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The period-index problem for twisted topological K–theory

BENJAMIN ANTIEAU

BEN WILLIAMS

We introduce and solve a period-index problem for the Brauer group of a topological
space. The period-index problem is to relate the order of a class in the Brauer group to
the degrees of Azumaya algebras representing it. For any space of dimension d , we
give upper bounds on the index depending only on d and the order of the class. By
the Oka principle, this also solves the period-index problem for the analytic Brauer
group of any Stein space that has the homotopy type of a finite CW–complex. Our
methods use twisted topological K–theory, which was first introduced by Donovan
and Karoubi. We also study the cohomology of the projective unitary groups to give
cohomological obstructions to a class being represented by an Azumaya algebra
of degree n . Applying this to the finite skeleta of the Eilenberg–Mac Lane space
K.Z=`; 2/ , where ` is a prime, we construct a sequence of spaces with an order `
class in the Brauer group, but whose indices tend to infinity.

16K50, 19L50; 55S35

1 Introduction

This paper gives a solution to a period-index problem for twisted topological K–theory.
The solution should be viewed as an existence theorem for twisted vector bundles.

Let X be a connected CW–complex. An Azumaya algebra A of degree n on X is
a noncommutative algebra over the sheaf C of complex-valued functions on X such
that A is a vector bundle of rank n2 and the stalks are finite-dimensional complex
matrix algebras Mn.C/. Examples of Azumaya algebras include the sheaves of
endomorphisms of complex vector bundles and the complex Clifford bundles Cl.E/ of
oriented even-dimensional real vector bundles E . The Brauer group Br.X / classifies
topological Azumaya algebras on X up to the usual Brauer equivalence: A0 and A1

are Brauer equivalent if there exist vector bundles E0 and E1 and an isomorphism

A0˝C End.E0/ŠA1˝C End.E1/

of sheaves of C–algebras. Define Br.X / to be the free abelian group on isomorphism
classes of Azumaya algebras modulo Brauer equivalence.
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The group Br.X/ is a subgroup of the cohomological Brauer group Br0.X/DH3.X ;Z/tors .
This inclusion is obtained in the following way. There is an exact sequence

1!C�! GLn! PGLn! 1

which induces an exact sequence in nonabelian cohomology

H1.X;GLn/! H1.X;PGLn/! H2.X;BC�/D H3.X;Z/:

The pointed set H1.X;PGLn/ classifies degree n Azumaya algebras on X up to
isomorphism whereas the left arrow sends an n–dimensional complex vector bundle E

to End.E/. The map from the free abelian group on isomorphism classes of Azumaya
algebras to H3.X;Z/ thus factors through the Brauer group.

By a result of Serre (see Grothendieck [24]), every cohomological Brauer class
˛ 2 Br0.X /DH3.X;Z/tors is represented by topological Azumaya algebras of varying
degrees when X is a finite CW–complex, so that Br.X /D Br0.X /. The period-index
problem is to determine which degrees arise for a given class, ˛ . The index ind.˛/ is
defined to be the greatest common divisor of these degrees. The period per.˛/ is the
order of ˛ in Br0.X /. For any ˛ , one has per.˛/ j ind.˛/.

As an example, consider the Clifford bundle Cl.E/ associated to an oriented 2n–
dimensional real vector bundle, E . This has class in the cohomological Brauer group
given by W3.E/, the third integral Stiefel–Whitney class of E , and so W3.E/ is either
of period 1 or 2, depending on whether or not E supports a Spinc –structure. The rank
of Cl.E/ is 22n . If per.W3.E//D 2, we find

2 j per.W3.E// j ind.W3.E// j 2
n:

To our knowledge, this topological period-index problem has not been considered
before, although the parallel question in algebraic geometry has been the subject of a
great deal of work. For instance, see Artin [7], Colliot-Thélène [14; 15], de Jong [32],
Becher and Hoffmann [12] and Lieblich [38; 39].

By analyzing the cohomology of the universal period r cohomological Brauer class,

K.Z=r; 2/
ˇ
�!K.Z; 3/;

we show that the period and index have the same prime divisors, as in the algebraic case
of fields. Then, using ideas from Antieau [3], we establish upper bounds on ind.˛/
depending only on per.˛/ and the dimension of X .

By studying the cohomology of the projective unitary groups, we obtain obstructions
to the representation of a class ˛ 2 Br.X / by an Azumaya algebra of degree n. Using
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these obstructions, we then construct families of examples of period r Brauer class
whose indices form an unbounded sequence.

Suppose that X is a d –dimensional finite CW–complex, meaning that there are no
cells in X of dimension bigger than d . Let ˛ 2 H3.X;Z/tors and let r D per.˛/. The
classifying space BZ=r can be constructed as a countable CW–complex with finitely
many cells in each dimension. It follows that its stable homotopy groups �s

j .BZ=r/

are all finitely generated abelian groups. But, they are also torsion groups for j > 0.
Let e˛j denote the exponent of the finite abelian group �s

j .BZ=r/.

The following is our main theorem.

Theorem 4.1 We have ind.˛/
ˇ̌ d�1Q

jD1

e˛j .

The theorem has the following corollary, which relies on the computation in [3] of the
stable homotopy groups �s

j BZ=`k in a range.

Theorem 4.6 Let X be a d –dimensional finite CW–complex, let ` be a prime such
that 2` > dC1, and suppose ˛ 2H3.X;Z/tors satisfies per.˛/D `k for some k . Then

ind.˛/ j per.˛/Œd=2�:

Since the period and index are homotopy invariant, these theorems and all other
statements in the paper hold for any X homotopy equivalent to a d –dimensional finite
CW–complex.

By the Oka principle (see Grauert and Remmert [23]), which says that the topological
and analytic classification of torsors of a complex Lie group agree on a Stein space,
the same theorems hold for the analytic period-index problem on a Stein space having
the homotopy type of a finite CW–complex.

To prove these theorems, we study the Atiyah–Hirzebruch spectral sequence for twisted
K–theory KU.X /˛

Ep;q
2
D Hp.X;Z.q=2//) KUpCq.X /˛:

Here, twisted topological K–theory refers to the theory first introduced by Donovan
and Karoubi [17] and subsequently developed by Rosenberg [45], Atiyah and Segal [9]
and others. When X is compact, the index of ˛ is also the generator of the image of
the edge map

KU0.X /˛! H0.X;Z/:

We look for permanent cycles in H0.X;Z/; equivalently, we study the differentials
leaving this group.
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The study of such differentials is intricate. We should like to have a twisted analogue
of the unit map �s

i ! KU�i but unfortunately the unit map cannot be twisted when ˛
is nontrivial. Instead, if ˛ is r –torsion, there is a spectrum, SŒZ=r �, resembling a finite
cover of the sphere spectrum and a map SŒZ=r �! KU that extends the unit map and
which may be twisted. We obtain from this a map SŒZ=r �.X /� ! KU.X /˛ , where �
is a lift of ˛ to H2.X;Z=r/.

The utility of this map is that the homotopy groups of SŒZ=r � are all finite torsion groups
and we know the torsion in low degrees (relative to r ) by [3], which is also where this
cycle of ideas originates. In the Atiyah–Hirzebruch spectral sequence for SŒZ=r �� , we
obtain bounds on the differentials departing H0.X;Z/D H0.X;SŒZ=r �0/. The result
follows by considering a natural morphism of Atiyah–Hirzebruch spectral sequences.

To give lower bounds on the index, we consider when a map ˛W X !K.Z; 3/ factors
through BPUn ! K.Z; 3/, which is to say, when a class ˛ 2 H3.X;Z/ may be
represented by a degree n Azumaya algebra. If such a factorization exists, then we
obtain

�X ! PUn
�n
�!K.Z; 2/:

The class �n in H2.PUn;Z/ is studied by Baum and Browder in [11]. There, the order
of � i

n is determined for all i . In particular, �n�1
n is nonzero, but �n

n D 0. This leads
to a necessary condition for the factorization of X !K.Z; 3/ through BPUn .

In another direction, the classifying space for r –torsion elements of H3.X;Z/tors is
the Eilenberg–Mac Lane space K.Z=r; 2/ together with the Bockstein

ˇ 2 H3.K.Z=r; 2/;Z/;

which is of order r . In order to use the Atiyah–Hirzebruch spectral sequence to
study the period-index problem, we must understand the differentials in the ˇ–twisted
Atiyah–Hirzebruch spectral sequence for K.Z=r; 2/. In particular, we want to study
the differentials

d
ˇ

2kC1
W H0.K.Z=r; 2/;Z/Ü H2kC1.K.Z=r; 2/;Z/:

It is known by Atiyah and Segal [10] that d
ˇ
3
.1/D˙ˇ .

Atiyah and Segal also investigate the higher differentials for the twist of K–theory
on K.Q; 3/, but the higher differentials for torsion twists have not been studied before.
In the torsion case, we show that there are infinitely many nonzero differentials leaving

E0;0
k
� H0.K.Z=r; 2/;Z/;

which are all themselves necessarily torsion.
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In fact, for a fixed prime l , we show that, after d
ˇ
3
.1/ D l , one of the following

d
ˇ
5
.l/; : : : ; d

ˇ

2lC1
.l/ is nonzero in the ˇ–twisted spectral sequence for K.Z= l; 2/.

Combining this with our results from the cohomology of the projective unitary groups,
we find that d

ˇ
5
.2/ is nonzero in the ˇ–twisted Atiyah–Hirzebruch spectral sequence

for K.Z=2; 2/.

In [3], the first named author used similar methods to define an étale index eti.˛/ for
classes of Br.XKet/ and to give upper bounds in terms of the period. In that work, the
question of whether the étale index ever differs from the period was left unanswered.
The examples of Section 5.2 and the comparison map of Theorem 2.11 give evidence
that eti¤ per as invariants on Br.XKet/.

Two papers by the authors that rely on this paper and extend its results have already
appeared. The first is [6], which shows that indeed the étale index does differ from
the period. The second is [5], which completely solves the topological period-index
problem for finite 6–dimensional CW–complexes.

The paper is organized as follows. In the rest of this section, we give background on
the Brauer group and the period-index problem in various settings. In Section 2 we
establish the relevant technical tools in twisted K–theory we need, a comparison map
from twisted étale K–theory to twisted topological K–theory, as well as the twisted
unit map. In Section 4, we prove the main general upper bounds. In Section 5, after an
excursion into elementary number theory, we study the cohomology of the projective
unitary spaces, and we apply this to furnish spaces with a class of period r and with
arbitrarily large index.

Acknowledgments We thank Aravind Asok and Christian Haesemeyer for discussions
and useful suggestions.

1.1 The Brauer group

For generalities on Azumaya algebras and Brauer groups on locally ringed sites, see
Grothendieck [24]. For example, an Azumaya algebra on a topological space is a sheaf
of algebras over the continuous complex-valued functions that is locally isomorphic to
a matrix algebra over C .

Throughout, X will denote a connected scheme, a complex analytic space, or a
topological space. In any of these cases, there is a Brauer group Br.X / consisting of
Brauer equivalence classes of algebraic, analytic, or topological Azumaya algebras
on X .
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In each case, there is also a cohomological Brauer group, Br0.X /, which is defined as
H2.XKet;Gm/tors when X is algebraic, H2.X;O�

X
/tors when X is a complex analytic

space and
H2.X; C�X /tors D H2.X;C�/tors D H3.X;Z/tors

when X is a topological space. There are natural inclusions

Br.X /� Br0.X /

in each case.

Given a complex algebraic scheme X , write Br.XKet/ for the algebraic Brauer group
of X , Br.Xan/ for the analytic Brauer group of X and Br.Xtop/ for the topological
Brauer group, and similarly for Br0 . There is a natural commutative diagram

Br.XKet/
//

��

Br.Xan/ //

��

Br.Xtop/

��

Br0.XKet/
// Br0.Xan/ // Br0.Xtop/:

Similarly, if X is a complex analytic space, let Br.Xan/ and Br.Xtop/ be the analytic
and topological Brauer groups, respectively. There is a natural commutative diagram

Br.Xan/ //

��

Br.Xtop/

��

Br0.Xan/ // Br0.Xtop/:

If X is a complex algebraic scheme, and ˛ 2 Br0.XKet/, let ˛an and ˛top be the corre-
sponding elements in the analytic and topological cohomological Brauer groups.

Example 1.1 If X is a complex K3 surface, then Br.XKet/ Š .Q=Z/22�� , where
0� � � 20 is the rank of the Neron–Severi group NS.X /; see Grothendieck [25, Sec-
tion 3]. But Br.Xtop/D 0 because H3.X;Z/D 0.

Example 1.2 If X is a smooth projective rationally connected complex threefold,
then Br.XKet/ D Br.Xan/ D Br.Xtop/, a finite abelian group, because H2.X;OX / D

H3.X;OX /D 0. Artin and Mumford [8] used the Brauer group to give some of the
first examples of smooth projective unirational threefolds which are not rational. They
found a threefold with nontrivial 2–torsion in Br.Xtop/, whereas the topological Brauer
group is a birational invariant of smooth projective complex varieties [8, Proposition 1]
and Br.Pn

top/D 0.
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1.2 A problem of Grothendieck

Problem 1.3 (Grothendieck) Determine when Br.X /! Br0.X / is surjective.

Here is a summary of known results.

� If X is a scheme having an ample family of line bundles, then Gabber, in
unpublished work, and de Jong [31] have each shown that Br.XKet/D Br0.XKet/.
This is the case, for instance, for quasiprojective schemes over affine schemes.

� The map is not necessarily surjective for nonseparated schemes, by an example
of Edidin, Hassett, Kresch and Vistoli [20]. The example Q is an affine quadric
cone glued to itself along the smooth locus. In this case, Br.QKet/ D 0, while
Br0.QKet/D Z=2.

� The best result for complex spaces is the result of Schröer [47] which gives a
purely topological condition that ensures Br.Xan/D Br0.Xan/. This condition
applies to complex Lie groups, Hopf manifolds and all compact complex surfaces
except for a class which conjecturally does not exist, namely the class VII surfaces
that are not Hopf surfaces, Inoue surfaces, or surfaces containing a global
spherical shell. Some special cases of Schröer’s Theorem had been obtained by
Iversen [29], Hoobler [26], Berkovič [13], Elencwajg and Narasimhan [21], and
Huybrechts and Schröer [28].

� Serre [24, Théorème 1.6] showed that if X has the homotopy type of a finite
CW–complex, then

Br.Xtop/D Br0.Xtop/D H3.X;Z/tors:

In particular, this holds for open sets in compact manifolds.

� By the Oka principle, the analytic and topological classification of PUn –torsors
is the same over a Stein space. Thus, if X is a (separated) Stein space having
the homotopy type of a finite CW–complex, the result of Serre shows that

Br.Xan/D Br0.Xan/:

In particular, this holds for Stein submanifolds of compact complex manifolds.

� As a negative example, if X DK.Z=m; 2/, then Br.Xtop/D 0, while

Br0.Xtop/D Z=mI

see Corollary 5.10.
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1.3 The prime divisors problem

Definition 1.4 For any class ˛ 2Br0.X /, the period of ˛ , denoted per.˛/, is the order
of ˛ in the group Br0.X /.

In general, the degree of an Azumaya algebra A is the positive square root of its rank
as an OX –module. This is a locally constant integer, and hence a class in H0.X;Z/.
Henceforth, for simplicity, assume that X is connected, so that deg.A/ 2 Z. It is a
general fact that if the class of A is ˛ 2 Br.X /, then

per.˛/ j deg.A/:

Indeed, A determines a PGLn –torsor, where nD deg.A/. The class ˛ 2Br.X/�Br0.X/
is the coboundary of the torsor

H1.X;PGLn/! H2.X;Gm/;

and this factors through
H2.X; �n/! H2.X;Gm/;

assuming that n is prime to the characteristics of the residue fields of X . For details,
see [24].

Definition 1.5 If ˛ 2 Br.X /, define the index of ˛ to be

ind.˛/D gcdfdeg.A/ jA 2 ˛g:

If ˛ 2 Br0.X /nBr.X /, set ind.˛/DC1.

In general, per.˛/ j ind.˛/.

Problem 1.6 Do per.˛/ and ind.˛/ have the same prime divisors?

The following is a summary of some known results.

� If k is a field, ˛ 2 Br.k/ D Br0.k/, then the period and index of ˛ have the
same prime divisors.

� If X D Spec A is an affine scheme, then Gabber has shown that per.˛/ and
ind.˛/ have the same prime divisors.

� An unpublished argument of Saltman using extension of coherent sheaves shows
that the period and index have the same prime divisors for Brauer classes on
regular Noetherian irreducible schemes.

We prove below, in Corollary 3.2, that if X is a finite CW–complex, and if ˛ 2 Br.X /,
then per.˛/ and ind.˛/ have the same prime divisors.
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1.4 The period-index problem

A well-known problem for fields, where per.˛/ and ind.˛/ have the same prime
divisors, is to bound the smallest integers e.˛/ such that ind.˛/ j per.˛/e.˛/ .

Conjecture 1.7 (Colliot-Thélène) Let k be either a Cd –field or the function field of
a d –dimensional variety over an algebraically closed field. Let ˛ 2Br.k/, and suppose
that per.˛/ is prime to the characteristic of k . Then

ind.˛/ j per.˛/d�1:

The following is a partial list of known results.

� If S is a surface over an algebraically closed field k , and ˛ 2 Br.k.S//, then
de Jong [32] showed that per.˛/D ind.˛/.

� If S is a surface over Fq , and if ˛ 2 Br.Fq.S//, then ind.˛/ j per.˛/2 , by
Lieblich [37].

� If C is a curve over Qp , and if ˛ 2 Br.Qp.C // has period prime to p , then
ind.˛/ j per.˛/2 by Saltman [46].

A few other results are known, but higher-dimensional cases remain elusive.

Problem 1.8 (Period–index) Fix X , and find an integer er such that

ind.˛/ j per.˛/er

for all ˛ 2 r1Br.X /, where r1Br.X / denotes the r –primary part of the Brauer group.

The main global result of which we are aware is for surfaces over algebraically closed
fields, where perD ind by Lieblich [38]. Additionally, the above-mentioned argument
of Saltman reduces the problem for smooth varieties over algebraically closed fields to
their function fields.

Theorems 4.1 and 4.6 give a solution to this problem for finite CW–complexes. In
dimension 4 a stronger bound than ours is possible via a direct argument using the
Atiyah–Hirzebruch spectral sequence.
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2 Twisted K–theory

In this section, we recall the twisted topological complex K–theory spectrum KU.X /˛
for any space X and any class ˛ 2 H3.X;Z/tors . This spectrum is given by Atiyah
and Segal [9, Section 4], generalizing work of Donovan and Karoubi [17]. For X

a CW–complex and ˛ in the Brauer group, we introduce the twisted algebraic K–
theory spectrum K˛.X /, which is the algebraic K–theory of the category of ˛–twisted
topological vector bundles on X . There is a map of spectra K˛.X /!KU.X /˛ , which
induces an isomorphism K˛

0
.X /

'
! KU0.X /˛ when X is compact. When X is a

complex Noetherian scheme, we obtain in this way

K˛.X /!K˛.X /! KU.X /˛;

where K˛.X / is the algebraic K–theory of locally free and finite rank ˛–twisted
OX –modules on X . Since KU.X /˛ satisfies descent, the map above produces a map
of spectra

aKetK˛.X /! KU.X /˛;

where aKetK˛ is the étale-sheafification of the presheaf of spectra K˛ .

Having dealt with the foundational questions to our satisfaction, we twist the unit map
S!KU following [3]. Finally, we use the rank map for ˛–twisted K–theory to define
an approximation to the index of ˛ . If X is a finite CW–complex, this approximation
is precisely the index, which allows us to use twisted K–theory to settle the prime
divisor problem and, when combined with the twisted unit map, to provide estimates
for the period-index problem. These applications will be the content of the following
two sections.

2.1 Twists of KU

Definition 2.1 Let ˛ 2 H3.X;Z/. Let KU.X /˛ be the twisted K–theory spectrum
constructed in Atiyah and Segal [9] and let KU. � /˛ be the contravariant functor on
spaces mapping to X given by

V 7! KU.V /˛jV :

Note that there is an ambiguity of sign in the construction of KU.X /˛ . We choose the
following normalization: use the construction that results in d˛

3
.1/D ˛ in the Atiyah–

Hirzebruch spectral sequence for twisted KU–theory (see [10, Proposition 4.6]). This
sign ambiguity has no bearing on the period-index problem of this paper. The methods
will always produce a positive integer, the index, that is the same for ˛ and �˛ .

We use the following properties of KU. � /˛ .
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Proposition 2.2 The presheaf of spectra KU. � /˛ commutes with homotopy colimits
(taken in spaces) of spaces over X . In particular, if V�!X is a hypercover of X , then

KU.X /˛
�

! holim� KU.V�/˛:

That is, KU. � /˛ satisfies descent.

Proof Suppose that X is a CW–complex, and that fPngn2Z is a spectrum over X . It
suffices here for this to mean simply that there are fibrations �nW Pn!X with fixed
distinguished sections and fixed weak equivalences �X Pn 'X Pn�1 , where the weak
equivalence induces weak equivalences on the fibers over X . So, Pn is an �–spectrum
over X . Atiyah and Segal [9, Section 4] show that twisted K–theory is represented
by just such a spectrum. To prove the proposition, it suffices to show that the sections
of the spectrum over a space Y !X form an �–spectrum, and to show that taking
spaces of sections commutes with homotopy colimits.

Now, suppose that i 7! Yi is an I –diagram of CW–complexes, each mapping to X ,
and suppose that hocolimi Yi!X is a weak equivalence.

For an arbitrary CW–complex, W , let Map�.W;Pn/ denote the mapping spaces
over � . It is the pullback

Map�.W;Pn/ //

��

Map.W;Pn/

��
� // Map.W;X /;

which is also a homotopy pullback since Pn! X is a fibration. There is a natural
homotopy equivalence holimi Map.Yi ;Z/!Map.X;Z/ for an arbitrary space Z ;
by application of holimi.Yi ; � / to the diagram

Pn

��
� // X

and use of the Fubini Theorem for homotopy limits, we deduce that

Map�.X;Pn/! holimi Map�.Yi ;Pn/

is a weak equivalence. Now it suffices to prove that

Map�.X; �X Pn/'�Map�.X;Pn/;

which follows since �X Pn is a limit.

Geometry & Topology, Volume 18 (2014)
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This implies that KU. � / satisfies descent since hocolim�.V�/' X by Dugger and
Isaksen [19].

Proposition 2.3 Let X be a topological space and let ˛ 2 H3.X;Z/tors . There is an
Atiyah–Hirzebruch (or descent) spectral sequence

Ep;q
2
D Hp.X;Z.q=2//) KUpCq.X /˛

with differentials d˛r of degree .r;�r C 1/, which converges strongly if X is a finite-
dimensional CW–complex. The edge map KU0.X /˛ ! H0.X;Z/ is the index map
(or rank map, or reduced norm map).

Proof This is [9, Theorem 4.1].

We will actually use a reindexed, Bousfield–Kan-style, version of this spectral sequence:

Ep;q
2
D Hp.X; �qKU/) �q�pKU.X /˛

The differentials are d˛r of degree .r; r � 1/.

Proposition 2.4 The differential

d˛3 W H0.X;Z/! H3.X;Z/

sends 1 to ˛ .

Proof This is [10, Proposition 4.6], where we have altered the construction to change
the sign. See also Antieau [4] for the analogous computation in twisted algebraic
K–theory.

2.2 Twisted algebraic K–theory

Throughout, if A is an Azumaya algebra over X , an A–module will mean a left
A–module whose total space is a finite-dimensional complex topological vector bundle
over X . The category of A–modules and A–module homomorphisms will be denoted
VectA . The category VectA is a topological category with direct sum, so by Segal [48]
it has an algebraic K–theory spectrum KA.X /.

If ˛ 2 H3.X;Z/tors , there is also a category Vect˛ of ˛–twisted finite-dimensional
complex vector bundles (see for instance Căldăraru [16] or Karoubi [35]). Let K˛.X /
be the K–theory of this topological category with direct sum. If E is an ˛–twisted
vector bundle, then its sheaf of endomorphisms is an Azumaya algebra with class ˛ .
The following statement gives the converse.
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Proposition 2.5 If A is an Azumaya algebra of degree n with class ˛ , then
AŠ End.E/ for some ˛–twisted vector bundle E of rank n. The ˛–twisted sheaf is
unique up to tensoring with untwisted line bundles.

Proof See [16, Theorem 1.3.5] or [35, Section 3].

Proposition 2.6 Tensoring with E� , the dual of E , induces an equivalence of cate-
gories Vect˛! VectA .

Proof See [16, Theorem 1.3.7] or [35, Section 3].

Proposition 2.7 If A and B are Brauer-equivalent Azumaya algebras over X , then
VectA and VectB are equivalent categories.

Proof This follows from the previous two propositions.

If X is a finite CW–complex, the twisted topological K–group KU0.X /˛ may be
identified with the Grothendieck group of left A–modules.

Proposition 2.8 If X is compact and Hausdorff, and if A is an Azumaya algebra
on X with class ˛ (so that ˛ is torsion), then KA

0
.X /ŠKU0.X /˛ . This isomorphism

is uniquely defined up to the natural action of H2.X;Z/ on the left.

Proof This follows from [9, Section 3.1]. In fact, they show that KU0.X /˛ is
isomorphic to the Grothendieck group of finitely generated projective left �.X;A/–
modules. The isomorphism is not unique, but is unique up to tensoring with line
bundles. The proof of Swan’s Theorem [50] extends to show that the categories of
finitely generated projective left �.X;A/–modules and left A–modules that are finite-
dimensional vector bundles are equivalent; see also Karoubi [35, Sections 4, 8.3].

Corollary 2.9 If X is a finite CW–complex and if A is an Azumaya algebra on X ,
there is a natural map KA.X /! KU.X /˛ inducing an isomorphism in degree zero.
This map is uniquely defined up to the action of H2.X;Z/ on the left.

Proof The isomorphism of the proposition is induced by a map from the classifying
space of the topological category VectA to the zero-space of KU.X /˛ ; see the proof
of [9, Definition 3.4]. By the standard adjunction between � –spaces and spectra in
Segal [48], this induces a map KA.X /! KU.X /˛ .
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Proposition 2.10 If X is a countable CW–complex, and if A is an Azumaya algebra
with class ˛ 2 Br.Xtop/, then there is a map of spectra

KA.X /! KU.X /˛:

This map is uniquely defined up to the natural action of H2.X;Z/ on the left.

Proof First we give the proof for countable d –dimensional CW–complexes X . Sup-
pose that we have constructed maps KA.X /!KU.X /˛ for all finite CW–subcomplexes
of X and all countable .d � 1/–dimensional CW–subcomplexes of X . Let X be a
countable d –dimensional CW–complex, let Xd�1 be its .d � 1/–skeleton, and let

Xd�1 DXd;0 �Xd;1 �Xd;2 � � � � DX

be an inductive construction of X , where Xd;k is constructed from Xd;k�1 by attaching
a single cell. Assume we have constructed KA.Xd;k/! KU.Xd;k/˛ . Then, Xd;kC1

is the homotopy pushout

Sd�1 //

��

Xd;k

��
Dd // Xd;kC1:

Since KU. � /˛ commutes with homotopy colimits, we get a homotopy pullback diagram
of spectra by Proposition 2.2:

KU.Xd;kC1/˛ //

��

KU.Dd /˛

��

KU.Xd;k/˛ // KU.Sd�1/˛

By the induction hypothesis, KA.Xd;kC1/ fits into a homotopy commutative diagram

KA.Xd;kC1/ //

��

KU.Dd /˛

��

KU.Xd;k/˛ // KU.Sd�1/˛:

So, by the property of the homotopy pullback, we get a map

KA.Xd;kC1/! KU.Xd;kC1/˛:

Geometry & Topology, Volume 18 (2014)



The period-index problem for twisted topological K–theory 1129

Inductively, we construct a map between sequences of spectra

KA.Xd;k/ //

��

KU.Xd;k/˛

��
KA.Xd;k�1/ // KU.Xd;k�1/˛:

The spectrum KA.X / maps to the homotopy limit of the left-hand tower, and hence to
the homotopy limit of the right-hand tower, which is KU.X /˛ by Proposition 2.2. The
case where X is countable and infinite-dimensional is proved in the same way.

2.3 Comparison maps

Let X be a Noetherian complex scheme and let ˛ 2 Br.XKet/. Let aKetK˛ be the
étale sheafification of the ˛–twisted algebraic K–theory presheaf K˛ , as studied in
Antieau [3]. Let KU.X /˛ be the twisted topological K–theory associated to the image
of ˛ by Br.XKet/! Br.Xtop/.

Theorem 2.11 There is a map of hypersheaves of spectra

aKetK˛! KU. � /˛

on the small étale site of X , and this map induces an isomorphism on 0–homotopy
sheaves Z

'
! Z. This map is unique up to the action on the left of Pic.X /.

Proof Let A be an algebraic Azumaya algebra with class ˛ 2 Br.XKet/. Since any
open subset of X is triangulable, there is a map of presheaves of spectra on the small
étale site of X

KA
! KU. � /˛

by Proposition 2.10, where KA.U / is the algebraic K–theory of topological left
A–modules which are vector bundles over U . There is a map of presheaves of spectra

KA
!KA;

where KA is the presheaf of K–theory spectra of algebraic A–modules which are
locally free and finite rank as coherent OX –modules. Since KU. � /˛ satisfies descent
for hypercovers by Proposition 2.2, it follows by Dugger, Hollander and Isaksen [18]
that the map

KA
!KA

! KU. � /˛

factors through the sheafification aKetKA of K˛ . By [38; 16; 3], there are natural weak
equivalences of presheaves K˛ ' KA unique up to an action of Pic.X / on the left.
The theorem follows.
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2.4 Twisting units

This section is technical, but it provides the key tool for our main period-index result:
the twisted unit morphism.

Let S be the sphere spectrum. In [42, Corollary 6.3.2.16], drawing on work of Elmen-
dorf, Kriz, Mandell and May [22], Hovey, Shipley and Smith [27] and others, Lurie
constructs a symmetric monoidal category structure on ModS , the 1–category of
S–modules (or, equivalently, the 1–category of spectra). The associative algebras in
ModS are shown to model A1–ring spectra, and the commutative algebras in ModS

are shown to model E1–ring spectra (see the introduction to Section 7.1 of [42]).

Let R be a commutative S–algebra (an algebra object in ModS ) and let LineR denote
the 1–groupoid in ModR generated by R–modules equivalent to R. Finally, set
BGL1RD jLineRj, the geometric realization. To a map of spaces f W X ! BGL1R,
one associates a homotopy class of maps of simplicial sets f W Sing.X / ! LineR ,
where Sing.X / is the simplicial set of simplices in X . This should be thought of as a
locally-free rank one line bundle over the constant sheaf R on X .

Given f W Sing.X /! LineR , in Ando, Blumberg, Gepner, Hopkins and Rezk [2], an
R–module X f , called the Thom spectrum of f , is defined as

X f
D colim.Sing.X /! LineR!ModR/I

see also [1]. This is the colimit of the Sing.X /–diagram f in the 1–category ModR .
See Lurie [40, Section 1.2.13 and Chapter 4] for definitions and properties of these
colimits. In [40, Section 4.2.4], Lurie shows that these colimits agree with the usual
notion of homotopy colimits when the diagram takes values in the nerve of a simplicial
model category.

Definition 2.12 The f –twist of R is the internal dual to X f :

R.X /f DModR.X
f ;R/

Let R. � /f be the associated presheaf of spectra on X .

Example 2.13 The space BGL1KU is equivalent to

K.Z=2; 1/�K.Z; 3/�BBSU

and consequently classes in H3.X;Z/ give rise to twisted K–theory spectra. It is
explained by Ando, Blumberg and Gepner in [1, Section 5] how this agrees with the
Atiyah–Segal construction.
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Let ShvSp.X /
^ denote the 1–category of hypersheaves of spectra on X . This

category can be constructed from presheaves of spectra on X by taking the full
subcategory of presheaves which are local with respect to 1–connective maps on X ;
see Lurie [41, Section 1] and [40, Lemma 6.5.2.12]. For another perspective, see
Jardine [30]. These are related by [40, Proposition 6.5.2.14].

Example 2.14 By Proposition 2.2, KU. � /˛ is a hypersheaf of spectra.

In general, if uW R! T is a map of commutative S–algebras, and if f W X ! BGL1T
is a map, it is not necessarily possible to find an R–module M in ShvSp.X /

^ together
with a map M! R. � /f restricting to u on small open sets. For instance, this is never
the case for the unit uW S! KU and the nontrivial twists KU. � /˛ for ˛ 2 H3.X;Z/.

We show now, however, that if ˛ 2 H3.X;Z/ is torsion, then there is a finite cover
of S, say T, a map uW T!KU extending S!KU, and a twist, uˇW T. � /ˇ!KU. � /˛
derived from a map ˇW X ! BGL1T.

Definition 2.15 Let SŒZ=r � denote the algebraic K–theory of the symmetric monoidal
category rSets of finite disjoint unions of Z=r with the faithful Z=r action and Z=r –
equivariant maps. The spectrum SŒZ=r � is a commutative S–algebra.

Lemma 2.16 The homotopy groups of SŒZ=r � are

�qSŒZ=r �Š �s
q˚�

s
q.BZ=r/;

where BZ=r is the classifying space of Z=r . Moreover, �s
q.BZ=r/ maps surjectively

onto the r –primary part of �s
q .

Proof The first statement follows from the Barratt–Kahn–Priddy–Quillen Theorem
(see Thomason [52, Lemma 2.5]), which says that SŒZ=m� is equivalent to the spec-
trum †1.BZ=m/C . The second statement follows from the Kahn–Priddy Theorem;
see [33; 34].

Lemma 2.17 For any r , the unit map S!KU factors through S! SŒZ=r �. And, the
map SŒZ=r �! KU is a map of S–algebras.

Proof This follows by embedding Z=r into C� as the r th roots of unity and then
applying Segal’s construction [48] to obtain S! SŒZ=r �! ku. Now, compose with
ku! KU. That KU is in fact a commutative S –algebra is [22, Theorem 4.3].

Proposition 2.18 There is a natural map

K.Z=r; 2/! BGL1SŒZ=r �:
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Proof The group Z=r acts naturally as monoidal autoequivalences of the symmetric
monoidal category rSets and so Z=r acts naturally on SŒZ=r �. This gives a map
BZ=r ! GL1SŒZ=r �. By delooping, we get the desired map.

Proposition 2.19 Let ˛ 2 H3.X;Z/tors be r –torsion and lift ˛ to � 2 H2.X;Z=r/.
Then, there is a natural map

SŒZ=r �. � /� ! KU. � /˛

of presheaves of spectra restricting locally to the map of Lemma 2.17.

Proof It suffices to check that the deloopings

K.Z=r; 1/ //

ˇ

��

GL1SŒZ=r �

��
K.Z; 2/ // GL1KU

commute up to homotopy. To check this we can check on maps out of finite CW–
complexes. Let 
 2 H1.X;Z=r/ be a Z=r –torsor, then the corresponding auto-
morphism of the constant sheaf SŒZ=r � is given by tensoring with 
 . The induced
automorphism of the constant sheaf KU is tensoring with the complex line bundle
induced by 
 . On the other hand H1.X;Z=r/!H2.X;Z/ sends 
 to c1.L/, where L
is the complex line bundle associated to 
 . The corresponding automorphism of KU
is given by tensoring with L, by construction [1].

Corollary 2.20 Let ˛ 2 H3.X;Z/tors be r –torsion and lift ˛ to � 2 H2.X;Z=r/.
Then there is a spectral sequence

E2
p;q D Hp.X; �qSŒZ=r �/) �q�pSŒZ=r �^.X /� ;

where SŒZ=r �^. � /� is the hypersheaf associated to the presheaf SŒZ=r �. � /� . The
differentials d�

k
are of degree .k; k � 1/. There is a morphism of spectral sequences

.Hp.X; �qSŒZ=r �/) �q�pSŒZ=r �^.X /� /! .Hp.X; �qKU/) �q�pKU.X /˛/:

Proof This is the standard descent spectral sequence. Note that SŒZ=r �. � /�!KU. � /˛
factors through hypersheafification SŒZ=r �. � /� ! SŒZ=r �^. � /� because KU. � /˛ is a
hypersheaf by Proposition 2.2.
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2.5 The K–theoretic index

There are rank maps forming a commutative diagram

K˛
0
.X / //

��

Z

KU0.X /˛ // Z:

The index ind.˛/ is the positive generator of the image of the top arrow, and we define
the K–index indK.˛/ to be the positive generator of the image of the bottom arrow.
We may view the rank map as the pullback of an ˛–twisted virtual bundle to a point,
that is to say the bottom map may be written as KU0.X /˛! KU0.�/0 Š Z. We may
compare the Atiyah–Hirzebruch spectral sequences for the twisted KU–theory of X

and � to arrive at the following conclusion.

Proposition 2.21 Let X be a finite-dimensional connected CW–complex and let
˛ 2 H3.X;Z/tors . Then indK.˛/ is the positive generator of the subgroup E0;0

1 of
the group E0;0

2
D H 0.X;Z/ D Z in the Atiyah–Hirzebruch spectral sequence of

Proposition 2.3.

Note that under KA
0
.X /Š K˛

0
.X /, the map KA

0
.X /! Z is the reduced norm map.

It sends an A–module to the quotient of its rank as a complex vector bundle by the
degree of A.

Lemma 2.22 For any ˛ 2 H3.X;Z/tors ,

per.˛/ j indK.˛/ j ind.˛/:

Moreover, ind.˛/ is equal to

gcdfdeg.A/ j ŒA�D ˛g:

Proof The statement about divisibilities follows from the commutative diagram. The
second statement follows from Propositions 2.5 and 2.6.

Lemma 2.23 If X is a finite CW–complex, then indK.˛/D ind.˛/.

Proof This follows immediately from Proposition 2.8.
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Example 2.24 Suppose that X is a finite CW–complex of dimension no greater
than 6, and suppose that H 5.X;Z/ is torsion free. Let ˛ 2 H3.X;Z/tors . Then
ind.˛/ D indK.˛/ D per.˛/. It suffices to compute d˛

5
.per.˛//. This lands in a

subquotient of H 5.X;Z/. The differential

d˛3 W H2.X;Z/! H5.X;Z/

is zero. Indeed, the differential is torsion since ˛ is torsion, so it has torsion image,
whereas H5.X;Z/ is nontorsion. As there are no differentials leaving H5.X;Z/,
E5;�4

5
D H5.X;Z/. The element d˛

5
.per.˛// is some element of H5.X;Z/. It must

be a torsion element since indK.˛/D ind.˛/ is finite as X is a finite CW–complex,
and consequently it is zero. This gives ind.˛/D indK.˛/D per.˛/.

In the algebraic case, there is an analogue of the intermediary indK that sits between
per and ind.

Definition 2.25 The étale index eti.˛/ of a class ˛ 2 Br0.XKet/ was defined in [3] as
the positive generator of the rank map aKetK˛0.X /! Z.

Corollary 2.26 For X a scheme and ˛ 2 Br.XKet/,

indK.˛top/ j eti.˛/:

Proof This follows from Theorem 2.11.

3 The prime divisor problem for topological spaces

In this short section we prove that for a finite CW–complex X and for ˛ 2 Br.X /, the
primes dividing per.˛/ and ind.˛/ agree.

Let A be a finitely-generated abelian group and r a positive integer, not necessarily
prime. We say a 2A is r –primary if rmaD 0 for some positive integer m. We say A

is r –primary if all the elements of A are r –primary. For a given positive integer r ,
the class of r –primary finitely-generated abelian groups is a Serre class; it is closed
under taking subobjects and the formation of quotients and extensions. We denote
this Serre class by Cr . There is a mod-Cr Hurewicz Theorem (see Serre [49]) which
implies that if X is a simply connected CW–complex and if every group �n.X / with
n > 1 is r –primary, then so too is every homology group Hn.X;Z/ with n > 0. In
particular, using the universal coefficients theorem, we know that Hn.K.Z=r; 2/;Z/ is
r –primary for all n> 0.
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Since K.Z=r; 2/ is the universal space for r –torsion classes in H3. � ;Z/, we can exploit
the r –primary nature of the cohomology here to give a general statement concerning
the differentials in the Atiyah–Hirzebruch spectral sequence of Proposition 2.21.

Theorem 3.1 If X is a CW–complex and if ˛ 2 Br.X /, then indK.˛/ and per.˛/
have the same prime divisors.

Proof Since per.˛/ j indK.˛/, it suffices to show that any prime divisor of indK.˛/

is also a prime divisor of per.˛/.

That indK.˛/ is finite follows from the fact that ˛ is in the Brauer group. Let per.˛/D r

so that ˛ is the image under the unreduced Bockstein map of a class � 2 H2.X;Z=r/.
In particular, ˛ 2 H3.X;Z/ is the pullback of ˇ 2 H3.K.Z=r; 2/;Z/ under � .

We recall from Proposition 2.21 that indK.˛/ is a generator for the group of permanent
cycles in E0;0

2
. The map � induces a map of Atiyah–Hirzebruch spectral sequences,

which we denote by †:

IE
p;q
2
D Hp.X;Z.q=2// +3 KUpCq.X /˛

IIE
p;q
2
D Hp.K.Z=r; 2/;Z.q=2// +3

†

OO

KUpCq.K.Z=r; 2//ˇ

Observe that †W IIE
0;0
2
D Z! IE

0;0
2
D Z is simply the isomorphism on H0 induced

by � . Subsequently, we find IE
0;0
n � IE

0;0
2

and similarly IIE
0;0
n � IIE

0;0
2

; for dimensional
reasons there are no differentials whose target is E0;0

n in either spectral sequence. We
are therefore justified in writing

(1) IIE0;0
n Dm0nZ� IE0;0

n DmnZ� IE
0;0
2
D Z;

where mn and m0n are chosen to be nonnegative.

We claim that the prime factors of the integer m0n are prime factors of r . By definition
we have exact sequences

0 // IIE
0;0
nC1
Dm0

nC1
Z // IIE

0;0
n Dm0nZ

dn
// IIE

n;�nC1
n :

Here IIE
n;�nC1
n is a subquotient of IIE

n;�nC1
2

D Hn.K.Z=r; 2/;Z.�nC1
2
//, and since

the latter is r –primary, so is the former. In particular, the image of dn in the above
sequence is r –primary, but this image is isomorphic to the group Z=.m0

nC1
=m0n/, and

consequently m0
nC1

=m0n is a positive integer whose prime factors all divide r . The
claim follows by induction.
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From (1), we conclude that mn jm
0
n and so the prime factors of mn number among the

prime factors of r . Finally, we observe that since indK.˛/ is finite we have a nonzero
group on the E1–page, that is

0 ¨ IE0;0
1 Š indK.˛/Z� IE

0;0
2
D Z:

It follows that indK.˛/DmN for some sufficiently large N , and so we conclude that
the prime numbers dividing indK.˛/ also divide r D per.˛/, as required.

Corollary 3.2 If X is a finite CW–complex, and if ˛ 2 Br.X /, then the primes
dividing per.˛/ and ind.˛/ agree.

Proof This follows immediately from the theorem, since indK.˛/D ind.˛/.

4 The period-index problem for topological spaces

The following theorem provides our main upper bound.

Theorem 4.1 Suppose that X is a d –dimensional CW–complex and let

˛ 2 H3.X;Z/tors:

Then, indK.˛/ is finite, and

indK.˛/

ˇ̌̌̌ d�1Y
jD1

e˛j ;

where e˛j is the exponent of �s
j .BZ= per.˛//, where �s

j denotes stable homotopy.

Proof Let � be a lift of ˛ to H2.X;Z=r/, where rDper.˛/. Then by Proposition 2.19
there is a map of presheaves of spectra SŒZ=r �.X /�!KU.X /˛ . Consider the spectral
sequence of Corollary 2.20

Ep;q
2
D Hp.X; �qSŒZ=r �/) �q�pSŒZ=r �^.X /� :

The differentials d�
k

are of degree .k; k�1/. The groups �qSŒZ=r � are �s
q˚�

s
qBZ=r

by Lemma 2.16. Write `˛q for the exponent of �qSŒZ=r �. Because the dimension of X

imposes an upper bound on where we may find nonzero cohomology groups, the last
possible nonzero differential coming from E0;0 is dd . Therefore we are concerned
with �qSŒZ=r � only up to q D d � 1. The differential d�

k
leaving E0;0

r lands in a
group of exponent at most `˛

k�1
. So

d�1Y
jD1

`˛j
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is a permanent cycle in the twisted spectral sequence for SŒZ=m�^.X /� . Since there
is a morphism of the spectral sequence for SŒZ=m�^.X /� to KU.X /˛ , it follows that
the product is a permanent cycle in the twisted spectral sequence for KU.X /˛ . By
Theorem 3.1, indK.˛/ divides the r –primary part of

d�1Y
jD1

`˛j :

By the second part of Lemma 2.16, the r –primary part of `˛j is the exponent of
�s

j .BZ=r/.

Corollary 4.2 If X is a finite CW–complex of dimension d , then Theorem 4.1 holds
with ind.˛/ in place of indK.˛/.

Proof This follows from Lemma 2.22.

Corollary 4.3 Let X be a Stein space having the homotopy type of a finite CW–
complex. Then Theorem 4.1 holds with the analytic index in place of indK.˛/.

Proof This follows from the Oka principle [23].

We now analyze the integers e˛j in a certain range in the particular case where per.˛/
is a prime power `n .

Proposition 4.4 Let 0< k < 2`� 3. Then the `–primary component �s
k
.`/ of �s

k
is

zero, and also
�s

2l�3.`/D Z=`:

Proof A proof of this can be found by Ravenel in [44, Theorems 1.1.13–14].

Proposition 4.5 For 0 < k < 2` � 2, the stable homotopy group �s
k
.BZ=`n/ is

isomorphic to Z=`n for k odd and zero for k even.

Proof This is [3, Proposition 4.2].

Theorem 4.6 Let X be a d –dimensional CW–complex, let ` be a prime such that
2` > d C 1 and let ˛ 2 Br0.X /D H3.X;Z/tors satisfy per.˛/D `k ; then

indK.˛/ j per.˛/Œ
d
2
�:

Proof This theorem follows immediately from Theorem 4.1 and the previous two
propositions.
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Corollary 4.7 Let X be a finite CW–complex of dimension d , let ` be a prime such
that 2` > d C 1, and suppose ˛ 2 Br.X /D H3.X;Z/tors satisfies per.˛/D `k . Then

ind.˛/ j per.˛/Œd=2�:

Corollary 4.8 Let X be a d –dimensional Stein space having the homotopy type of a
finite CW–complex and let ` be a prime such that 2` > d C 1. If ˛ 2 Br.X / satisfies
per.˛/D `k . Then

ind.˛an/ j per.˛/Œd=2�;

where ind.˛an/ is the `–part of the greatest common divisor of the degrees of all
analytic Azumaya algebras in the class ˛ .

Remark 4.9 The Atiyah–Hirzebruch spectral sequence says that for X a finite CW–
complex of dimension at most 4, perD ind. Therefore, the theorem is not sharp in
general.

5 Lower bounds on the index

We first establish a number-theoretic result that will apply in the study of the cohomology
of PUn . We then consider the problem of finding a degree n representative for a class
in Br0.X / D H3.X;Z/tors , which is the same as a factorization of X ! K.Z; 3/ as
X ! BPUn! K.Z; 3/. We obtain a family of obstructions to such a factorization
that can most easily be computed after application of the reduced loop space functor,
�. � /, and we then use this family to furnish examples.

5.1 Calculations in elementary number theory

Definition 5.1 We define an integer-valued function mW N �N!N by

m.a; s/D gcd
��

a

i

��s

iD1

;

where the binomial coefficient
�
a
i

�
D 0 if i > a.

We observe that m.a; s/ is a decreasing function of s , in that m.a; sC1/ jm.a; s/ for
all s , it begins with m.a; 1/D a and stabilizes at m.a; a/D 1.

In the following lemma and subsequently, the notation Œx� will be used to denote the
integral part of the real number x .
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Lemma 5.2 Let p be a prime number and let n, s be positive integers. Write
c Dmaxfn� Œlogp s�; 0g, then m.pn; s/D pc .

Proof It suffices to determine the power of p dividing m.pn; s/.

A theorem of Kummer [36] says that the exponent of p dividing
�
aCb

b

�
is equal to the

number of carries that arise in the addition of a and b in base–p arithmetic. From
this, we deduce that the exponent of p dividing

�pn

k

�
is at least n� Œlogp k�, although

it may be more. For k D pj , where j � n, Kummer’s result says this inequality is
in fact an equality. Since the exponent of p dividing m.pn; s/ is the infimum of the
exponents of p dividing f

�pn

k

�
gs
kD1

, the stated result follows.

Lemma 5.3 Let p be a prime number and let a be a positive integer relatively prime
to p . Let s , n be positive integers. Then the power of p dividing m.apn; s/ coincides
with the power of p dividing m.pn; s/.

Proof It suffices to prove this lemma for s � pn , because m.pn;pn/ D 1 and
m.apn; sC 1/ jm.apn; s/ for all s , so that if the result holds for s D pn , it will hold
trivially for s > pn .

Assume therefore that s � pn . We claim that the power of p dividing
�apn

k

�
coincides

with that dividing
�pn

k

�
for all k � s . If 0 � r < k , then apn � r is not divisible

by pnC1 , for otherwise we should have r divisible by pn , which can happen within
the constraint r <pn only if r D 0, in which case apn�r D apn which is not divisible
by pnC1 by assumption.

In the binomial expansion�
apn

k

�
D
.apn/.apn� 1/ � � � .apn� kC 1/

k!
;

the power of p dividing a term apn � r on the top row is no greater than pn and
therefore coincides with the power of p dividing r and also with the power of p

dividing pn � r . Comparing, term by term, we see the power of p dividing
�apn

k

�
agrees with that dividing�

pn

k

�
D

pn.pn� 1/ � � � .pn� kC 1/

k!
:

It follows that the power of p dividing m.apn; s/ is the same as that dividing m.pn; s/,
as claimed.
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Corollary 5.4 For a positive integer a, with prime factorization aD p
n1

1
p

n2

2
� � �p

nr
r ,

and for a given positive integer s , we have

m.a; s/D

rY
iD1

p
maxfni�Œlogpi

s�;0g

i :

Proof Once one observes that the only prime factors m.a; s/ may have are the primes
dividing m.a; 1/Da, this result follows immediately from the previous two lemmas.

Definition 5.5 Let b; s be positive integers and define n.b; s/ as follows. Write
b D

Qr
iD1 p

ni

i , where the pi are unique primes and the ni are positive integers. Then

n.b; s/D

rY
iD1

p
niCŒlogpi

s�

i :

Corollary 5.6 Let b , a and s be positive integers. If b jm.a; s/, then n.b; s/ j a.

Proof Write b D
Qr

iD1 p
ni

i as in the definition of n.b; s/. Write aD a0
Qr

iD1 p
n0

i

i ,
where a0 is relatively prime to b and where the n0i are not necessarily positive. Then

p
ni

i

ˇ̌
p

n0
i
�maxf0;Œlogpi

s�g

i ;

so that in particular ni C Œlogpi
s� < n0i , from which the claim follows.

Note that for fixed b , lims!1 n.b; s/D1.

5.2 Obstructions arising from the cohomology suspension

In this section we obtain obstructions to factorizations X ! BPUa ! K.Z; 3/ of
a–torsion classes by finding obstructions that survive an application of the loop space
functor �.X / ! PUa ! K.Z; 2/. Not only is the integral cohomology of PUa

easier to describe than that of BPUa , it also happens that the product structure on the
cohomology of PUa yields a number of obstructions without our having to resort to
cohomology operations.

To this end, we first describe what we need of the cohomology of PUa . Thereafter the
description of lower bounds on the index in Theorem 5.8 is straightforward, and it is
easy to use these bounds to give examples where the index is arbitrarily large compared
to the period.

For an element � in an abelian group H , let ord.�/ denote the order of � in H .
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Proposition 5.7 With integer coefficients, H1.PUa;Z/D 0 and H2.PUa;Z/D Z=a.
Fix a generator, � 2 H2.PUa;Z/. The following identity holds:

ord.�s/Dm.a; s/

In particular, ord.�a/D 1, so �a D 0.

Proof Consider the fibration

Ua! PUa! BS1:

The integral cohomology of Ua is

H�.Ua;Z/DƒZ.˛1; : : : ; ˛a/;

an exterior algebra in a generators with the degree of ˛s being 2s� 1, while

H�.BS1;Z/D ZŒ� �;

where the degree of � is 2. Consider the spectral sequence of the fibration

Hp.BS1;Hq.Ua;Z//) HpCq.PUa;Z/:

Then [11, Theorem 4.1] says that d2s.˛s/ D
�
a
s

�
� s . By induction and the algebra

structure on the spectral sequence, it follows that the class �s , which is the image of � s ,
has order as stated. It also follows from the spectral sequence that H1.PUa;Z/D 0

and H2.PUa;Z/D .Z=a/�, as claimed.

Recall that if ˛ 2 zHn.X;A/, then ˛ may be represented as a based map X !K.A; n/.
Applying the reduced loop space functor, �. � /, one obtains a natural transformation
of functors

�W zHn. � ;A/! zHn�1.�. � /;A/:

This natural transformation is termed the cohomology suspension.

From the Serre spectral sequence associated with the fibration PUa! EPUa! BPUa

it follows that H3.BPUa;Z/ is isomorphic to the group Z=a, generated by a class z�,
which may be chosen in such a way that �.z�/W �.BPUa/!�.K.Z; 3// is the distin-
guished generator �.

Theorem 5.8 Let z̨ 2 H3.X;Z/ be a cohomology class and let ˛ 2 H2.�X;Z/
be the cohomology suspension of this class. If z̨W X ! K.Z; 3/ factors through
z�W BPUa!K.Z; 3/ then ˛s is m.a; s/–torsion for all s � 1.
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Proof If z̨W X ! K.Z; 3/ factors as X ! BPUa! K.Z; 3/, then applying �. � /
shows that ˛W �.X /!K.Z; 2/ factors through �W PUa!K.Z; 2/. The result now
follows from our previous determination of the order of �.

Remark 5.9 For s D 1, this theorem indicates that ˛ is a–torsion. For s D a, it
means that ˛a is 1–torsion, ie zero, so ˛ must in particular be nilpotent.

Let ˇ denote the unreduced Bockstein, any one of the natural transformations of
cohomology groups that appears as the boundary map in the long exact sequence:

// zHi.X;Z/
�r
// zHi.X;Z/ // zHi.X;Z=r/

ˇ
// zHiC1.X;Z/ //

Each unreduced Bockstein is a natural transformation of cohomology functors, and
consequently may be represented by a map ˇW K.Z=r; i/!K.Z; i C 1/.

Corollary 5.10 The Bockstein ˇW K.Z=r; 2/!K.Z; 3/ does not factor through any
BPUa!K.Z; 3/.

Proof The following argument appears for r D 2 in Atiyah and Segal [9, Proposi-
tion 2.1.v]. The class ˇ has additive order r . Since K.Z=r; 2/ is simply connected
and since H2.K.Z=r; 2/;Z/ is torsion, it follows from the universal coefficients
theorem that zHi.K.Z=r; 2/;Z/ D 0 for i < 3. The usual arguments (see Mosher
and Tangora [43]) used to show that the cohomology suspension is an isomorphism
apply in this instance to show that the cohomology suspension H3.K.Z=r; 2/;Z/!
H2.K.Z=r; 1/;Z/ is an isomorphism. In particular � D �.ˇ/ is a generator of
H2.K.Z=r; 1/;Z/ D .Z=r/� . It is known that H�.K.Z=r; 1/;Z/ D H�.BZ=r;Z/
is ZŒ��=.r�/, see Weibel [53, Chapter 6], from which it follows that ord.�n/D r for
all n� 1. In particular � is not nilpotent in H�.K.Z=r; 1/;Z/.

Recall that a map f W X ! Y is an n–equivalence if �k.f /W �k.X /! �k.Y / is an
isomorphism for k < n and is surjective for k D n.

Lemma 5.11 Let f W X ! Y be an n–equivalence. Then,

f �W Hk.Y;Z/! Hk.X;Z/

is an isomorphism for k < n and is an injection for k D n.

Proof By the Whitehead Theorem (see Switzer [51, Theorem 10.28]), f induces an
isomorphism on integral homology in degrees less than n and a surjection in degree n.
Now apply the universal coefficients theorem:

0! Ext.Hk�1.Y /;Z/! Hk.Y;Z/! Hom.Hk.Y;Z/;Z/! 0

This completes the proof.
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Corollary 5.12 Let X be a CW–complex and let sknC1 X denote the .nC1/–skeleton
of X , so that i W sknC1 X !X is an n–equivalence by cellular approximation. Then

� sknC1 X !�X

is an .n�1/–equivalence, and so Hk.�X;Z/!Hk.� sknC1 X;Z/ is an isomorphism
for k < n� 1 an injection for k D n� 1.

Proof Taking loops sends n–equivalences to .n� 1/–equivalences.

Example 5.13 Fix a positive integer r . Consider the Eilenberg–Mac Lane space
K.Z=r; 2/. We know there is a class ˇ 2 H3.K.Z=r; 2/;Z/ such that the cohomol-
ogy suspension �.ˇ/ is a generator, � , for H2.K.Z=r; 1/;Z/. We also know that
ord.�n/D r for all n� 1, as was mentioned in the proof of Corollary 5.10.

If we take instead the CW–complex faW Xa;r D skaC1 K.Z=r; 2/!K.Z=r; 2/, with
a� 3, which may be assumed to be a finite CW–complex, then there are isomorphisms
arising from the inclusion of the skeleton

f �a W Hi.K.Z=r; 2/;Z/
'
! Hi.Xa;r ;Z/ for i < a;

�.fa/
�
W Hi�1.K.Z=r; 1/;Z/

'
! Hi�1.�.Xa;r /;Z/ for i < a:

Denote the class f �a .ˇ/ by 
a . Since a � 3, 
a has order r . Denote the cohomol-
ogy suspension �.
a/ by ˛ . The cohomology suspension being natural, we have
˛ D �.
a/ D f �.�.ˇ// D f �.�/. In particular, ˛j has order r provided it lies
in the range where f �a is an inclusion, ie provided it lies in Hi.�.Xa;r ;Z/ with
i � a � 1, which is to say j � a�1

2
. If therefore 
aW Xa;r ! K.Z; 3/ is to factor

Xa;r ! BPUN !K.Z; 3/, we must have r jm.N; Œa�1
2
�/, from which it follows that

n.r; Œa�1
2
�/ jN by Corollary 5.6. In particular

per.
a/D r but n.r; Œa�1
2
�/ j ind.
a/:

Letting a!1, we obtain in this way for a given r , a sequence of spaces Xa;r having
in each case a class 
a 2 H3.Xa;r ;Z/ such that per.
a/ D r but ind.
a/!1 as
a!1.

Example 5.14 Using the example and Theorem 4.1, one finds that for the class 
5

just considered on sk6 K.Z=2; 2/,

22
j ind.
3/ j 2

6:

In this range, �s
i for i D 1; : : : ; 5, the stable homotopy of BZ=2 is just the 2–primary

part of the stable homotopy of spheres, except for �s
4
BZ=2D Z=2.
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5.3 Remarks on the descent spectral sequence for K.Z=r; 2/

It was shown in Corollary 5.10 that ind.ˇ/D1 for the Bockstein ˇ 2Br0.K.Z=r; 2//.
Now, suppose that indK.ˇ/ were finite. Then, indK.
 / would be bounded by indK.ˇ/

for every r –torsion class 
 on every space X , whereas above there are examples of
finite CW–complexes and classes 
 with per.
 /D r and ind.
 /D indK.
 / arbitrarily
large. It follows that indK.ˇ/ is infinite.

Let ck be the nonnegative generator of E0;0
k
�H0.K.Z=r; 2/;Z/ in the descent spectral

sequence for KU.K.Z=r; 2//ˇ . The elements dk.ck/ are obstructions to ind.ˇ/D ck .
Note that c2 D 1 and d

ˇ
2
.1/D ˇ .

Proposition 5.15 The obstructions to the finiteness of indK.ˇ/ in the descent spectral
sequence on K.Z=r; 2/ are all of finite order in Ek;1�k

k
and infinitely many of them

are nonzero.

Proof In fact, the obstructions all lie in subquotients of Hp.K.Z=r; 2/;Z.q=2// with
p > 0, which are finitely generated groups, and were observed in Section 3 to be
r –primary, hence torsion and consequently finite.

If the obstructions were to vanish for sufficiently large k , then indK.ˇ/ would be finite,
a contradiction.

Fix a prime `. The first potentially nonzero obstruction in the twisted spectral sequence
for K.Z=`; 2/ is d

ˇ
3
.1/. This is nonzero. Namely, d

ˇ
3
.1/ D ˇ 2 H3.K.Z=`; 2/;Z/.

It is important to know for computations the next nonzero obstruction in the twisted
spectral sequence of K.Z=`; 2/. The following proposition gives a partial answer for
all primes `, and, together with Example 5.14, this shows that d

ˇ
5
.2/ is nonzero for

K.Z=2; 2/.

Proposition 5.16 The next nonzero obstruction in the twisted spectral sequence for
K.Z=`; 2/ is one of d

ˇ
5
.` � 1/; : : : ; d

ˇ

2`C1
.` � 1/.

Proof One knows from Example 5.13 that the index of the class 
2`C1 on

sk2`C2 K.Z=`; 2/

is at least `2 . If the differentials d
ˇ
5
.` � 1/; : : : ; d

ˇ

2`C1
.` � 1/ were all zero, then, by

Lemma 2.22, the descent spectral sequence would give ind.
2`C1/ D `, which is a
contradiction.

Corollary 5.17 In the twisted spectral sequence for K.Z=2; 2/, the obstruction d
ˇ
5
.2/

is nonzero.
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Proof This is a special case of the proposition.

Corollary 5.18 If X is a finite CW–complex of dimension at most 6 and ˛ 2Br.Xtop/

has per.˛/D 2, then ind.˛/ j 8.

Proof It follows from a straightforward computation in the Serre spectral sequence
for K.Z=2; 1/!�!K.Z=2; 2/ that H5.K.Z=2; 2/;Z/D Z=4.

In this case our knowledge of the cohomology of K.Z=2; 2/ gives us better bounds
than are obtained via Theorem 4.1. In general, however, it is not clear to us whether
studying the cohomology of K.Z=r; 2/ should give tighter bounds than Theorem 4.1.
We will return to this question in a future work.
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