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Canonical triangulations of Dehn fillings

FRANÇOIS GUÉRITAUD

SAUL SCHLEIMER

Every cusped, finite-volume hyperbolic three-manifold has a canonical decomposi-
tion into ideal polyhedra. We study the canonical decomposition of the hyperbolic
manifold obtained by filling some (but not all) of the cusps with solid tori: in a broad
range of cases, generic in an appropriate sense, this decomposition can be predicted
from that of the unfilled manifold (a similar result has been independently announced
by Akiyoshi [4]). We also find the canonical decompositions of all hyperbolic Dehn
fillings on one cusp of the Whitehead link complement.

51H20; 57M50

0 Introduction

Let M be a complete cusped hyperbolic 3–manifold of finite volume, and endow the
cusps c1; : : : ; ck of M with disjoint simple horoball neighborhoods H1; : : : ;Hk . The
Ford–Voronoi domain F �M consists of all points of M having a unique shortest
path to the union of the Hi . The complement of F is a compact complex C of totally
geodesic polygons. By definition, the canonical decomposition D of M with respect
to the Hi has one 3–dimensional cell (an ideal polyhedron) per vertex of C , one face
per edge of C , and one edge per (polygonal) face of C ; we say that D is dual to C .
Other names for D are the geometrically canonical decomposition, or Delaunay (or
Delone) decomposition. In [11], Epstein and Penner give a precise description of D in
terms of convex hulls in Minkowski space R3C1 . Weeks’ program SnapPea [27] will
compute D for most manifolds of moderate size.

Akiyoshi [3] proves that, as the volumes of fHig1�i�k vary, only finitely many decom-
positions D arise. By Mostow–Prasad rigidity, the resulting collection of Delaunay
decompositions is a complete topological invariant of M . When M has a single cusp
there is a unique Delaunay decomposition. When M has multiple cusps one may take
all of their volumes to be equal; SnapPea uses the resulting decomposition for rigorous
computation of isometry groups and detection of isometric manifolds (see Weeks [28]).

Thus canonical decompositions lead to an interplay between hyperbolic geometry
and the combinatorics of cell-decompositions. This motivates the study of D and
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suggests that it is a difficult problem in general. General results are known only when
M is restricted to belong to certain classes of manifolds: punctured-torus bundles,
two-bridge link complements, certain arborescent link complements and related objects,
or covers of any of these spaces – see Jørgensen [19], Akiyoshi [2], Lackenby [20],
Akiyoshi et al [6; 7] and Guéritaud [15; 16; 14]. In fact, the combinatorics underlying
all the above examples are to a large extent the same. More examples, often using
symmetry, are compiled by Sakuma and Weeks [25].

The present paper offers a relative result: we are interested in how the canonical
decomposition D changes when the last cusp ck (where k � 2) undergoes a Dehn
filling along the slope s . Recall the operation of filling along s removes the interior
of Hk from M and glues a solid torus Xs to the resulting boundary component,
yielding the filled manifold Ms . Thurston showed that the metric on Ms Gromov-
converges, with appropriate choices of basepoints, to the metric on M as the length
of the filling slope s goes to infinity. Consequently, a Margulis tube (region where
the injectivity radius is less than the Margulis constant) appears about the core curve
of Xs [26].

Experimentation with SnapPea suggests that, for many manifolds, cusps, and slopes,
after filling ck the polyhedra of D outside the Margulis tube undergo only a small
geometric perturbation while the combinatorics of Ds inside the tube has a predictable
structure. To ensure such good behavior we choose the reference horoball neighbor-
hoods fHig1�i<k of the remaining cusps after filling to have the same volumes as
before filling. Moreover, we take the horoball neighborhood Hk before filling to be
very small and we make two “genericity” assumptions:

(I) The decomposition D (before filling) consists only of ideal tetrahedra.

(II) There exists a unique shortest path from Hk to
Sk�1

iD1 Hi in M .

Of course, this notion of genericity is problematic as there are only countably many
complete finite-volume cusped hyperbolic 3–manifolds; infinitely many of these are
nongeneric. Still, SnapPea verifies that of the fifteen twice-cusped manifolds from
the five-tetrahedron census (see Callahan, Hildebrand and Weeks [8]) (m125, m129,
m202, m203, m292, m295, m328, m329, m357, m359, m366, m367, m388, m391,
m412), eleven are generic. The Whitehead sister m125 fails (I), while the Whitehead
link m129, as well as m203 and m412, fail both (I) and (II). All 15 admit involutions
switching the cusps. All 15 except m412 are obtained by filling a cusp of the census
manifold s776, itself generic (the “magic manifold” of Martelli and Petronio [21]).

It is a corollary of Theorem 1 that if a generic manifold M has k cusps, if the
horoball Hk�1 , like Hk , has a unique shortest path to H1[ � � � [Hk�2 , and if both
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Hk�1 and Hk are small, then all but finitely many fillings on ck are again generic
with respect to ck�1 . In short, almost all fillings of generic manifolds (such as s776)
are again generic.

Theorem 1 Under the genericity assumptions (I)–(II) above, if the volume of the cusp
neighborhood Hk is small enough, then the decomposition D (before filling) contains
exactly two ideal tetrahedra �;�0 that have a vertex in the cusp ck . The tetrahedra
�;�0 are isometric, each of �;�0 has exactly one vertex in ck , and @.�[�0/ is
a once-punctured torus. For all but finitely many filling slopes s in the cusp ck , the
canonical decomposition Ds of the manifold obtained by Dehn filling along s is
combinatorially of the form

Ds D
�
DX f�;�0g

�
[ T

where T D f�1; : : : ; �N g is a triangulation of a solid torus minus one boundary point,
and the combinatorial gluing of the �i is dictated by the continued fraction expansion
of the slope s , with respect to a certain basis of the first homology of the cusp ck

depending only on D .

As set out in Section 2, the combinatorics of the triangulation T are identical to a
procedure found in the SnapPea kernel [27], called the layering construction by Jaco
and Rubinstein [17]. Each integer ˛ near the middle of the continued fraction expansion
gives rise to ˛ adjacent tetrahedra, to one edge of degree 2˛C4, and to ˛�1 edges of
degree 4 (the average degree of edges is always 6 by an Euler characteristic argument).
See Section 2 for details.

Geometrically, the tetrahedra of Ds X T are small deformations of the tetrahedra of
DX f�[�0g. To predict Ds when genericity is not satisfied, or even to estimate the
number of slopes s which fail to be sufficiently large in the sense of Theorem 1 (their
number may not be universally bounded), remains very challenging.

We will prove Theorem 1 in Section 4. Moreover, an analogous statement (Theorem 26)
will still hold when more than one cusp is filled. In Section 5, we will treat a real-life
family of examples by showing:

Theorem 2 If M is a hyperbolic Dehn filling of one cusp of the Whitehead link
complement in S3 , the canonical decomposition of M is dictated by the continued
fraction expansion of the filling slope.

The Whitehead link complement actually violates both conditions (I)–(II) of the gener-
icity assumption, but its symmetry makes up for this inconvenience. In fact, we will
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construct a certain triangulated solid torus, also denoted T , that serves as a proxy for
the Margulis (filling) tube: in the case of the Whitehead link complement, it turns out
that the filled manifold consists only of T with some exterior faces pairwise identified,
ie no combinatorics outside T need to be remembered from the unfilled manifold.
However, T can be slightly more complicated than in Theorem 1 – see Section 5 for
details.

Historically, the first avatar of the triangulation T of Theorem 1 seems to go back
to [18] where Jørgensen briefly described the Ford–Voronoi domain of the quotient
of H3 by a loxodromy, with respect to an ideal point p . Full proofs of his results were
given by Drumm and Poritz [10], who also allow p to be nonideal. For ideal p , we
use angle structures and ideal triangulations (combinatorially dual to the Ford–Voronoi
domain) to obtain new and quite different proofs of these results. Additionally, this
technique provides the following improvements over the existing literature:

� Suppose that � is a Kleinian group and Z � � an infinite cyclic subgroup
resulting from a Dehn filling. Then the canonically triangulated solid torus
corresponding to Z (provided, say, by [10]) is incorporated into the canonical
triangulation of H3=� . Under the genericity assumption this incorporation
explains how, in the program SnapPea, the picture of a triangulated cusp neigh-
borhood changes under Dehn filling.

� In Section 5.4, we sketch an extension to the case where Z is only virtually
cyclic.

� The convex hull in H3 of an ideal loxodromic orbit always admits a canoni-
cal triangulation by the Epstein–Penner construction (extended to the infinite-
covolume case by Akiyoshi and Sakuma [5]). However, some of the outermost
tetrahedra may be timelike or lightlike, and not spacelike, in which case they
do not correspond to vertices of the Ford–Voronoi domain (which indeed may
have no vertices at all, eg for loxodromies with very small rotation number).
Although this case does not arise in the context of Dehn fillings because the
covolume stays finite [11], it is covered at no extra cost by our methods, and
apparently eludes those of [10].

After this paper was accepted, M Sakuma pointed out to us the research report [4]
where Akiyoshi announced a result roughly equivalent to Theorem 1, sketching an
argument more in line with Jørgensen’s original approach. Earlier, using numerical
methods, he also established [1] that the canonical decompositions of hyperbolic fillings
of one cusp of the Whitehead link complement contain only tetrahedra, a consequence
of Theorem 2 here.
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The plan of the paper is as follows. In Section 1 we recall the definition of the space W

of angle structures on a combinatorial ideal triangulation, and explain (following
Rivin [23]) how to find the hyperbolic structure by maximizing a volume functional V
on W ; as an application we prove a rigidity result for solid tori. In Section 2 we
recall the combinatorics of the Farey graph in H2 and use it to describe an ideal
triangulation of a solid torus T . In Section 4, using results from [16], we check that
the decomposition of T is geometrically canonical, and describe how to insert T as
a proxy Margulis tube of a filled manifold, under the genericity assumptions (I)–(II).
In Section 5, we adapt the method to treat all Dehn fillings on one component of the
Whitehead link complement.

Acknowledgements We are very grateful to PCMI (Park City), where this work
originated during the summer of 2006. This project would have been impossible
without Jeff Weeks’ program SnapPea [27].

This work is in the public domain.

1 Angle structures and volume maximization

In Section 1.1 we give basic definitions and quote Theorem 5 (due to Rivin), the
cornerstone of our method to find positively oriented ideal triangulations. In Section
1.2, we parametrize the deformation space of certain hyperbolic solid tori; the method,
while not a direct application of Theorem 5, follows from the same ideas and from the
concept of “spun” triangulations [26].

1.1 Rivin’s theorem

Definition 3 A (combinatorial) ideal tetrahedron is a space diffeomorphic to an ideal
tetrahedron of hyperbolic space H3 (ie with vertices at infinity); the faces of such an
ideal tetrahedron are called ideal triangles.

Consider an oriented combinatorial ideal tetrahedron �, and copies �1; : : : ; �N of �:
the @�i naturally receive consistent orientations. A gluing of the �i is an equivalence
relation on

FN
iD1�i generated by orientation-reversing identifications �FG W G! F

of pairs of faces F ¤G of the �i , in such a way that:

� For each face F of each �i , there is at most one face G (resp. H ) of some
�j such that 'FG (resp. 'HF ) is defined; moreover G exists if and only if H

exists and one then has G DH and 'HF D '
�1
FG

.
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� Whenever ' WD 'F1F2
ı 'F2F3

ı � � � ı 'Fn�1Fn
ı 'FnF1

is well-defined on an
edge � of �i , then ' is the identity on � .

The last condition is called the trivial holonomy condition.

Let � be a gluing. Then M WD .
FN

iD1�i/=� is a manifold (possibly with boundary).
We say that the �i endow M with an ideal triangulation. The 6N edges of the �i

define edges in M , which we call boundary edges if they belong to @M , and interior
edges otherwise.

Let us denote by �1
i ; : : : ; �

6
i the six edges of �i (before gluing), and by E the set of

all ��i (so jEj D 6N ). We say that � 2E is incident to an edge e of M if � projects
to e under the gluing “�”. Fix a map ˛W fboundary edges of M g !RC .

Definition 4 An angle structure on M with respect to ˛ is a map � W E!R�C such
that

� if the edges �; �0; �00 of �i share a vertex, then �.�/C �.�0/C �.�00/D � ;
� if �1; : : : ; �n 2 E is the full list of edges incident to an interior edge e of M ,

then
Pn

iD1 �.�i/D 2� ;
� if �1; : : : ; �n 2E is the full list of edges incident to a boundary edge e of M ,

then
Pn

iD1 �.�i/D��˛.e/. (This is a convexity condition on M , since ˛� 0.)

The �.�/, for � 2E , are called the dihedral angles of the �i . Note that in an angle
structure, the dihedral angles at opposite edges of any tetrahedron �i are equal. Thus
we can realize each �i by an ideal hyperbolic tetrahedron ıi of H3 with dihedral
angles �.�1

i /; : : : ; �.�
6
i /; likewise, the total dihedral angles about every interior edge

is 2� . However, when the face identifications 'FG are the corresponding hyperbolic
isometries, the trivial holonomy condition may be violated. The following theorem
tells us exactly for which angle structures this problem disappears. Let ƒ be the
Lobachevski function defined by ƒ.x/ WD �

R x
0 log j2 sin t j dt .

Theorem 5 (Rivin [23]) Suppose the space W of angle structures is nonempty. Then
every critical point � 2W of the volume functional

V.�/ WD
1

2

X
�2E

ƒ.�.�// > 0

defines a complete hyperbolic metric with polyhedral boundary on M , with exterior
dihedral angle ˛.e/ at each exterior edge e . Conversely, if M admits such a complete
hyperbolic metric in which the �i are realized by totally geodesic ideal tetrahedra ıi
with disjoint interiors, then the dihedral angles of the ıi define a critical point of V .
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(In [23], Rivin mainly treats the case where M is a ball and all tetrahedra have a
common vertex [see especially Lemma 6.12 and Theorem 14.1 there]: however, the
general case requires only minor adjustments. A nice treatment can be found in [9];
see also the proof of Lemma 6.2 in [15], where each interior edge e is associated a
natural direction ve 2 T W so that the holonomy around e is trivial if and only if
dV.ve/D 0.)

Note that if �1; �2; �3 are the dihedral angles at the edges coming into one (and
therefore any) vertex of �i , then V0.�1; �2; �3/ WD

P3
iD1ƒ.�i/ is the volume of the

ideal tetrahedron of H3 with those dihedral angles, by the Lobachevski formula (this
tetrahedron is unique up to isometry of H3 ). Thus V.�/ can be interpreted as the sum
of the volumes of the tetrahedra �i .

Fact 6 The function V0 is continuous and convex on ‚ WD f.�1; �2; �3/ 2 R3
C j

�1C �2C �3 D �g, strictly convex on the interior of ‚, and vanishes on @‚. For any
x 2 .0; �/ and any ! 2R one has

d

dt

ˇ̌̌
tD0C

V0.� �x�!t ; x� .1�!/t ; t/DC1:

This expresses the fact that if exactly one of the three angles of an ideal tetrahedron �
is 0, increasing that angle to "� 1 yields a volume increase much greater than "; note
that the same statement is false when two angles of � are 0. For proofs, refer eg to
Propositions 6.6–6.7 of [15] (strict concavity follows from an easy discussion of the
second derivative computed there).

Fact 6 implies that the volume functional V W W ! R of Theorem 5 is concave and
positive, and extends continuously to a concave function on the (compact) closure SW
of W . It moreover implies:

Proposition 7 (Rivin [23]) Suppose W ¤ ∅ and let �0 2
SW be a point where V

reaches its maximum. Either

� �0 belongs to W , ie �0.E/ � R�C , in which case �0 is a (necessarily unique)
critical point for V in W ; or

� there exists a nonempty list of tetrahedra �i1
; : : : ; �is

that have an edge � such
that �0.�/D 0: then, each �ik

also has an edge �0 such that �0.�
0/D � .

Geometry & Topology, Volume 14 (2010)



200 François Guéritaud and Saul Schleimer

1.2 Rigidity of solid tori

In this section we prove a rigidity result for hyperbolic polyhedral solid tori with given
dihedral angles (and one ideal vertex). The method is a special case of a generalization
of Theorem 5 to spun triangulations.

Consider a once-punctured torus � with three ideal edges e; e0; e00 running from the
puncture to itself: these edges divide � into two ideal triangles. Let 
 be a nonoriented
free homotopy class of simple closed curves in � , and let n; n0; n00 2N be the minimal
intersection numbers of 
 with e; e0; e00 respectively. It is well-known that the triple
.n; n0; n00/ determines the class 
 , and that the largest among n; n0; n00 is the sum of
the other two terms.

Let a; b; c 2 Œ0; �/ be such that aC bC c D � , and consider coprime positive integers
na; nc . We aim to construct a punctured solid torus X (namely a solid torus minus one
point of its boundary) with the following properties: the punctured torus @X has three
ideal edges with exterior dihedral angles a; b; c , and the meridian of X intersects these
three edges minimally in na; naCnc ; nc points respectively. We write nb WD naCnc .

Proposition 8 A hyperbolic solid torus X as above exists if and only if a naCb nbC

c nc > 2� . This solid torus is then unique up to isometry.

Remark 9 The left member of the inequality is the sum of exterior dihedral angles
met by a meridian in @X : the inequality can thus be seen as a sort of Gauss–Bonnet
condition for the compression disk of the solid torus X (see Futer and Guéritaud [12]
for a more general construction). In Section 2, we will check that the same condition
is also enough for a certain (nonspun) ideal triangulation of X to have angle structures
(with respect to a; b; c ), and indeed to be geometrically realized.

Proof If X exists, we can consider its universal cover U which is a complete hy-
perbolic manifold with locally convex boundary and is thus, by a standard argument,
naturally embedded in H3 . This space U is the convex hull of the orbit of an ideal point
of @1H3 ' S2 under a certain loxodromic ' (corresponding to the core curve of X ).
We can cone all faces of U to the attracting fixed point of ' : this yields a '–invariant
decomposition of U (minus the axis of ' ) into tetrahedra, hence, quotienting out by ' ,
a decomposition of the solid torus X (minus the core axis) into two ideal tetrahedra
�;�0 . Note that this decomposition has only one interior edge L, originating at the
puncture of @X and spinning towards the core of X . Thus, constructing X in general
amounts to finding positive dihedral angles for �;�0 such that:
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(i) The holonomy around L is the identity of H3 , ie the six angles around L sum
to 2� and the six associated tetrahedron shape parameters in C X f0; 1g have
product equal to 1. (a definition of holonomy was sketched when we described
gluings in Section 1.1 above; for a more precise one, refer eg to Definition 6.3
of [15].)

(ii) The boundary of �[�0 has interior dihedral angles � � a; � � b; � � c .

(iii) The holonomy around the core curve of X is also the identity of H3 .

Condition (i) above is automatically satisfied because each dihedral angle of � and
�0 is incident to L exactly once. To study Condition (ii), let us fix some notation: let
ABC and ACD be two counterclockwise oriented triangles in C � P1C ' @1H3 ;
we identify � with the tetrahedron 1ABC and �0 with 1ACD , gluing the ideal
triangles 1AB and 1DC (resp. 1AD and 1BC ) together. The interior angles
at A;B;C of � are denoted ıa; ıb; ıc respectively. The interior angles at A;C;D of
�0 are denoted ı0c ; ı

0
a; ı
0
b

respectively (see Figure 1).

A

B C

D
ı0cıa

ıb ıc

ı0a

ı0
b

�a

�c

Figure 1: The cusp shapes of � and �0

Condition (ii) can then be written

ıaC ı
0
a D � � a; ıbC ı

0
b D � � b; ıc C ı

0
c D � � c:

(Indeed, the triangles in Figure 1 represent a triangulation of the punctured torus
@.�[�0/, and each interior dihedral angle there is the sum of one angle in � and one
angle in �0 .) This implies

(1)

8<: .ıa; ıb; ıc/ D
�
��a

2
C˛ ; ��b

2
Cˇ ; ��c

2
C 


�
.ı0a; ı

0
b
; ı0c/ D

�
��a

2
�˛ ; ��b

2
�ˇ ; ��c

2
� 


�
where

(2) j˛j< ��a
2
; jˇj< ��b

2
; j
 j< ��c

2
and ˛CˇC 
 D 0:
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The space of solutions .˛; ˇ; 
 / to (2) is the interior of a centrally symmetric affine
hexagon P whose edges are given by

(3) ˛ D ��a
2
; ˇ D���b

2
; 
 D ��c

2
; ˛ D���a

2
; ˇ D ��b

2
; 
 D���c

2

in that order. (It is easy to check that these edges are all nonempty segments if a; b; c>0,
and that eg the first and fourth edges are reduced to points if and only if aD 0.) See
Figure 2.

˛ D���a
2

ˇ D���b
2


 D���c
2

˛ D ��a
2

ˇ D ��b
2


 D ��c
2

P

S

Figure 2: The hexagon P of solutions .˛; ˇ; 
 / to (2) and the segment S of
spun angle structures. At most one pair of opposite sides of P can be reduced
to points, because a; b; c < � .

Condition (iii) has two components: first, an angular component (linear in terms of
the dihedral angles of �;�0 ) which will narrow down the space of solutions .˛; ˇ; 
 /
to the intersection of the interior of P with a certain line. This intersection will be
nonempty (namely, an open segment S ) exactly when the inequality of Proposition 8
is satisfied. Second, a scaling component which we will solve by seeking a critical
point of a volume functional on S .

Angular component Following the notation above (and Figure 1), we refer to the
three exterior edges of X as AB;BC;CA: the corresponding exterior dihedral an-
gles are c; a; b respectively. The angular holonomy map is a group homomorphism
hW H1.@X;Z/!R. Let the oriented closed curve �a (resp. �c ) be a boundary com-
ponent of a regular neighborhood of the oriented edge

��!
BC (resp.

�!
BA), as in Figure 1.

By the conventions (1) above, h.Œ�a�/D ıa� ı
0
a D 2˛ and h.Œ�c �/D�ıcC ı

0
c D�2
 .

The meridian � of X is homotopic to nc Œ�a�C naŒ�c � (where na; nc > 0), because
this class intersects na times the edge BC , nb D naCnc times the edge AC , and nc

times the edge BA. Hence,

h.Œ��/D 2.nc˛� na
 /:

Using (3), and considering the appropriate vertex of the space P of angle structures,
the largest (resp. smallest) possible value of h.Œ��/ on the closure of P is therefore
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2.nc
��a

2
C na

��c
2
/D anaCbnbC cnc (resp. the negative of that number), where we

used aC bC c D � and nb D naC nc . We conclude that h.Œ��/D 2� is satisfiable
on the interior of P if and only if a naC b nbC c nc > 2� , as wished.

Scaling component The scaling holonomy map is a group homomorphism

�W H1.@X;Z/!R�C:

The sine formula for triangles yields

�.Œ�a�/D
sin ıb
sin ıc

sin ı0c
sin ı0

b

and �.Œ�c �/D
sin ıb
sin ıa

sin ı0a
sin ı0

b

;

�.Œ��/D �.Œ�a�/
nc�.Œ�c �/

na D

�
sin ıb
sin ı0

b

�naCnc
�

sin ıc
sin ı0c

��nc
�

sin ıa
sin ı0a

��na

:hence

On the other hand, let S be the open segment defined by the intersection of the interior
of P with the condition h.Œ��/D 2� , ie nc˛� na
 D � . The tangent space of S is
generated by the vector . P̨ ; P̌; P
 /D .na;�na� nc ; nc/. The volume functional is by
definition

S �! RC

V W .˛; ˇ; 
 / 7�! V0.ıa; ıb; ıc/CV0.ı
0
a; ı
0
b
; ı0c/

where the angles ıa; : : : ; ı0c are given by (1). By Fact 6, V is strictly concave on the
segment S and achieves its maximum in S (indeed, the endpoints of S belong to
the perimeter of the hexagon P , but at any point of @P , at least one of the tetrahedra
�;�0 has exactly one angle whose value is 0: therefore, V has unbounded derivative
near each endpoint of S ). As a result, V has a unique (critical) maximum in the open
segment S .

At that critical point, since . P̨ ; P̌; P
 /D .na ; �na� nc ; nc/, we have

0D dV. P̨ ; P̌; P
 /D P̨ƒ0.ıa/C P̌ƒ0.ıb/C P
ƒ0.ıc/� P̨ƒ0.ı0a/� P̌ƒ0.ı0b/� P
ƒ
0.ı0c/

D � P̨ log j2 sin ıaj � P̌ log j2 sin ıbj � P
 log j2 sin ıcj

C P̨ log j2 sin ı0ajC P̌ log j2 sin ı0bjC P
 log j2 sin ı0cj

D log
��

sin ıa
sin ı0a

��na
�

sin ıb
sin ı0

b

�naCnc
�

sin ıc
sin ı0c

��nc
�
D log �.Œ��/:

At the critical point of V in S , we therefore have the following values for the holonomy
maps: h.Œ��/D 2� (rotational component) and �.Œ��/D 1 (scaling component). This
precisely means that the metric completion of �[�0 is the solid torus X endowed with
a spun triangulation of two tetrahedra whose tips spin around the core curve. Moreover,
any realization of X with the prescribed dihedral angles yields a spun triangulation
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into positively oriented tetrahedra .�;�0/, because we can always cone the faces of
the (convex) universal cover U �H3 of X D U=' to the attracting fixed point of ' .
Since the critical point of V in S is unique, we have therefore proved that X itself is
unique up to isometry.

2 Farey combinatorics in solid tori

Let X be a compact solid torus, minus one point of its boundary; call this removed
point the puncture.

In this section we will first describe a certain combinatorial decomposition D of X into
ideal tetrahedra, relative to a given ideal triangulation of @X (into two ideal triangles).
This is essentially similar to a construction for closed manifolds that appears in the
function standard torus form() in [27, close cusps.c]. This layering construction is also
analyzed in great detail by Jaco and Rubinstein [17]. We next go on to find a geometric
realization of D , using the ideas of Section 1.

2.1 The Farey graph

Identify the boundary at infinity of the hyperbolic plane H2 to the circle P1R, endowed
with the action of PSL2.Z/. We assume that 0; 1;1 lie counterclockwise in that order
on @1H2' P1R. Consider the subset P1Q of P1R. We measure the “proximity” of
two elements q D y=x and q0 D y0=x0 of P1Q (given as ratios of coprime integers)
by computing their wedge

(4) q ^ q0 WD





 y y0

x x0





 2N (absolute value of the determinant).

If we draw a straight line in H2 from q to q0 each time q ^ q0 D 1, we obtain the
Farey triangulation of H2 . Alternatively, this triangulation can be defined by reflecting
the ideal triangle 110 in its sides ad infinitum.

Fix an identification (homeomorphism) between the punctured torus @X and T WD
.R2 X Z2/=Z2 . We assume that the canonical orientation of T (induced by R2 ),
followed by the outward-pointing normal of @X , coincides with the positive orientation
on X . The segment from .0; 0/ to .x;y/ in R2 (where x;y are coprime integers)
projects to a properly embedded (open) arc 
 in @X : we say that y=x 2 P1Q is the
slope of 
 . An edge E of the Farey triangulation (or: a Farey edge) corresponds to a
pair of disjoint arcs 
; 
 0 in @X ; the slopes of 
; 
 0 are the two ends of E in P1Q and
the complement of 
 [ 
 0 in @X is an ideal quadrilateral. Similarly, Farey triangles
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(such as 110), having three vertices in P1Q, correspond to triples of disjoint arcs

; 
 0; 
 00 in @X which define a decomposition of @X into two ideal triangles. Finally,
note that we can also associate a slope in P1Q to the meridional closed curve � of
the solid torus X : namely, the slope of the unique properly embedded arc �0 which
(possibly after isotopy) does not intersect �.

Let pqr be a Farey triangle, and suppose m 2 P1Q X fp; q; rg is the slope of the
meridian of X . By convention, we will suppose that the Farey edge pq separates r

from m, and that pqm is not a Farey triangle (so m is “far enough” from the trian-
gle pqr ). Endow the punctured torus @X with the ideal triangulation associated to
pqr (which we call the pqr –triangulation). In Section 2.2, we will be preoccupied
with decomposing X into ideal tetrahedra with faces (ideal triangles) glued in pairs, in
such a way that exactly two ideal triangles remain free, and give the pqr –triangulation
of @X .

2.2 An ideal triangulation of the solid torus

The idea is to follow a path ` in the Farey triangulation, transverse to the Farey edges,
from the ideal vertex r to the ideal vertex m. We assume that the path ` crosses each
Farey triangle at most once, ie never backtracks. The sequence of Farey triangles that
` encounters is then completely determined (so we can take ` to be eg a geodesic ray):
these triangles are

.T0;T1; : : : ;TN /D .pqr;pqr 0; : : : ;mst/

where s; t belong to P1Q and the symmetry of axis pq takes r to r 0 . Note that by
assumption, N � 2. See Figure 5.

For each 0 < i < N , we can then consider a properly embedded punctured torus
�i �X isotopic to @X (properness here means that by intersecting �i with a basis of
neighborhoods of the puncture of X , we get a basis of neighborhoods of the puncture
of �i ). We can assume that the �i are disjoint and that �i separates @X from �iC1

(ie �iC1 lies in the solid torus X “inward” from �i ). Endow �i with the triangulation
associated to the Farey triangle Ti – for that purpose we also count @X as �0 . Note
that two consecutive punctured tori �i�1; �i always have two edge slopes in common
(these slopes are the ends of the Farey edge Ti�1\Ti ). Thus, we can isotope �1 until
its edges of slopes p; q coincide with those of �0 D @X ; then isotope �2 until two
of its edges coincide with the edges of similar slopes in �1 ; then isotope �3 until it
intersects �2 along two edges, etc.

At the end of this process, the space comprised between �i�1 and �i , for each 0 <

i < N , is a (combinatorial) ideal tetrahedron �i with four of its edges identified in
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opposite pairs. These tetrahedra �i , with the combinatorial gluing that arises from
the construction above, are by definition those of our decomposition D of X . (Since
N �2, there is at least one tetrahedron �i . Our “half-shift” convention @�iD �i�1[�i ,
or equivalently �i D �i \�iC1 , is arbitrary). In order to homotopically “kill” the
meridian of the solid torus X , it only remains to describe the gluing of the last surface
�N�1 to itself.

If TN Dmst is the last Farey triangle, let TN�1Dm0st be the next-to-last, associated
to the surface �N�1 . We fold �N�1 along its edge of slope m0 , gluing the two
adjacent faces (ideal triangles) F 0;F 00 to one another to obtain a single ideal triangle F .
Intrinsically, F is an ideal Möbius band, ie a compact Möbius band minus one point
of its boundary. Indeed, from an (ideal) triangle ABC , one can construct an (ideal)
Möbius band F with boundary AC , by gluing the oriented edge AB to BC : the
(punctured) torus �N�1DF 0[F 00 then just wraps around this (ideal) Möbius band F ,
like the boundary of a regular neighborhood of an embedding of F in R3 . See Figure 3.

A

B

C

�

Figure 3: Left: A punctured torus (shown are 3 folded copies of a funda-
mental domain; arrows are identified) wraps around an ideal Möbius band.
The meridian arc � , of slope m , becomes homotopically trivial. The dotted
folding edge AC has slope m0 . Right: Part of the universal cover of the same
Möbius band (shaded) and the tetrahedron �N�1 glued to it.

2.3 Angle structures

We proceed to describe positive angle structures for the tetrahedra �i , where 1� i �

N � 1 (the argument is reminiscent of [15] and [16], although the solution space will
look quite different). More precisely, consider reals

(5) �p; �q; �r such that

8<:
�pC �qC �r D � I

�p ; �q � 0 I

� > �r > 0 :
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We will look for angle structures on the �i such that the interior dihedral angles of X

at the edges of slope p; q; r in @X are � � �p; � � �q; � � �r respectively. Note that
we do not allow �r to vanish: indeed, � � �r will be a dihedral angle of the first
tetrahedron �1 . (If the solid torus X admits a geometric realization in which �r D 0,
we can always remove this flat tetrahedron �1 and see @X as being endowed with the
pqr 0–triangulation, where r 0 2 P1Q is the symmetric image of r with respect to the
Farey edge pq .)

Proposition 10 An angle structure satisfying (5), also called a .�p; �q; �r /–angle
structure, exists if and only if .m^p/�pC .m^ q/�qC .m^ r/�r > 2� .

Remark 11 It is easy to check that m ^ r D .m ^ p/ C .m ^ q/ – eg by re-
ducing to the case .p; q/ D .0;1/ and using the PSL2.Z/–invariance of the ^–
notation. Thus, by (5), the inequality of Proposition 10 is automatically true unless
minfm^p;m^ qg D 1. For example, if .m^p;m^q/D .1; 1/, the condition is always
false (recall we required that pqm not be a Farey triangle); if .m^p;m^q/D .2; 1/,
it amounts to �r > �q . The equilateral triangle in Figure 4 shows the full parameter
space for the triple .�p; �q; �r /: shades indicate how many slopes m fail to satisfy the
condition of Proposition 10, where we allow m to range over all of P1Q rather than
just over the arc _

pq (when m belongs to one of the arcs _
qr ;

_
rp , we construct the same

ideal triangulations, up to a permutation of p; q; r ).

9

10

11

12

13

14

15

16

17

18

19 or more

.�; 0; 0/ .0; 0; �/

.0; �; 0/

Figure 4: Parameter space for the triple .�p; �q; �r / and numbers of “forbid-
den” slopes m (the brighter, the fewer)

Proof of Proposition 10 The tetrahedra �i are naturally associated to the Farey edges
ei D Ti�1 \ Ti that the path ` crosses. Orient ` from T0 to TN . If ei and eiC1
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share their Right (resp. Left) end with respect to the orientation of `, we say that `
makes a Right (resp. a Left) between ei and eiC1 (or: at Ti ). Thus, ` defines a word
�DRLL : : :R of length N � 1 in the letters R;L: for each i 2 f1; 2; : : : ;N � 1g

there is a tetrahedron �i and a letter �i 2 fR;Lg. If .p; q; r/ D .0;1;�1/, then
the lengths of the syllables Rn and Ln of � are exactly the integers in the continued
fraction expansion of the rational m, as referred to in Theorem 1.

Note that no letter R or L is associated to the very first Farey triangle T0 D pqr ,
because the line ` does not “enter” T0 through pr rather than through qr . We
nevertheless decide to place an extra letter �0 2 fR;Lg in front of the word �, so
that � becomes of length N and starts with either RR or LL. This convention is
totally artificial (the other choice would be equally good), but making a choice here
will allow us to streamline the notation in our argument. Up to switching p and q , we
can now assume that ` enters the Farey triangle T0 through the edge pr , and leaves
through pq . See Figure 5.

m

p

q

r

s

t

m0
r 0

R R R L
`

L R

T0

T1 TN�1

TN

Figure 5: The Farey graph. The 5 thick lines Ti�1 \Ti (where 1� i � 5)
correspond to the tetrahedra �i .

Definition 12 If �i�1 ¤�i , we say that �i is a hinge tetrahedron. Otherwise, we
call �i nonhinge. For example, following our convention, �1 is nonhinge.

To compute angle structures, it will be useful to describe the cusp triangulation asso-
ciated to the ideal triangulation f�ig1�i�N�1 of X . Since each pleated punctured
torus �i has one ideal vertex and three edges, each with two ends, the link of the ideal
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vertex of �i is a hexagon Hi (the pleating angles of �i are the exterior angles of Hi ).
We are going to define the dihedral angles of the ideal tetrahedra �i in terms of the
pleating angles of the �i . Note that the hexagon Hi has a central symmetry induced
by the hyperelliptic involution of the punctured torus �i (rotation of 180ı around the
puncture, which exchanges the ends of each edge of �i ).

Let ��� D Ti�1 and ���0 D Ti be two consecutive Farey triangles, so that the Farey
vertex � (resp. �) lies to the right (resp. left) of the oriented axis `. The tetrahedron �i

has

� two opposite edges carrying the same dihedral angle xi and identified to just
one edge, of slope � , in the triangulation of the solid torus (for the time being,
xi is just a formal variable);

� two opposite edges carrying the same dihedral angle yi and identified to just
one edge, of slope �, in the triangulation (similarly, yi is formal);

� two opposite edges which carry the same (formal) dihedral angle zi , and which
coincide with the edges of slope � and �0 in the triangulation.

As in any angle structure, the relationship xi C yi C zi D � must hold between the
formal variables.

The vertices of the hexagon Hi�1 (resp. Hi ) are the links of edges of slopes �; �; �
(resp. �; �; �0 ). We can write these labels �; �; �; �0 at the vertices of Hi�1 and Hi :
see Figure 6 (left).

Observation 13 By construction, the vertex of the hexagon Hi�1 labelled � has an
interior angle of zi , while the vertex of the hexagon Hi labelled �0 has an interior
angle of 2� � zi . This comes from the fact that the boundary of the tetrahedron �i

is exactly the union of the two pleated punctured tori �i�1 and �i (with vertex links
Hi�1;Hi ).

As a consequence, we can determine the three interior angles of the hexagon Hi (each
angle occurs twice, by central symmetry of Hi ):

(6) 2� � zi ; ziC1; zi � ziC1 :

Indeed, the first two of these numbers are given by Observation 13 (shifting indices by
one for ziC1 ); the third is given by the property that the six angles of Hi should add
up to 4� . See Figure 6, (right).

We can in turn write the numbers (6) in the corners of the Farey triangle Ti : namely,
2� � zi is in the corner opposite the Farey edge Ti�1 \Ti ; similarly ziC1 is in the
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�

�

�

�

�

�

�0

�0

H0
H1

z1

z1

z2

z2

H0

H1

H2

Figure 6: Left: Two consecutive hexagons H0;H1 in the cusp link, with
vertices labelled by elements of P 1Q . The four (similar) grey triangles are
the vertex links of the ideal tetrahedron �1 . Right: The full sequence of
hexagons H0; : : : ;H3 , where H3 is collapsed to a broken line of 3 segments.
The angles z1 and z2 of the tetrahedra �1 and �2 are marked; together they
determine the interior angles (6) of H1 .

corner opposite the Farey edge Ti \TiC1 ; and zi � ziC1 is in the third corner, at the
Farey vertex Ti�1\TiC1 . See Figure 7.

The above operation can be performed for all indices i 2 f1; : : : ;N �2g. For i DN �1,
there is no tetrahedron “�N ”; hence, a priori, no parameter zN . However, if m0 2P1Q
is the vertex of the Farey triangle TN�1 opposite the Farey edge TN�1\TN in TN�1 ,
then the interior angle of the (collapsed) hexagon HN�1 at the vertex labelled m0 is
precisely 0, by definition of our folding of the pleated surface �N�1 onto itself. This
folding thus corresponds to asking that

zN D 0 :

Under this convention, the other angles of the collapsed hexagon HN�1 are then given
by the same formulas (6), with i DN � 1.

Finally, we perform an analogous construction at i D 0 (our assumptions imply that H0

is convex, with angles � � �p; � � �q; � � �r ). There is no tetrahedron “�0 ”; hence,
a priori, no parameter z0 . However, the interior angle of H0 at the vertex labelled r is
� � �r , which entails z1 D � � �r . Similarly, the interior angle of H0 at the vertex
labelled q is � � �q , which entails z0 D 2� � .� � �q/D � C �q . To summarize:

Proposition 14 Under the full set of assumptions

(7)
. z0 ; z1 ; z2 ; : : : ; zN�1 ; zN /

D . � C �q ; � � �r ; z2 ; : : : ; zN�1 ; 0 /
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(where the values of .z2; : : : ; zN�1/ remain to be chosen), the angles of the hexagons
fHig0�i�N�1 given by (6) define all the .�p; �q; �r /–angle structures.

To get angle structures, we must only choose the z2; : : : ; zN�1 in the interval .0; �/
so that all dihedral angles of �i are positive for 1� i �N � 1, which we do now.

Denote by � (resp. �) the right (resp. left) end of the Farey edge Ti�1 \ Ti . By
construction, xi (resp. yi ) is half the difference between the angles of hexagons Hi�1

and Hi at the vertex labelled � (resp. �) in the cusp link, ie half the difference between
the numbers written in the �–corner (resp. the �–corner) of the Farey triangles Ti�1

and Ti in the Farey diagram. (The factor one-half comes from the identification of pairs
of opposite edges in the ideal tetrahedron �i .) In Figure 7 we show what these numbers
are, according to whether the line ` makes Rights or Lefts at the Farey triangles Ti�1

and Ti : we use only (6) and the shorthand

(8) .a; b; c/ WD .zi�1 ; zi ; ziC1/ :

�
�

�
�

�

�

�

�

b b b b

c c c c
R

R R

RL

L

L

L
a�b a�b a�b a�b
b�c b�c b�c b�c

2��a 2��a 2��a 2��a

2��b 2��b 2��b 2��b

Figure 7: The Farey triangles Ti�1 (lower) and Ti (upper), with corner labels

It follows that the values of xi and yi in terms of the zi are given by Table (9) – in
the first line of the table, we recall the nature of the tetrahedron (or cell) �i , and the
natural positions of a; b; c , interspersed with the letters of the word �.

(9)

zi�1 zi ziC1
�i�1 ; �i„ ƒ‚ …

Cell �i is. . .

a b c
R ; R„ƒ‚…

Nonhinge

a b c
L ; L„ƒ‚…

Nonhinge

a b c
R ; L„ƒ‚…
Hinge

a b c

L ; R„ƒ‚…
Hinge

xi
a� 2bC c

2
� �

aC c

2

a� b� c

2
� �

aC b� c

2

yi � �
aC c

2

a� 2bC c

2
� �

aC b� c

2

a� b� c

2

zi b b b b
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From Table (9), we can read off the condition for all xi and yi and zi to be positive.
Still using the notation .a; b; c/D .zi�1 ; zi ; ziC1/ (and recalling that the values of
z0; z1 are forced by (7)), these conditions are

(10)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

a> bC c if �i is a hinge cell .hinge condition/I

aC c > 2b if �i is not a hinge .convexity condition/I

0< zi < � for all 2� i �N � 1 .range condition/I

z2 < � � �q (follows from the case i D 1; a nonhinge index).

The last condition is needed for � � .z0C z2/=2 (namely, x1 or y1 ) to be positive,
because z0D �C�q (unlike other zi ) is larger than � . Note that by (7), the convexity
condition at i D 1 also implies z2 > � � �q � 2�r . This is compatible with the last
condition of (10) since �r > 0 by (5).

To actually find .z2; : : : ; zN�1/ satisfying (10), thus proving Proposition 10, we now
distinguish two cases.

Case 1 (None of the �i are hinge cells.) In this case, we are reduced to finding a
sequence of the form (7) that is convex, decreasing, and satisfies z2 < � � �q . This is
clearly possible if and only if

.� C �q/�N.�r C �q/ < 0 ;

.N � 1/�qCN�r > � ;ie

�pCN�qC .N C 1/�r > 2� ;ie

where the last line follows from (5). It is easy to check that under the normalization
.p; q/D .1; 0/ and r 2 fC1;�1g (one of which can be assumed up to applying an
element of PSL2.Z/), the slope m 2 P1Q is, up to sign, the integer N : indeed, all
the letters of the word � are equal and the Farey triangle Ti has vertices 1; i; i � 1

if r D 1 (and 1;�i;�i C 1 if r D�1). The last line of the computation above thus
becomes

.m^p/�pC .m^ q/�qC .m^ r/�r > 2� ;

proving Proposition 10 in this case.

Case 2 (Some �i are hinge cells.) By Remark 11, the inequality of Proposition 10
is vacuous in this case. Let us therefore just construct a sequence of the form (7) that
satisfies (10). Let h 2 f2; 3; : : : ;N � 1g be the smallest hinge index. We can easily
choose a strictly convex, positive, decreasing sequence

. z0 ; z1 ; z2 ; : : : ; zh�1 ; zh /

D . � C �q ; � � �r ; z2 ; : : : ; zh�1 ; zh /
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satisfying z2<���q . We construct the rest of the sequence .zi/ backwards, descending
from the index i D N down to i D h. First set z0

N
D 0 and z0

N�1
D 1. For

each i such that N � 2 � i � h C 1, pick (inductively) a value of z0i such that
.a; b; c/ WD .z0i ; z

0
iC1

; z0
iC2

/ satisfies the concavity or hinge condition of (10), according
to whether �iC1 is a hinge cell or not (for example, z0i D 3z0

iC1
will always do). The

sequence .z0
hC1

; : : : ; z0
N�1

/ is clearly positive and decreasing. We then set

zi WD "z
0
i for all hC 1� i �N :

It is immediate to check that the hinge condition “a> bC c” of (10) is verified by the
triple .a; b; c/D .zh�1; zh; zhC1/ as soon as

0< " <
zh�1� zh

z0
hC1

:

Thus, by choosing such an ", we have found a sequence .zi/ of the form (7).

Proposition 10 is proved.

2.4 Volume maximization

Denote by (10’) the system (10) in which all strong inequalities have been replaced by
weak ones, and let W denote the compact polyhedron of solutions .zi/ of the form (7)
to the system (10’) – so the interior of W is the space of angle structures. The volume
functional V W W !RC associates to every point z of W the sum of the volumes of
the ideal tetrahedra �i with nonnegative angles xi ;yi ; zi given by Table (9).

Suppose that �p; �q; �r satisfy (5) and the inequality of Proposition 10 (hence W ¤∅).
We henceforth assume that the point zD .zi/2W realizes the maximum of V over W ,
and we aim to prove:

Proposition 15 The point z is a solution of (10), not just (10’) – ie all �i have only
positive angles.

Proof Observe that the sequence .z0; : : : ; zN / is nonnegative and nonincreasing. This
follows from (10’) by an immediate downward induction (starting at zN ).

By Proposition 7, we know that if �i is flat, ie has a vanishing dihedral angle, then
its triple of angles is of the form .0; 0; �/, up to permutation. Thus, by Table (9), �i

is flat exactly when zi 2 f0; �g. By monotonicity, since z1 D � � �r < � , the only
flat tetrahedra �i actually satisfy zi D 0. Still by monotonicity, it then follows that
ziC1D0 as well. Let i be the smallest index such that ziD0. An easy discussion, using
Table (9), shows that the only possible value of zi�1 that implies fxi ;yig D f0; �g is
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zi�1D 2� (recall here the a–b–c–Equation (8)). This is impossible: only z0D�C�q

is allowed to be larger than � , but we have �q < � by (5).

Corollary 16 The point z defines a complete hyperbolic structure on the punctured
solid torus X D�1[ � � � [�N�1 , with exterior dihedral angles �p; �q; �r on @X .

Proof By Theorem 5, this follows from the fact that z is critical for the volume
functional V W W !R.

An alternative proof would closely follow that of [15, Lemma 6.2]: to each interior
edge E of X is associated a certain line LE in the tangent space TzW , such that the
vanishing of the derivative of V along LE expresses the fact that the hyperbolic metric
near E is complete.

3 Handedness

In this section, we discuss the handednesses of certain elements in the fundamental
group of the (complete, hyperbolic) punctured solid torus X . These results will be
useful in establishing the inequalities leading to Theorem 1 (which is proved in the
next section).

Definition 17 For any g 2 GL2.C/, define the handedness of g by

hand.g/ WD
.Tr g/2

Det g
:

Note that hand.g/D hand.g�1/D hand.rg/ for all r 2C� . Therefore, hand factors
through a map PSL2.C/!C , also noted hand. Call a loxodromy of H3 left-handed
(resp. right-handed) when it is conjugate to z 7! ˛z with j˛j> 1 and Im.˛/ > 0 (resp.
j˛j> 1 and Im.˛/< 0). Left-handed loxodromies are “corkscrew” motions, the motion
of a dancer who jumps upwards while spinning to her left. It is easy to check that
the Möbius transformation associated to g is left- (resp. right-) handed if and only if
Im.hand.g// is positive (resp. negative).

Let U be the universal cover of the solid torus X D
SN�1

iD1 �i . Since U is a complete
hyperbolic manifold with locally convex boundary, the developing map U !H3 is an
embedding. Thus U �H3 is the convex hull in H3 of the orbit of an ideal point v
under a certain loxodromy

' 2 IsomC.H3/' PSL2.C/
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(typically extremely short, corresponding to the core curve of the solid torus). Make
the attracting (resp. repelling) fixed point of ' coincide with the North pole PC (resp.
the South pole P� ) of S2 ' @1H3 ; assume that v lies on the Equator at longitude 0,
and orient the Equator along increasing longitudes. As a cover of the space X which is
triangulated, U comes with a natural, '–invariant decomposition into ideal tetrahedra.

The projection with respect to the center of Poincaré’s ball model sends @U homeomor-
phically to S2 X fPC;P�g X f'n.v/gn2Z . For each edge vv0 of @U (between ideal
points v; v0 2 S2 ), this projection sends vv0 to the short great-circle arc _

vv0 in S2 . If
vv00 is another edge of @U , this allows us to speak about the angle 1v0vv00 2 .��; ��
between v0 and v00 , as seen from v (ie in TvS2 ).

The punctured torus �0 D @U=' has three ideal edges, each endowed with a positive
dihedral angle. Therefore the ideal vertex v of U is connected to six other vertices
of U by edges of @U , and there is a natural cyclic order on these six vertices. The
equatorial plane intersects @U along a broken line J from v to v which is properly
embedded in @U (with both its endpoints ideal). We can orient J along increasing
longitudes.

Definition 18 Let v1; : : : v6 (with indices seen modulo 6) denote the six neighbors of
v that are met, in that order, when turning counterclockwise around v , starting in the
direction of the initial segment of J . For each i in Z=6Z, there is an integer ni 2 Z
such that 'ni sends the following points to one another:

viC2 7! viC1

'ni W vi˙3 7�! v 7�! vi

vi�2 7! vi�1:

Of course, ni D�ni˙3 . See Figure 8.

Claim 19 The longitudes l1; l6 of v1 and v6 are both in .0; �/. The latitude of v1

(resp. v6 ) is positive (resp. negative).

Proof Since a half-turn around v sends each vi to viC3 , no angle 2vi�1vvi in the
tangent space to S2 at v can exceed (or even reach) the value � ; therefore 2vi�1vvi 2

.0; �/. Taking i D 1, this proves the statement about latitudes. Therefore v1 (resp.
v6 ) lies above (resp. below) the equatorial plane, and it also follows that n6 < 0< n1 .

Let li 2 .��; �� denote the longitude of vi : clearly, li < � since no edge of @U can
cross the North–South axis. The longitudes l1 and l6 cannot be both � 0, because
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PC PC

P� P�

v1 v1

v2

v2

v3

v3

v4
v4

v5

v5

v6

v6

v v
'.v/

S2 ' @1H3

equator

Figure 8: Left: One cannot have l6 � 0 < l1 . Right: The actual situation
(only some ideal vertices of U are shown).

1v6vv1 2 .0; �/ and the East direction (increasing longitudes) lies between v1 and v6

as seen from v . Therefore, to show that l1; l6 are positive, we only need to assume

l6 � 0< l1

and aim at a contradiction.

Note that on S2 , for each n> 0, the transformation 'n increases latitudes, and adds a
constant angle to all longitudes (modulo 2� ). Recall the relationships v3 D '

�n6.v/

and v2D'
n1.v3/D'

�n6.v1/: they imply that v2 has highest latitude among v1; v2; v3

(all three latitudes being positive; see the left panel of Figure 8). They also imply
l2 � l1 � l6 .mod 2�/: but l2 cannot belong to .�; l1 C �/C 2�Z since the ideal
triangle vv1v2�@U cannot meet the North–South axis. Therefore, l2D l1�l6D l1Cl3
belongs to .l1; �/, and the point v2 also has the largest longitude among v1; v2; v3 ,
possibly tying with v1 (and all three longitudes belong to Œ0; �/).

Let v0
2

be the projection of v2 to the Equator (along meridians), v00
2

the projection of v2

to the zero meridian (along parallels), and consider the circle C through v; v0
2
; v2; v

00
2

.
By the latitude and longitude inequalities above, we see than v1; v3 both lie inside C
on S2 (ie on the side of C that does not contain PC and P� ). This contradicts the
convexity of U near the edge vv2 : absurd. See Figure 8.

Remark 20 Claim 19 implies that '˙n1 and '˙n6 are, respectively, left- and right-
handed.
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Recall the sequence of Farey triangles pqr D T0;T1; : : : ;TN Dmst . The ideal edges
vv1 and vv6 project (in @X ) to the ideal arcs of slope p and q (up to order). Also, every
Ti for i � 1 has its vertices in the arc _

pq � P1Q that does not contain r (in particular,
the meridional slope m belongs to that arc). Therefore, for every i 2 f1; 2; : : : ;N g and
every vertex x of the Farey triangle Ti , we can draw a properly embedded intrinsic
geodesic gx of slope x in the punctured torus @U=' : this gx has a lift cgx � @U that
connects the ideal vertex v to some '–iterate of v , and whose initial (ideal) segment
is contained in the ideal triangle vv1v6 of @U . We orient cgx from v to its other end.
(As a particular case, bgm is isotopic in @U to the oriented equatorial curve J .)

Definition 21 When x 2 P1Q is a vertex of some Farey triangle Ti as above, define
�x 2 Z as the integer such that the oriented curve cgx runs from the ideal vertex v to
'�x .v/.

We also define �x 2R as the integral of the longitude 1–form in S2XfPC;P�g along
the closure of �.cgx /, where � W @U ! S2 is the central projection.

Proposition 22 Suppose 1 � i �N � 1 so that Ti D abc and TiC1 D bcd are two
consecutive Farey triangles. Then �d D �bC �c and �d D �bC�c .

Moreover, if x 2 P1Q is a vertex of Ti for some i 2 f1; : : : ;N g, then 0 < �x � 2� ,
with equality (for the upper bound) if and only if x is the meridional slope m.

Proof Consider the ideal quadrilateral Q WD .@U='/X .gb [gc/. The orientations
of gb and gc induce orientations on the four edges of (the metric completion of)
Q. Observe that gd runs diagonally across Q, from the vertex with two outgoing
edges, to the vertex with two incoming edges: as a result, the closure of �.cgd / in
S2 X fPC;P�g is isotopic, with endpoints fixed, to the closure of

�
� bgb ['

�b .bgc /
�

or, indifferently, of �
� bgc ['

�c . bgb /
�
:

The exponent identity �d D �b C �c follows and, since ' increases longitudes by a
constant, so does the longitude identity �d D �bC�c .

By Claim 19, we have �p; �q 2 .0; �/, so an immediate upward induction on i now
implies �x > 0 for each vertex x of Ti (with 1� i �N ). But �m D˙2� , because
the meridian curve bgm runs exactly once around the infinite polyhedron U : therefore,
�m D 2� . Downward induction on i finally yields �x < 2� for x ¤m.
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Proposition 23 Suppose 1� i �N � 1. Let x 2 P1Q be the Farey vertex common
to Ti�1;Ti ;TiC1 . Then,

(i) one has �x 2 .0; �/I

(ii) if the Farey triangle Ti carries an L (resp. an R), then �x > 0 (resp. �x < 0);

(iii) if Ti carries an L (resp. an R), then '�x is left-handed (resp. right-handed).

Proof We name the vertices of the Farey triangles so that Ti D xyz and TiC1 D xzt .
By Proposition 22, one has �z D �xC�y and 2� � �t D �xC�z D 2�xC�y . Since
�x; �y > 0, this yields (i).

Assertion (ii) follows from the following claim: if li ; ri 2 P1Q are the left and right
endpoints of the Farey edge Ti�1\Ti (for the transverse orientation towards m), then
�ri

< 0 < �li
. This is clearly true for i D 1 (in that case, �li

D n1 and �ri
D n6 , in

the notation of Definition 18). For i > 1, observe that

� one has �m D 0 because the curve bgm is a closed curve around the ideal
polyhedron U ;

� by Proposition 22, the number �m is always a linear combination of �li
and �ri

with positive integer coefficients;

� one has �li
¤ 0 and �ri

¤ 0 because the curves cgli
and bgri

are not closed
curves in @U .

These observations put together imply �ri
< 0 < �li

or �li
< 0 < �ri

. The first is
clearly the case by induction on i , because one always has li D liC1 (resp. ri D riC1 )
if the Farey triangle Ti carries an L (resp. an R).

Assertion (iii) is an immediate consequence of (i)–(ii).

4 Canonical decomposition of a generic Dehn filling

In this section we prove Theorem 1: to show that a given triangulation is Delaunay (or
geometrically canonical), we essentially must prove a certain number of inequalities,
which will boil down to statements of handedness as given by Proposition 23.

Consider a hyperbolic manifold M with k � 2 cusps, endowed with horoball neighbor-
hoods, such that the genericity assumptions of Theorem 1 are satisfied. Let D denote
the canonical triangulation of M . We assume that Hk , the horoball neighborhood of
the k –th cusp ck , has much smaller volume than some other Hi .

Geometry & Topology, Volume 14 (2010)



Canonical triangulations of Dehn fillings 219

4.1 A generic small cusp

First we prove that D contains exactly two ideal tetrahedra �;�0 that have a vertex
in ck .

Consider a universal covering � W H3!M such that (in the upper half-space model)
the point at infinity lies above the cusp ck . Let ƒ be the rank–2 lattice of deck
transformations of the form z 7! zC�. Let f�igi2I be the collection of all horoballs
of H3 lying above some Hj with j < k (the �i are Euclidean balls tangent to the
boundary C of the model half-space.) By the genericity assumption of Theorem 1,
there is a unique shortest path in M from Hk to

Sk�1
jD1 Hj : therefore the largest �i

(for the Euclidean metric) is unique modulo ƒ.

We can assimilate ƒ to a lattice of C , and assume that the largest �i ’s are centered
exactly at the points of ƒ.

The Delaunay decomposition Dƒ of C with respect to the vertex set ƒ consists either
of isometric rectangles (all belonging to the same ƒ–orbit), or of isometric triangles
(belonging to two ƒ–orbits) with strictly acute angles. We claim that the latter is the
case: indeed, let P � C be a convex polygon of Dƒ : the vertices of P , which are
points of ƒ, are on the boundary of a disk that contains no other points of ƒ. Using the
fact that the horoball �1 centered at infinity stays very high above C in the half-space
model (because Hk has very small volume), it is easy to construct a ball of H3 that
is tangent to the horoballs �i centered at the vertices of P , disjoint from all other �i ,
and tangent to the horoball �1 . The center of this ball is a vertex of the Ford domain.
Hence, there exists a cell of the Delaunay decomposition D of M (more precisely, a
lift y� of such a cell to H3 ) whose vertices are exactly 1 and the vertices of P . By
the genericity assumption (I), y� must be an ideal tetrahedron, so P is a triangle, and
has strictly acute angles. The two (isometric) ƒ–orbits of triangles in the Delaunay
decomposition Dƒ of C correspond to two ideal tetrahedra �;�0 in D . Note that
�[�0 is a neighborhood of the cusp ck .

The space T D @.�[�0/�M is the quotient by ƒ of the union of all ideal triangles
of H3 that project vertically to triangles of Dƒ (contained in C ): therefore, T is a
hyperbolic once-punctured torus bent along three lines, and its interior dihedral angles
are twice those of � (or �0 ).

4.2 Triangulation of the Dehn filling

It is well-known that almost all (hyperbolic) Dehn fillings Ms of M at the cusp ck

admit a spun decomposition Dspun
s into ideal, positively-oriented tetrahedra: namely,
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Dspun
s is obtained from D by letting the tips of � and �0 (formerly in ck ) spin

asymptotically along the geodesic core of the filling solid torus of Ms – actually, there
are two such spun triangulations, spinning in opposite directions (see eg Thurston’s
notes [26, Chapter V]). Moreover, the cross-ratios of the tetrahedra of Dspun

s become
(uniformly) close to those of D as the slope s goes to infinity (ie “gets more and more
complicated”, eventually exiting any finite set). In particular, the punctured torus T ,
equal to the union of the bases of � and �0 , is still embedded in Ms , with bending
angles close to those in M .

Therefore, we can remove the solid torus �[�0 from the spun triangulation of Ms ,
and replace it with the solid torus X constructed in Section 2 (with the same dihedral
angles as T ). By Proposition 8 (rigidity), X is isometric to the closure of �[�0 , so
after replacement we obtain a geometric ideal triangulation Ds of the filling Ms (as in
Theorem 1). In the remainder of Section 4, we check that Ds is Delaunay.

4.3 Minkowski space

Our pictures (eg of the cusp link in Figure 6) are drawn in the upper half-space model of
H3 , but we will check geometric canonicity through a computation in the Minkowski
space model. This section is only a quick reminder of the formulas relating the two
models, and of Epstein and Penner’s convex hull construction.

Endow R4DR3C1 with the Lorentzian product given by h.x;y; z; t/ j .x0;y0; z0; t 0/i WD
xx0Cyy0C zz0� t t 0 . Define

X WD fv D .x;y; z; t/ 2R4
j t > 0 and hvjvi D �1g:

Then h � j � i restricts to a Riemannian metric on X and there is an isometry X 'H3 ,
with IsomC.X / a component of SO3;1.R/. We will identify the point .x;y; z; t/ of X
with the point at Euclidean height 1=.tCz/ above the complex number .xCiy/=.tCz/

in the Poincaré upper half-space model. Under this convention, the closed horoball
Hd;� of Euclidean diameter d centered at � D � C i� 2 C in the half-space model
corresponds to fv 2 X j hvjvd;�i � �1g, where

(11) vd;� D
1

d

�
2�; 2�; 1� j�j2; 1Cj�j2

�
:

We therefore identify the horoball Hd;� with the point vd;� of the isotropic cone (check
hvd;� jvd;�i D 0). Similarly, the closed horoball Hh;1 of points at Euclidean height
no less than h in the half-space model corresponds to fv 2 X j hvjvh;1i � �1g where
vh;1 D .0; 0;�h; h/, so we identify Hh;1 with vh;1 .

Consider the following objects: a complete, oriented, cusped, finite-volume hyperbolic
3–manifold M , a horoball neighborhood Hc of each cusp c , a universal covering
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� W H3!M , and the group � � IsomC.H3/ � SO3;1.R/ of deck transformations
of � . The Hc lift to an infinite family of horoballs .Hi/i2I in H3 , corresponding to a
family of isotropic vectors .vi/i2I in Minkowski space, by the above construction. The
closed convex hull C of fvigi2I in R3C1 is � –invariant, and its boundary @C comes
with a natural decomposition zD into polyhedral cells. In [11; 3], Epstein, Penner and
Akiyoshi proved:

Proposition 24 The simplicial complex zD defines a decomposition D of M into
convex ideal hyperbolic polyhedra, by projection of each face of zD to X 'H3 (with
respect to 0 2 R3C1 ) and thence to M . The decomposition D of M is dual to the
Ford–Voronoi domain; D depends only on the mutual volume ratios of the Hc , but
only a finite number of decompositions D arise as these volume ratios vary.

Conversely, given a decomposition D of the manifold M (still endowed with the
cusp neighborhoods Hc ) into ideal polyhedra with vertices in the cusps, in order
to prove that D is the Epstein–Penner decomposition, we only need to consider the
decomposition yD WD��.D/ of H3 with vertex set the centers of the horoballs fHigi2I ,
lift yD to an infinite simplicial complex zD in Minkowski space R3C1 (the vertices
fvigi2I of zD lying over the Hi in the isotropic cone, and the faces of zD being affine
polyhedra), and show that zD is locally convex at each (co)dimension–2 face: indeed,
the projection with respect to the origin provides a homeomorphism between X 'H3

and DXfvigi2I ; the disjoint union
S

t�1 t zD is then automatically a convex body, and
its faces are exactly the cells of zD . In that case, we call D geometrically canonical.

Proposition 25 The codimension-one polyhedral complex zD � R3C1 , defined by
a decomposition of M into polyhedra, is locally convex if and only if for every 2–
dimensional facet F D A1 � � �A� of zD (a planar polygon in R3C1 ), there exists a
vertex P … F of a 3–dimensional face of zD containing F , and a vertex Q … F of the
other 3–dimensional face of zD containing F , such that an identity of the form

(12) �P C .1� �/QD

�X
iD1

�iAi where � 2 .0; 1/ and
�X

iD1

�i > 1

holds (some �i ’s can be negative, however).

Proof A more geometric way of stating the identity is as follows: if the hyperplane
…'R3 is the linear span of the Ai ’s, then the affine span of the Ai ’s separates (in …)
the origin from the intersection of … with the segment PQ. This clearly expresses
local convexity at the facet A1 � � �A� , since P and Q are always on opposite sides
of … (indeed their projections to @1H3 ' S2 are on opposite sides of the projection
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of … to H3 which is a plane). We express (12) by saying that A1 � � �A� lies below
PQ (as seen from the origin).

4.4 Proving convexity in R3C1

We now return to the ideal triangulation Ds of our Dehn filling, with the solid torus
X D�1[ � � � [�N�1 �Ds . For each (triangular) face F of Ds we must prove the
convexity inequality (12) of Proposition 25 (applied to adjacent tetrahedra only, hence
� D 3).

If F does not belong to X , recall that cross-ratios of tetrahedra outside X in the
filling Ds are close to what they were before filling in D , while the volumes of the
(remaining) cusp neighborhoods in the filled manifold Ms are the same as in the
unfilled manifold M : therefore, the convexity inequality (12) in Ds , for all but finitely
many s , just follows from the analogous inequality in D .

If F is one of the two faces of @X , the inequality in Ds again follows from the
geometric canonicity of D . Indeed, check first that the two faces of X are not glued
to one another: if they were (by an orientation-reversing isometry), then the sum
of angles around one of the three edges of @X would be less than or equal to � .
Therefore, the face F separates a tetrahedron of X from a tetrahedron outside X .
Next, consider a cover � W H3!M sending infinity to ck (in the upper half-space
model), and the induced decomposition yD WD ��.D/ of H3 into ideal tetrahedra.
Consider a tetrahedron1ABC of yD , and the neighboring tetrahedron ABCD (where
A;B;C;D 2 C and ABC is an acute triangle whose circumscribed circle loops
around D ). Define A0 WD B C C �A, the symmetric image of A with respect to
the midpoint of B and C , and similarly B0 D AC C �B and C 0 D ACB � C .
The triangle ABC , together with A0BC (or AB0C or ABC 0 ), forms a fundamental
domain of @X . Recall the tetrahedra of the solid torus X are obtained by successive
diagonal exchanges, beginning at the ideal triangulation of @X . If the very first diagonal
exchange kills the edge BC (resp. CA, resp. AB ), the new edge must therefore be
AA0 (resp. BB0 , resp. C C 0 ). Hence, up to a permutation of A;B;C , the neighbor
across ABC of the tetrahedron corresponding (combinatorially) to ABCD in Ds ,
is the tetrahedron corresponding (combinatorially) to ABCA0 . Recall the infinite
simplicial complex zD � R3C1 . If a; b; c; d; a0; f 2 R3C1 are the isotropic vectors
lying above the horoballs centered at A;B;C;D;A0;1 (respectively), then abcf and
abcd are neighboring faces of zD (in particular, abc lies below the segment fd as
seen from the origin). But by convexity of zD , the facet abc of zD also lies below
any segment between vertices of zD , provided this segment intersects the linear span
of a; b; c . In particular, abc lies below a0d (because A0;D lie on opposite sides of
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the hyperbolic plane through A;B;C ). This is still true for the lift fDs of the filled
triangulation Ds if the filling slope s is chosen outside some finite set, because the
cross-ratios in Ds are close to those in D . Local convexity at the face F DABC of
Ds is proved.

The only cases remaining are those when F is an interior face of the solid torus X .
We postpone to the end of the section the (easier) case of the “last” face, along which
�N�1 is glued to itself, and focus on the other faces inside X .

Consider consecutive tetrahedra �i and �iC1 of the filling solid torus of the mani-
fold Ms , and their (adjacent) lifts �;�0 in H3 . We must check the convexity criterion
of Proposition 25, the role of the 2–dimensional facet “F ” being played by the
intersection of the lifts of � and �0 to R3C1 .

We will assume that the letter �i on the Farey triangle Ti is an L and proceed to a
careful description of the cusp link, in Figure 9. Let us describe the figure.

� The top panel of Figure 9 shows a portion of the Farey graph; we name the Farey
vertices ˛; ˇ; 
; ı; � so that Ti�1 D ˛ˇ
 , Ti D ˛
ı , TiC1 D ˛ı� (enumerating the
vertices of each triangle counterclockwise).

� The left (resp. right) panel shows four adjacent lifts of the ideal tetrahedron �i (resp.
�iC1 ) in H3 . The vertices are ideal. The direction of the equator of S2 ' @1H3

is materialized by a grey line. The directions ˛; ˇ; 
; ı; � of some of the ideal edges
are shown. The tetrahedra in the right panel lie glued behind the tetrahedra in the left
panel; the triangulation in front of the right panel thus agrees with the triangulation in
the back of the left panel. In each panel, the central ideal vertex v , assumed to lie on
the equator, has been blown up (or truncated) to depict its link, which consists of four
similar Euclidean triangles drawn in grey.

� The bottom panel puts these two ideal links together in one diagram consisting of
three nested hexagons (we artificially draw each hexagon a tiny bit apart from the next
one, even though they share four vertices). Each vertex of this figure corresponds to an
ideal edge issued from v , and is marked with the slope (˛ , ˇ , 
 , ı or � ) of that ideal
edge. (Also compare these labels with the first panel of Figure 6.) The four triangles
between two consecutive hexagons have the same triple of angles.

� The bottom panel equivalently represents, up to a similarity, the endpoints in C
of ideal edges whose other endpoint is 1 in the upper half-space model of H3 (the
point 1 corresponds to the central, blown-up vertex v of the previous two panels).
Each triangle of the bottom panel is the vertical projection to C of an ideal triangle of
H3 which, once coned off to 1, yields a tetrahedron of H3 isometric to �i (outer
triangles) or �iC1 (inner triangles).
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Figure 9: A “Left” in the Farey graph corresponds to a left-handed power of ' .

� In the left (resp. right) panel we have decorated edges of slope ˛ and 
 (resp. ˛ and
ı ) with arrows. In the notation of Proposition 23, the loxodromy '�˛ is left-handed
(because �i DL). In these two panels, '�˛ acts by sending the central vertex v (tail
of the edge marked ˛ ) to the head of the edge marked ˛ , and by translating all other
vertices along the same direction: for example, the head of the edge marked 
 goes to
the head of the edge marked ı .

This last observation allows us to understand the action of '�˛ on the Riemann sphere
C[f1g: in the bottom panel, where v has been sent to 1, the arrows indicate how
'�˛ acts on the vertices of the Euclidean hexagons (and 1). For example, 1 goes to
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a vertex marked ˛ and the bottom-most vertex marked 
 goes to a vertex marked ı .
In the sequel, we must make sense of the left-handedness (Proposition 23) of this
loxodromic action.

In order to shift to the “Minkowski space” aspect, we must take yet a closer look at the
geometry of the link of the cusp (the following argument is taken from [16]). In the
link of the cusp, up to a complex similarity, the link of the pleated surface �i between
�i and �iC1 is the centrally-symmetric hexagon .�1; �; �0; 1;��;��0/ in C , as in
Figure 10 (which reproduces the bottom panel of Figure 9): we assume that the vertices
�1; 1 both belong to the base segments of the Euclidean triangles just inside and just
outside the hexagon.

Ea
Eb

Ec

.�/

.�0/

.��/

.��0/

.�1/ .1/

EaD a exp.A
p
�1/

Eb D b exp.B
p
�1/

Ec D c exp.C
p
�1/

Figure 10: Adjacent tetrahedra �i and �iC1 (cusp view). The hexagon
corresponding to �i is in bold.

Let us introduce the notation

�C 1D EaD a eiA

�0� � D Eb D b eiB

1� �0 D Ec D c eiC

where a; b; c 2R>0 (so far A;B;C are only defined modulo 2� ). The map f WD '�˛

now satisfies f .�1/D1 ; f .1/D 1 ; f .�/D �0 : namely,

f W u 7! 1C
.�C 1/.�0� 1/

uC 1
D 1C

Ea Ec

uC 1
:
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Therefore, using the notation Hdiameter, center for the horoballs of the upper half-space
model (as in Section 4.3), we have f .H1;1/DHjEaEcj;f .1/ DHac;1 . In other words,
the Euclidean diameter of the horoball centered at the vertex 1 of the hexagon is ac ,
the product of the lengths of the adjacent edges of the hexagon. (By an easy argument,
this relationship persists if the hexagon is scaled up or down, as long as the horoball
centered at infinity is H1;1 .) For the same reason, the following horoballs are all sent
to one another by deck transformations (in fact, by appropriate powers of ' ):

(13) H1;1; Hac;�1; Hab;� ; Hbc;�0 ; Hac;1 :

If � D � C �
p
�1 and �0 D � 0C �0

p
�1, the isotropic vectors in Minkowski space

corresponding to these horoballs are respectively, using (11):

(14)

v1 D . 0; 0; �1; 1 /

v�1 D
1
ac

. �2; 0; 0; 2 /

v� D
1

ab
. 2�; 2�; 1� j�j2; 1Cj�j2 /

v�0 D
1

bc
. 2� 0; 2�0; 1� j�0j2; 1Cj�0j2 /

v1 D
1
ac

. 2; 0; 0; 2 /:

To check the convexity criterion of Proposition 25 at the codimension-two face (in
R3C1 ) projecting to .��01/, it is enough to show that if �v� C �v�0 C �v1 D
�v1C .1� �/v�1 then �C�C � > 1 (moreover, this will in fact take care of both
faces along which �i touches �iC1 in the filling solid torus X ). One easily finds the
unique solution

�D
b�0

c.�0� �/
; �D

�b�

a.�0� �/
; � D

�0.1� j�j2/� �.1� j�0j2/

ac.�0� �/

(we will not need the value of �), hence

�C�C�D1C
Z

ac.�0� �/
where ZDab�0�bc�C�0.1�j�j2/��.1�j�0j2/�ac.�0��/:

Observe that �0 > � because the triangles �1��0 and 1�0� are counterclockwise
oriented. So it is enough to prove that Z > 0. Endow C 'R2 with the usual scalar
product, denoted “˘” to avoid confusion with scalar multiplication, and observe that
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1� j�j2 D Ea˘ .EbC Ec/ and 1� j�0j2 D .EaC Eb/˘ Ec . Hence

Z D �0.abC Ea˘ Eb/� �.bcC Eb ˘ Ec/� .�0� �/.ac � Ea˘ Ec/

D abc

�
�0

c
.1C cos.A�B//�

�

a
.1C cos.B �C //�

�0� �

b
.1� cos.A�C //

�
D�abc

�
sin C.1C cos.A�B//C sin A.1C cos.B�C //C sin B.1� cos.A�C //

�
D�4abc sin

ACC

2
cos

B �A

2
cos

B �C

2

by standard trigonometric formulae. Observe that the last expression is a well-defined
function of A;B;C 2R=2�Z (although each factor is defined only up to sign). Next,
however, we will be careful which representatives of A;B;C in R we pick. First,
we choose for B the smallest positive representative. Since the triangles �1��0 and
1�0� are counterclockwise oriented, it follows that B 2 .0; �/ and we can pick A;C

in .B ��;B/. Since EaC EbC Ec D 2 must also have an argument in .B ��;B/, one
necessarily has

(15) �� <min fA;C g< 0< B < � and A;C 2 .B ��;B/:

In particular, to prove that Z > 0, it only remains to show that

(16) �� <
ACC

2
< 0 :

For the deck transformation f W u 7! 1C EaEc=.uC 1/ studied above, Definition 17
yields hand.f /D 4=.EaEc/. But f is left-handed by Proposition 23, so Im.EaEc/ < 0 ie
ACC 2 .��; 0/C 2�Z. By (15), we have �2� <ACC < � a priori, hence in fact
�� < ACC < 0. Therefore (16) must hold. Geometric canonicity at the interface
of tetrahedra �i and �iC1 is proved (the argument is similar if the Farey triangle Ti

carries an R instead of an L).

It remains to prove geometric canonicity at the core of the filling solid torus itself, where
the last tetrahedron �N�1 is glued to itself along an ideal triangle. The “hexagon”
HN�1 of C has two opposite interior angles equal to 0 and is therefore collapsed to a
broken line of three segments. In (14) (and Figure 10), this simply translates as the
identity �0 D�1; the collapsed hexagon is the broken line .�;�1; 1;��/. The radii of
the horoballs centered at these vertices are computed exactly as in (13), under the extra
assumption �0 D�1.

The tetrahedra with ideal vertices .1; 1;�1; �/ and .1; 1;�1;��/ are glued along
the face .1; 1;�1/, and the isotropic vectors in Minkowski space corresponding to
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their vertices are, following (14):

(17)

v1 D . 0; 0; �1; 1 /

v1 D
1

2j1C�j
. 2; 0; 0; 2 /

v�1 D
1

2j1C�j
. �2; 0; 0; 2 /

v� D
1

j�C1j2
. 2�; 2�; 1� �2� �2; 1C �2C �2 /

v�� D
1

j�C1j2
. �2�; �2�; 1� �2� �2; 1C �2C �2 / :

The equation �v� C .1� �/v�� D �v1C�v1C �v�1 has a unique solution, namely
�D 1=2 and

�D
j�j2� 1

j�C 1j2
and �D � D

1

j�C 1j:

Clearly, one will have �C�C � > 1 if and only if j�j2� 1C 2j�C 1j> j�C 1j2 , or
equivalently, j�j2 > .j�C 1j � 1/2 : but this relationship follows from the triangular
inequality in the Euclidean triangle .0;�1; �/. Therefore, by Proposition 25, the
convexity inequality in Minkowski space is satisfied. Theorem 1 is proved.

4.5 Filling on several cusps

An analogue of Theorem 1 holds when several cusps undergo Dehn filling. The
genericity assumptions (I)–(II), however, must be suitably extended.

Let M be a complete hyperbolic 3–manifold with cusps c1; : : : ; ck , endowed with
horoball neighborhoods H1; : : : ;Hk (where k � 2). Let ` be an integer, 1< `� k .
Make the following assumptions:

(I) The decomposition D (before filling) consists only of ideal tetrahedra.

(II) For each integer j such that `� j � k , there exists a unique shortest path from
Hj to

S`�1
iD1 Hi in M .

Theorem 26 Under the assumptions (I)–(II) above, if the volumes of the neighbor-
hoods H`; : : : ;Hk are much smaller than one of H1; : : : ;H`�1 , then for each integer j

such that ` � j � k , the canonical decomposition D of M (before filling) contains
exactly two tetrahedra �j ; �

0
j with a vertex in the cusp cj ; the tetrahedra �j and �0j

are isometric and have each exactly one vertex in cj and three vertices in
S`�1

iD1 ci .

Moreover, for each `� j � k there exists a finite set of slopes Xj in the cusp cj such
that for any choice of slopes s`; : : : ; sk in c`; : : : ; ck satisfying sj …Xj for each j , the
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canonical decomposition Ds obtained by Dehn filling along the slopes s`; : : : ; sk is
combinatorially of the form

Ds D

 
DX

k[
jD`

f�j ; �
0
j g

!
[

k[
jD`

Tj

where Tj D f�
.j/
1
; : : : ; �

.j/
Nj�1
g is a triangulation of a solid torus minus one boundary

point, and the combinatorial gluing of the �.j/i (for j fixed) is dictated by the continued
fraction expansion of the slope sj , with respect to a basis of the first homology of the
cusp cj depending only on D .

In other words, as long as the cusp neighborhoods H`; : : : ;Hk are small enough and
the slopes s`; : : : ; sk are long enough, Theorem 1 applies “simultaneously” to all cusps
c`; : : : ; ck . The proof of Theorem 1 transposes without major changes to Theorem 26,
using the multicusped version of Thurston’s hyperbolic Dehn surgery theorem (see eg
Theorem 5.8.2 and the discussion immediately following it in [26]).

As a corollary, if (I) and (II) are satisfied and the horoballs H`; : : : ;Hk are small
enough compared to one of H1; : : : ;H`�1 , then any sufficiently long filling of some
of c`; : : : ; ck is generic with respect to the surviving unfilled cusps among c`; : : : ; ck .

5 Fillings of the Whitehead link complement

In this section we describe the Delaunay decompositions of all hyperbolic Dehn fillings
of one cusp of the Whitehead link complement.

5.1 Canonical decomposition before filling

The following facts are classical; we refer to [26] or to Weeks’ program SnapPea [27]
for further background. More material on the Whitehead link can be found in [22].

Let ABCD and DCB0A0 be two adjacent unit squares of C (vertices enumerated
clockwise and belonging to ZŒi �, as in Figure 11). Let Q;Q0 be the convex hulls
of 1;A;B;C;D and of 1;D;C;B0;A0 respectively, taken in the upper half-space
model of H3 . Then Q[Q0 is a fundamental domain of the hyperbolic Whitehead link
complement M (census manifold m129); the face identifications are the translations

of vector
��!
AB D i;

��!
AA0 D 2, and the hyperbolic isometry sending A;B;C;D to

D;A0;B0;C respectively. Let c1; c2 be the two cusps of M , with c2 being the cusp
at infinity. Note that the decomposition Q[Q0 DM is the Delaunay decomposition
of M when the horoball neighborhood of c2 has volume less than half that of c1 .
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Note that M has isometries that exchange c1 and c2 , but has no orientation-reversing
isometries (so the Whitehead link is chiral).

Note also that the decomposition Q[Q0 of M does not satisfy the first and second
“genericity” assumptions of Theorem 1: the cells are not tetrahedra, and the horoballs
centered at B and C , while belonging to different orbits of the stabilizer 2Z˚ iZ
of 1 in the group of deck transformations, are at the same distance from c2 . Thus,
Theorem 1 does not apply directly.

As a bit of notation: if k; l are coprime integers, let s D l=k denote the slope in
the cusp c2 represented by the vector k

��!
AA0C l

��!
AB . That is, we choose the shortest

possible basis for H1.c2;Z/. (The census manifold m129 uses the same basis up to
order, but as the complement of the link of Figure 11, it has link-theoretic meridian
��!
AB and longitude

��!
AA0� 2

��!
AB . This is not canonical since many links in S3 have

complement m129.) Let MsDm129.l; k/ be the manifold obtained by filling c2 along
the slope s . The following result is a consequence of Theorem 1.2 of [21].

Proposition 27 The Dehn filling Ms is hyperbolic if and only if

˙.k; l/ … f.0; 1/; .1; 0/; .1;˙1/; .1;˙2/g:

In the remainder of this section we assume .k; l/ satisfies the condition of Proposition
27 and adapt the argument of Sections 1–4 to describe the Delaunay decomposition of
Ms (thus reproving, in particular, the “if” direction). This decomposition will always
consist in replacing Q[Q0=hz 7! zC 2; z 7! zC ii with a triangulated solid torus Y

whose exterior faces are two (triangulated) ideal quadrilaterals, which we then identify.

5.2 First case: l is odd

If l is odd, then the vector k
��!
AA0Cl

��!
ABD 2kCi l 2C is irreducible in the lattice ZŒi �.

For that reason, we can take for Y the double cover of the solid torus X constructed
in Section 2.

More precisely, let m 2 P1Q be the Farey vertex l=.2k/ (irreducible fraction). Then
m does not belong to f0;˙1;˙2;˙1

2
;1g: the first three are ruled out because m

has even denominator; the last two because we assumed ˙.k; l/ … f.0; 1/; .1;˙1/g.
According to the value of m, choose .p; q; r/ as follows:

if m< �2 �2<m< �1 �1<m< �1=2 �1=2<m< 0

.p; q; r/D .1;�1; 0/ .�1;1; 0/ .�1; 0;1/ .0;�1;1/

if 0<m< 1=2 1=2<m< 1 1<m< 2 2<m

.p; q; r/D .0; 1;1/ .1; 0;1/ .1;1; 0/ .1; 1; 0/
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A

B C

D A0

B0

Figure 11: Left: The (chiral) Whitehead link m129. Middle: Cusp view
of m129 from the common tip of the square-based pyramids Q and Q0 ,
ie from the cusp that will be filled. The ± –shaped symbol drawn on the
bases of Q and Q0 shows their identification. Right: View of the canonical
decomposition from the other cusp of m129, before (top) and after (bottom)
a Dehn filling with .k; l/D .11; 8/ . In the top panel, the centers of the two
squares project to the cusp that will be filled. In the bottom panel, we see that
the tetrahedra in the decomposition of the filling become very close to flat,
very quickly.

The relative positions of p; q; r;m are then exactly as in Section 2: namely, pq

separates r from m; the point m is not the other common Farey neighbor r 0 of p and
q ; and the line rm crosses pr 0 (not qr 0 ). In particular, using the wedge notation (4)
one has m^ r � 3.

Let � 2 .0; �/ be a parameter and define

(18) .�p; �q; �r / WD

(
.0; �; � � �/ if p D˙1 ie jmj 2 .1=2; 2/I

.�; 0; � � �/ if q D˙1 ie jmj … .1=2; 2/:

This choice will cause the “diagonal” edges of slope ˙1 to be flat, while the edges
of slope 0 and 1 will be bent. Since m^ r � 3, it is straightforward to check that
.�p; �q; �r / satisfies the hypothesis .m ^ p/�p C .m ^ q/�q C .m ^ r/�r > 2� of
Proposition 10 if and only if � belongs to some subinterval ‚D .0; �max/� .0; �/.

Apply now Proposition 10 and Corollary 16 with � 2‚. We obtain an ideal hyperbolic
solid torus X with dihedral angles �; 0; � � � . Let P be the fundamental domain of
@X defined as the ideal quadrilateral cut out by the edges of slope 0 and 1. Let Y be
the double cover of X . Since the meridian slope is mD l=.2k/ and the determinantˇ̌̌̌

1 l

0 2k

ˇ̌̌̌
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is even, the curve of slope 1=0D1 in @X is homotopic to an even power of the core,
and therefore lifts to a closed curve in Y , while the curve of slope 0=1D 0 does not
(because ˇ̌̌̌

0 l

1 2k

ˇ̌̌̌
is odd). Therefore, a fundamental domain of @Y is obtained by gluing two copies
P;P 0 of the ideal quadrilateral P side by side along the edge of slope 1. We view
P;P 0 as immersed in the twice-punctured torus @Y .

We now glue P to P 0 by an orientation-reversing isometry, in the same way the
square bases of the pyramids Q;Q0 were glued together to yield the Whitehead link
complement M (Figure 11, left). By construction, the quotient of Y under this
identification is homeomorphic to the Dehn filling Ms . The angular part of the gluing
equation is automatically satisfied, since the two flat edges of @Y (diagonals of P;P 0 )
are identified, and all four nonflat edges of @Y are identified to one edge at which the
sum of dihedral angles is � C .� � �/C � C .� � �/D 2� .

Therefore, the space W of angle structures associated to our triangulation of Ms (as in
Theorem 5) is described by setting .�p; �q; �r / as in (18) and finding all .�p; �q; �r /–
angle structures in the sense of Proposition 10 as � varies freely in ‚� .0; �/.

Proposition 28 The volume functional has a critical point, namely a maximum, on W .

Proof Exactly as in Proposition 15, the maximum of the (extended) volume functional
is achieved at some point z D .zi/0�i�N of the closure of W . Using (18), the system
of constraints (7) satisfied by z now becomes

. z0; z1; z2; : : : ; zN�1; zN /

D . �; �; z2; : : : ; zN�1; 0 /

or . � C �; �; z2; : : : ; zN�1; 0 /

according to whether jmj 2 .1=2; 2/ or not.

In the first case, suppose � D � . By the convexity condition of (10), one then has
z0 D z1 D � � � D zh D � where �h is the first hinge tetrahedron. The hinge condition
of (10) then implies zh�1 � zhC zhC1 , hence zhC1 D 0. That in turn implies zi D 0

for all i > h (we observed in the proof of Proposition 15 that the sequence .zi/ is
nonincreasing). Therefore all tetrahedra �i are flat, and the volume is certainly not
maximal.
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In the second case, suppose � D � . Table (9) implies � � .z0 C z2/=2 � 0 hence
z2 D 0 and zi D 0 for all i > 1: again, all �i are flat, so the volume is certainly not
maximal.

Therefore, � < � . The argument of Proposition 15 now follows through unchanged
to show that no parameter zi for 0< i <N belongs to f0; �g. By Proposition 7, all
tetrahedra �i have only positive angles (ie z 2W ).

Theorem 5 applies: we have found a complete hyperbolic structure on the triangulated
space Ms . To check that the triangulation is canonical, we only need to check the
Minkowski convexity relationship (12). For interior faces of the solid torus Y , this is
already done (Section 4.4). For the boundary faces, we must describe more precisely
the cusp triangulation of Ms .

Each of the two ideal vertices of the solid torus Y (projecting to the single ideal vertex
of X ) has a cusp triangulation made of nested, centrally symmetric hexagons (as in
Figure 6, right). However, by (18), two opposite angles of the outermost hexagon H0

are equal to � , so the general cusp shape is a 4–sided parallelogram. Moreover, the
edges vv0; vv00 of H0 adjacent to a flat vertex v have the same length: indeed, the
ideal quadrilateral 1v0vv00 must be a square (ie its diagonals cross at a right angle),
because it is a face of Y and the gluing of the two isometric faces of Y that yields
the Dehn filling Ms sends horizontal edges of one face to vertical edges of the other
(eg as in Figure 11).

The universal cover of the cusp triangulation of Ms is a union of translated copies
of the cusp triangulation of Y . For example, up to a plane similarity, the outermost
hexagons in two adjacent translates can be taken to be (for some � 2C XR)

. 2� � 1 ; � � 1 ;�1 ; 1 ; �C 1 ; 2�C 1/

and .�2� � 1 ;�� � 1 ;�1 ; 1 ;��C 1 ;�2�C 1/

so the cusp triangles .�1; 1; � C 1/ and .�1; 1;�� � 1/ share an edge .�1; 1/. We
apply Proposition 25 to the ideal triangle .1; 1;�1/ – by symmetry this will deal
with all four triangular faces of the solid torus Y (note that for proving the Minkowski
convexity relationship (12), we do not care whether or not the two adjacent hexagons
above are in the same orbit of the stabilizer of 1).

Following the method of Section 4.4 (especially (13) and the discussion that precedes
it), if �D �C i�, the isotropic vectors in R3C1 corresponding to the horoballs centered
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at 1; 1;�1; �C 1;�� � 1 are respectively

v1 D . 0; 0; �1; 1 /

v1 D
1

2j�j
. 2; 0; 0; 2 /

v�1 D
1

2j�j
. �2; 0; 0; 2 /

v�C1 D
1
j�j2

. 2�C 2; 2�; 1� j�C 1j2; 1Cj�C 1j2 /

v���1 D
1
j�j2

. �2� � 2; �2�; 1� j�C 1j2; 1Cj�C 1j2 / :

The solution to �v�C1C .1� �/v���1 D �v1C�v1C �v�1 satisfies

.�; �; �/D

�
1

j�j
;
j�C 1j2� 1

j�j2
;

1

j�j

�
; hence �C�C�D1C

j�C 1j2� .j�j � 1/2

j�j2
>1

according to the triangular inequality in the triangle .0; �;�1/: by Proposition 25, the
convexity inequality in Minkowski space is satisfied.

5.3 Second case: l is even

If l is even, then the vector k
��!
AA0C l

��!
ABD 2kC i l 2C is twice the irreducible vector

kC i.l=2/ in the lattice ZŒi �. For that reason, the ideal solid torus Y cannot be taken
to be simply a cover of X . Instead, we must introduce a variant of the construction of
Section 2. To give a preview of the difference with Section 2, if U �H3 is a universal
cover of the solid torus Y we will construct below and h'i ' Z is the group of deck
transformations of U , then for each ideal vertex v of U , the symmetric image v0 of v
with respect to the axis of ' is also a vertex of U . Moreover, vv0 will be an edge of the
'–invariant triangulation of U , and vv0'.v/'.v0/ will be one of its ideal tetrahedra.

Let m2P1Q be the Farey vertex .l=2/=k (reduced fraction). We have m…f1; 0;˙1g:
indeed, 1 is ruled out because m has odd denominator k (coprime to l ); the other
possibilities are ruled out because we assumed ˙.k; l/ … f.1; 0/; .1;˙2/g. According
to the value of m, choose .p; q; r/ as in Section 5.2, with the four extra possibilities

if mD�2 mD�1=2 mD 1=2 mD 2

.p; q; r/D .1;�1; 0/ .0;�1;1/ .0; 1;1/ .1; 1; 0/

(in fact we may switch p; q in these four cases). One then has m^ r � 2. Note that,
unlike in Section 2, m is now allowed to be the common Farey neighbor of p and q

opposite r .

Below we describe an ideal triangulation D for a solid torus Y (with two ideal points);
Proposition 29 will then be the analogue for D of Proposition 10. For convenience, we

Geometry & Topology, Volume 14 (2010)



Canonical triangulations of Dehn fillings 235

will first describe a family of tetrahedra of H3 whose vertices are points of ZŒ
p
�1��

P1C' @1H3 , then only remember the combinatorics of the gluing of these tetrahedra.

The sequence of Farey triangles crossed by the oriented line ` from r to m is pqr D

T0;T1; : : : ;TN Dmst (for some Farey vertices s; t , and with N � 1 – note that in
Section 2 we had N � 2). For every index 0 � i � N , let xi ;yi ; zi 2 P1Q be the
vertices of Ti . Consider the triangulation Ti of C with vertex set ZŒ

p
�1� and whose

edges are precisely all segments of slopes xi ;yi ; zi between points of ZŒ
p
�1�. Each

triangle of Ti is the vertical projection of an ideal triangle of H3 with the same triple
of vertices. The union of all these ideal triangles, modulo G WD 2Z˚

p
�1Z, is a

twice-punctured torus �i in H3=G . If 0 < i � N then the space between �i�1 and
�i is the union of two ideal tetrahedra P�i and R�i (glued together along some of their
edges). Note that the index i DN is now allowed, unlike in Section 2, so that eg the
tetrahedron P�N (belonging to the last pair) has an edge of slope m, the meridian. Also
note that since mD .l=2/=k and kC .l=2/

p
�1 …G (because k is odd), this edge of

slope m runs from one of the punctures of �N (or �0 ) to the other.

Consider now the triangulation f P�i ; R�ig1�i�N as a combinatorial object only. To “kill”
the slope m, we identify the edges of slope m in P�N and R�N , and fill the remaining
space with a single tetrahedron �NC1 all of whose four faces are glued to the inner
faces of P�N [

R�N . This �NC1 is the tetrahedron referred to as “vv0'.v/'.v0/” at the
beginning of Section 5.3. We denote by D the triangulation

SN
iD1f
P�i ; R�ig[f�NC1g

and by Y its underlying space, a twice-punctured solid torus. Note that D admits
a combinatorial involution � exchanging P�i with R�i for all 1 � i � N (and fixing
�NC1 setwise): this � extends the translation of @Y that shifts one puncture to the
other.

The ideal link of each of the two ideal vertices of Y (which are exchanged by �)
consists of nested hexagons as in Figure 6, but the innermost hexagon is now HN (not
HN�1 ), and is not collapsed to a broken line of three segments. Instead, the effect of
identifying the edges of slope m has been to identify a pair of opposite vertices of HN

(namely the inward-pointing vertices); the inside of HN is the union of two triangles
joined by a vertex. These two triangles are two vertex links of the tetrahedron �NC1

(the other two are in the other ideal vertex of Y ). See Figure 12.

We will not consider the full space of angle structures for our triangulation D of Ms :
rather, we will restrict to �–invariant angle structures (ie angle structures in which for
each 1� i �N , the tetrahedra P�i and R�i have the same dihedral angles). Note that
if there is an angle structure, we can always average it with its push-forward by � to
get an �–invariant angle structure.
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a

a
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b� c

� � b
� � b

a�2bCc
2

a�2bCc
2

a�2bCc
2

a�2bCc
2

� � aCc
2

� � aCc
2

� � aCc
2

� � aCc
2

HN

Figure 12: The innermost hexagon HN along with HN�1 and the links
(Euclidean triangles) of the tetrahedra �NC1; P�N ; R�N . The angles around
each interior vertex sum to 2� .

Proposition 29 Consider nonnegative reals �p; �q; �r which satisfy (5), namely
0< �r < � D �pC �qC �r . The space of �–invariant angle structures on D that
induce exterior dihedral angles �p; �q; �r at the edges of slope p; q; r of @Y (also
called .�p; �q; �r /–angle structures) is nonempty.

Remark 30 Proposition 29 requires no inequality like Proposition 10, but that is only
because “problematic” slopes .k; l/ have already been ruled out.

Proof As in Section 2.3, we introduce an angle parameter zi 2 .0; �/ for every pair of
ideal tetrahedra P�i ; R�i (where 1� i �N ). In what follows, P�i and R�i will always
be assumed to have the same dihedral angles (they are exchanged by the combinatorial
symmetry �). We also denote by zNC1 the dihedral angle of �NC1 at the edge whose
slope is the only rational (Farey vertex) in TN\TN�1XTN�2 . Using these conventions
and writing .a; b; c/ WD .zN�1; zN ; zNC1/, it is easy to see that the triples of dihedral
angles of the ideal tetrahedra are as follows:

(19)
P�N ; R�N W . b ; � � aCc

2
; a�2bCc

2
/

�NC1 W . c ; � � b ; b� c /

(see also Figure 12). For 1� i <N , the dihedral angles of P�i ; R�i are simply given
by Table (9). In keeping with Table (9), we consider zN to be a nonhinge parameter.
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Recall that N � 1: analogously to (7)–(10), we are thus looking for sequences of the
form

. z0 ; z1 ; z2 ; : : : ; zN ; zNC1 /

D . � C �q ; � � �r ; z2 ; : : : ; zN ; zNC1 /

subject to the conditions8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

zi�1 > zi C ziC1 if zi is a hinge parameter .hinge condition/I

zi�1C ziC1 > 2zi if not (convexity condition), eg iD1 or N ;

0< zi < � for all 2� i �N .range condition/I

0< z2 < � � �q as in (10) above;

0< zNC1 < zN which follows from (19).

To find such a sequence, the argument that finishes Section 2.3 follows through es-
sentially unchanged: we construct a convex positive decreasing sequence .zi/0�i�h

where h is the smallest hinge index (or hD N C 1 if there are no hinges), then set
eg ziC1 D "zi (inductively) for all i � h and a fixed small " > 0.

Finally, we must glue the faces of the solid torus Y together to form the Dehn filling Ms

of the Whitehead link complement. This is performed exactly as in Section 5.2: we
set .�p; �q; �r / as in (18) for 0 < � < � , so that the faces of @Y become two ideal
quadrilaterals P;P 0 with edges of slopes 0 and1; then glue P to P 0 by an orientation-
reversing homeomorphism sending the edges of slope 0 of P to the edges of slope 1
of P 0 (and conversely). The angular gluing equations are automatically satisfied.

Therefore, the full space W of �–invariant angle structures for D is obtained by
letting � range over .0; �/ and finding all .�p; �q; �r /–angle structures in the sense of
Proposition 29.

Proposition 31 The volume functional has a critical point, namely a maximum, on W .

Proof As in Proposition 15, the maximum of the (extended) volume functional
is achieved at some point z of the closure SW of W . Using (18), the system of
constraints (7) becomes

. z0; z1; z2; : : : ; zN ; zNC1 /

D . �; �; z2; : : : ; zN ; zNC1 /

or . � C �; �; z2; : : : ; zN ; zNC1 /

according to the value of m.
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The assumption � D � leads to a contradiction exactly as in the proof of Proposition
28. Therefore � < � .

By (19), P�N and R�N have a dihedral angle equal to b WD zN , while �NC1 has an
angle � � b . On the other hand, a tetrahedron of D is flat at z 2 SW if and only if one
(and therefore all) of its angles belong to f0; �g (Proposition 7). Thus, P�N ; R�N are
flat if and only if �NC1 is flat (ie b 2 f0; �g). The argument of Proposition 15 then
follows through: at z , if some tetrahedra were flat, all would be flat and the volume
would be 0; absurd. Thus z 2W .

To apply Theorem 5, we only need to make sure that the critical point (maximum)
of V on the space W of �–invariant angle structures is also critical (maximal) in
the space of all angle structures: but that is clear since by concavity of the volume
functional (Fact 6), the volume can only go up when we average an angle structure with
its push-forward by �. Theorem 5 does apply: we have found a complete hyperbolic
structure on the triangulated space Ms . To check that the triangulation is canonical,
we only need to check the Minkowski convexity relationship (12). For boundary faces
of Y , the situation is exactly the same as in Case 1 (odd l ). For interior faces of Y

not bounding the “extra” tetrahedron �NC1 , we proceed as in Section 4.4: the only
new argument needed is an analogue of Proposition 23 (predicting the handednesses of
powers of the core curve of Y ), namely:

Proposition 32 Let Ti be a Farey triangle such that 0< i <N and let x 2 P1Q be
the Farey vertex Ti�1\Ti \TiC1 . Consider a properly embedded line 
x of slope x

in @Y (running between two cusps), and a lift b
x of 
x to a universal cover U �H3

of Y (running between two ideal points). The deck transformation of U that sends the
initial point of b
x to the final point is left-handed (resp. right-handed) if and only if the
Farey triangle Ti carries a letter L (resp. R).

Proof The proof is exactly as in Section 3. The key argument that the integral �x of
the longitude 1–form along b
x stays less than � is only easier, because the “longest”
curve 
m runs only around one half, not all, of the meridian of U (connecting some
ideal vertex to its symmetric image with respect to the axis of U ); thus �m D � and
�x < � .

The only remaining case of the Minkowski convexity relationship (12) is at the faces of
�NC1 . According to our picture of the cusp triangulation (Figure 12), we can assume
that the innermost hexagon HN has vertices at

�1; 0; �; 1; 0; ��
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and look at the interface �10 between ideal tetrahedra 1�10 and �1�10.

Following the method of Section 4.4, if � D � C i�, the isotropic vectors in R3C1

corresponding to the horoballs centered at 1; 0; �; 1;�1 are respectively

v1 D . 0; 0; �1; 1 /

v0 D
1
j�j

. 0; 0; 1; 1 /

v� D
1

j�jj��1j
. 2�; 2�; 1� j�j2; 1Cj�j2 /

v1 D
1
j��1j

. 2; 0; 0; 2 /

v�1 D
1
j��1j

. �2; 0; 0; 2 / :

The solution to �v1C .1� �/v�1 D �v1C�v0C �v� satisfies

.�; �; �/D

�
1

j� � 1j
;
j�j

j� � 1j
; 0

�
; hence �C�C � D

j�jC 1

j� � 1j
> 1

according to the triangular inequality in the triangle .0; 1; �/: by Proposition 25, the
convexity inequality in Minkowski space is satisfied.

5.4 Delaunay decompositions and elementary Kleinian groups

Remark 33 If U �H3 is a (triangulated) universal cover of the solid torus Y and h'i
is the group of deck transformations of U , we mentioned at the beginning of Section
5.3 that for each ideal vertex v of U , the symmetric image v0 of v with respect to
the axis of ' is also a vertex of U , and � WD vv0'.v/'.v0/ is an ideal tetrahedron
of U (projecting to �NC1 ). By duality between the Ford–Voronoi domain and the
canonical triangulation, the last computation of Section 5.3 amounts to checking the
following (easy) fact: if all vertices of U are endowed with horoballs of the same size,
then the center of � is nearer to the horoballs centered at the vertices of � than to any
other horoballs.

More generally, if n � 3, let G WD h'; i � IsomC.H3/ be an elementary group
generated by a loxodromy ' and an order–n rotation  with the same axis ı (note
that Section 5.3 amounted to the case nD 2, and Section 2 to the case nD 1). Let
O WD Gp � @1H3 be a generic ideal orbit of G ; if hp is a horoball centered at p ,
all horoballs in the G–orbit of hp come equally close to the line ı . The convex hull
of O projects modulo ' to an n–times punctured solid torus X whose boundary is
pleated along a certain ideal triangulation in which all vertices have the same degree
(generically 6, exceptionally 4; for simplicity let us assume the generic situation).
The convex hull construction in Minkowski space R3C1 yields a decomposition of X
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into ideal polyhedra with respect to the horoballs Ghp . The central polyhedron is the
convex hull Q of h ip['.h ip/, namely an ideal hyperbolic antiprism with regular
n–sided bases (glued together via ' ): indeed, it is easy to check that the center of Q

is closer to the horoballs centered at the vertices of Q than to any other horoballs of
the G –orbit.

It is possible that Q is the only cell of X . Otherwise, we claim that the remaining cells
between Q and @X are tetrahedra glued together according to diagonal exchanges and
Farey-type combinatorics: namely, @X= is a once-punctured torus with ideal edges
of slope p; q; r 2 P1Q for some arbitrary marking (these slopes are mutual Farey
neighbors). The meridian of X defines the n–th power of an irreducible element of
H1.@X= ;Z/, and therefore also a slope m 2 P1Q. Since m is the slope of the base
edges of the antiprism Q, if Q is the only cell in X then m2 fp; q; rg. Otherwise, we
may as in Section 2 and Section 5.3 assume that the Farey edge pq separates m from
r and follow the line ` from r to m to construct a (combinatorial) ideal decomposition
D of X .

In fact, the following “Gauss–Bonnet type” result (left as an exercise) is a simple gen-
eralization of the method worked out in this paper. It uses the fact that the antiprism Q

(like any convex ideal hyperbolic polyhedron – see Rivin [24] and Guéritaud [13]) is
uniquely determined up to isometry by its dihedral angles.

Theorem 34 Consider nonnegative reals �p; �q; �r satisfying (5), namely 0 < �r <

� D �p C �q C �r . There exists a hyperbolic n–times punctured solid torus X ,
decomposed into convex ideal polyhedra according to the combinatorics of D and with
exterior dihedral angles �p; �q; �r at the edges of slope p; q; r , if and only if

.m^p/�pC .m^ q/�qC .m^ r/�r >
2�

n
:

Moreover, X is then unique up to isometry and D is the Delaunay decomposition
of X .
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[12] D Futer, F Guéritaud, Angled decompositions of arborescent link complements, Proc.
Lond. Math. Soc. .3/ 98 (2009) 325–364 MR2481951
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