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The Dirichlet Problem
for constant mean curvature graphs in M � R

ABIGAIL FOLHA

HAROLD ROSENBERG

We study graphs of constant mean curvature H > 0 in M�R for M a Hadamard
surface, ie a complete simply connected surface with curvature bounded above by a
negative constant �a . We find necessary and sufficient conditions for the existence of
these graphs over bounded domains in M , having prescribed boundary data, possibly
infinite.

53A10; 53C42

1 Introduction

Let M be an Hadamard surface, we study graphs in M�R having constant mean
curvature with possible infinite boundary data. We consider domains � with piecewise
smooth boundary composed of three families fAkg, fBlg, fCmg. We suppose that
the curvature of the arcs of these families satisfy �.Ak/ D 2H , �.Bl/ D �2H and
�.Cm/� 2H . We prescribe boundary values C1 on each Ak , �1 on each Bl and
a continuous function on fCmg. The purpose of this paper is to find a smooth function
uW �!R, whose graph has constant mean curvature H and boundary data as above.
This will be called the Dirichlet Problem (see Definition 2.5).

In Theorems 2.8 and 2.9 we give necessary and sufficient conditions to solve the
Dirichlet Problem. They depend on the geometry of the domain. Roughly, they relate
the length of the sides fAkg, fBlg, the curvature H and the length and area of inscribed
polygons (see Definition 2.6).

H Jenkins and J Serrin [7] studied this problem for domains contained in R2 and the
curvature H D 0. They gave necessary and sufficient conditions for the existence of a
solution on this domain in terms of the length of the boundary arcs of the domain and of
inscribed polygons. J Spruck [16] worked in domains in R2 and mean curvature H >0;
an important idea introduced in this work was to reflect curves of the family fBlg in
order to get convex curves, with respect to the domain. In this work, we give some
conditions which assure the existence of curves B�

l
such that the domain bounded by
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B�
l
[Bl is convex, and this will enable us to consider a convex domain, changing Bl

by B�
l

; see Section 6. On the other hand, we construct barriers and subsolutions in
order to find a graph having constant mean curvature H and finite continuous boundary
values over the domain �; see Section 4.

Many authors have studied this problem. Consider H D 0. H Rosenberg considered
the case when M is the sphere [14]. B Nelli and H Rosenberg [11] worked in the
case where M is hyperbolic space. A Pinheiro [12] obtained a similar result for
geodesically convex domains. For hyperbolic space, P Collin and H Rosenberg [1],
L Mazet, M Rodríguez and H Rosenberg [10] studied this question for ideal domains.
Finally, J Gálvez and H Rosenberg [3] considered M a surface with negative sectional
curvature and solved this problem for unbounded domains. When H ¤ 0, L Hauswirth,
H Rosenberg and J Spruck studied the cases when M is hyperbolic space and the
sphere [5]. A Folha and S Melo generalized this for unbounded domains in hyperbolic
space [2].

The paper is organized as follows. The main Theorems are stated in Section 2. In
Section 3 we give some definitions and preliminary results, we construct the barriers
necessary to assure the continuity of a solution at the boundary. In Section 4 we give
conditions for existence of a solution with continuous bounded boundary values in
a domain � �M. We study Flux Formulas in Section 5, which are the necessary
conditions for the existence of a solution to the Dirichlet Problem. In Section 6 we
discuss the existence of a curve B� as in the definition of admissible domain; see
Definition 2.2. We prove the existence of an embedded arc joining any two points p; q

of M, p ¤ q , of constant curvature �; 0 < � <
p

a. Finally, in Section 7 we prove
Theorems 2.8 and 2.9.

We would like to thank the referee for making many useful suggestions.

2 Statements of results

We consider a simply connected domain � 2M, M is a Hadamard surface. We will
give necessary and sufficient conditions for the existence of constant mean curvature
graphs in ��R with possible infinite boundary values. These conditions depend on
the geometry of the domain �, roughly, they involve the area of � and the length of
its boundary. We give some definitions in order to state the theorems.

Given a function uW �! R the graph of u, S D f.p;u.p//I p 2Mg, has constant
mean curvature H with respect to the normal pointing up to S if u satisfies the
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equation

(1) div
�

rup
1Cj ruj2

�
D 2H;

where the divergence and gradient are calculated with respect to the metric of M. If u

satisfies this equation in a domain �, u is called a solution of (1) in �.

Definition 2.1 Let � be a simply connected bounded domain in M and hW �!R a
smooth function.

(1) The function h is a subsolution in � of (1) if

div
�

rhp
1Cj rhj2

�
� 2H:

(2) The function h is a supersolution in � of (1) if

div
�

rhp
1Cj rhj2

�
� 2H:

Definition 2.2 (Admissible domain) A bounded domain � is an admissible do-
main if it is simply connected and @� consists of three sets of C 2;˛ open arcs
fAkg, fBlg, fCmg and its end points, satisfying �.Ak/ D 2H ; �.Bl/ D �2H and
�.Cm/� 2H , respectively, (with respect to the interior of �). We suppose that no two
of the arcs Ak and no two of the arcs Bl have a common endpoint. In addition if the
family fBlg is nonempty, we assume that there exists a simply connected domain ��

whose boundary is formed by replacing each arc Bl by B�
l

, where B�
l

is a C 2 arc
joining the end points of Bl having �.B�

l
/D 2H with respect to �� . In addition, we

suppose that in � (or �� if fBlg ¤∅) there is a bounded subsolution of (1).

Remark 2.3 Proposition 3.2 gives the existence of a bounded subsolution of (1) for H

small enough (H small in terms of the negative upper bound for the curvature of M).

Remark 2.4 In Section 6 we will give conditions which assure the existence of these
curves B�

l
.

Definition 2.5 (Dirichlet Problem) Given an admissible domain �, the Dirichlet
Problem is to find a solution of (1) in � which assumes values C1 on each Ak , �1
on each Bl and assigned continuous data on each of the arcs Cm .

Geometry & Topology, Volume 16 (2012)
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Definition 2.6 (Admissible polygon) Let � be an admissible domain. We say that
P is an admissible polygon if P is piecewise smooth consisting of arcs of constant
curvature � D ˙2H , these arcs are contained in � or in the boundary @� and its
vertices are among the endpoints of the families fAkg, fBlg and fCmg.

Definition 2.7 Given an admissible polygon, let

˛.P/D
X

Ak2P

jAk j; ˇ.P/D
X

Bl2P

jBl j;

and let l.P/ be the perimeter of P , where jLj denotes the length of the curve L. We
denote �P the admissible domain bounded by P .

In the same spirit as H Jenkins and J Serrin [7] we obtain the following theorems.

Theorem 2.8 Let � be an admissible domain, with the family fCmg nonempty. There
is a solution to the Dirichlet Problem, if and only if

2˛.P/ < l.P/C 2HA.�P/;(2)

2ˇ.P/ < l.P/� 2HA.�P/;(3)

for all admissible polygons P .

If the family fCmg is empty we have the following theorem.

Theorem 2.9 Let � be an admissible domain with the family fCmg empty. There is
a solution to the Dirichlet problem, if and only if

(4) ˛.@�/D ˇ.@�/C 2HA.�/;

and for every inscribed polygon P ¤ @�,

2˛.P/ < l.P/C 2HA.�P/;(5)

2ˇ.P/ < l.P/� 2HA.�P/:(6)

3 Local barriers

Let 
 .t/ be a complete geodesic in M with h
 0.t/; 
 0.t/i D 1; t 2R. Then

'.s; t/D exp
.t/.sJ.
 0.t///; .s; t/ 2R2;

Geometry & Topology, Volume 16 (2012)



The Dirichlet Problem for constant mean curvature graphs in M�R 1175

is a parametrization of M. Where J denotes the standard rotation of �=2, such that
fv;Jvg; v 2 TpM, is a positive base of TpM. We note that

h@s; @si D 1; h@s; @t i D 0 and h@t ; @t i DG.s; t/:

Moreover, since 
 is a geodesic and j
 0.t/j D 1 for all t 2R, we have

(7) G.0; t/D 1 and Gs.0; t/D 0;

where Gs is the derivative of G with respect to s .

In this case the induced metric by ' in M, is

ds2
CG.s; t/ dt2:

We will deal with graphs over simply connected bounded domains, then in this work,
� denotes a simply connected bounded domain contained in M.

Remark 3.1 � is not assumed to be an admissible domain.

Let � be a simply connected bounded domain in M. Since � is a bounded domain,
we can suppose that � � f.s; t/ 2M I s > 0g, where we identify .s; t/ 2 R2 with
'.s; t/ 2 M. We will consider functions hW � ! R which do not depend on the
parameter t , that is, h.s; t/D h.s/. In this case h is a solution in � of (1) if

2H D div
�

rhp
1Cjrhj2

�
D div

�
hs@sp
1C h2

s

�
D

�
hsp

1C h2
s

�
s

C
Gs

2G

hsp
1C h2

s

D
hss.1C h2

s /� hssh2
s

.1C h2
s /

3=2
C

Gs

2G

hs.1C h2
s /

.1C h2
s /

3=2

D
Gshs.1C h2

s /C 2Ghss

2G.1C h2
s /

3=2
;

where hs denotes the derivative of h with respect to s . In particular, h is a subsolution
of (1) in � if

(8)
Gshs.1C h2

s /C 2Ghss

2G.1C h2
s /

3=2
� 2H:

If hs > 0, (8) is equivalent to

(9)
Gs

G
�

4H.1C h2
s /

3=2� 2hss

hs.1C h2
s /

:
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We recall we are supposing that M has curvature bounded above by �a; a> 0.

Proposition 3.2 Let �� f.s; t/I s > 0g be a simply connected bounded domain. For
H �

p
a=2, there is a subsolution of (1) in �.

Remark 3.3 The existence of bounded subsolutions and supersolutions is necessary
to show the existence of solutions in a given domain � 2M. One can prove that for
each given domain � there is a constant d > 0, big enough, such that there are no
graphs over � having constant mean curvature H � d .

We will prove a lemma and then we prove the proposition above.

For a> 0, we define IH.�a/D f.s; t/ 2R2g with the metric ds2C cosh2.
p

as/ dt2

the hyperbolic space having curvature �a.

A similar lemma was proved in [3] for H D 0.

Lemma 3.4 Let �� f.s; t/ 2MI s > 0g be a simply connected bounded domain and
let h.s; t/D h.s/ be a smooth function defined for s> 0. Suppose hs > 0. If h satisfies

(10)
4H.1C h2

s /
3=2� 2hss

hs.1C h2
s /

� 2
p

a tanh .
p

as/;

then h is a subsolution in � of (1).

Proof The Gaussian curvature of � is given by

(11) K.s; t/D�
1

4

�
Gs

G

�2

�
1

2

�
Gs

G

�
s

� �a; .s; t/ 2�;

since the Gaussian curvature of � is bounded above by �a.

Using the fact that, if a real function satisfies the equation�
Gs

G

�2

C 2

�
Gs

G

�
s

�

�
zGs

zG

�2

C 2

�
zGs

zG

�
s

;

Gs

G
.s0/D

zGs

zG
.s0/;

Gs

G
�

zGs

zG
8 s > s0;then

we conclude by Equations (11) and (7) taking zG.s/D cosh2.
p

as/ that

Gs

G
�

zGs

zG
D 2
p

a tanh.
p

as/ 8 s > 0:
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Taking zG.s/ D cosh2.
p

as/ means that we compare the Gaussian Curvature of M
with that of IH.�a/. So if

4H.1C h2
s /

3=2� 2hss

hs.1C h2
s /

� 2
p

a tanh .
p

as/;

then h is a subsolution in � of (1).

Remark 3.5 We just need suppose that �� f.s; t/I 0< s < s0 and t0 < t < t1g, and
the Gaussian curvature of f.s; t/I 0< s < s0 t0 < t < t1g is bounded above by �a< 0.

We will prove Proposition 3.2 giving an explicit example; see Spruck [17, Example 1.8].

Proof of Proposition 3.2 We will show that there is a function h.s; t/D h.s/ which
is a solution of (1) in H.�a/. For zG D cosh2.

p
as/, if

zGshs.1C h2
s /C 2 zGhss

2 zG.1C h2
s /

3=2
D 2H ,

1

cosh.
p

as/

�
hs cosh.

p
as/

.1C h2
s /

1=2

�
s

D 2H

,
hs cosh.

p
as/

.1C h2
s /

1=2
D

2H
p

a
sinh.
p

as/CA;

so H D
p

a=2, we have that hD .1=
p

a/ cosh.
p

as/, is a solution (for AD 0) of (1)
for these equations. Then by Lemma 3.4, hD .1=

p
�a/ cosh.

p
�as/ is a subsolution

of (1) in �.

3.1 The distance function

Let � be a simply connected bounded domain with an oriented boundary. Let d be the
distance function (with sign) to @�. Fix a point p in the interior of an arc E � @�.
Let E0 a neighborhood of p in E , such that E0 is contained in the interior of E . Let
�0 be the largest open set of points q 2� which have a unique closest point s 2E0 . In
[9, Theorem 1] Y Li and L Nirenberg proved if E0 is C k;˛ then the distance function
is in C k�1;˛.�0[ @�/, for k � 2; 0< ˛ < 1.

Letting w D h.d/W �0!R, where hW R!R is a smooth function, we have

div
�

rh.d/p
1Cjrh.d/j2

�
D div

�
h0p

1C .h0/2
rd

�
D

�
r

�
h0p

1C .h0/2

�
;rd

�
C

h0p
1C .h0/2

�d

D

�
h00

.1C .h0/2/3=2
rd;rd

�
C

h0p
1C .h0/2

�d;
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and then

(12) div
�

rh.d/p
1Cjrh.d/j2

�
D

h00

.1C .h0/2/3=2
�

h0p
1C .h0/2

H.x/;

where H.x/ is the curvature of the level set of d passing through x 2�0 .

We will construct some local barriers. The function used to make the first barrier appears
in Spruck [17] under other hypothesis and the conclusion of the author is different
from our conclusion and application. The second one is in [5], where L Hauswirth,
H Rosenberg and J Spruck made this barrier for another space, but the same holds for
our case.

Lemma 3.6 Let � be a C 2;˛ arc in @�, with �.p/ � 2H for p 2 � and let q 2 � .
There is a neighborhood ��� of q , with @�D� 0[� (where � 0 �� and � is an arc
contained in �), such that there is a subsolution w of (1) in �[ @� with w.q/D 0,
w.p/ < 0 for p 2 .�[ @�/� q and wj� D�M , for M > 0 sufficiently large.

Proof Let 
 be a C 2;˛ arc of curvature �.
 / � 2H � �; � > 0 small, such that

 is tangent to � at q , 
 � .M ��/ and the curvature vector of 
 at q has the
same direction as that of � at q ; see Figure 1. Let d be distance function to 
 ,

q q

 


� �
curves equidistant to 


Figure 1

defined on the convex side of 
 in a neighborhood of q . We know that d is C 1;˛

in a set fp 2MI 0 � d.p/ � ı1g for some ı1 > 0. Let 0 < ı2 � ı1 be sufficiently
small so that if 0 � d.p/ < ı2 then H.p/ � 2H � 2� . We consider the function
h.r/D .eAC =.2C //.e�2C r �1/, r 2 Œ0; ı� and 0< ı < ı2 , where C > 1=A; A> ı=2

will be chosen later. By Equation (12), for w D h.d/ we have

div
�

rwp
1Cjrwj2

�
D

2CeAC�2Cd

.1C e2.AC�2Cd//3=2
C

eAC�2Cd

.1C e2.AC�2Cd//1=2
H.x/

D
eAC�2Cd

.1C e2.AC�2Cd//3=2

�
2C CH.x/.1C e2.AC�2Cd//

�
�

eAC�2Cd

.1C e.AC�2Cd//3

�
2C CH.x/.1C e2.AC�2Cd//

�
:
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Since e.AC�2Cd/ � e.AC�2Cı/ and e.AC�2Cd/ � eAC , we obtain

div
�

rwp
1Cjrwj2

�
�

eAC�2Cı

.1C eAC /3

�
2C CH.x/.1C e2.AC�2Cı//

�
�

eAC�2Cı

8e3AC

�
2C CH.x/.1C e2.AC�2Cı//

�
�

eAC�2Cı

8e3AC

�
2C C .2H � 2�/.1C e2.AC�2Cı//

�
:

We observe that the function

F.A; ı/D
eAC�2Cı

8e3AC

�
2C C .2H � 2�/.1C e2.AC�2Cı//

�
for C > 6H C 6� satisfies F.0; 0/D 1

8
.2C C .2H � 2�/2/ > 2H . Then, for .A; ı/

sufficiently small F.A; ı/� 2H . So, choosing A and ı small, we have

div
�

rwp
1Cjrwj2

�
� 2H;

that is, w is a subsolution.

Let � be the simply connected domain (decreasing ı if necessary) whose boundary
is composed of a subarc of � which contains q and a subarc of the level curve
fx 2�I d.x/D ıg; see Figure 2.

q

� �
�




� �
w D�M

w < 0

w.q/D 0

w < 0

Figure 2

Let C0 Dmaxf1=A; 6H C 6�g. For

M > �
eAC0

2C0

.e�2C0ı � 1/;

we can choose C � C0 such that

h.ı/D
eAC

2C
.e�2Cı

� 1/D�M:
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Remark 3.7 Let ��M be a domain and � � @� be a C 2;˛ arc with �.�/� 2H .
Fix a point q 2 � , and choose a small compact arc � 0 � � containing q and an arc �
of a geodesic circle joining the end points of � 0 , such that the domain � bounded by
�[� 0 is contained in �. Then, if f W @�!R is a continuous function with f .q/D 0

and f .p/ > 0 for p 2 @��fqg there is u 2 C 2.�/\C 0.�[ @�/, with

div
�

rup
1Cjruj2

�
D 0< 2H

and uj@� D f . In particular, there is a supersolution w of (1) in � with w.q/D 0,
w.p/ > 0 for p 2�[ @� and wj� DM;M > 0. See Pinheiro [12, Theorem 1.2].

Lemma 3.8 Let � be a domain.

(i) If � is a C 2;� arc of @�, with 0 � �.p/ � 2˛ < 2H , for p 2 �, then for any
interior point p 2�, there is a neighborhood � of p in �[� and a supersolution
wC of (1) such that

@wC

@�
.q/DC1

for q 2 �\ @�, where � is the outer conormal.

(ii) If � is a C 2;� arc of @�, with �.p/��2˛ <�2H for p 2 �, then there exists
a subsolution w� of (1) with

@w�

@�
.q/D�1

for q 2 �\ @�, where � is the outer conormal.

Proof We consider h.r/ D �
p

2r=� . Let d be the distance function to �, since
distance function is continuous, we can conclude for d.x/ < ı; ı > 0 small that:

(i) For wC D h.d/, by Equation (12),

div
�

rwp
1Cjrwj2

�
D

�

.2�d C 1/3=2
C

H.x/
.2�d C 1/1=2

�
1

.2�d C 1/1=2

�
�

.2�d C 1/
C 2˛C �

�
�

1

.2�d C 1/1=2
.2˛C 2�/ < 2H;

for �; d small enough, which proves (i); see Figure 3.
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q

�

�

�

�

�

�

@wC

@�
DC1

@wC

@�
DC1

�

Figure 3

(ii) For w� D�h.d/, by Equation (12),

div
�

rwp
1Cjrwj2

�
D�

�

.2�d C 1/3=2
�

H.x/
.2�d C 1/1=2

�
1

.2�d C 1/1=2

�
�

�

.2�d C 1/
C 2˛� �

�
�

1

.2�d C 1/1=2
.2˛� 2�/ > 2H;

for � > 0; d > 0 small enough, which proves (ii); see Figure 4.

q

�

�

�

�

�

�

@w�

@�
D�1 @w�

@�
D�1

�

Figure 4

3.2 Maximum principles

We state a maximum principle, which enables us to compare subsolutions, solutions
and supersolutions of (1). The proof is based on ideas of L Hauswirth, H Rosenberg
and J Spruck [5].

Theorem 3.9 (Maximum Principle) Let � be a simply connected bounded domain
in M, with piecewise C 2 boundary. Let u1 and u2 be functions defined in � which
satisfy

div
�

ru1p
1Cjru1j

2

�
� 2H � div

�
ru2p

1Cjru2j
2

�
in �. Suppose that lim inf.u2 � u1/ � 0 for any approach to @� with the possible
exception of a finite number of points E D fPi I i D 1; : : : ; ng � @�. Then u2 � u1

on .�[ @�/�E with strict inequality unless u2 � u1 .
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Proof Let M; � be positive constants, with M large and � small. We define

' D

8<:
M � � if u1�u2 �M;

u1�u2� � if � � u1�u2 �M;

0 if u1�u2 � �:

We have that 0 � ' � M , ' is Lipschitz, r' D ru1 � ru2 in the set where
� < u1�u2 <M and r' D 0 in the set where u1�u2 >M or u1�u2 < � .

For each i we consider a closed geodesic ball Bi.�/ centered at Pi of radius � > 0

small. For each � , let �� D�� .
S

i Bi.�//; i D 1; : : : ; n, we denote @�� D��[ƒ� ,
where �� D @�� .

S
i Bi.�// and ƒ� D

S
i.@Bi.�/\�/.

We have

div
�
'

�
ru1

W1

�
ru2

W2

��
D

�
r';
ru1

W1

�
ru2

W2

�
C'

�
div
�
ru1

W1

�
� div

�
ru2

W2

��
;

where Wj D

p
1Cjruj j

2; j D 1; 2. Applying the divergence theorem and the hypoth-
esis ' � 0 on �� , we haveZ

��

�
r';
ru1

W1

�
ru2

W2

�
dV C

Z
��

'

�
div
�
ru1

W1

�
� div

�
ru2

W2

��
dV

D

Z
��

div
�
'

�
ru1

W1

�
ru2

W2

��
dV

D

Z
@��

'

�
ru1

W1

�
ru2

W2

; �

�
dV

D

Z
ƒ�

'

�
ru1

W1

�
ru2

W2

; �

�
dV C

Z
��

'

�
ru1

W1

�
ru2

W2

; �

�
dV

D

Z
ƒ�

'

�
ru1

W1

�
ru2

W2

; �

�
dV;

where � is the outer conormal to the @�� .

The term in the last equality is bounded above by

2M

nX
iD1

l.@Bi.�//;

where l.@B/ is the length of B on M. The second term in the first line is nonnegative
by hypothesis. The first term in the first line does not vanish except if r'Dru1�ru2 ,
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and the previous lemma assures that this term is nonnegative. From this we have

0�

Z
��

�
r';
ru1

W1

�
ru2

W2

�
dV � 2M

nX
iD1

l.@Bi.�//:

When � goes to zero, �� goes to � and 2M
Pn

iD1 Vol.Bi.�// goes to 0. So the
conclusion is that ru1Dru2 whenever u1>u2 . This implies that u1Du2Ca; a> 0

in each open component of fu1>u2g. If there is any such nonempty component of this
set, then the maximum principle ensures u1 D u2Ca; a> 0 in �, but this contradicts
the hypothesis lim inf.u2�u1/� 0.

Lemma 3.10 Let � be a domain whose boundary @�D � 0[ �; � 0; � are closed sets
and � 0 is a C 2;˛ arc. Let u and w be functions defined in �, u2C 2.�/\C 1.�[�/

and w 2 C 2.�/\C 0.�[ @�/.

(i) Suppose

div
�

rup
1Cjruj2

�
� div

�
rwp

1Cjrwj2

�
in � and

@w

@�
DC1

in �, � the outer conormal to � in �. Then, if lim inf.w � u/ � 0 for any
approach to � 0 , then w � u in �.

(ii) Suppose

div
�

rup
1Cjruj2

�
� div

�
rwp

1Cjrwj2

�
in � and

@w

@�
D�1

in �, � the outer conormal to � in �. Then if lim inf.w � u/ � 0 for any
approach to � 0 , then w � u in �.

Proof (i) If lim inf.w�u/� 0 in � then the conclusion follows from the maximum
principle. If this is not the case we consider v D wCM , so that v > u in �[ @�,
now we translate v down until the first contact point, which is a point of � and the
conclusion is that @u=@� �C1; see Figure 5(left). This gives us a contradiction.

(ii) Similarly, if lim inf.w�u/�0 in � then the conclusion follows from the maximum
principle. If this is not the case we consider vDw�M , so that v < u in �[@�, now
we translate v up until the first contact point, which is a point of � and the conclusion
is that @u=@� � �1; see Figure 5(right). This gives us a contradiction.
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� � �

� � �
� 0 � 0 � 0

u u u

v

w
� � �

� � �� 0 � 0 � 0
u

u
u

v

w

Figure 5

The proof of the following lemma uses Lemma 3.10 and the barriers of Lemma 3.8.

Lemma 3.11 Let u be a solution of (1) in a bounded domain ��M and let � � @�
be a compact arc. Suppose m < u < M on � . Then there is a constant c which
depends only on � such that for any compact C 2;˛ subarc � 0 � � ,

(i) if �.� 0/ > �2H , there is a neighborhood � of � 0 in D such that u �M C c

in �,

(ii) if �.� 0/� 2H with strict inequality except for isolated points, there is a neigh-
borhood � of � 0 in D such that u�m� c in �.

Proof (i) Let � 0 be an interior arc of � sufficiently small so that the arc � joining
its end points satisfies 0 < �.�/ < 2H , with respect to the domain � bounded by
� 0 [ �. We can assume in � there is the supersolution wC given by Lemma 3.8
so that @wC=@� D C1 on �. Lemma 3.10(i) [for wC replacing w ] implies that
u�M � inf�fwCg.

(ii) We take a point p where �.p/>2H , let � 0�� be an arc which contains p . For � 0

small enough there is a curve � joining the end points of � 0 such that �.�/<�2H with
respect to the domain � bounded by � 0 and �. We can suppose � sufficiently small
such that there is a subsolution w� given by Lemma 3.8 such that @w�=@� D �1
on �. Lemma 3.10(ii) [for w� replacing w ] ensures that u�m� sup�w

� in �.

4 Existence and uniqueness theorem

We state some results found in Spruck [17] and using the barriers in the previous
section and the Perron Method (see Gilbarg and Trudinger [4]) we give the existence of
solutions of (1) in simply connected bounded domains with piecewise C 2;˛ boundary.

Theorem 4.1 (Spruck [17]) Let � be a bounded domain with C 2 boundary and
�.@�/ � 2H C � , for some � > 0. Then given a continuous function f W @�! R,
there is a unique solution of (1) u 2 .C 2.�/\ .C 0.�[ @�/// in � with uj@� D f .
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Theorem 4.2 (Compactness Theorem) Let fung be a uniformly bounded sequence of
solutions of (1) in a bounded domain �. Then there is a subsequence which converges
uniformly on compact subsets (in the C k topology, for any k ) to a solution of (1) in �.

Theorem 4.2 follows from gradient estimates for a solution of (1) at an interior point
p 2�; see [17, Theorem 1.1]. The interior gradient estimates enable us to apply the
Arzelá–Ascoli Theorem and obtain a convergent subsequence on compact subsets in �;
Schauder theory guarantees that, in fact, the limit of this subsequence is smooth.

We will show that the condition �.@�/� 2H C � can be removed. First, we need to
give some definitions.

Let � be a domain and f W @�! R be a continuous function, we consider the set
Sf Dfv 2C 2.�/\C 0.�[@�/I v is a subsolution of (1) and vj@�� f g. Let B��

be a compact domain having smooth boundary such that �.@B/ > 2H (which is
equivalent to �.@B/� 2H C � , for some � > 0, since B has compact boundary). For
each v 2 Sf we define the lifting of v in B as

V .p/D

�
xv.p/ if p 2 B;

v.p/ if p 2��B:

where xv is the solution of Equation (1) in B given by Theorem 4.1 with boundary
values xvj@B D vj@B .

Now we are able to prove an existence theorem for domains having C 2;˛ boundary
and curvature big enough.

Theorem 4.3 Let � be a bounded domain with C 2;˛ boundary and �.@�/ � 2H .
Suppose that there is a bounded subsolution of (1) in �. Then given a continuous
function f W @�!R, there is a unique solution of (1) u 2 .C 2.�/\ .C 0.�[ @�///

in � with uj@� D f .

Proof We observe that there is a minimal surface in � which assumes boundary
values f ; see Pinheiro [12, Theorem 1.2]. Note that this minimal surface is a super-
solution of (1) in �. Using the Perron Method we will show that there is a solution
of (1) in � and using the barriers of Lemma 3.6 we will show that this solution has
the prescribed boundary values.

We define
uD sup

Sf
v:

The set Sf is nonempty and the existence of one supersolution and the maximum
principle guarantees that u is well defined. We show that u is in fact a solution in �.
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Let p 2 �, let B D Bp.�/ be a geodesic ball centered at p having radius � , we
choose � small enough such that B [ @B is contained in � and �.@B/ > 2H . Let
fvng be a sequence in Sf such that limn!1 vn.p/ D u.p/, this sequence exists by
definition of u. For each n let Vn be the lifting of vn in B . We observe that fVng�Sf ,
Vn.p/!u.p/, moreover, since fVng�u in B , the Compactness Theorem assures that
there is a subsequence of fVng, still called fVng which converges to a solution zu of (1)
in B uniformly on compact subsets of B . From the definition of u, and fvng we have
that zu� u and zu.p/D u.p/. We claim that uD zu in B . If this were not the case, we
take a point q 2B , such that u.q/ > zu.q/. This implies that there is a function zv 2 Sf ,
with zu.q/ < zv.q/. We define another sequence fwng � Sf as wn Dmaxfzv; vng, and
we consider Wn its lifting in B . As before we obtain a subsequence of fWng which
converges to a solution w of (1) in B , uniformly over compact subsets of B . By
construction, we have zu � w � u and zu.p/ D w.p/ D u.p/. Since zu and w are
solutions of (1) on B , applying the maximum principle, we conclude that zuDw in B .
This contradicts the definition of zv and shows that zuD u in B . As p is an arbitrary
point we have that u is a solution of (1) in �.

Now, we need to show that uj@� D f . As there is a supersolution of (1) in � with
boundary values f , we have by the maximum principle, that uj@� � f .

We suppose that f is C 2.@�/. Observe that the constant M in Lemma 3.6 can be
chosen as large as necessary, such that, for a fixed point p 2 @�,

(i) w.p/Cf .p/D f .p/,

(ii) w.q/Cf .p/D�M Cf .p/ < u.q/ for q 2�\ @�,

(iii) w.q/Cf .p/ < f .q/ for q 2 .@�\ @��fpg/,

with w defined as in Lemma 3.6; the third condition can be obtained choosing M

large, since f is C 2 and the function

h.r;C /D
eAC

2C
.e�2C r

� 1/

is decreasing in r and C (the function h defines the barrier w ; see Lemma 3.6). These
barriers enable us to conclude that the solution u has the prescribed boundary values f ,
if f is C 2.@�/.

Now, if f is continuous, we consider a sequence of C 2.@�/ functions ffng which
converges to f and fn.p/ < fnC1.p/ for p 2 @� and n 2N . We proved, that there
is, for each n 2N , a solution un of (1) in �, such that unj@�D fn . By the maximum
principle the sequence fung is monotonically increasing. Moreover since there is a
minimal surface (supersolution) on � having boundary values f , the sequence fung
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converges to a solution u of (1). Furthermore, since ffng converges monotonically
to f , u has boundary values f .

With this Theorem we can construct an example as in Hauswirth, Rosenberg and
Spruck [5] and extend the result above for domains having piecewise C 2;˛ arcs.

Example 4.4 Let � � @� be a C 2;˛ arc with �.�/ D 2H and p 2 � an interior
point. Let �� Bp.ı/ be a convex domain obtained by smoothing the convex domain
bounded by � and @Bp.ı/, where Bp.ı/ is the geodesic ball centered at p having
radius ı > 0. We consider smooth boundary data f � 0 on @� with f � 0 in a
neighborhood of p and f ��M in a neighborhood of @Bp.ı/. Then, if there is some
subsolution of (1) in �, there is a smooth solution w� of (1) in � with boundary
values f .

Definition 4.5 For p 2 @� we define the outer curvature y�.p/ to be the supremum
of all (inward) normal curvatures of C 2 curves passing through p and locally support-
ing �. If no such curve exists we define y�.p/ to be �1. Note that y�.p/D �.p/ at
all regular points of @�.

Using Example 4.4 we obtain the next theorem.

Theorem 4.6 (Existence Theorem) Let � be a domain with piecewise C 2 boundary.
Suppose that y�.p/ � 2H; 8p 2 @�, except for a finite set E of exceptional corner
points of @�. We suppose that there is a bounded subsolution of (1) in � and we
prescribe continuous boundary data f . If E D∅ there is a unique solution of (1) in �
taking arbitrarily assigned continuous boundary data on @�. If E ¤∅, then there is a
unique solution of (1) in � taking on arbitrarily assigned continuous boundary data on
@��E .

Proof We suppose that E D ∅. We approximate � by smooth (convex) domains
�n�� satisfying �.@�n/� 2H by rounding each corner point of @�. We extend the
boundary data f to a minimal solution in �. Let fn be the restriction of this extension
to @�n , observe that ffng converges uniformly to f . Then, Theorem 4.3 gives a
unique smooth solution un in �n with un D fn in @�n and each un is uniformly
bounded independent of n ( since the minimal solution is a supersolution for (1)). Thus
by the Compactness Theorem, a subsequence of un converges uniformly on compact
subsets to a solution u of (1) in �.

It remains to show that uD f in @�. We fix p 2 @�; q 2 @�n with dist.p; q/ < ı .
Given � we choose ı > 0 such that jfn.x/ � fn.q/j < � and jfn.q/ � f .p/j < �
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if dist.xI q/ < ı and n is large. Now consider an arc of constant curvature 2H that
supports @�n at q and let �w.x/ D wC and w.x/ D w� be the lower and upper
barriers in � given by Example 4.4 with M D 2 sup junj. Then by the maximum
principle,

w.x/� 3� � un.x/�f .p/� �w.x/C 3�:

This enables us to conclude that u is continuous in �[ @� and uD f in @�.

If E ¤∅, the compactness of @� and the continuity of f imply that f is bounded.
So the slice M�fdg; d > supp2@� jf .p/j is a bounded supersolution. By hypothesis
there is a bounded subsolution. Then we apply the Perron method and we obtain a
solution of (1) in �. Moreover, except for the points in E , the solution assumes the
boundary data, since the barriers in the previous case hold in @��E .

5 Flux formula

Let u 2 C 2.�/\C 1.�[ @�/ be a solution of (1) in a domain �. Integrating (1)
over � we have

2HA.�/D
Z
�

div
�

rup
1Cjrj2

�
D

Z
@�

�
rup

1Cjruj2
; �

�
;

where A.�/ is the area of � and � is the outer conormal. The integral on the right side
is called the flux of u across @�. Let � be a subarc of @�, if u is not differentiable
on � we can define the flux of u across � as follows; see [5].

Definition 5.1 Choose ‡ to be an embedded smooth curve in � so that �[‡ bounds
a simply connected domain �‡ . We then define the flux of u across � to be

Fu.�/D 2HA.�‡ /�
Z
‡

�
ru

W
; �

�
ds:

The last integral is well defined, and Fu.�/ does not depend on the choice of ‡ .

The lemmas below can be found in Nelli and Rosenberg [11].

Lemma 5.2 Let u be a solution of (1) in �, a simply connected bounded domain and
� be a C 1 compact curve in �[ @�. Then

Fu.@�/D 2HA.�/;
jFu.�/j � j�j:
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Lemma 5.3 Let � be a domain and ��@� be a compact piecewise C 2 arc satisfying
�.p/ � 2H for all p 2 � . Let u be a solution of (1) in � which is continuous on � .
Then

jFu.�/j< j�j:

Lemma 5.4 Let � be a domain and � � @� be a compact piecewise C 2 arc, let u

be a solution of (1) in �.

(i) If u tends to C1 on � , we have �.�/D 2H and

Fu.�/D j�j:

(ii) If u tends to �1 on � , we have �.�/D�2H and

Fu.�/D�j�j:

Proof We will prove (i), the other case is similar. We know that stable surfaces
having constant mean curvature H have bounded second fundamental form at points a
fixed positive distance from their boundary; see Rosenberg, Souam and Toubiana [15].
This implies a stable surface is a graph of bounded geometry over the ı–geodesic
disc(in exponential coordinates) centered at the origin of the tangent space at q (the
fixed distance from the boundary) and ı does not depend on q . Graphs having mean
curvature H are stable, so we can apply the curvature estimates here.

Let p 2 � and let pn ! p be a sequence of points in �. Since u tends to C1,
the curvature estimates guarantees the existence of a ı > 0 (independent of n) such
that a neighborhood of each .pn;u.pn// in the graph of u, is a graph (in geodesic
coordinates) over a disk of radius ı centered at the origin of T.pn;u.pn//G.u/, where
T.pn;u.pn//G.u/ is the tangent plane of G.u/ at .pn;u.pn// and G.u/ is the graph of u.
We translate these graphs to the point .pn; 0/ and we denote these translated graphs
by Gpn

.ı/. Let N..pn;u.pn/// be the unit normal vector to G.u/ at .pn;u.pn//,
after passing to a subsequence, we have N..pn;u.pn///!N1 . Let … be the plane
orthogonal to N1 whose origin is p . Each Gpn

.ı/ is a graph of a function with height
and slope uniformly bounded. For n large, Gpn

.ı/ is a graph over a disk of radius ı0

centered at p (the origin of …), 0< ı0 � ı . Since these graphs have height and slope
uniformly bounded, they converge to a graph Gp.ı

0/ defined over a disk of radius ı0

centered at the origin of ….

We want to show that N1 is a horizontal vector and that �.�/D 2H .

We suppose that N1 is not a horizontal vector. This implies that … is not a vertical
plane, so the projection of Gp.ı

0/ has points inside �[ @� and outside �[ @� this

Geometry & Topology, Volume 16 (2012)



1190 Abigail Folha and Harold Rosenberg

contradicts the fact that Gp.ı
0/ is a limit of vertical graphs over �. This shows that

N1 is a horizontal vector, so we have the equalityZ
�

�
rup

1Cjruj2
; �

�
D j�j:

We will show that �.�/D 2H . Let L be a curve tangent to � at p with �.L/D 2H ,
with respect to N1 . Note that the surface L �R has curvature H and is tangent
at p to the graph Gp.ı

0/, which also has mean curvature H . Their mean curvature
vectors point to the same side, by choices of N..pn;u.pn/// and L. We need to show
that Gp.ı

0/ � .L�R/. Since Gp.ı
0/ is tangent to L�R at p , if Gp.ı

0/ is on one
side of L�R, by the maximum principle, we have that Gp.ı

0/� .L�R/. If this is
not the case, Gp.ı

0/\ .L�R/ is composed of k curves passing through p , k � 2,
meeting transversely at p . So in a neighborhood of p these curves separate Gp.ı

0/ in
2k components and the adjacent components lie in alternate sides of L�R. Moreover
the curvature vector alternates from pointing down to pointing up when one goes from
the one component to the another. So for n large, this implies that the mean curvature
vector to Gpn

.ı/ points down and up. Consequently the normal vector to Gpn
.ı/

points down and up, this gives us a contradiction since Gpn
.ı/ is a graph. Since the

sequence fpng and p are arbitrary we have that L� � and �.p/D 2H for p 2 � .

Lemma 5.5 Let � be a domain and � � @� be a compact piecewise C 2 arc, let fung

be a sequence of solutions of (1) in � with each un continuous on � .

(i) If the sequence diverges to C1 uniformly on compact subsets of � while
remaining uniformly bounded on compact subsets of �, we have

lim
n!1

Fun
.�/D j�j:

(ii) If the sequence diverges to �1 uniformly on compact subsets of � while
remaining uniformly bounded on compact subsets of �, we have

lim
n!1

Fun
.�/D�j�j:

Proof Let p 2 � and let fpng be a sequence in �, with pn! p . After passing to
a subsequence, we can choose ı > 0 independent of n, such that a neighborhood of
.pn;un.pn// in the graph of un is a graph (in geodesic coordinates) over a disk of
radius ı centered at the origin of T.pn;u.pn//G.un/, here T.pn;un.pn//G.un/ denotes
the tangent plane to G.un/ at .pn;un.pn//and G.un/ denotes the graph of un . As in
Lemma 5.4 the conclusion is that (after passing to a subsequence) Nn.pn/!N1 and
N1 is a horizontal vector, where Nn.q/ is the normal vector to the graph of un at the
point q .
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Lemma 5.6 Let � be a domain and � � @� be a compact piecewise C 2 arc and let
fung be a sequence of solutions of (1) in � with each un continuous on � .

(i) If �.�/D 2H and the sequence diverges to �1 uniformly on compact subsets
of � while remaining uniformly bounded on compact subsets of � , we have

lim
n!1

Fun
.�/D j�j:

(ii) If �.�/D�2H and the sequence diverges to C1 uniformly on compact subsets
of � while remaining uniformly bounded on compact subsets of � , we have

lim
n!1

Fun
.�/D�j�j:

Proof (i) Let p 2 � and let pn ! p be a sequence of points in �. Suppose
fung diverges to �1 in � and remains uniformly bounded on � . After passing to
a subsequence, we can assume that the distance from .pn;un.pn// to the boundary
of G.un/ is bigger than a fixed constant. Then, curvature estimates guarantees the
existence of a ı > 0 (independent of n) such that a neighborhood of each .pn;un.pn//

in the graph of un , is a graph (in geodesic coordinates) over a disk of radius ı centered
at the origin of T.pn;un.pn//G.un/. We translate these graphs to the point .pn; 0/

and we denote these graphs translated by Gn.ı/. Let N..pn;un.pn/// be the unit
normal vector to G.un/ at .pn;un.pn//, after passing to a subsequence, we have
N..pn;un.pn///! N1 . Let … be the plane orthogonal to N1 whose origin is p .
Each Gn.ı/ is a graph of a function with height and slope uniformly bounded. For n

large, Gn.ı/ is a graph over a disk of radius ı0 centered at p (the origin of …),
0< ı0 � ı . Since these graphs have height and slope uniformly bounded, they converge
to a graph Gp.ı

0/ defined over a disk of radius ı0 centered at the origin of ….

The vector N1 is horizontal, if not, … would not be a vertical plane, so the projection
of Gp.ı

0/ would have points outside � which is a contradiction with the fact that
Gp.ı

0/ is the limit of graphs over �. Moreover, since fung diverges to �1 in � and
is bounded in � , we have the equality

lim
n!1

Fun
.�/D j�j:

Case (ii) is similar.

Theorem 5.7 (Monotone convergence theorem) Let fung be a monotonically in-
creasing or decreasing sequence of solutions of (1) in a bounded domain �. If the
sequence is bounded at a single point p 2�, there exists a neighborhood U �� of p ,
such that fung converges to a solution of (1) in U . The convergence is uniform on
compact subsets of U and the divergence is uniform on compact subsets of V D��U .
If V is nonempty, @V consists of arcs of curvature ˙2H and parts of @�. These arcs
are convex to U for increasing sequences and concave to U for decreasing sequences.

Geometry & Topology, Volume 16 (2012)



1192 Abigail Folha and Harold Rosenberg

Refer to Jenkins and Serrin [6, Theorems 6.1 and 6.2] and Hauswirth, Rosenberg and
Spruck [5, Theorem 6.2] for a proof of Theorem 5.7.

6 The curve B�

In this section, we will prove that given two points p; q in M there is a convex domain
bounded by two smooth arcs joining p; q having the same constant prescribed curvature
for any constant less than

p
a, if the sectional curvature of M is less than �a, a> 0.

The manifold M is oriented by fv;J.v/g, v a unit vector at p and J.v/ rotation of v
by �=2. We say that the curve C.p; v; �/ has curvature � > 0 at p if the curvature
vector of C.p; v; �/ has length � at p and near p , C.p; v; �/ is in the sector from v

to J.v/. When C.p; v; �/ is not in this sector, we say the curvature of C.p; v; �/ at p

is �� ; see Figure 6.

J.v/

v

�� < 0

� > 0

Figure 6

Let T 1
p M be the set of vectors in the tangent space of M at p having norm 1. We know

there is a unique curve, denoted by C.p; v; �/ starting at p 2M, having v 2 T 1
p M as

tangent at p , and having constant curvature � at each point. Denote by C.p; v;��/

the unique curve having curvature �� at each point.

In fact, in the discussion that follows we need not distinguish between C.p; v; �/ and
C.p; v;��/.

Claim 6.1 The curvature of geodesic circles centered at p is larger than
p

a.

Proof Let Cr .t/ be the geodesic circle centered at p having radius r > 0. We denote
the geodesic curvature of Cr at Cr .t/ by �g.Cr .t//. The geodesic curvature of Cr

satisfies the equation (see Labourie [8, Propositions 3.1.1 and 3.2.1])

@

@r
�g.Cr .t//D�K.Cr .t//� �

2
g.Cr .t//;
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where K.Cr .t// is the sectional curvature of M at Cr .t/. Since K < �a,

@

@r
�g.Cr .t// > a� �2

g.Cr .t//;

@

@r
�g.Cr .t//C �

2
g.Cr .t// > a:

We observe that
@

@r
.
p

a coth.
p

ar//D a� .
p

a coth.
p

ar//2;

and we conclude
�g.Cr .t// >

p
a coth.

p
ar/�

p
a:

Claim 6.2 The curve C.p; v; �/, for 0< � <
p

a, is embedded.

Proof Suppose C.p; v; �/ is not embedded. Let � � C.p; v; �/ be a Jordan curve,
smooth except at one point q 2 �, a point of self-intersection of C.p; v; �/. Consider
r D supfr0 > 0I �\ Cr .q/ ¤ ∅g. At a point z of intersection �\ Cr .q/, Cr .q/ is
tangent to � and locally on the concave side of �, where Cr .q/ is the geodesic circle
centered at q having radius r . This contradicts � <

p
a.

Claim 6.3 Let Cr be the geodesic circle centered at p having radius r > 0. If
Cr \C.p; v; �/¤∅, then C.p; v; �/ intersects Cr transversally, when 0< � <

p
a.

Proof Let q 2 Cr \C.p; v; �/. Suppose that C.p; v; �/ is tangent to Cr at q , we
will obtain a contradiction. There are three possibilities, either C.p; v; �/ is inside
the disc Dr bounded by Cr in a neighborhood of q , or C.p; v; �/ is outside Dr in a
neighborhood of q or C.p; v; �/ has points inside and outside Dr in a neighborhood
of q .

If C.p; v; �/ is inside Dr in a neighborhood of q and is tangent to Cr at q , then the
curvature vector of Cr and C.p; v; �/ at q have the same direction and C.p; v; �/ is
above Cr with respect to the curvature vector; see Figure 7(left). On the other hand,
the curvature of Cr is greater than the curvature of C.p; v; �/, a contradiction.

If C.p; v; �/ is outside Dr in a neighborhood q , we can consider the compact arc �
contained in C.p; v; �/ joining p to q . As � is compact and is outside Dr in a
neighborhood of q , there is a point q0 2 � such that the distance from p to any point
in � is smaller than or equal to the distance from p to q0 ; see Figure 7(middle). This
implies that �(so C.p; v; �/) is tangent to Cr 0 ; r 0 > r and is inside Dr 0 , where Cr 0 is
the geodesic circle centered at p passing through q0 and Dr 0 the disc bounded by Cr 0 .
This is impossible.
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Finally, if C.p; v; �/ has points inside and outside Dr in a neighborhood q and is
tangent to Cr at q , we consider the compact arc � contained in C.p; v; �/ joining p

to q ; see Figure 7(right). If � is not inside Dr it is possible to find a point q0 so that
the distance from p to any point in � is smaller than or equal to the distance from
p to q0 , and the contradiction is obtained as in the second case. If � is inside Dr ,
the curvature vector of � and Cr at q have the same direction, and � is above Cr ,
this contradicts the comparison principle at the boundary, since the curvature of Cr is
larger than the curvature of C.p; v; �/.

Claim 6.4 The intersection C.p; v1; �/\C.p; v0; �/ is the point p , when v1 ¤ v0 ,
0< � <

p
a.

Proof Suppose that C.p; v1; �/\C.p; v0; �/¤∅. Let q 2C.p; v1; �/\C.p; v0; �/

such that the compact arcs �i contained in C.p; vi ; �/, i D 0; 1, joining p to q satisfy
�1\�0Dfp; qg. Let � be the domain bounded by �1[�0 , suppose that �1 is convex
and �0 is concave with respect to �.

Consider a smooth function 'W Œ0; 1�! TpM, such that, '.0/ D v0; '.1/ D v1 for
t 2 Œ0; 1� and C.p; '.t/; �/\�¤∅; see Figure 8. Since the intersection of C.p; v1; �/

and C.p; v0; �/ is transverse, for each t 2 Œ0; 1� there is a point q.t/2�1\C.p; '.t/; �/.
Observe that q.0/D q and q.t/ tends to p , when t tends to 1. Let �t , the compact
arc in C.p; '.t/; �/ joining p to q.t/.

Now we consider a variation of �1 by equidistant curves. Let �1.s/; s 2 Œ0; 1� be a
parametrization of �1 . The variation of �1 by equidistant curves is given by

.s; �/ 2 Œ0; 1�� Œ0; 1� 7! exp�1.s/
.�N.�1.s///;

where N.�1.s// is the normal vector to �1 at �1.s/ having the same direction as the
curvature vector of �1 at �1.s/. For each � 2 Œ0; 1�, let ��.s/ WD exp�1.s/

.�N.�1.s///.
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C.p; v0; �/

C.p; v1; �/

�t

��
p q

qt

Figure 8

The formula of first variation of curvature (see [8, Propositions 3.1.1 and 3.2.1])

@

@�
.��.�

�/.s//DK.��.s//C �2
g.�

�.s//;

where K.��.s// is the sectional curvature of M at ��.s/ and �2
g.�

�.s// is the geodesic
curvature of �� at ��.s/. Since K < �a and 0< �2

g.�
�.s// < a, we have

@

@�
.�.��/.s// < 0;

so the geodesic curvature of ��.s/ is smaller that the geodesic curvature of �0.s/D

�1.s/. On the other hand �� is tangent to some curve �t in the convex side of �t ,
a contradiction, since �g.�t / > �g.�

�/.

Claim 6.5 The intersection C.p; v; �/ \ Cr is nonempty for every r > 0 and
0< � <

p
a, where Cr is the geodesic circle centered at p having radius r .

Proof Suppose that the set ƒ D fr 2 .0;C1/IC.p; v; �/\ Cr ¤ ∅g (for a fixed
v 2 T 1

p M) is bounded above. Let r0 be the supremum of ƒ. By Claim 6.3, r0 …ƒ.
Let n0 2 N be such that 1=n < r0 . For n 2 N; n > n0 , there exists a point qn 2

C.p; v; �/\Cr , for some r0�1=n< r < r0 . The sequence fqng is in a compact set of
M, so after passing to a subsequence, we can assume that fqng converges to some point
q 2 Cr0

. Let �n be a small connected arc of length 2ı contained in C.p; v; �/, such
that qn 2 �n and �n�fqng are two arcs having length ı . Since fqng converges to q

and C.p; v; �/ is embedded, the sequence of arcs f�ng converges to a arc � having q

as an interior point. Moreover, since all arcs �n are inside Dr0
(the disc bounded

by Cr0
), the arc � is tangent to Cr0

at q , this contradicts Claim 6.3.

We fix r 2 .0;C1/, and we define the function fr W T
1

p M ! Cr by fr .v/ D

C.p; v; �/\Cr , where Cr is the geodesic circle centered at p having radius r .
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Claim 6.6 The function fr defined above is continuous, if 0< � <
p

a.

Proof We take a sequence of vectors fvng, such that vn! v 2 T 1
p M. We want to

prove that

(13) lim
n!C1

fr .vn/D f .v/:

Let qn D fr .vn/ and �n be the angle between Cr and C.p; vn; �/. We will show that
�n�� >0. Let �n be a compact arc in C.p; vn; �/ of length 2ı containing qn such that
�n�fqng are two arcs having length ı . If some subsequence (again denoted by f�ng)
of f�ng converges to 0, we could find a subsequence of fqng (denoted by fqng), such
that fqng converges to q and f�ng converges to a arc �. Since f�ng converges to 0,
the limit arc � is tangent to Cr at q . This contradicts Claim 6.3.

This bound on the angles implies a bound for the lengths of C.p; vn; �/\Dr , where
Dr is the disc bounded by Cr . Then,

lim
n!C1

fr .vn/D lim
n!C1

fC.p; vn; �/\Cr g D lim
n!C1

fC.p; vn; �/\Dr g\Cr D f .v/:

Definition 6.7 The stability operator for the curves C.p; v; �/ is LD��� �2�K ,
where K is the sectional curvature of M. We say that C.p; v; �/ is stable (in the
strong sense) if for any function u with compact support in C.p; v; �/ we have thatZ

C.p;v;�/

�u�u�u2�2
�u2K � 0:

Claim 6.8 The curves C.p; v; �/ are stable for 0< � <
p

a.

Proof We observe thatZ
C.p;v;�/

�u�u�u2�2
�u2K�

Z
C.p;v;�/

�u�u�u2.
p

a/2Cu2aD

Z
C.p;v;�/

�u�u�0:

So each curve C.p; v; �/ is stable.

Claim 6.9 The image I D fr .T
1

p M/ is an open set on Cr .

Proof Let q D fr .v/ and � be the compact arc in C.p; v; �/ joining p to q . The
stability of C.p; v; �/, Claim 6.8, enables us to apply the Implicit Function Theorem
and conclude that there are neighborhoods V of p and U of q in M, such that for
each p0 2 V and q0 2U there is a curve (varying continuously with p0 and q0 ) having
curvature � joining p0 to q0 . So for every point q0 2 U \Cr , there is a curve having
curvature � joining p to q0 , which implies q0 D fr .v

0/, for some v0 2 T 1
p M. For

details, see Rosenberg [13, Theorem 4.2].
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Proposition 6.10 The map fr is a homeomorphism.

Proof By Claim 6.6 fr is continuous, so fr .T
1

p M/ is compact. On the other hand,
Claim 6.9 guarantees that fr .T

1
p M/ is open and is not empty by Claim 6.5. The

connectedness of Cr implies that fr .T
1

p M/D Cr . The injectivity of fr follows from
Claim 6.4, so fr is homeomorphism.

7 The main theorems

We now prove the main theorems of this work. We have constructed all the necessary
tools to prove these theorems. The proofs are similar to the proofs found in Spruck [16].

Proposition 7.1 Let � be an admissible domain such that the family fBlg is empty,
�.Cm/ > 2H and the assigned boundary data f on the arcs fCmg bounded below.
Then there is a solution to the Dirichlet Problem if and only if

2˛.P/ < l.P/C 2HA.�P/

for all admissible polygons P .

Proof Let fung be a sequence of solutions of (1) in � defined by

un D

(
n on

S
k Ak ;

minfn; f g on
S

m Cm:

By the maximum principle the sequence fung is monotone increasing, we need to show
that the divergence set is empty. Observe that by Lemma 3.11 there is a neighborhood
of each arc Cm which is contained in the convergence domain. Denoting by @V D
P D

S
k.Ak \P/[ .P �

S
k Ak/ and applying the flux formula on P ,

2HA.V /D lim
n!1

Fun
.P/

D limn!1 Fun
.
S

k.Ak \P//C limn!1 Fun
.P �

S
k Ak/

� ˛.P/� l.P �
S

k Ak//

D 2˛.P/� l.P/:

This contradicts the hypothesis.

Proposition 7.2 Let � be an admissible domain with the family fAkg empty, and
�.Cm/ > 2H and the assigned boundary data f on the arcs Cm bounded above. Then
there is a solution to the Dirichlet Problem if and only if

2ˇ.P/ < l.P/� 2HA.�P/

for all admissible polygons P .
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Proof Let fung be a sequence of solutions of (1) in � defined by

un D

(
�n on

S
l B�

l
;

maxf�n; f g on
S

m Cm

By the maximum principle the sequence fung is monotone decreasing. We need to show
that the divergence set is empty. Observe that by Lemma 3.11 there is a neighborhood
of each arc Cm which is contained in the convergence domain, moreover in the domain
bounded by Bl [B�

l
the sequence is unbounded, and assumes the value �1 in Bl .

As in Proposition 7.1, we denote by @V D P D
S

l.Bl \P/[ .P �
S

l Bl/. Then
applying the flux formula on P ,

2HA.V /D lim
n!1

Fun
.P/

D limn!1 Fun
.
S

l.Bl \P//C limn!1 Fun
.P �

S
l Bl/

� �ˇ.P/C l.P �
S

k Bl//

D�2ˇ.P/C l.P/;

which contradicts the hypothesis.

Example 7.3 Let 
 be a C 2;˛ arc of curvature 2H and p; q two points in 
 whose
distance is ı with ı > 0 small compared with H . Let A1 and A2 be compact C 2;˛

arcs of curvature 2H orthogonal to 
 at p and q respectively. We assume that the
length of A1 and A2 is � with � small compared with ı . Let CC

1
and CC

2
be two

arcs of geodesic circles joining the end points of A1 and A2 , such that the domain �C

bounded by A1;A2;C
C

1
;CC

2
is convex (see Figure 9(left)), for ı small we can suppose

these arcs CC
1

and CC
2

have curvature greater than 2H . By the choice of � and ı , if
there is some inscribed polygon, the inequality of Proposition 7.1 is satisfied. Then
there is a solution in �C with boundary values C1 on A1;A2 and M on CC

1
;CC

2
,

M 2 R;M > 0. Similarly, we can consider C 2;˛ arcs B1;B2 of curvature �2H

orthogonal to 
 at p; q respectively, and C�
1
;C�

2
arcs of geodesic circles joining the

end points of B1;B2 which are convex with respect to the domain �� bounded by
B1;B2;C

�
1
;C�

2
(see Figure 9(right)). If the lengths of B1;B2 are small compared

with ı and ı is small compared with H , the hypothesis of Proposition 7.2 is satisfied, so
there is a solution in �� with boundary values �1 on B1;B2 and �M on C�

1
;C�

2
.

Remark 7.4 With these barriers, Propositions 7.1 and 7.2 are valid under the weaker
hypothesis �.Cm/� 2H .

We now prove the main theorems.
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A2 B1 B2

CC
1 C�1

CC
2

C�2

�C ��


 


p pq q

Figure 9

Proof of Theorem 2.8 We consider the sequence fung defined by

un D

8̂<̂
:

n on
S

k Ak ;

�n on
S

l B�
l
;

fn on
S

m Cm;

where fn is the truncation of f above by n and below by �n.

Consider uC and u� the functions defined by

uC D

8̂<̂
:
C1 on

S
k Ak ;

0 on
S

l B�
l
;

maxff; 0g on
S

m Cm:

u� D

8̂<̂
:

0 on
S

k Ak ;

�1 on
S

l Bl ;

minff; 0g on
S

m Cm;

The function u� exists by Remark 7.4, observe that �.Ak/D 2H and Ak is counting
now in the family Cm . In order to show that the function uC exists, we have to
verify the condition of Proposition 7.1. We denote by zP the polygon obtained from a
polygon P by removing the arcs Bl and attaching the arcs B�

l
. If the condition of

Proposition 7.1 is not verified for some polygon zP we would have

2˛. zP / > l. zP /C 2HA.� zP /

D l.P /�ˇ.P /C
X

lIBl�P

jB�l jC 2HA.�P /C 2HA.� zP ��P /

> 2˛.P /�ˇ.P /C
X

lIBl�P

jB�l jC 2HA.� zP ��P /:

Since 2˛. zP /D 2˛.P /, we obtain

(14) 0> �ˇ.P /C
X

lIBl�P

jB�l jC 2HA.� zP ��P /:
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On the other hand, since the domain �l bounded by Bl[B�
l

is convex, by Theorem 4.6
there is a solution on �l having continuous boundary values and the flux formulas
give us (see Lemma 5.3)

2HA.�l/ > �jB
�
l j � jBl j:

Then

(15) 2HA.� zP ��P / > �ˇ.P /�
X

lIBl�P

jB�l j:

Adding (14) and (15) we obtain

0> �2ˇ.P /:

So, in fact, the condition of Proposition 7.1 holds.

By the maximum principle, u� < un < uC in �. Then by the Compactness Theorem
there is a subsequence of fung which converges to a solution of (1) in �. By the
definition of each un;u has boundary values C1 on each arc Ak , �1 on each arc Bl

and f on the family fCmg.

Conversely, if there is a solution to the Dirichlet problem,

2HA.�P/D Fu.P/
D

X
Ak2P

Fu.Ak/C
X

Bl2P

Fu.Bl/C
X

Cm2P

Fu.Cm/

< ˛.P/�ˇ.P/C
X

Cm2P

jCmj

D �2ˇ.P/C l.P/;

(the strict inequality follows from Lemma 5.3), which shows (3). Equation (2) is
similar.

Proof of Theorem 2.9 For each n, let un be the solution on �� , given by

un D

(
n on

S
k Ak ;

0 on
S

l B�
l
:

For each c 2R; 0< c < n fixed, we define the set

Sc D fp 2�
�
Iun.p/�u0.p/ > cg;

Rc D fp 2�
�
Iun.p/�u0.p/ < cg:

These sets depend on n, but we will omit this in the notation. Let S i
c and Ri

c be the
components of Sc and Rc which contain Ai and B�i , respectively. The maximum
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principle assures that Sc D
S

i S i
c and Rc D

S
i Ri

c . If c is sufficiently close to n, the
sets S i

c will be distinct and disjoint. We define �.n/ as the infimum of the constants c

such that S i
c are distinct and disjoint. The sets S i

� are distinct and disjoint, and there
are indices i; j ; i ¤ j , such that .S i

�[ @S
i
�/\ .S

j
� [ @S

j
�/ ¤ ∅. This implies that

given any i , there is a j such that Ri
� and R

j
� are disjoint.

We consider the solutions

ui
C D

(
C1 on Ai ;

0 on .
S

k¤i Ak/[ .
S

l B�
l
/

ui
� D

(
0 on .

S
k Ak/[B�i ;

�1 on
S

l¤i Bl :

The solution ui
C exists since using the hypothesis of the theorem we can verify that the

conditions on Proposition 7.1 and Remark 7.4 hold (the argument is the same which
we use to show that the solution u� exists in the proof of Theorem 2.8). In order to
show that the solution ui

C exists, we need verify the conditions of Proposition 7.2 and
Remark 7.4. We denote by ��i the domain bounded by .

S
k Ak/[ .B

�
i /[ .

S
l¤i Bl/.

The quantities related to ��i will be denoted with a tilde. We take some admissible
domain zP on ��i , so if zP D @�

2 ž. zP/D 2ˇ zP � 2jBi j< l. zP/� 2HA.�/� 2jBi j< l. zP/� 2HA.�/:

We have to verify the conditions for polygons zP which contain the domain � bounded
by Bi [B�i . We consider P the polygon obtained from zP by deleting the domain �
and adding the arc Bi . Then,

2ˇ.P/D 2 ž. zP/C 2jBi j � l.P/� 2HA.�P/;

2 ž. zP/� zl. zP/CjBi j � jB
�
i j � 2HA.� zP/C 2HA.�/� 2jBi jso,

< zl. zP/� 2HA.� zP/:

The last inequality follows from the flux formulas applied to � (� is a convex domain,
so there are solutions having continuous boundary values).

We define
uC.p/Dmax

i
fui
C.p/g for p 2��;

u�.p/Dmin
i
fui
�.p/g for p 2�:

We are assuming that there is some subsolution of (1) in �� , then, by the maximum
principle, ui

C > �N; N > 0 for all i . We consider the sequence of solutions fvng,
vn D un��.n/. We will show that if M D sup�� ju0jCN ,

vn � uCCM in �;

vn � u��M in �:
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We suppose that vn > u0 at p 2�. So, un�u0 >�.n/ at p , then p 2S i
� , for some i .

By the maximum principle, applied to the domain S i
� , we have

vn � ui
CCN C sup

S i
�

fu0g � uCCM at p:

On the other hand, suppose that vn < u0 at p . Then un�u0 <�.n/ at p , so p 2Ri
�

for some i . Let j D j .i/ such that Ri
�\R

j
�D∅. By the maximum principle applied

to the domain Ri
� , we have

vn � uj
�� sup

Ri
�

fu0g � u��M at p:

Then the sequence fvng is uniformly bounded, so it is convergent. Let vn! u. We
have to show that u has the desired boundary values.

We observe that �.n/!1, otherwise, we can extract a subsequence of f�.n/g which
converges to some value � <1. By the definition of vn , the limit u would have
boundary values C1 on the arcs Ai and �� on the arcs B�

l
. Applying the flux

formulas we obtain that this condition can not occur. So, u assumes the boundary
values as prescribed.

Conversely, if such a solution u exists, we have

2HA.�/D Fu.@�/D
X

k

Fu.Ak/C
X

l

Fu.Bl/D ˛.P/�ˇ.P/;

which shows Equation (4). The other conditions are similar to the conditions done in
Theorem 2.8.
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