address the classification of connected components of QEp (2, 2)
and QFp(1,1,2) in a forthcoming paper [14] (see also [15] for related work). The
statement is the following: for any discriminant D > 8 and « € {(2,2), (1, 1,2)}, the
locus QEp (k) is nonempty if and only if D =0, 1,4 mod 8, and it is connected if
D = 0,4 mod 8, and has two connected components otherwise.

Even though Theorem 1.1 is a particular case of the recent results of Eskin and
Mirzakhani [7] and Eskin, Mirzakhani and Mohammadi [8], our proof is independent
from these works. Itis based on the geometry of the kernel foliation on the space of Prym
eigenforms. It also seems likely to us that the method introduced here can be generalized
to yield Eskin, Mirzakhani and Mohammadi’s result in invariant submanifolds which
possess the complete periodicity property (see Section 2D).

We will also prove a finiteness result for Teichmiiller curves in the locus QEp (2, 2)°dd;
this is our second main result:

Theorem 1.3 If D is not a square, there exist only finitely many closed GL™ (2, R)—
orbits in QEp(2,2)°4.

We end with a few remarks on Theorem 1.3.

Remark 1.4 ¢ To the authors’ knowledge, such a finiteness result is not a direct
consequence of the work by Eskin, Mirzakhani and Mohammadi.

e In Prym(1, 1) a stronger statement holds: there exist only finitely many closed
GL™ (2, R)-orbits in b rota square QEp(1,1) (see McMullen [23; 25]). The
same result holds for Prym(1, 1, 2): this is proved in a forthcoming paper by the
first author and M Moller [13]. However, this is no longer true in Prym(2, 2)°4,
as we will see in Theorem A.1.

e Other finiteness results on Teichmiiller curves have been obtained in other
situations by different methods; see for instance Moéller [28], Bainbridge and
Moller [1] and Matheus and Wright [19].

Outline of the paper We end this section with a sketch of the proofs of Theorem 1.1
and Theorem 1.3. Before going into the details, we single out the relevant properties of
QEp (k) for our purpose. In what follows, (X, w) will denote a surface in QEp (k)
(sometimes we will simply use X when there is no confusion).
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(1) Each locus is preserved by the kernel foliation, that is, (X, )+ v is well defined
for any sufficiently small vector v € R? (see Section 3). Up to the action of
GL™(2,R), there exists & > 0 such that a neighborhood of (X, w) in QEp (k)
can be identified with the set

{(X,0)+v]||v| <e}.

(2) Every surface in QFEp (k) is completely periodic in the sense of Calta: any
direction of a simple closed geodesic is actually completely periodic, which
means that the surface is decomposed into cylinders in this direction. The number
of cylinders is bounded from above by g + || — 1, where |k| is the number of
zeros of w (see Section 2).

(3) Assume that (X, ) decomposes into cylinders in the horizontal direction. Then
the moduli of those cylinders are related by some equations with rational coeffi-
cients (see Proposition 5.1).

(4) The cylinder decomposition in a completely periodic direction is said to be stable
if there is no saddle connection connecting two different zeros in this direction.
The stable periodic directions are generic for the kernel foliation in the following
sense: if the horizontal direction is stable for (X, @), then there exists ¢ > 0 such
that for any v € R? with |v| < ¢, the horizontal direction is also periodic and
stable on X + v. If the horizontal direction is unstable then there exists ¢ > 0
such that for any v = (x, y) with |v| <& and y # 0 the horizontal direction is
periodic and stable on X + v.

The properties (1)—(3) are explained in Lanneau and Nguyen [16] (see Section 3.1 and
Corollary 3.2; Theorem 1.5; Theorem 7.2, respectively). We will give more details on
property (4) in Section 4.

We now give a sketch of the proof of our results. The first part of the paper (Sections 3—7)
is devoted to the proof of Theorem 1.1, while the second part (Sections 8—12) is
concerned with Theorem 1.3.

Sketch of proof of Theorem 1.1 Let (X,w) € QEp (k) be a Prym eigenform and
let © :=GL%(2,R)- (X, w) be the corresponding GL™ (2, R)—orbit. We will show
that if O is not a closed subset in QFEp (k) then it is dense in a connected component
of QEp (k).

We first prove a weaker version of Theorem 1.1 (see Section 6) under the additional
condition that there exists a completely periodic direction 6 on (X, ) that is not
parabolic. We start by applying the horocycle flow in that periodic direction, and
use the classical Kronecker’s theorem to show that the orbit closure contains the set
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(X, ) + xv, where v is the unit vector in direction 6, and x € (—¢, &) with € > 0
small enough. Then we apply the same argument to the surfaces (X, @)+ xv in another
periodic direction that is transverse to €. It follows that O contains a neighborhood of
(X, ), and hence, for any g € GL1(2,R), O contains a neighborhood of g - (X, ).
Using this fact, we show that for any (Y, 1) € O\ O, the closure O also contains a
neighborhood of (Y, 1), from which we deduce that O is an open subset of QEp (k).
Hence O must be a connected component of QEp (k).

In full generality (see Section 7), we show that if the orbit is not closed and all the
periodic directions are parabolic, then it is also dense in a component of QEp (k).
For this, we consider a surface (Y, 1) € O\ O for which the horizontal direction is
periodic. From property (1), we see that there is a sequence ((Xy, wn))nen of surfaces
in O converging to (Y, n) such that we can write (X, w,) = (Y, 1) + (xn, ¥»), Where
(Xn, yn) — (0,0). Property (4) then implies that the horizontal direction is periodic for
(Xn,wn). Moreover, we can assume that the corresponding cylinder decomposition in
(Xn, wy) is stable (for n large enough).

For any x € (—¢,¢), where ¢ > 0 is small enough, we show that (up to taking a
subsequence) the orbit of the horocycle flow though (X,,wy,) contains a surface
(Xn, wn) + (x5, 0) such that the sequence (x;) converges to x. As a consequence, we
see that O contains (Y, 1) + (x,0) for every x € (—e, £). We can now conclude that
O is a component of QEp (k) by the weaker version of Theorem 1.1.

Sketch of proof of Theorem 1.3 We first show a finiteness result up to the (real) kernel
foliation for surfaces in QEp(2,2)°% (see Theorem 12.2): if D is not a square then
there exists a finite family Pp C QEp(2,2)°% such that any (X, w) € QEp(2,2)°%
having an unstable cylinder decomposition, up to rescaling by GL™ (2, R), satisfies

(X, w) = (Xg,wr) + (x,0) for some (Xg,wy) € Pp.

Compare to McMullen [22] and Lanneau and Nguyen [15], where a similar result is
established.

Now let us assume that there exists an infinite family, say
y=JGL Q@ R)- (X, @),
iel
of closed GL™ (2, R)—orbits, generated by Veech surfaces (X;,w;), i € I.

By the previous finiteness result, up to taking a subsequence, we assume that (X;, w;) =
(X, w) + (xi,0) for some (X,w) € Pp, where x; belongs to a finite open interval
(a, b) which is independent of i (see Theorem 9.1). Up to taking a subsequence, one
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can assume that the sequence (x;) converges to some x € [a, b]. Hence the sequence
(Xi,w;) = (X,w) + (x;,0) converges to (Y, n) := (X,w) + (x,0).

If x € (a,b) then (Y,n) belongs to QEp(2,2)°%; otherwise (that is, if x € {a,b}),
(Y, n) belongs to one of the loci QEp(0,0,0), QEp(4), or QEp/(2)*, with D" €
{D, D/4} (see Section 9). Then by using a by-product of the proof of Theorem 1.1,
replacing O by Y (see Theorem 7.2 and Theorem 10.4) we obtain that ) is dense in a
component of QEp(2,2)°%. We conclude with Theorem 11.1, which asserts that the
set of closed GL™ (2, R)—orbits is not dense in any component of QEp (2,2)°% when
D is not a square.
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2 Background

For an introduction to translation surfaces, and a nice survey, see eg [17; 31]. In this
section we recall necessary background and relevant properties of QEp (k) for our
purpose. For a general reference on Prym eigenforms, see [24].

We will use the following notation throughout the paper:
e | -] is the Euclidean norm on R?.
e | - is some norm on M (2,R).
e B(e)={veR?||v|<e}.
e B(M,e)={AeGLT(2,R)|||A—M| <e}.
e w(y):= fya) forany y € H(X,Z).

2A Prym loci and Prym eigenforms

Let X be a compact Riemann surface, and t: X — X be a holomorphic involution
of X. We define the Prym variety of X :

Prym(X,7) = (Q7(X,1))*/H1(X,Z)~,
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where Q7 (X, 1) ={n e Q(X) | t*n= —n}. Itis an abelian subvariety of the Jacobian
variety Jac(X) := Q(X)*/H1(X,Z).

For any integer vector x = (ky,...,k,) with nonnegative entries, we denote by
Prym(k) C #H(k) the subset of pairs (X,w) such that there exists an involution
7: X — X satisfying 7*w = —w, and dim¢ 27 (X, t) = 2. Following McMullen [24],
we will call an element of Prym(x) a Prym form. For instance, in genus two, one has
Prym(2) >~ H(2) and Prym(1, 1) >~ #(1, 1) (the Prym involution being the hyperelliptic
involution).

Let Y be the quotient of X by the Prym involution (here g(Y) = g(X)—2) and &
the corresponding (possibly ramified) double covering from X to Y . By pushforward,
there exists a meromorphic quadratic differential ¢ on Y (with at most simple poles)
so that 7*g = w?. Let k' be the integer vector that records the orders of the zeros
and poles of ¢. Then there is a GL' (2, R)—equivariant bijection between Q(k’) and
Prym(k) [12, page 6].

All the strata of quadratic differentials of dimension 5 are recorded in Table 1. It turns
out that the corresponding Prym varieties have complex dimension 2 (ie if (X, w) is
the orientation double covering of (Y, q), then g(X)—g(Y) = 2).

We now give the definition of Prym eigenforms. Recall that a quadratic order is a ring
isomorphic to Op = Z[X]/(X? +bX +c), where D = h? —4c¢ > 0 (quadratic orders
being classified by their discriminant D).

Definition 2.1 (real multiplication) Let A be an abelian variety of dimension 2. We
say that A admits a real multiplication by Op if there exists an injective homomorphism
i: Op — End(A) such that i(Op) is a self-adjoint, proper subring of End(A) (ie for
any f € End(A), if there exists n € Z\{0} such that nf € i(Op) then f €i(Op)).

Definition 2.2 (Prym eigenform) For any quadratic discriminant D > 0, we denote
by QEp («) the set of (X, w) € Prym(x) such that dim¢ Prym(X, t) =2, Prym(X, 1)
admits a multiplication by Op, and w is an eigenvector of Op . Surfaces in QEp (k)
are called Prym eigenforms.

Prym eigenforms do exist in each Prym locus described in Table 1, as real multiplications
arise naturally from pseudo-Anosov homeomorphisms commuting with 7 (see [24]).

We now collect several results concerning surfaces having a decomposition into periodic
cylinders.
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2B Periodic directions and cylinder decompositions

Let (X, w) be a translation surface. A cylinder is a topological annulus embedded
in X, isometric to a flat cylinder R/wZ x (0, h). In what follows all cylinders are
supposed to be maximal, that is, they are not properly contained in a larger one. If
g > 2, the boundary of a maximal cylinder is a finite union of saddle connections. If
C is a cylinder, we will denote by w(C), h(C), u(C) the width, height, and modulus
of C, respectively (i (C) = h(C)/w(C)).

Another important parameter of a cylinder is its twist #(C). Note that we only define
t(C) when C is a horizontal cylinder. For that, we first mark a pair of oriented saddle
connections on the bottom and the top boundaries of C. This allows us to define a
saddle connection contained in C joining the origins of the marked saddle connections.
This gives us a twist vector; its vertical component equals 4(C) and its horizontal com-
ponent is ¢(C). We emphasize that ¢(C) depends on the marking (see [10, Section 3]).
However, the choice of the marking is irrelevant for our arguments throughout this
paper. Therefore, we will refer to #(C) as the twist associated to any marking.

A direction 8 is completely periodic or simply periodic on X if all regular geodesics
in this direction are closed. This means that X is the closure of a finite number of
cylinders in direction 6, we will say that X admits a cylinder decomposition in this
direction. Since the Prym involution 7 preserves the set of cylinders, it naturally
induces an equivalence relation on this set. We will often use the term “number of
cylinders up to Prym involution” for the number of t—equivalence classes of cylinders.

A separatrix is a geodesic ray emanating from a zero of w. It is a well-known fact
that a direction is periodic if and only if all the separatrices in this direction are saddle
connections. We will often call a separatrix in direction (1, 0) a positive horizontal
separatrix, and a separatrix in direction (—1, 0) a negative horizontal separatrix.

2C Combinatorial data of a cylinder decomposition

We can associate to any cylinder decomposition a separatrix diagram which encodes the
way the cylinders are glued together; see [11]. Given such a diagram, one can reconstruct
the surface (X, w) (up to a rotation) from the widths, heights, and twists of the cylinders.
More precisely, if (X, w) is horizontally periodic, each saddle connection is contained
in the upper (respectively, lower) boundary of a unique cylinder. We associate to this
cylinder decomposition the following data:
e two partitions of the set of saddle connections into k subsets, where k is the
number of cylinders, each subset in these partitions is equipped with a cyclic
ordering, and

e a pairing of subsets in these two partitions.
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We will call these data the combinatorial data or topological model of the cylinder
decomposition.

2D Complete periodicity

A translation surface (X, w) is said to be completely periodic if it satisfies the following
property: for a direction § € RP!, if the linear flow Fy in the direction € has a regular
closed orbit on X, then @ is a periodic direction. Flat tori and their ramified coverings
are completely periodic, as well as Veech surfaces.

It turns out that, if the genus is at least two, the set of surfaces having this property has
measure zero. Indeed, complete periodicity is locally expressed via proportionality of
a nonempty set of relative periods, and thus is defined by some quadratic equations in
the period coordinates. This property was introduced by Calta [2] (see also [3]); she
proved that any surface in QEp(2) and QEp(1, 1) is completely periodic. Note that
this property can also be deduced from the characterization of eigenforms by McMullen
(see [26, Section 6]). Later the authors extended this property to the Prym eigenforms
given in Table 1. This property is also proved by A Wright [30] in a more general
context by a different argument.

Theorem 2.3 [2; 16; 30] Any Prym eigenform in the loci QEp (k) C Prym(x) of
Table 1 is completely periodic.

2E Stable and unstable cylinder decompositions

A cylinder decomposition of (X, ) is said to be stable if every separatrix joins a zero
of w to itself. The decomposition is said to be unstable otherwise.

Lemma 2.4 Let 6 be a periodic direction for (X, w) € H(k) and g be the genus of X .
If X has g + |«| — 1 cylinders in the direction 6, then the cylinder decomposition in
this direction is stable (|k| is the number of zeros of w ).

Proof Let Cq,..., C, be the cylinders in the direction 6 of X. Fori =1,...,n, let
¢; be a core curve of C;. Cutting X along c;, we obtain r compact surfaces with
boundary, denoted by X1, ..., X;. Since each of X; must contain at least a zero of w,
we have r < |k|. Let n; be the number of boundary components of X;. Remark that
D q<i<pNi =2n,and y(X;) <2—n;, where yx(-) is the Euler characteristic. By
construction,

2-2g=x(X) =) x(X) <) (2—n)=2r—) nj=2r—2n.
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It follows immediately that
n<g+r—1<g+|k|—1.

From the previous inequalities, we see that the equality n = g + |x| — 1 is realized
if and only if r = |k| and each X; has genus zero. In particular, if n = g + |k| — 1,
then each component X; contains a unique zero of w. If there is a saddle connection
joining two distinct zeros of w, then these two zeros must belong to the same X;, and
we draw a contradiction. Therefore, the cylinder decomposition must be stable. |

Remark 2.5 In #(1, 1) the maximal number of cylinders in a cylinder decomposition
is three, and a cylinder decomposition is stable if and only if this maximal number
is attained. In higher genus, there are stable cylinder decompositions with less than
n + |«| — 1 cylinders.

Lemma 2.6 Let (X, ) € Prym(x) be a surface in one of the strata given by Table 1. If
the horizontal direction is periodic for (X, w) then the number n of horizontal cylinders,
counted up to the Prym involution, satisfies n < 3. Moreover, if k # (1,1,2,2) and
n = 3 then the cylinder decomposition in the horizontal direction is stable.

Remark 2.7 Observe that Lemma 2.6 is false for the stratum Prym(1, 1,2, 2). How-
ever, using the identification Prym(1, 1, 2, 2) >~ #(0, 0, 2), the statement becomes true
with the convention that a cylinder decomposition of (X, w) € Prym(1, 1, 2, 2) is stable
if and only if the decomposition of the corresponding surface in (0, 0, 2) is.

Proof Let us assume that the horizontal direction is completely periodic. We first
show that the number n of horizontal cylinders, counted up to the Prym involution,
satisfies n < 3. Let ny be the number of fixed cylinders (by the Prym involution) and
let 2-n, be the number of noninvariant cylinders. Obviously n =nyg +np.

The next observation is that each fixed cylinder contains exactly two regular fixed
points of the Prym involution, which project to simple poles of the corresponding
quadratic differential. Hence if Prym(x) is the covering of Q(—17,ky, ..., k) where
ki >0 then ny < L%pJ . Now since the number of cylinders is at most g + |«| — 1,
we get n, < L%(g + |k|—=1—ny)]. Hence

n=ns+n,<|3(g+Ik|—1+ns)].

The values of g + |x| — 1 for the different cases of Table 1 are given in Table 2. In the
first four entries of the table, the inequality p < 1 holds for all cases, thus ny = 0.
Therefore n < L%J =3.
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Q(x") Prym(x) g+lkl-1
Qo(—1%,2)  Prym(1,1) 3
Q1(—13,1,2) Prym(1,1,2)
Q1(—1%,4)  Prym(2,2)°4
Q(—12,6)  Prym(3,3)
0,(1%2,2) Prym(12,22)
Q5(—1,2,3) Prym(1,1,4)
Q>(—1,1,4) Prym(2,2,2)%v"
Q3(8) Prym(4, 4)®ven

Table 2: Values of g + |«| — 1 for the different cases of Table 1.

NN NN N B WO

For the last four entries of the table, one has, respectively:
(1) fek=(1,1)thenny <3 andn <|1B+nys)| <3.
2 Ifk=(1,1,2)thenny <landn <|1(5+nys)] <3.
(3) If k =(2,2) thenny <2 and n < |3(4+ns)| <3.
@) Ifk=33)thenns <landn <|2(5+ns)| <3.

The first statement of the lemma is proved. Now we notice that if n = 3 then, in
every case but k = (1,1,2,2), one has ny +2-n, = g + |[k| — 1. We conclude with
Lemma 2.4. O

2F Action of the horizontal horocycle flow on cylinders

The (horizontal) horocycle flow is defined as the action of the one-parameter subgroup
U = {ug | s € R} of GLT(2,R), where uy = ((1) i) If the horizontal direction on
(X, w) is completely periodic, then obviously the action of ug on (X, w) preserves
the cylinder decomposition topologically. Moreover, each cylinder C; with parameters
(w;, hi,t; mod w;) is mapped to a cylinder C;(s) := us(C;) of us- (X, w) with the
same width and height, while the twist is given by

(D) t(Ci(s)) =t; +sh; mod w;.
3 Kernel foliation on Prym loci
We briefly recall the kernel foliation for Prym loci (see [6; 18; 2; 27; 31, Section 9.6]

for related constructions). We refer to [16, Section 3.1] for details. This notion was
introduced by Eskin, Masur and Zorich, and was certainly known to Kontsevich.
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3A Kernel foliation

Let (X, w) € H(x) be a translation surface with several distinct zeros. Using the period
mapping, we can identify a neighborhood of (X, w) in #H(x) with an open subset
U c C?, where d = dimH(x). There is a foliation of U by subsets consisting of
surfaces having the same absolute periods. The set of surfaces in this neighborhood
that have the same absolute coordinates as X corresponds to the intersection of U
with an affine subspace of dimension |«| — 1. Therefore the leaves of this foliation
have dimension |«| — 1. It is not difficult to see that this foliation is invariant under the
coordinate changes of the period mappings; this globally defines a foliation in H (k).
We call it the kernel foliation.

It turns out that the kernel foliation also exists in Prym(x) and QFEp («), for all « in
Table 1. In particular, in our situation, the leaves of the kernel foliation in QEp («)
have dimension 1. Hence there is a local action of C on QFEp (k) as follows: for any
Prym eigenform (X, w) and w € C with |w| small enough, (X', ') := (X,w) +w
is the unique surface in the neighborhood of (X, ) (in QFEp(x)) such that @’ has
the same absolute periods as w, and for a chosen relative cycle ¢ € Hy (X, X,7Z),
' (c) =w(c)+w (X is the set of zeros of w). An explicit construction for (X, w) + w
will be given in Section 4.

Remark 3.1 There is no global action of C on each leaf of the kernel foliation, ie
even if (X, w)+ wi and (X, w) + wy are well defined, (X, w) 4+ wy + wy may not be
well defined. Nevertheless, there exists a local action of C: there exists a neighborhood
U of 0 € C such that for any wi, w, € U we have

(X, 0) + (w1 + w2) = (X, 0) + w1) + w2 = (X, 0) + w2) + w1.

Convention In the sequel we only consider the intersection of kernel foliation leaves
with a neighborhood of (X, ®) on which this local action of C is well defined. Hence
by (X, ®) + w we will mean the surface obtained from (X, w) by the construction
described above.

The relative periods of (X, w’) := (X,w) + w are characterized by the following
lemma (see Figure 1 for an example in Prym(1, 1,2)).

Lemma 3.2 If ¢ is any path on X joining two zeros of w, and ¢’ is the corresponding
path on X', then:

(1) If the two endpoints of ¢ are exchanged by t then w'(¢') —w(c) = +w.
(2) If one endpoint of ¢ is fixed by T, but the other is not, then w’(c")—w(c) = :I:%w .

The sign of the difference is determined by the orientation of c.
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(X,w) (X,w)+ (s,1)

Figure 1: Decomposition of a surface (X,w) € Prym(1,1,2). The cyl-
inder C, is fixed by the Prym involution 7, while the cylinders C; and 7(C;)
are exchanged for i = 1, 3. Along a kernel foliation leaf (X, ) + (s, t) the
twists and heights change as follows: #1(s) =t1—s, t2(s) =t2, t3(s) =13+ %s
and hi(t) = hy —t, ha(t) = ha, ha(t) = hs + %t. We emphasize that the
formula for the twists does not depend on the choice of the marking.

We close this section with a description of a neighborhood of a Prym eigenform: up
to the action of GL™ (2, R), a neighborhood of a point (X, w) in QEp (k) can be
identified with the ball {(X,w) 4+ w | |w| < &}.

Proposition 3.3 [16] For any (X,w) € QEp(k), if (X',w’) is a Prym eigenform
in QEp(x) close enough to (X, w), then there exists a unique pair (g, w), where
g € GLT(2,R) is close to 1d, and w € R? is close to 0, such that (X', 0') = g -
(X, 0)+w).

Proof For completeness we include the proof here (see [16, Section 3.2]).

Let (Y, n) = (X, w) 4+ w, with |w| small, be a surface in the leaf of the kernel foliation
through (X, w). We denote by [w] and [5] the classes of @ and n in H'(X,X;C)".
Let p: H'(X,X;C)~ — H!(X, C)~ be the natural projection. We then have [n]—[w] €
ker p. On the other hand, the action of g € GL1(2,R) on H!(X,X;C)™ satisfies
o(g - [w]) = g - p(Jw]). Therefore the leaves of the kernel foliation and the orbits of
GL™(2,R) are transversal. Since their dimensions are complementary, the proposition
follows. a

3B Horizontal and vertical kernel foliation

The horizontal and vertical kernel foliations were studied in some restricted settings
in [5; 4; 27], where they were called the real and imaginary foliations, respectively.
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Two nearby translation surfaces (X, w), (X', ") € QEp (k) are in the same leaf of the
horizontal (respectively, vertical) kernel foliation if the integrals of the flat structures
along all closed curves are the same on X and X, and if the integrals along curves join-
ing distinct singularities only differ in their horizontal (respectively, vertical) component.
More precisely, a leaf of the horizontal kernel foliation is parametrized by a continuous
map I — QEp(k), s — (X, ws) on a maximal interval containing O such that

* (Xo,w0) = (X,0),
e ws(y)=w(y) forallsel andany y € H(X,Z),

* wy (c) —ws,(c) = (s1—52,0) for a fixed relative class ¢ € H1(X,X,Z) and
for all s1,50, € 1.

We will write (X, w) + (s,0) = (X5, ws). If I =R then (X, w) + (s, 0) is defined for
all s. The same description holds for the vertical kernel foliation.

Remark 3.4 If the horizontal direction on (X, w) is stable then the horizontal kernel
foliation is well defined for all times s € R.

3C Effect of the kernel foliation on cylinders

Assume that (X, w) admits a stable cylinder decomposition in the horizontal directions,
with cylinders denoted by C1q, ..., Cy. Let v = (s, 0) be a vector such that (X, w) +
(s,0) is well defined and admits a stable cylinder decomposition (in the horizontal
direction) with the same combinatorial data and the same widths of cylinders. This
is the case if v is small enough (see Proposition 4.1 below). Let C; (s, 0) denote the
cylinder in (X, w) + (s, 0) corresponding to C;. Analogously, let C;(0,¢) denote the
cylinder in (X, w) + (0, ¢) that corresponds to C;.

The widths of cylinders C;(s,0) and C;(0,¢) are constant functions of s and ¢, re-
spectively, since they correspond to absolute periods.

Similarly, the heights of the cylinder C;(s,0) are constant functions of s (there is
no vertical deformations along the horizontal kernel foliation) and the twists of the
cylinders C; (0, ¢) are also constant functions of 7.

Lemma 3.5 The twist (respectively, height) of the cylinder C;(s,0) (respectively,
C;(0,1))is given by t; + a;s (respectively, h; 4+ «;t ), where t; is the twist of C;, h;
is the height of C; and
0 if the zeros in the upper and lower boundaries of C; are the same,
o = +1  if the zeros are exchanged by the Prym involution,
:I:% if one zero is fixed and the other is mapped to the third one

by the Prym involution.
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We emphasize that, despite the fact that the twists depend on the marking, the formulas
above do not depend on the marking. The proof of Lemma 3.5 is elementary and left
to the reader.

4 Kernel foliation and cylinder decompositions

In this section we investigate the kernel foliation leaf near surfaces (X, w) for which
the horizontal direction is periodic. We separate the discussion into two cases: when
the direction is stable or unstable.

Proposition 4.1 (stable case) If the horizontal direction on (X, w) is periodic and
stable then there exists a small neighborhood U of 0 € C such that, for every v =
(s,t) € U, the horizontal direction on (X, ®) + v is periodic, stable and has the same
combinatorial data and the same widths of cylinders.

Proposition 4.2 (unstable case) If the horizontal direction on (X, w) is periodic
and unstable then there exists a small neighborhood U of 0 € C such that, for every
v =(s,1) € U with t # 0, the horizontal direction on (X, w) + v is periodic and stable.
Moreover, the combinatorial data and the widths of the cylinder decomposition on
(X, w) + v depend only on the sign of ¢ .

The difficulty lies in the fact that the horizontal decomposition on (X, w) + v is not
obviously given from the horizontal decomposition on (X, w) if v is not horizontal.
At the opposite, for horizontal vectors, the following lemma holds:

Lemma 4.3 Ifs € R with |s| < & then the cylinder decompositions of (X, w) + (s,0)
and (X, w) have the same combinatorial data and the same width.

Proof of Lemma 4.3 Obviously all the horizontal saddle connections in (X, @) persist
in (X, w)+ (s, 0) (the lengths of some of them may be changed). Hence (X, w)+ (s, 0)
also has a cylinder decomposition in the horizontal direction with the same combinatorial
data as the one of (X, w). The widths of the corresponding cylinders must be the same
since they are absolute periods of . a

Since for small 5,7 € R the relation (X, ) + (s,1) = (X, w) + (0,¢)) + (s, 0) holds,
in view of Lemma 4.3, it suffices to prove Propositions 4.2 and 4.1 only for vectors
v=1(0,1).

The key to the two propositions is a careful analysis of the kernel foliation leaf near a
surface (X, w) in term of flat geometry.
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Remark 4.4 The construction we present is general and can be used to describe the
kernel foliation for an affine invariant subvariety obtained by covering. To simplify
the exposition we present the construction when @ has two zeros permuted by the
involution, denoted by P and Q. The general construction is obtained by considering
as many Euclidean discs as the number of zeros of w.

4A Flat geometry around a singularity

Let ¢ > 0 small enough so that the two discs
D(P,e):={xeX|d(x,P)<e} and D(Q,e):={xeX|d(x, 0)<s}

are embedded and disjoint in X . Taking & smaller if necessary, we can assume that
for any vector v € B(¢g) there is a unique surface (X', ") (denoted by (X, w) + v)
in a neighborhood of (X, w) so that o’ and w have the same absolute periods and
' (c) —w(c) = v, where c is a fixed relative cycle. Moreover, for any vy, vy € B(¢)
such that vy 4+ v, € B(g), the equality (X, )+ (v1 +v2) = ((X, w) + v1) 4 v2 holds.

Each of the discs D(P,¢) and D(Q, ¢) is homeomorphic to a topological disc. How-
ever, metrically, each has the structure of a regular cone with a cone angle 2w m, where
m —1>1 is the multiplicity of the zero P (or Q, since the multiplicity is the same:
the Prym involution permutes P and Q). Each cone can be glued from 2m disjoint
copies of Euclidean half-discs whose boundaries are isometrically glued together in a
circular fashion. Hence their centers are identified with the zero. More precisely, let
D ={zeB(¢e)| —e <Re(z) <0} and Dl.Jr ={ze B(e)|0<Re(z) <¢&}
be 2m disjoint Euclidean half-discs. We construct D(P, ¢) by gluing the half-discs
ch, el D,:,E as follows:
+ . - _ -
e D isglued to D; along the segment {Re(z) =0, 0 <Im(z) < &}, for i =
1,...,m.
e D; is glued to Ditrl along the segment {Re(z) = 0, —e < Im(z) < 0}, for
i=1,....m—1.
o D

m

is glued to D" along the segment {Re(z) = 0, —& < Im(z) < 0}.

Similarly, for D(Q, ), we glue 2m half-discs D,jn:H, e, D;Em:
e D7 is glued to Dl.Jr along the segment {Re(z) = 0,—¢ < Im(z) < 0}, for

1

i=m+1,...,2m.
. Dl-'" is glued to D; | along the segment {Re(z) = 0, 0 < Im(z) < ¢}, for
i=m+1,...,2m—1.

. D;rm is glued to D, . | along the segment {Re(z) =0, 0 <Im(z) < &}.
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Observe that, by construction, r(Dl?L) =D;,, and t(D;) = D;fl_m fori=1,...,m.

4B Combinatorial data

Any horizontal separatrix from a zero of w must end in another zero. Thus a positive
horizontal saddle connection connects the “center” of some half-disc D l+ to the “center”
of some D" = D;C(i)' This defines a permutation m, of {1,...,2m}.

We can perform the same construction for the “top” and the “bottom” of the half-discs.
More precisely, a positive horizontal ray emanating from the top of the half-disc Dl."'
will pass through the top of some half-disc D7, which is identified to the top of

DY = DT .. This defines a permutation mt; of {1,...,2m}. We have a similar
J+1 we (i)
permutation 7 of {1,...,2m}.

By construction, the set of cylinders in the horizontal direction is in bijection with the
set of cycles of 7ty (or ;). Moreover, the tuple (st., 7y, 71p) is independent of € (as
long as D(P,¢) and D(Q, ¢) are embedded and disjoint) and it clearly determines the
combinatorial data of the cylinder decomposition of (X, w).

4C The “moving singularity’ surgery

We assume that the horizontal direction on (X, w) is periodic. Let & be the minimal
height among the heights of the cylinders, and £ be the length of the shortest horizontal
saddle connection. For any 0 < ¢ < % min{/, £} we describe a local surgery of the
flat structure of (X, w), without changing the flat structure outside the union of the
discs D(P,¢) and D(Q, ¢), in order to recover (X, w) + (0,¢) for any |¢| < & (see
Figure 2).

Let us assume that 7 > 0 (the case t < 0 is completely similar). We change the way of
gluing the half-discs as follows: as patterns we still use the Euclidean half-discs, but
we move slightly the “centers”: the center of Dii, fori =1,...,m, will be moved by
the vector (0, —3t), while the center of D, fori =m+1,...,2m, will be moved
by the vector (0, %t) We alternate half-discs with their centers moved up and down.
All the lengths along identifications are matching:

. DZ.Jr is glued to D;” along the segment {Re(z) =0, —%t <Im(z) < 8}, for
i=1,....,m.

e D; is glued to D;CH along the segment {Re(z) =0, —e<Im(z) < —%t}, for
i=1,....m—1.
o DT

m

is glued to Dfr along the segment {Re(z) =0, —e<Im(z) < —%t}.
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Similarly, for D(Q, ), we glue the discs Dy+1,..., Dom:
e D; is glued to DI-Jr along the segment {Re(z) =0,—¢ <Im(z) < %t}, for
i=m+1,...,2m.
. Dl.+ is glued to D; | along the segment {Re(z) =0, %t <Im(z) < z—:}, for
i=m+1,....2m—1.

. D;Lm is glued to D, along the segment {Re(z) =0, %t <Im(z) < 5}.

Gluing the half-discs in this latter way, we obtain two topological discs, each of them
having a flat metric with a cone-type singularity of angle 2mz . Note that a small tubular
neighborhood of the boundary of the initial cone is isometric to the corresponding
tubular neighborhood of the boundary of the resulting object. Thus we can paste it
back into the surface (with the same angle).

Since this surgery does not change the flat metric outside of D(P,¢) and D(Q,¢), it
is not difficult to see that the resulting surface is (X', ®") = (X, w) + (0, 1) (see [16]).

Example 4.5 In Figure 2 we provide an example of a deformation by the kernel
foliation near an unstable decomposition. In this case x = (2,2), thus m = 3. The
permutation st is given by (1,4,3,5,2,6). Similarly, the permutations 7 and 7,
are p = (1,4)(2,6)(3,5) and m; = (1,6)(2,5)(3,4). Hence the saddle connections
emanating from P’ (respectively, Q") correspond to cycles of m;, (respectively, ;).
The new cylinder on (X', w’) corresponds to the unique cycle of .

Example 4.6 Similarly, in Figure 1 we can encode the (stable) cylinder decomposition
with the help of the permutations n., 7;, 7. In this situation, the two zeros permuted
by the Prym involution have degree 1, thus m = 2. The third (fixed) zero has degree 2.
Hence we need 2 + 2 4 3 discs. By using a suitable labeling, we find

e =(12)B)H 5. N(6). 7 =D2)B.4)(5.7)(6). 7p=(1.2)3)(4)(5)(6.7).

The lemma below summarizes how the flat metric changes in the discs. Recall that
t>0.

Lemma 4.7 Fori =1,...,m, all the points at the coordinates (0, —%t) in Dii are
identified to give a point P’ in (X', ") with cone angle 27w m .

Fori =m+1,...,2m, all the points at the coordinates (0, %t) in Dl.ﬂE are identified
to give a point Q" in (X', ") with cone angle 2tm.

All the other points of Dl.jE give regular points in (X', o).

Moreover, for any i = 1,...,2m, there is a positive horizontal ray in (X', »") from

the point at the coordinates (O, —%t) in D;r to the point at the coordinates (O, —%t) in

D;c )" The same conclusion holds for the point at the coordinates (O, %t) .
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Figure 2: Kernel foliation and unstable direction.
4D Proof of Proposition 4.1 and Proposition 4.2

Proof of Proposition 4.1 (stable case) Let 0 <& < %min{h, £}. Let v = (0,¢) with
O<t<e.

Since the cylinder decomposition is stable, any positive horizontal saddle connection
connects a zero to itself. Namely, the permutation mt, leaves invariant the subsets
{I,....m}and {m+1,...,2m}. By Lemma 4.7, for i = 1,...,m, there is a positive
horizontal saddle connection from the singularity in D l+ to the point at the coordinate
(0, —%z) in D;C(l.), ie from P’ to P’. The same is true for Q’. Thus the horizontal
direction on (X, ") = (X, w) + v is periodic and stable.

Clearly the permutations ., 7t;, 7p and 7., v}, J'l?;) coincide (do not depend on ¢
nor ¢). Hence the cylinder decomposition of (X, ®) + v has the same combinatorial
data as the one of (X, w). This ends the proof for the case ¢ > 0. If v = (0,¢) with
—e <t <0, the proof is similar. O

Proof of Proposition 4.2 (unstable case) Let 0 < ¢ < % min{h, £}. Let 0 <t < ¢ (if
—& <t <0 the proof is similar).

We first claim that any positive horizontal ray emanating from P’ ends in P’. The
key remark is the following: for any i = 1,...,m one can identify the singularity
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at the coordinates (0, —3¢) in DE (P’ in (X’,’)) to the bottom of a disc with
radius %t. Let y be a positive horizontal separatrix from P’ emanating from Dl.‘" for

somei=1,...,m.Let c = (i,iz,i3,...,ik,...,I;) be the cycle of m; containing i,
where i3,73,...,ix €{m+1,...,2m} and ix 41 €{1,...,m}. Hence y will intersect
the sequence of discs D;,, ..., Dj, , and will pass through the point at the coordinates

(O, —%Z) (which is regular). Then y will intersect the disc Dj, , , , and will pass through
the point (0, —3) (which is identified to P’ in (X', ).

The same argument shows that any horizontal ray emanating from Q’ ends in Q’ (and
those saddle connections are encoded in 7t ). In conclusion, (X, w) + (0,¢) admits a
stable cylinder decomposition in the horizontal direction.

It remains to show that the combinatorial data does not depend on ¢ (recall that # > 0).
There are two kinds of cylinders in (X, w) + (0,¢):

e A cylinder of the first kind corresponds to a cylinder in (X, w); its central core
curve does not intersect D(P, &)U D(Q, ¢). These cylinders are encoded by the
cycles of mt; and mp .

e The other possibility is that a cylinder in (X, w) + (0, ¢) contains some of the
“centers” of the discs Dl.’L . Hence its core curve is a concatenation of positive
ray passing trough the centers of the discs D;, and thus is encoded by a cycle of
the permutation 7. (see Example 4.5 and Figure 2).

Thus the cylinder decomposition depends only on 7., 7z, 7y ; this finishes the proof. O

5 Cylinder decomposition: relation of moduli

The aim of this section is to establish the following result:

Proposition 5.1 Let (X, w) € QEp (k) be a Prym eigenform with « in Table 1 such
that the horizontal direction is periodic. Let n be the number of T—equivalence classes
of horizontal cylinders (recall that n < 3), and C1q,...,C, be a family of cylinders
representing the n equivalence classes.

o Ifn =3 then there exists (r1, 72, 7r3) € Q3\ {0} such that

(2) ripy +ruz +rausz =0.

Moreover, let a; € {O, :I:%, + 1} be the coefficient given by Lemma 3.5 associated
to C;. Then (r1, rp, r3) satisfies

o
3) Mt 2 42 =0,
w1 w2 w3

o Ifthe cylinder decomposition is unstable then the horizontal direction is parabolic.
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We first recall the following result dealing with the case when D is not a square.

Theorem 5.2 (McMullen [21]) Let K = Q(+/D) C R be a real quadratic field and
let (X, w) € QEp(k) be a Prym eigenform such that all the absolute periods of w
belong to K(1). If the horizontal direction is periodic with k cylinders then

k
Z wih; =0,

i=1

where w;, h; are respectively the width and the height of the i™ cylinder, and w) is
the Galois conjugate of w; in K.

Sketch of proof A remarkable property of Prym eigenform is that the complex flux
vanishes. Namely (see [21, Theorem 9.7])

/a)/\w/zf Ao =0.
X e

Here @ and ' are respectively the complex conjugate and the Galois conjugate of w.
The argument is as follows: let 7' be a generator of the order Op . The vector space
H'(X,R)™ splits into a pair of 2-dimensional eigenspaces S ® S’ = H!(X,R)™ on
which T acts by multiplication by a scalar. More precisely, S is spanned by Re(w) and
Im(w), and S’ is spanned by Re(w’) and Im(w’). Since T is self-adjoint, S and S’
are orthogonal with respect to the cup product. This shows the equalities above. Now

/ Im(w) ARe(w') = wih;,

Ci
where Cy,...,Cy are the horizontal cylinders in X . Since the surface X is covered by
those cylinders, it follows that

k k
> uihi =Y [ 1m() ARe(w)
Ci

i=1 i=1

=/ Im(w) ARe(w')
X

SA Proof of Proposition 5.1 when D is not a square

Proof Let B; € {1,2} be the number of cylinders in the t—equivalence class of C;
(Bi = 1if C; is fixed by 7, B; = 2 if C; is exchanged with another cylinder). Set
ri = Biwjw; € Q.
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For the case n = 3, the first equality follows directly from Theorem 5.2. Namely,

k 3 3
0=> wihi =) Bi(wiw))ui =Y ri.

i=1 i=1 i=1
When n = 3, Lemma 2.6 implies that the cylinder decomposition is stable. Thus we
can associate to each cylinder C; a coefficient o; € {0, j:%, j:l} (by Lemma 3.5).
Observe that moving in the leaves of the kernel foliation does not change the area of
the surface, therefore

Area(X,w) = Area((X, w) + (0, 5)),

and hence
k k
Zw,‘h,‘ = Zwi (hi +a;s),
i=1 i=1

which implies that

k 3
“4) Zaiwizzaiﬁiwizo-

i=1 i=1

Thus, one has
3

3 3 /
o
Zriw—li = Zﬁiaiwf = (Zaiﬂiwi) =0,
i=1 i=1 i=1
and (3) is proved.

Consider now the case that the cylinder decomposition is unstable, which means that
n <2. If n =1 then X has either a unique horizontal cylinder, or two horizontal
cylinders which are exchanged by 7. In both cases, the horizontal direction is clearly
parabolic. If n = 2, then Theorem 5.2 implies that the ratio 1/, is rational, which
means that the horizontal is also parabolic. Proposition 5.1 is then proved for the case
that D is not a square. a

5B Proof of Proposition 5.1 when D is a square

We will need a technical lemma.

Lemma 5.3 Foreveryi €{l,...,k}, either h; is an absolute period, or there exists
J # i and some integers x;,x; € {1,2} such that x;h; + x;h; is an absolute period.

Moreover, if the cylinder decomposition is stable, and «;,«; are the coefficients
associated to C; and C; (by Lemma 3.5), then x;a; + xja; = 0.
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Proof If there is a zero of w that is contained in both the top and bottom borders
of C;, then h; is an absolute period. Let us assume that this does not occur. There are
two cases.

First case: @ has two zeros Py, P, Note that in this case P; and P, are exchanged
by the Prym involution t. We can assume that the bottom border of C; contains Pq,
and its top border contains P,. By connectedness of X, there must exist a cylinder C;
whose bottom border contains P, and whose top border contains P;. Note that i # j;
otherwise Pp is contained in both top and bottom borders of C;. Let o; and o;
be respectively some saddle connections in C; and C; which join Py to P>. Then
¢ =o0; Uoj is a simple closed curve in X and we conclude that 41 4+ hy =Imw(c).

Second case: @ has 3 zeros In this case two zeros are permuted by 7; we denote
them by P;, P>. The third one is fixed by 7; let us denote this one by 0. We can
always assume that P; is contained in the bottom border of C;, but not in the top
border of C;.

Assume that the top border of C; contains P, and let o; be a saddle connection
in C; which joins P; to P,. If there exists another cylinder whose bottom border
contains P, and top border contains P; then we are done. Otherwise, there must exist
acylinder C; whose bottom border contains P, and top border contains Q. Let C;/ be
the cylinder which is permuted with C; by 7. Then the top border of C;, contains Pq
and the bottom border of C;/ contains Q. In particular, C;s # C;.

If Cj» = Cj, then the top border of C; contains P, contradicting our hypothesis. Thus
Cj» # C;. Let 0; be a saddle connection in C; which joins P, to Q. Then t(o;) is
a saddle connection in C;- that joins Q to P;. Consequently, ¢ := t(0;) Uo; Uo; is
a simple closed curve in X, and Imw(c) = h; +hj +hjr = h; +2h;.

We are left with the case where the top border of C; contains Q. Let C;/ be the cylinder
which is permuted with C; by 7. Then the top border of C;/ contains P» and the bottom
border contains Q. By assumption, C;s # C;. By connectedness of X, there exists a
cylinder C; # C; which contains P in the top border, and P, or Q in the bottom
border. If P, is contained in the bottom border of C; then h; + h; + hy» = h;j + 2h;
is an absolute period. If Q is an contained in the bottom border of C; then h; + h; is
an absolute period. Since x;h; 4+ x;h; is an absolute period, it is unchanged by the
kernel foliation; Lemma 3.5 then implies that x;o; + xjo; = 0. O

Proof of Proposition 5.1 when D is a square We first consider the case n =3. Since
D is a square, one can normalize, using GL™ (2, R), so that all the absolute periods
of w belong to Q(z). By Lemma 5.3, one can find (x1, x2, x3) and (y1, y2, y3) with
xi, vi €{0,1,2} such that x; A1 + x2h5 + x3h3 and y1hy + y2hs + y3hs are absolute
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periods. The vectors (x1, x2,x3) and (y1, y2, y3) are chosen so that they are not
collinear. Since all the absolute periods are in Q, there exists r € Q, r > 0, such that

X1hy + x2h2 +x3h3 = r(y1hy + y2ha + y3h3),

or equivalently

3
Z(xi —ryi)hi =0.

i=1

Setting r; := (x; —ry;)w;, we get

3
Zriui =0.

i=1

Lemma 5.3 implies that oy x1 + a2x2 + a3x3 = a1 y1 +@2y2 +a3ys = 0. Hence

3 3
o

Y (xi—rydei =) ri—=0.

: : wi

i=1 i=1
Now let us assume that the horizontal direction is unstable (hence n < 2). We will
show that the horizontal direction is parabolic. Obviously, we only need to consider
the case n = 2. Recall that we can normalize so that all the absolute periods of @ are
in Q(z). In particular, wq, w, € Q. We will show that both /1, i, are also absolute
periods.

First case: ® has two zeros Py, P, Since the cylinder decomposition is unstable,
there exists a horizontal saddle connection y from P, to P;. We can assume that P
is contained in the bottom border of C;. If the top border of C; also contains Pj, then
hy is an absolute period. Otherwise, let o be a saddle connection joining P; to P,
which is contained in C;. Since ¢ := y Uo is a closed curve and A1 = Imw(c), we
conclude that #; € Q. The same arguments show that /i, € QQ, hence the horizontal
direction is parabolic.

Second case: ® has 3 zeros Let P, P, denote the zeros which are permuted and
Q the zero fixed by 7. We first observe that there exists a path from P; and P,
which is a union of horizontal saddle connection. Indeed, by assumption there exists a
horizontal saddle connection y which joins two different zeros. If y joins Pj to P»
then we are done. Otherwise, y joins Q to either Py or P;. In both cases, the union
of y and t(y) is the desired path. Let us denote this path by 7.

Let us assume that P; is contained in the bottom border of C; but not in the top border.
If the top border of C; contains P, then the union of 7 and a saddle connection in Cy
joining P; to P is a closed curve ¢ such that Imw(c) = k1, which implies & € Q.
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If the top border of C; contains Q, then let C3 be the cylinder which is permuted
with C; by t. Note that the bottom border of C3 contains @, and the top border
contains P,. Let o7 be a saddle connection in C; joining P; to Q, and o3 be the
image of o1 by t in C3. The union ¢ :=nU o3 U o is then a closed curve such that
Imw(c) = 2hy, hence hy € Q. Similar arguments show that 4, € Q. The horizontal
direction is then parabolic. a

6 Proof of a weaker version of Theorem 1.1

In this section, we prove a weaker version of Theorem 1.1. We say that (X, ) is not a
Veech surface (or the orbit is not closed) for “the most obvious reason” if there exists a
periodic direction on (X, w) that is not parabolic (it is a theorem of Veech [29] that on
a Veech surface any periodic direction is parabolic). We will prove Theorem 1.1 under
this additional assumption.

Theorem 6.1 Let (X,w) € QEp (k) and let us denote by © its GL™ (2, R)—orbit.
If O is not closed for the most obvious reason then O is a connected component of
QFE D (K)

We begin with the following key lemma. The proof is classical, but is included here for
completeness.

Lemma 6.2 Let (X,w) € QEp(k) be a Prym eigenform. We assume that the horizon-
tal direction is completely periodic but not parabolic. Then for all s € R the surface
(X, w) + (s,0) is well defined, and one has

X, w)+ (5,0) e U - (X, w).
Before proving the lemma, let us state the following corollary:

Corollary 6.3 Let (X,w) € QEp (k) be a Prym eigenform. We assume that there
exists

(Y.,n) e GLT(2,R)- (X, w)

and ¢ > 0 such that

(Y.n) +(s,0) e GLT(2,R) - (X, w)

for all s € R with |s| < &. Then there exists ¢ > 0 such that

(Y,n)+veGLT(2,R)- (X, w)

for any v € R? such that |v| < €.
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Proof of Lemma 6.2 Let Cy, ..., Cy be the horizontal cylinders in X . Let n be the
number of equivalence classes of cylinders that are permuted by the Prym involution t.
Recall that for all the cases in Table 1 the inequality » < 3 holds. Assume that
{C1,...,Cy} is a representative family for the t—equivalence classes of cylinders.

Let us consider the case n = 3. Lemma 2.6 implies in particular that the cylinder
decomposition is stable. The surface is encoded by the topological gluings of the
cylinders C;, and the width, height and twist of C; (which will be denoted by w;, A;, t;,
respectively).

The set of surfaces admitting a cylinder decomposition in the horizontal direction with
the same topological gluings, and the same widths and heights of the cylinders as X,
is parametrized by the 3—dimensional torus

X=NR)xNR)x NR)/N(w1Z) x N(waZ) x N(w3Z),
where N(A) = {us | s € A}.

The horocycle flow ug preserves the topological decomposition as well as all the
parameters but the twists #;. The new twists f; are given by i = t; + sh; mod w; .
Hence surfaces in the U—orbit of (X, w) are parametrized by the line

{(t1,12,13) + (h1, ha, h3)s | s € R},

By Kronecker’s theorem, the orbit closure U - (X, ) is a subtorus of X'. Since the
moduli are not commensurable (the horizontal direction is not parabolic) the dimension
of this subtorus is at least two. More precisely, the orbit closure U - (X, w) consists of
the set of all twists (1, 72, f3) such that the normalized twists (#; —;)/w; verify all
nontrivial homogeneous linear relations with rational coefficients that are satisfied by
the moduli u; = h; /w;. Let P be the subspace of R which is defined by all such
rational relations. By assumption, dimg P > 2. But we know from Proposition 5.1
that there exists (r1,72,73) € Q3 \ {(0,0,0)} such that >_7_, r;j; = 0. Therefore
dimg P =2 and

3 ot
) p={@amer | Ln (") ol
i=1 l

It follows that U - (X, w) is the projection to X of the plane P C R3 defined by
Equation (5). Hence, all surfaces constructed from the cylinders with the same widths
and heights as those of (X, ®) (by the same gluings), and with the twists 7; satisfying
Equation (5) above, belong to U - (X, w).

Recall that in the horizontal kernel foliation leaf, a surface (X,w) + (s,0) is still
completely periodic (for the horizontal direction), and all the data (topological gluings
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of the cylinders, widths, heights) are preserved, except for the twists (see Lemma 3.5).
To be more precise, if C;’ is the horizontal cylinder in (X, @) + (s, 0) corresponding to
C; =CQ, then t; (s) =1; +a;s (where the range of o; is {—1,0, 1} or {—1,—3.,0, 3.1}

if @ has two or three zeros, respectively). It remains to show that
(11 +a1s, 12 + o258, 13 + a3s) = (t1. 12, 13) + (@1, 22, &3)s

belongs to P. But

3 3
(t; + so) — ¢ o

. L 2o
Yo () g

i=1 i=1
by Equation (3). Thus the lemma is proved for the case n = 3.

Let us now consider the case n = 2. Note that if D is not a square then the horizontal
direction is parabolic in this case (see Theorem 5.2). Therefore, D must be a square.
By Proposition 5.1 we know that the cylinder decomposition is stable, which implies
that (X, ) + (s, 0) is defined for all s. In this case, the closure of U - (X, w) can be
identified with the torus

X' = N@R)x NR)/N(w17Z) x N(w,Z).

Using this identification, the horizontal kernel foliation leaf through (X, @) corresponds
to the projection of the affine line {(¢1, ) + (@1, @2)s | s € R}. Hence

X5, 05) = (X, 0)+(5,0) e U - (X, w),

which concludes the proof of Lemma 6.2. a

Proof of Corollary 6.3 We will apply Lemma 6.2 to a transverse direction to (1 : 0).
By Theorem 2.3, let 6 be a completely periodic direction on Y which is transverse to
the horizontal direction. Up to the action of U, we can assume that § = (0: 1).

By Proposition 4.1 and Proposition 4.2, there exists ¢ > 0 such that (Y,n) + v is
well defined, and the direction (0 : 1) is completely periodic on (Y, ) + v for all
ve(—¢,e)x (=€, ¢). If s # 0 then the cylinder decomposition of (Y, n) + (s, 0) in
the direction of (0: 1) is stable. Moreover, the combinatorial data of this decomposition
is preserved when s varies in the intervals (—¢’,0) and (0, &’). In conclusion, if the
decomposition of (Y, n) in the vertical direction is stable, then the combinatorial data
of (Y,n) + (s,0) is the same for any s € (—¢', ¢’).

Let {w;(s)};i=1,..x and {h;(s)};=1,. x be the widths and heights of the cylinders
in the vertical direction of (Y, 1) + (s,0), s # 0. Note that the functions w; (s) are
constant on each of intervals (—¢,0) and (0, ¢). However, the set of heights /; (s)
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define nonconstant continuous functions of s. To be more precise, h;(s) = h; + «;s,
where o; € {—1,0,1} or o; € {~1,—3.,0, 3,1} depending on whether 7 has two or
three zeros. Obviously, at least two of the «; are different. Hence the set of moduli

hi + sa;

pi(s) = ;

1

of cylinders (in the vertical direction) define also nonconstant continuous functions
of s. In particular, for almost every s in (—¢’, 0) (resp. (0, &)), the direction (0: 1) is
completely periodic and not parabolic on (Y, n) + (s,0). Applying Lemma 6.2 to the

vertical direction on (Y, n) + (s, 0), we get that, for any 7 € (—¢’, ¢’), one has

(Y.n) +(s,1) e GLT(2,R) - ((Y, n) + (5, 0)).

It follows immediately that (Y,7) + v € GLT(2,R)- (X, w) for every v = (s,1) €
(—¢’,&") x (=€, €"). This completes the proof of Corollary 6.3. O

One can now prove the main result of this section.

Proof of Theorem 6.1 We will show that any (Y, 7) € GL1(2,R)- (X, ) = O has
an open neighborhood contained in O. Let B(e) = {v € R? | |v| < &}.

First case: (Y,7) € GL*(2,R): (X,w) By assumption, there exists a periodic
direction for (X, ®) which is not parabolic. Lemma 6.2 and Corollary 6.3 then imply
that there exists & > 0 such that (X,w) +v € O for any v € B(g). It follows that
g-(X,w)+v) €O forall g GL" (2, R). In particular, there exists a neighborhood ¢/
of Id in GL™*(2,R) such that g- ((X,w) + v) € O, for any (g,v) € U x B(e). But
by Proposition 3.3 the set {g - (X,w) +v) | (g,v) € U x B(¢)} is a neighborhood
of (X,w) in QEp (k). Hence (X,w) (and thus (Y, n)) has an open neighborhood
contained in O.

Second case: (Y,7) ¢GLY(2,R)-(X,w) Let (X,,wn)=gn-(X,w) be asequence
converging to (Y, n) with g, € GL*(2,R). By Proposition 3.3, there exist £ > 0
and a neighborhood ¢/ of Id in GL™(2,R) such that &/ x B(e) is identified with
a neighborhood of (Y, n) via the mapping (g,v) — g - ((Y,n) + v). Thus for n
large enough there is a pair (a,, v,), where a, € U and v, € B(g) C R?, such that
(Xn,wn) =an-((Y,n) + vy). Since (X, w,) converges to (Y, n), (ay)n converges
to Id, and (vy), converges to 0. Multiplying by a1, we get

GLT(2,R)-(X,w) > (X}, w)) =a," - (Xn, @) = (Y, 1) + vy.

Without loss of generality, we also assume that the horizontal direction is completely
periodic on Y. By Propositions 4.1 and 4.2, we can choose r > 0 such that for all
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v = (s,t) € B(r) the surface (Y, n) + v also admits a cylinder decomposition in the
horizontal direction. When ¢ # 0 this decomposition is stable with combinatorial data
depending only on the sign of #. We can assume that v, € B(r) (for n large enough).

Since (X}, w}) € GLT(2,R)- (X, w), the first case implies that GLT (2, R) - (X, w)
contains a neighborhood of (X, w},). Hence for each n there exists &, > 0 such that
(X}, w},) +v € O for any v € B(g,). Now for each n we choose 8, € (0, &,) small
enough such that:

(@) up=v,+(0,6,) € B(r).
(b) If v, = (su, ty) With ¢, # 0, then 8, < |t,].

In particular, since u, € B(r), (a) implies that (Y, n) + u, also admits a cylinder
decomposition in the horizontal direction. Since the ratio of moduli is a continuous
(nonconstant) function of §,, one can choose &, € (0, &,) satisfying (a), (b) and the
following conditions:

(c) The horizontal direction is stable and not parabolic for (Y, ) + u,.

(d) limp—soo 8n = 0.

By construction, §, € (0, &,), hence (X, /) := (X}, w})+(0,8,) = (Y, n) +u, € O.
Since the horizontal direction is not parabolic on (X,/, /), by Lemma 6.2, we derive
that (X}, ) + (s,0) € O for any s € R (see Figure 3). Thus

7 1,1
(X, wy)+ (5,00 €O forany s € (—ir, Er).

Since (8,)n converges to 0 the sequence (X,/, ;) = (X, w,) + (0,8,) converges to
(Y, n). It follows that

Y, n)+(s,00€O forall s¢€ (—%r, %r)

The theorem then follows from Corollary 6.3. a

7 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 in full generality, namely without
the assumption that the orbit @ :=GL™* (2, R)-(X, ®) is not closed for the most obvious
reason. However, our proof says nothing about the converse of this assumption, ie the
following question remains open in our setting:
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Figure 3: The convergence of (X, ;) and (X,, ®)) to (Y, n) in the kernel
foliation leaf of (Y, n).

Question For an orbit © := GL"(2,R)- (X, w), is the property of being not closed
equivalent to being not closed for the most obvious reason?

Proof of Theorem 1.1 We begin by fixing some notation and normalization. As usual,
let (X, w) € QEp (k) and let us assume that @ := GL* (2, R)- (X, w) is not closed. Let
(Y.n) € O\ O be some translation surface in the orbit closure, but not in the orbit itself.

Claim 1 There exist a rotation R and a sequence (X, wy)neN convergingto R-Y
such that (X,,wn) = R-(Y,n) 4+ v, € O forevery n € N, where v, = (X, yn) with
yn # 0, and the horizontal direction on R -Y is completely periodic.

Proof of the claim We choose a sequence (X, ;) € O converging to (Y, 7). As
in the proof of Theorem 6.1 we can assume that (X,,w,) = (¥,n) + v,, where
Un = (Xn, yn) converges to (0,0) € RZ.

Again, up to replacing Y by Ry -Y for some suitable 6, without loss of generality
we will also assume that the horizontal direction is completely periodic on Y. If
¥n # 0 infinitely often then the claim follows by taking a subsequence. Otherwise
we assume that y, = 0 for every n > N . We choose another (transverse) completely
periodic direction on Y . We can assume that this direction is vertical by applying a
matrix in U. Note that a matrix in U fixes the vectors (x;,0). Then, up to replacing
(Y.n) and (Xp,wn) by Ryj-(Y,n) and Ry - (X, wy), respectively, the claim is
proved (otherwise x, = 0 for n large enough, thus (Y, n) = (X,, w,) € O, which is
a contradiction to our assumption). a
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In the sequel, up to replacing Y by R-Y, we assume that the conclusion of Claim 1
holds for Y. We choose some ¢ > 0 so that, for any v = (x, y) € R2, if v € B(¢)
then the horizontal direction on (Y, ) 4+ v is periodic, and the cylinder decomposition
is stable if y £ 0. We can assume that v, € B(¢) and y, > 0 for all n, which implies
that the combinatorial data of the cylinder decomposition in the horizontal direction of
(Xy,wp) are same for all n. Finally, we also assume that a// the horizontal directions
on X, are parabolic (otherwise we are done by Theorem 6.1).

We sketch the idea of the proof. It makes use of the horocycle flow ug acting on X . The
key is to show that the actions of the kernel foliation and u coincide for a subsequence.

(1) Since all surfaces (X, w,) are horizontally parabolic, we will show that it is
always possible to find a “good time” s, so that uy, - X, = X, + (x,,0) for
some vector (x,,0) € B(¢).

(2) One can arrange that (x,,0) converges to some arbitrary vector (x,0) € B(e).

These two facts correspond, respectively, to Claim 3 and Claim 4 below. Once we
achieve this, passing to the limit as n — co, we get

Us, - (Xn, wn) = (Xn, 0p) + (x4, 0) = (¥, n) + (x,0).

In other words, (Y,7) + (x,0) € O for all x € (—¢, ). Then Corollary 6.3 applies
and this gives some &’ > 0 so that (Y, ) + v € O for any v € B (&), which proves the
theorem.

Figure 4: Decomposition into four cylinders of (X, w,) = (¥, n) + v, near
(Y,n) € QEp(2,2), where v, = fa . The cylinders C, and C3 are fixed
by the Prym involution , while the cylinders C; and 7(C;) are exchanged.
When v, — 0 the cylinder C, is destroyed, while C3 remains in the limit
(here we assume h3 > hy).
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We now explain how to construct the sequence (s, )neN. As usual, the cylinders on X,
are denoted by C ,i=1,...,k (the numbering is such that for every i € {1, 2, 3},
C(n = r(C( )) 1mp11es j =1 or j > 3). The width, height, twist, and modulus of C( ")
are denoted by w(") h(") ("), le(") respectively. Recall that, by Propositions 4.1

and 4.2, wl( n) does not depend on n, therefore we can write wl." = w; . Let us define
h?® = lim h(")

Since the cyhnder decomposition of Xj 1s stable, we can associate to each family of
cylinders (C )n a coefficient o; € {0 j: j:l} Recall that the kernel foliation action
of a vector v = (x, y) changes the height h(") of C; ™ to h(n) +a; y, hence we can write

hl(n) =h +a;yn.

Note that the horizontal direction on Y is not necessarily stable: some horizontal
cylinders on X, can be destroyed in the limit (as # tends to infinity). Therefore, some
of the limits £7° may be zero. However, there is at least one cyhnder that remains
in the limit, say it is C (see Figure 4 where the cylinder C is destroyed when
performing the kernel fohatlon). Actually, since (X, w,) stays in a neighborhood of
(Y, n), all the cylinders of (Y, n) persist in (X, w,). Thus, the number of horizontal
cylinders of (X, wy) is always greater than (Y, ). We denote by C3 the cylinder on Y
corresponding to an) on X, . Then the height of C3 is h$°. In particular, h$° > 0.

From Equation (4), we obtain

3

Z Biwia; = 0.

i=1
Since all the «; cannot vanish (otherwise for all i € {1,...,k} the upper and lower
boundaries of Cl.(") contain the same zero, which means that @ has only one zero),
Equation (4) implies that there exist 7, j € {1,2, 3} such that «; and «; are nonzero
and have opposite signs. In particular, there exists i € {1, 2,3} such that o; # 0 and
«; has the opposite sign to a3 if a3 # 0. In what follows we suppose that o satisfies
this condition. By a slight abuse of language, we will say that o; and o3 have opposite
signs. Since a; # 0, (tl("), hg”)) is a relative coordinate. For the surface in Figure 1,
o has three zeros and (o1, a3) = (—1, %) , and for the one in Figure 4, @ has two zeros
and (xq,a3) =(—1,1).

Recall that, by Proposition 5.1, we know that there exists (r1,72,73) € Q3\ {(0,0,0)}

such that
(n) o2 o3

+r3pny =0 a