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Monoids of moduli spaces of manifolds

SØREN GALATIUS

OSCAR RANDAL-WILLIAMS

We study categories of d –dimensional cobordisms from the perspective of Till-
mann [14] and Galatius, Madsen, Tillman and Weiss [6]. There is a category C� of
closed smooth .d � 1/–manifolds and smooth d –dimensional cobordisms, equipped
with generalised orientations specified by a map � W X! BO.d/ . The main result
of [6] is a determination of the homotopy type of the classifying space BC� . The
goal of the present paper is a systematic investigation of subcategories D � C� with
the property that BD' BC� , the smaller such D the better.

We prove that in most cases of interest, D can be chosen to be a homotopy com-
mutative monoid. As a consequence we prove that the stable cohomology of many
moduli spaces of surfaces with � –structure is the cohomology of the infinite loop
space of a certain Thom spectrum MT� . This was known for certain special � , using
homological stability results; our work is independent of such results and covers
many more cases.

57R90, 57R15, 57R56, 55P47

1 Introduction and statement of results

To state our results, we first recall from Galatius, Madsen, Tillman and Weiss [6] the
definition of the d –dimensional cobordism category. Let us give the definition in outline
here, and in full detail in Section 3.2. A tangential structure is a map � W X! BO.d/,
and we write 
 ! BO.d/ for the canonical vector bundle. A � –structure on a vector
bundle is a bundle map (ie fibrewise linear isomorphism) from the vector bundle to
��
 , and a � –structure on a manifold is a � –structure on its tangent bundle.

The objects of the cobordism category C� are pairs .M; l/, where M �R1 is a closed
.d � 1/–manifold and l is a � –structure on "1˚TM . The nonidentity morphisms
of C� , .M0; l0/! .M1; l1/, are pairs .t;W / with t > 0 and W � Œ0; t � �R1 an
embedded cobordism, together with a � –structure l on W that agrees with l0 and l1
over the boundary. There is a “collar” condition on .W; l/ near @W , and the space of
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all such W has a nice topology, described in detail in Section 3.2 (and also [6]). The
homotopy type of morphism spaces is given by

(1-1) C� .M0;M1/'
a
W

BDiff� .W; @W /;

where W ranges over connected compact cobordisms from M0 to M1 , one in each dif-
feomorphism class rel @W . Diff.W; @W / is the topological group of diffeomorphisms
of W which restrict to the identity on a neighbourhood of @W , and BDiff� .W; @W /

denotes the homotopy quotient

BDiff� .W; @W /D Bun@.T W; ��
 /==Diff.W; @W /;

where Bun@.T W; ��
 / is the space of bundle maps fixed near the boundary. We will
say that BDiff� .W; @W / is the moduli space of d –manifolds with � –structure, with
underlying manifold diffeomorphic to W .

Finally, we recall the main theorem of [6] (reproved below as Theorem 3.12, largely
following Chapter 6 of Galatius [5]). It determines the homotopy type of the classifying
space of the cobordism category,

(1-2) BC� '�1�1MT�;

where MT� DX�� is the Thom spectrum of the inverse of the vector bundle classified
by � W X! BO.d/.

To state our results, let us consider a version of C� where manifolds have “basepoints”.
Pick once and for all a � –structure on the vector space Rd . This induces a � –structure
on any framed manifold, which we shall call the standard � –structure on that manifold.

Definition 1.1 Let d � 2. Let C�
�

be the subcategory of C� where objects M �R1
are required to contain the interval .�"; "/d�1 � f0g �R1 for some " > 0 and to be
connected. Morphisms W � Œ0; t ��R1 are required to be connected and to contain
the strip Œ0; t �� .�"; "/d�1�f0g for some " > 0. Furthermore, the tangential structure
l W T W ! ��
 is required to be standard on the strip Œ0; t �� .�"; "/d�1 � f0g.

Homotopically, the result of this condition is to replace (1-1) by

(1-3) C�� .M0;M1/'
a
W

BDiff� .W;L[ @W /;

where W ranges over connected compact cobordisms between connected manifolds
M0 and M1 , containing an embedded arc L connecting the two boundary components,
one such W in each diffeomorphism class relative to @W [L.
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Tangential structures and diffeomorphisms are required to be fixed near the line L�W .
Thus we can cut open the surface W along L, so the spaces in (1-3) are effectively
moduli spaces of surfaces with one boundary component.

Theorem A Let d � 2 and � W X! BO.d/ be a tangential structure such that X is
path connected and Sd admits a � –structure. Then the inclusion

BC�� ! BC� '�1�1MT�

is a weak homotopy equivalence.

Our main result is the following. Let us say that two objects in C�
�

are cobordant if
they give the same element in �0BC�

�
D ��1MT� . In Section 4.3 we show that this

happens precisely when there is a morphism between the objects (not just a zig-zag).

Theorem B Let � W X!BO.2/ be a tangential structure such that X is path connected
and that S2 admits a � –structure. Let D� C�

�
be a full subcategory. Then the inclusion

BD! BC��
is a weak homotopy equivalence of each component of BD onto a component of BC�

�
.

If D has exactly one object, then it is a homotopy commutative monoid; if it has at most
one object in each cobordism class, then it is a disjoint union of homotopy commutative
monoids.

The assumption that X be path connected is innocent, since a disconnected X could be
considered one path component at a time. The assumption that S2 admits a � –structure
is necessary for our proof, which uses surgery techniques. Under that assumption,
the connected sum of two surfaces with � –structure will again have a � –structure (in
contrast, the connected sum of eg framed surfaces is not framable; this corresponds to
XDEO.2/).

Let us spell out our result explicitly in the case of ordinary orientations (although it is
not new in this case). Then W in (1-3) ranges over connected oriented surfaces, and
BDiff� .W; @W [L/ is homotopy equivalent to B�g;1 , where �g;1 is the mapping class
group of an oriented genus g surface with one boundary component. The monoid D
is homotopy equivalent to the disjoint union

D'
a
g�0

B�g;1;

and the composition is the “pair of pants” composition of Miller [12]. Our result then
says that this monoid has the same classifying spaces as the full cobordism category
of [6]. Our proof is entirely geometric and does not rely on Harer stability.
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1.1 Stabilisation and the Madsen–Weiss theorem

Let us explain an application of Theorem B that highlights the advantage of homotopy
commutativity. First we briefly discuss group completion of a homotopy commutative
monoid M, following McDuff and Segal [11]. There is a canonical map M!�BM
which is a homotopy equivalence if and only if M is grouplike, ie �0M is a group.
There is an induced map in homology

H�.M/!H�.�BM/

which sends the multiplicative subset �0M � H�.M/ to units of H�.�BM/, so
there is an induced map from the localisation

(1-4) H�.M/Œ�0M�1�!H�.�BM/:

The main theorem about group completion for homotopy commutative monoids (see
McDuff and Segal [11]) is that (1-4) is an isomorphism of rings.

In many cases of interest, �0M is a finitely generated monoid, so the localisation (1-4)
can be formed as a sequential direct limit

H�.M/!H�.M/!H�.M/! � � �
over multiplication by an element m which is the product of a set of generators. In
fact, �0M need not be finitely generated, it is only necessary that �0M may be group
completed by inverting finitely many elements. This direct limit is the homology of
the space M1 obtained as the mapping telescope of the analogous direct system of
spaces M!M!M! � � � . Consequently we get a map M1!�BM, inducing
an isomorphism

H�.M1/!H�.�BM/:

If k is a field, the isomorphism (1-4) can be reinterpreted in terms of invariants of the
action of �0M on H�.MI k/, namely that

(1-5) H�.MI k/�0M ŠH�.�0BMI k/;
where �0 means the basepoint component of the loop space. Here the monoid �0M
acts on homology and cohomology of both spaces by translation. To deduce (1-5) we
take coinvariants of the isomorphism (1-4) in k –homology and algebraically dualise,
and note that the invariants of the action on H�.�BMI k/ is isomorphic to the
cohomology of �0BM.

We now apply this to the homotopy commutative monoid D produced by Theorem B.
The assumption that �0D may be group completed by inverting finitely many elements
holds in many cases of interest. The homology of a component of D1 can be interpreted
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as the homology of BDiff� .W1/, the moduli space of infinite genus � –surfaces with
parametrised germ at infinity.

The cohomology H�.D/ is the ring of characteristic classes of bundles of � –surfaces
with one parametrised boundary component. Then H�.�1

0
MT�/ is the ring of

characteristic classes that are invariant under gluing a trivial bundle onto the boundary.

Ebert [4] has recently proved that a similar result cannot hold for odd dimensional
manifolds. He shows there are nontrivial rational classes in H�.�1MTSO.2nC1/IQ/
which vanish in H�.BDiffC.M /IQ/ for all oriented .2nC1/–manifolds M .

We now give some particular cases of interest. Returning to the case of ordinary
orientations, we reproduce the Madsen–Weiss theorem [10], that there is a homology
equivalence

(1-6) Z�B�1;1!�1MTSO.2/;

where �1;1 is the limit of the mapping class groups �g;1 as g!1.

Again we point out that we prove this result without quoting the homological stability
results of Harer [7] and Ivanov [9]. The case of unoriented and spin surfaces can be
treated similarly; cf Section 5.

For an oriented surface F , Cohen and Madsen [2] studied spaces

Sg;n.Y /DMap@.Fg;n;Y /==DiffC.Fg;n/

where Map@ is the space of maps taking @F to the basepoint of Y , and DiffC denotes
diffeomorphisms that preserve orientation and boundary. These are morphism spaces
in the category C� , for � W BSO.2/�Y ! BO.2/, and it follows from [2] that, if Y is
simply connected, there is a homology equivalence

Z�S1;1.Y /!�1MTSO.2/^YC:

Here, �0.D/ D N �H2.Y IZ/ and Z� S1;1.Y / is the direct limit D! D! � � �
over multiplication by an element corresponding to .1; 0/ 2N �H2.Y;Z/. Our result
provides an analogue to this for all connected spaces Y and also to surfaces with any
tangential structure satisfying the assumption of Theorem B, such as unoriented or spin
surfaces.

The special case Y DBZD S1 can be interpreted in complete analogy with (1-6). Let
v 2H 1.Fg;1IZ/ be a “primitive” cohomology class, ie one that can be extended to a
symplectic basis of H 1 (equivalently, the Poincaré dual to an embedded nonseparating
curve). Let � 0

g;1
� �g;1 denote the stabilizer of v . Then our results give a homology

isomorphism
Z�B� 01;1!�1MTSO.2/^S1C:

Geometry & Topology, Volume 14 (2010)
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Similarly the case X D BZ=n gives a homology equivalence

Z�B� 01;1.n/!�1MTSO.2/^BZ=nC;

where � 0
g;1
.n/� �g;1 denotes the subgroup that stabilizes the mod n reduction of the

primitive vector v . The space B� 0
g;1
.n/ has the same homotopy type as the moduli

space of pairs .x†;†/ where † is a genus g Riemann surface with one boundary
component and x†!† is an unbranched n–fold cyclic Galois cover.

For a completely general space Y the monoid �0D is difficult to understand explic-
itly, and our result must be stated as an algebraic isomorphism H�.D/Œ�0D�1� '
H�.�1MTSO.2/^YC/.

Acknowledgements S Galatius was partially supported by NSF grant DMS-0805843
and the Clay Mathematics Institute. O Randal-Williams was supported by an EPSRC
Studentship, DTA grant number EP/P502667/1.

2 Spaces of manifolds

2.1 Definitions

Definition 2.1 Let U �RN be an open set. Let ‰d .U / be the set of subsets M �U

which are smooth d –dimensional submanifolds without boundary, and such that M is
closed as a subset. When the dimension is understood, we may simply write ‰.U /.

If V � U , there is a restriction map ‰.U /! ‰.V / given by M 7!M \ V . This
makes ‰.U / into a sheaf of sets. We now define three topologies on ‰.U /. The first
two are used only as intermediate steps for defining the third. In Theorem 2.9 below
we prove that the third topology makes ‰.�/ into a sheaf of topological spaces.

Step 1 We first define the compactly supported topology. We will write ‰.U /cs for
‰.U / equipped with this topology. In fact, ‰.U /cs will be an infinite-dimensional
smooth manifold, in which a neighbourhood of M 2‰.U /cs is homeomorphic to a
neighbourhood of the zero-section in the vector space �c.NM / consisting of compactly
supported sections of the normal bundle NM of M � U .

Let C1c .M / denote the set of compactly supported smooth functions on M . Given
a function "W M ! .0;1/ and finitely many vector fields X D .X1; : : : ;Xr / on M ,
let B.";X / denote the set of functions such that j.X1X2 : : :Xrf /.x/j< ".x/ for all
x . Declare the family of sets of the form f CB.";X / a subbasis for the topology
on C1c .M /, as f ranges over C1c .M /, " over functions M ! .0;1/, and X over
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r –tuples of vector fields, and r over nonnegative integers. This makes C1c .M / into a
locally convex vector space.

We define the normal bundle NM to be the subbundle of "n which is the orthogonal
complement to the tangent bundle TM � "n . This identifies �c.NM / with a linear
subspace of C1c .M /˚n . We topologise it as a subspace.

By the tubular neighbourhood theorem, the standard map NM !Rn restricts to an
embedding of a neighbourhood of the zero section. Associating to a section s its image
s.M / gives a partially defined injective map

(2-1) �c.NM /
cMÜ‰.U /cs

whose domain is an open set. Topologise ‰.U /cs by declaring the maps cM to be
homeomorphisms onto open sets. This makes ‰.U /cs into an infinite dimensional
manifold, modelled on the topological vector spaces �c.NM /.

Step 2 For each compact set K , we define a topology on ‰.U /, called the K–
topology. We will write ‰.U /K for ‰.U / equipped with this topology.

Let

‰.U /cs �K��!‰.K � U /

be the quotient map that identifies elements of ‰.U /cs if they agree on a neighbourhood
of K . The image of a manifold M 2‰.U /cs is the germ of M near K , and we shall
also write �K .M /DM jK . Give ‰.K � U / the quotient topology.

Now, let ‰.U /K be the topological space with the same underlying set as ‰.U /cs ,
and with the coarsest topology making �K W ‰.U /K !‰.K � U / continuous. It is a
formal consequence of the universal properties of initial and quotient topologies that
the identity map ‰.U /L!‰.U /K is continuous when K �L are two compact sets.
That is, the L–topology is finer than the K–topology.

Step 3 Finally, let ‰.U / have the coarsest topology finer than all the K–topologies.
In other words, ‰.U / is the inverse limit of ‰.U /K over larger and larger compact
sets.

Example 2.2 The simplest example is taking ftg�R�R2 as a function of t . This a
path in ‰1.R

2/, and as t!1 it converges to the empty manifold ∅. This is because
for each compact subset K �R2 , K\ftg �R is empty for all sufficiently large t , so
it converges to ∅ in the K–topology, for all K .
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2.2 Elementary properties and constructions

Let V � U . The restriction map ‰.U /cs!‰.V /cs is not continuous. We have the
following result instead.

Lemma 2.3 The restriction map r W ‰.U /cs!‰.V /cs is an open map.

Proof Let M 2‰.U /cs . We have the commutative diagram

�c.NM /
cM //____ ‰.U /cs

��
�c.N.M /jV /

cM\V //___

z

OO

‰.V /cs

where z denotes extension by 0, which is continuous. This induces a partially defined
right inverse ‰.V /cs!‰.U /cs to the restriction map. The right inverse is defined in
an open neighbourhood of every point in the image of the restriction; this proves the
claim.

The following technical result will be used several times.

Lemma 2.4 Let K � U be compact. Let 0 < 3" � dist.K;Rn � U / and let
�W Rn! Œ0; 1� be a smooth function such that �.x/D 1 if dist.x;K/� " and �.x/D 0

if dist.x;K/ � 2". If the support of � is contained in an open set V � U , then
multiplication by � gives a (continuous!) map x�W �c.NM /! �c.N.M \V //. If we
let zW �c.N.M \V //! �c.NM / denote extension by zero, we have the diagram

�c.N.M \V //
z // �c.NM /

cM

���
�
�

�KıcM

&&NNNNNN

�c.NM /

x�
OO

cM

//_____ ‰.U /cs
�K

// ‰.K � U /

in which the triangle and the outer pentagon commute after possibly restricting to a
smaller neighbourhood of 0 2 �c.NM /

Proof The pentagon commutes for sections h 2 �c.NM / satisfying jh.x/j< ", and
this is an open condition.

Lemma 2.5 The quotient map �K W ‰.U /cs!‰.K � U / is an open map.
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Proof We are claiming that .�K /
�1.�K .A// is open for all open A�‰.U /cs . Let

M 2 .�K /
�1.�K .A//. This means that M \V DM 0\V for some open V �K and

some M 0 2A. Now the composition �K ı cM W �c.NM /Ü‰.U /cs!‰.K � U /

can be factored as in Lemma 2.4. Thus, if we want to check that some point M 2
.�K /

�1.�K .A// is interior, it suffices to check that the inverse image of �K .M / in
�c.N.M \V // is a neighbourhood of 0.

This holds for M 0 2 A� .�K /
�1.�K .M //, and hence also holds for M since they

agree inside V .

Lemma 2.6 Let V � U . The injection �W ‰.K � U /!‰.K � V / is a homeomor-
phism onto an open subset.

Proof Continuity follows from Lemma 2.4. Indeed, we get a diagram

�c.NM /

x�
��

cM //____ ‰.U /cs

r

��

�K // ‰.K � U /

�

��
�c.N.M \V //

cM\V //___ ‰.V /cs �K // ‰.K � V /

where the outer rectangle and right hand square commute. This proves that �ı�K ıcM

is continuous. Since �K is a quotient map and cM is a local homeomorphism, this
proves that � is continuous.

To see that �.A/ is open when A� ‰.K � U / is open, let B D .�K /
�1.A/. Then

�.A/ D �K ı r.B/. Since �K and r are both open maps, by Lemmas 2.5 and 2.3,
�.A/ is open.

Theorem 2.7 For V � U , the restriction map ‰.U /!‰.V / is continuous.

Proof We need to show that the composition ‰.U / ! ‰.V / ! ‰.K � V / is
continuous for all compact K � V . This follows from Lemma 2.6.

Lemma 2.8 Let Ki � U be compact, i D 1; : : : ; r , and let K DSi Ki . Then the
diagonal map ıW ‰.U /K !Q

‰.U /Ki is a homeomorphism onto its image.

Proof Continuity of ı follows from continuity of each ‰.U /K ! ‰.U /Ki . Let
�D ı.‰.U /K /. We need to see that ıW ‰.U /K !� is open. We have a diagram

‰.U /K
ı // �

�

��

// Q‰.U /Ki

Q
�Ki

��
D //

Q
‰.Ki � U /;
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where D D .Q�Ki
/.�/, the horizontal maps are inclusions of subsets, and � is the

restriction of
Q
�Ki

. A set-theoretic consideration shows that for any subset A�‰.U /
we have

(2-2) ��1�ı.A/D �Y��1
Ki
�Ki

.A/
�\�:

Now consider the diagram

(2-3)

�
� // D

p

��
‰.U /K

ı

OO

�K // ‰.K � U /;

where p is defined by commutativity of the diagram: p.�ı.M //D �K .M /. This is
well defined because both � and ı are surjective, and because if �ı.M /D �ı.M 0/,
then M and M 0 agree in a neighbourhood of each Ki and hence agree in a neigh-
bourhood of K , so �K .M /D �K .M

0/. By Lemma 2.5, the open neighbourhoods of
M 2‰.U /K are precisely of the form ��1

K
�K .A/, for M 2A�‰.U /cs open. We

need to prove that the set
ı.��1

K �K .A//��
is a neighbourhood of ı.M /. By diagram (2-3), we can replace �K .A/ by p�ı.A/,
and replace ı��1

K
by ��1p�1 . Using (2-2) this gives

ı.��1
K �K .A//D ��1p�1p�ı.A/� ��1�ı.A/D �Y��1

Ki
�Ki

.A/
�\�;

which is an open subset of �, containing ı.M /.

Theorem 2.9 Let f W X ! ‰.U / be a map such that each x 2 U has an open
neighbourhood Ux �U such that the composition X!‰.U /!‰.Ux/ is continuous.
Then X !‰.U / is continuous.

Proof We need to show that f W X !‰.U /K is continuous for any compact K �U .
K is covered by finitely many of the Ux ’s, say U1; : : : ;Ur . Pick Ki � Ui compact
with K �[Ki . Then the composition

X
f�!‰.U /Ki !‰.Ki � U /!‰.Ki � Ui/

is continuous for each i by assumption. By Lemma 2.6, the composition X!‰.U /!
‰.Ki �U / is continuous, and hence each X!‰.U /Ki is continuous. It now follows
from Lemma 2.8 that X !‰.U /K is continuous as required.
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Lemma 2.10 Let Emb.U;V / denote the space of embeddings of one open subset of
RN into another, and let j0 2 Emb.U;V /. Then there exists a partially defined map

Emb.U;V /
'
Ü Diffc.U /;

defined in an open neighbourhood of j0 , such that j .x/D j0 ı .'.j //.x/ for x in a
neighbourhood of K .

Proof Pick a compactly supported function �W U ! Œ0; 1� with K � int.��1.0//.
Then let

.'.j //.x/D .1��.x//xC�.x/.j�1
0 ı j /.x/;

which defines a compactly supported diffeomorphism U ! U for all j sufficiently
close to j0 .

Theorem 2.11 The map

Emb.U;V /�‰.V /!‰.U /;

given by .j ;M / 7! j�1.M /, is continuous.

Proof It suffices to see that the composition

Emb.U;V /�‰.V /!‰.U /!‰.K � U /

is continuous in a neighbourhood of each fj0g �‰.V /, for each K � U compact.
But this follows from the previous lemma, which implies that the map factors through
Diffc.U /, which acts continuously on ‰.U /.

2.3 Tangential structures

We will study analogues of the point-set topological results from the previous section,
where all manifolds M 2‰d .U / are equipped with some tangential structure. Examples
are orientations, spin structures, almost complex structures, etc.

Definition 2.12 Let � W X! BO.d/ be a map. A � –structure on M 2 ‰d .U / is a
bundle map (ie fibrewise linear isomorphism) l W TM ! ��
 . Let ‰� .U / denote the
set of pairs .M; l/, where M 2‰d .U / and l is a � –structure on M .

More generally, a �d�k –structure on M 2‰d�k.U / is a � –structure on "k ˚TM .
Let ‰�d�k

.U / denote the set of pairs .M; l/, where M 2‰d�k.U / and l is a �d�k –
structure on M .

Geometry & Topology, Volume 14 (2010)



1254 Søren Galatius and Oscar Randal-Williams

Often we will omit the tangential structure and just write M 2 ‰� .Rn/ instead of
.M; l/ 2 ‰� .Rn/. We can define a space Xd�k and a map �d�k by the pullback
diagram

Xd�k
- X

BO.d � k/

�d�k

?
- BO.d/;

�

?

where BO.d � k/ is defined to be Bun.Rk �Rd�k ! �; 
 /=GLd�k.R/. With this
definition of �d�k , the two definitions of the set ‰�d�k

.U / in Definition 2.12 are in
natural bijection.

Remark 2.13 A map X! X0 over BO.d/ induces natural maps of all the spaces
occurring in Theorems A and B, and if X! X0 is a homotopy equivalence then so are
these maps. Hence, we may assume that � W X! BO.d/ is a Serre fibration, which we
will do from now on.

Clearly ‰� is again a sheaf of sets. We wish to endow it with a topology so that it
is a sheaf of topological spaces. We start by defining the analogue of the compactly
supported topology. For M 2 ‰.U /cs , let Bun.TM; ��
 / be the space of bundle
maps, topologised in the compact-open topology, and let �c.NM /�Bun.TM; ��
 /
have the product topology. For s 2 �.NM / close to the zero section, we have
cM .s/D s.M /2‰.U /cs . We also get the bundle isomorphism DsW TM!T .cM .s//

and hence .Ds/�1 ı l is a � –structure on cM .s/. This gives a map

c�M W �c.NM /�Bun.TM; ��
 /Ü‰� .U /
cs

viz .s; l/ 7! .s.M /; .Ds/�1 ı l/. It is clear that c�
M

is injective and that the im-
age is u�1.Im.cM //, where uW ‰� .U /! ‰.U / is the forgetful map .M; l/ 7!M .
Topologise ‰� .U /cs by declaring the maps c�

M
homeomorphisms onto open sets.

Then define ‰� .K � U /, ‰� .U /K and ‰� .U / from ‰� .U /
cs as in Steps 2 and 3

in Section 2.1. It is not hard to modify the proofs of Theorems 2.7, 2.9 and 2.11 to
work also in the presence of � –structures. We summarise the result in the following
theorem.

Theorem 2.14 ‰� is a sheaf of topological spaces on Rn . The map

Emb.U;V /�‰� .U /!‰� .V /

is continuous.

Geometry & Topology, Volume 14 (2010)



Monoids of moduli spaces of manifolds 1255

Proof sketch First we have, with the same proof, an analogue of Lemma 2.4 where
the two ‰ are replaced by ‰� and all three spaces of sections of normal bundles in the
diagram are replaced with their product with Bun.TM; ��
 /. Once that is established,
the � analogues of Theorem 2.7 and Theorem 2.9 are proved in the exact same way.
This proves that ‰� is a sheaf of spaces.

An embedding j W U ! V gives a map ‰� .U / ! ‰� .V / which sends .M; l/ to
.j�1M; l ı .Dj jj�1.M ///. This defines the map in the theorem, and its continuity is
proved exactly as in Theorem 2.11.

2.4 Smooth maps

In practice it can be tedious to check continuity of a map X ! ‰� .R
n/. If X is

smooth there is an easier property to verify.

Definition 2.15 Let f W X!‰� .U / be a continuous map, and write f .x/D .Mx; lx/.
Define the graph of f to be the space of pairs

�.f /D
[

x2X

fxg �Mx �X �U

and the vertical tangent bundle to be

T v�.f /D
[

x2X

fxg �TMx �X �T U;

both with the subspace topology. The lx determine a bundle map l.f /W T v�.f /!
��
 .

Definition 2.16 If X is a manifold, say a continuous map f W X!‰� .R
n/ is smooth

if �.f /�X �U is a smooth submanifold and � W �.f /!X is a submersion.

More generally say it is smooth near .x;u/ 2 X � U if there are neighbourhoods
A�X of x and B � U of u such that A!X !‰� .U /!‰� .B/ is smooth. For
a closed C �X �U say f is smooth near C if it is smooth near every point of B .

Lemma 2.17 If X is a k –dimensional smooth manifold, there is a bijection between
the set of smooth maps f W X !‰� .U / and the set of pairs .�; l/ where � �X �U

is a smooth .d C k/–dimensional submanifold that is closed as a subspace and such
that �X W �!X is a submersion, and l W Ker.D�X W T�! TX /! ��
 is a bundle
map.

Proof A smooth map f determines a graph �.f / and a bundle map l.f /W T v�.f /!
��
 having the required properties.
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Given a pair .�; l/, there is certainly a map of sets f W X ! ‰� .U / given by x 7!
.��1

X
.x/; l j��1

X
.x/W T��1

X
.x/!��
 /. Then �.f /D� , T v�.f /DT v� and l.f /D l .

We must just check that this f is continuous.

By the local submersion theorem, we can choose local coordinates Rk ! X and
Rn! U inside which � �X �U is the image of an embedding RdCk !Rk �Rn

such that RdCk !Rk is the projection onto the first k coordinates. This produces a
continuous map Rk ! Emb.Rd ;Rn/ � Bun.T Rd ; ��
 /, which is smooth on the
first coordinate. We may suppose that the origin in Rk is sent to the standard
embedding eW Rd ,! Rn . There is a map, defined near e , from Emb.Rd ;Rn/ to
Emb.Rd ;Rd / � C1.Rd ;Rn�d /, and we identify the second factor with the space
�.Ne.Rd //. Let us write Bk.r/ for the ball of radius r inside Rk . There is also
a map .�/�1W Emb.Rd ;Rd /Ü Emb.Bd .2/;R

d / given on a neighbourhood of the
identity by e 7! e�1W Bd .2/!Rd , as on a neighbourhood of the identity embeddings e

contain the ball Bd .2/ in their image.

Composing with the action via pullback gives a map

Emb.Rd ;Rn/Ü Emb.Rd ;Rd /��.Ne.Rd //

Ü Emb.Bd .2/;R
d /��.Ne.Rd //! �.Ne.Bd .2///

which sends an embedding f to a section of Ne.Bd .2// having the same image inside
Bn.1/�Rn .

Choosing a compactly supported function 'W Bd .2/! Œ0; 1� that is identically 1 inside
the unit ball and multiplying sections by it gives a continuous map to �c.Ne.Bd .2///,
so we have a sequence of continuous maps

Rk ! Emb.Rd ;Rn/Ü �.Ne.Bd .2///
�'�! �c.Ne.Bd .2///:

In total, we obtain a continuous map

RkÜ �c.Ne.Bd .2///�Bun.TBd .2/; �
�
 /Ü‰� .Bn.2//

defined near the origin, that agrees with Rk!X
f!‰� .U /!‰� .R

n/ after restricting
both to the unit ball Bn.1/�Rn . In particular, by Theorem 2.9 f is continuous.

Lemma 2.18 Let X be a smooth manifold and f W X ! ‰.U / be a continuous
map. Let V � X �U be open, and W � X �U be such that xV � int.W /. Then
there exists a homotopy F W Œ0; 1� � X ! ‰.U / starting at f , which is smooth on
.0; 1��V � Œ0; 1��X �U and is the constant homotopy outside W . Furthermore, if
f is already smooth on an open set A� V , then the homotopy can be assumed smooth
on Œ0; 1��A.
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Proof Let us say that the open set W �X �U is small if there are closed sets K�X ,
L� U , such that W �K �L and the composition

K!X !‰.U /!‰.L/

factors through a continuous map K!‰.U /cs . Then we can use the manifold structure
on ‰.U /cs to find a homotopy Œ0; 1��K! ‰.U /cs which is smooth on .0; 1��K .
Using a suitable bump function we can ensure that it is the constant homotopy outside
W �K �U , and hence extends to a homotopy Œ0; 1��X !‰.U / which is constant
outside W .

Next we consider the case where W is the disjoint union of small open sets. This is
easy, since we can superimpose the corresponding homotopies. After restricting the
homotopy to Œ0; "��X and composing with the linear diffeomorphism Œ0; 1�! Œ0; "�,
we can assume that the homotopy is arbitrarily small.

For general W, we first triangulate X�U such that every simplex is contained in a small
open set. For each p–simplex � �X �U , let st.�/�X �U be the open star of � ,
thought of as a vertex of the barycentric subdivision. Let W p �X �U be the union
of st.�/ over all p–simplices � . Then X �U is the (finite) union of the W p . We
can pick slightly smaller open sets V p �W p such that V p � int.W p/ and such that
the V p still cover X �U . Using the previous cases we can now proceed by induction
as follows: First find a homotopy F0W Œ0; 1��X !‰.U / which is constant outside
W 0�X�U and smooth on .0; 1��V 0 . By construction, Œ0; 1��W 1 is again a disjoint
union of small sets, so we may find a homotopy F1W Œ0; 1�2 �X !‰.U / starting at
F0 which is constant outside Œ0; 1��W 1 and smooth on .0; 1�� Œ0; 1��V 1 , and so on.
In the end we get a map Œ0; 1�k �X !‰.U /, and we can let F W Œ0; 1��X !‰.U /

be the restriction to the diagonal.

3 The homotopy type of spaces of manifolds

This section is a self-contained proof of the main theorem of [6].

3.1 Constructions with tangential structures

We describe certain constructions that can be made relating � –manifolds and their
submanifolds, using the tangential structure �d�1 on .d � 1/–manifolds.

Definition 3.1 If M 2 ‰�d�1
.Rn�1/, let R �M � ‰.Rn/ have the � –structure

induced by composing the obvious bundle map

T .R1 �M /! "1˚TM
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with the bundle map "1˚TM ! ��
 defining the �d�1 –structure on M . This defines
a map

(3-1)
‰�d�1

.Rn�1/!‰� .R
n/

M 7!R�M:

The construction in Definition 3.1 can be generalised a bit. Let f W R!‰�d�1
.Rn�1/

be a smooth map, having graph �.f /�R�Rn�1 . Differentiating the first coordinate
x1W �.f /!R gives a short exact sequence of vector bundles

T v.�.f //! T .�.f //! "1

and the standard inner product on Rn gives an inner product on T .�.f //, and so a
canonical splitting

(3-2) "1˚T v.�.f //
Š�!T .�.f //:

The �d�1 –structure on each fibre of �.f / is described by a vector bundle map

(3-3) "1˚T v.�.f //! ��
:

Definition 3.2 Let
C1.R; ‰�d�1

.Rn�1//!‰� .R
n/

f 7! �.f /

be the map described above, where �.f / is given the � structure obtained by composing
(3-3) with the inverse of (3-2).

The process in Definition 3.1 is the special case of Definition 3.2 where the path f is
constant. There is a partially defined reverse process which decreases dimensions of
manifolds by one. Let M 2‰� .Rn/, and again let x1W M !R be the projection to
the first coordinate in Rn . If a 2R is a regular value of x1 , then Ma DM \x�1

1
.a/

is a smooth manifold and we have a short exact sequence

TMa! TM jMa
! "1:

Using the inner product on TM induced by M �Rn we get a splitting

(3-4) "1˚TMa
Š�!TM jMa

:

Definition 3.3 Let

(3-5)
‰� .R

n/Ü‰�d�1
.Rn�1/

M 7!Ma DM \x�1
1 .a/

be the partially defined map which gives Ma the � –structure induced by compos-
ing (3-4) with the bundle map TM ! ��
 defining the � –structure on M .
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Finally we discuss an extended functoriality of ‰� . Let M 2‰� .Rn/ and let F W Rn!
Rn be a map which is transverse to M . Then W D F�1M is again a d –manifold,
but in general has no induced � –structure. For example if F W R3 ! R3 given by
F.x/D .0; 0; jxj2/ then F�1.R2�f1g/D S2 , but the canonical framing of R2�f1g
cannot induce a framing of S2 .

It is, however, possible to define such an induced structure in special cases. The
following will be needed below. Let 'W R! R be a smooth map with '0 � 0. Let
F D '�IdW Rn!Rn . If M 2‰.Rn/ and F is transverse to M , then W DF�1.M /

is again a d –manifold. Both bundles T W and F�.TM / are subbundles of "n , and
they are related via the endomorphism DF W "n! "n by the equation

T W DDF�1.F�TM /:

An exercise in linear algebra shows that the composition

T W ,! "n� F�TM;

the inclusion followed by orthogonal projection, defines an isomorphism T W !
F�TM . Using this isomorphism to give W an induced � –structure, we get a partially
defined map

(3-6)
‰� .R

n/Ü‰� .R
n/

M 7! F�1M D .' � Id/�1.M /:

A typical application of this construction is given by the following lemma. We say that
an M 2‰� .Rn/ is cylindrical in x�1

1
.a; b/ if there is an N 2‰�d�1

.Rn�1/ such that

.R�N /jx�1
1
.a;b/ DM jx�1

1
.a;b/ 2‰� .x�1

1 .a; b//:

Lemma 3.4 Let f W X ! ‰� .R
n/ be continuous, and let U;V � X be open, with

xU � V . Let a 2 R be a regular value for x1W f .x/! R for all x 2 V . Let " > 0.
Then there is a homotopy

ft W X !‰� .R
n/; t 2 Œ0; 1�

with f0 D f , and:

(i) f1.x/ cylindrical in x�1
1
.Œa� "; aC "�/ for x 2 U .

(ii) The restriction to Œ0; 1�� .X �V /!‰� .R
n/ is a constant homotopy.

(iii) The composition Œ0; 1��X !‰� .R
n/!‰� .R

n�x�1
1
.Œa� 2"; aC 2"�// is a

constant homotopy.
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Proof Choose once and for all a smooth function �W R ! R with �.s/ D 0 for
jsj � 1, �.s/ D s for jsj � 2, and �0.s/ > 0 for jsj > 1. For � 2 Œ0; 1�, let '� .s/ D
.1� �/sC �"�..s�a/="/. Then pick a function �W X ! Œ0; 1� with supp.�/� V and
U � ��1.1/ and define the homotopy by

Œ0; 1��X !‰� .R
n/

.t;x/ 7! .'t�.x/ � Id/�1.f .x//:

Finally, let us introduce some subspaces of ‰� .Rn/ which are very important in the
sequel.

Definition 3.5 Let  � .n; k/ � ‰� .Rn/ be the subspace defined by the condition
M �Rk � .�1; 1/n�k .

Now  �d�1
.n� 1; k � 1/ � ‰�d�1

.Rn�1/ is the subspace defined by the condition
M � Rk�1 � .�1; 1/n�k and we see that the map (3-1) and the partially defined
map (3-5) restrict to maps

 �d�1
.n� 1; k � 1/!  � .n; k/

M 7!R�M;
(3-7)

 � .n; k/Ü  �d�1
.n� 1; k � 1/

M 7!Ma DM \x�1
k .a/:

(3-8)

Proposition 3.6 For k > 1, the map (3-7) induces an isomorphism on �0 , with inverse
induced by (3-8). Consequently �0

�
 � .n; k/

�Š �0

�
 �d�kC1

.n� kC 1; 1/
�
.

Proof By Sard’s theorem, every element M 2  � .n; k/ is in the domain of the map
(3-8) for some a. We will show that the element ŒMa� 2 �0

�
 �d�1

.n� 1; k � 1/
�

is
independent of a.

Let M 2  � .n; k/ and a < b be two regular values of x1W M ! R. Near x�1
1
.a/

and x�1
1
.b/, the function x1 has no critical points. We can perturb it, relative to these

subsets, to be a Morse function (as they are dense in the space of smooth functions) and
still give an embedding (as the space of embeddings is open in the space of all smooth
maps). We then obtain a manifold M 0 , such that x1 has isolated critical points. We may
then perturb M 0 slightly so that there are no critical points in Œa; b��f0gk�1�Œ�1; 1�n�k .
Let us still call this M 0 . As critical points are isolated, there is an " > 0 such that
there are no critical points in Œa; b�� .�"; "/k�1 � Œ�1; 1�n�k . Choosing an isotopy of
embeddings et W R!R from the identity to a diffeomorphism onto .�"; "/, we can
form ht DR� ek�1

t � Œ�1; 1�n�k and let M 0.t/D h�1
t .W 0/.
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This gives a path from M 0 DM 0.0/ to a manifold M 0.1/ such that x1 has no critical
values in Œa; b�. Thus there are paths

Ma DM 0
a

M 0a.t/ M 0
a.1/

M 0t .1/ M 0
b.1/

M 0
b
.t/
 M 0

b DMb:

We have shown that (3-8) gives a well defined map  � .n; k/!�0

�
 �d�1

.n�1; k�1/
�
.

This map is locally constant so it factors through �0

�
 � .n; k/

�
. The composition

�0

�
 �d�1

.n� 1; k � 1/
�! �0

�
 � .n; k/

�! �0

�
 �d�1

.n� 1; k � 1/
�

is the identity map, so the first map is injective. To see surjectivity let M 2  � .n; k/
and a be a regular value of x1W M ! R. Similarly to the proof of Lemma 3.4, let
't W R ! R, t 2 Œ0; 1� be given by 't .s/ D .1 � t/ � .s � a/ C a. Then M.t/ D
.'t � Id/�1.W / gives a path from M to the cylindrical manifold R �Ma , where
tangential structures are handled using the extended functoriality of (3-6). Thus the
first map is also surjective, and so a bijection.

3.2 The cobordism category

Let us give a definition of the embedded cobordism category C� .R
n/ from [6], using

the topological sheaf ‰� from the previous section. There are several versions of
the definition, but they all give level-wise homotopy equivalent categories, where
we say a functor F W C ! D is a level-wise homotopy equivalence of categories if
NkF W NkC!NkD is a homotopy equivalence for all k .

Definition 3.7 Let C� .Rn/ have object space  �d�1
.n� 1; 0/. The set of nonidentity

morphisms from M0 to M1 is the set of .t;W / 2 R� � .n; 1/ such that t > 0 and
such that there exists an " > 0 such that

W j.�1;"/�Rn�1 D .R�M0/j.�1;"/�Rn�1 2‰� ..�1; "/�Rn�1/

W j.t�";1/�Rn�1 D .R�M1/j.t�";1/�Rn�1 2‰� ..t � ";1/�Rn�1/;

where R �M� 2 ‰� .Rn/ is as explained in (3-1). Composition in the category is
defined by

.t;W / ı .t 0;W 0/D .t C t 0;W 00/;
where W 00 agrees with W near .�1; t ��Rn�1 and with t �e1CW 0 near Œt;1/�Rn�1 .
The total space of morphisms is topologised as a subspace of .f0gq.0;1//� � .n; 1/,
where .0;1/ is given the usual topology.

Of course, the important part of a morphism .a0 < a1;M / is the part of M that lies
in Œa0; a1��Rn�1 , since it uniquely determines the rest of M .

The second version of the definition of the cobordism category is a topological poset.
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Definition 3.8 Let
D� .R

n/�R� � .n; 1/
denote the space of pairs .t;M / such that t is a regular value of x1W M !R. Topol-
ogise D� .R

n/ as a subspace and order it by declaring .t;M /� .t 0;M 0/ if and only if
M DM 0 and t � t 0 .

Theorem 3.9 There is a zig-zag

C� .Rn/
c �D?� .R

n/
i!D� .R

n/

of level-wise homotopy equivalences of categories. In particular, the classifying spaces
BC� .Rn/ and BD� are homotopy equivalent.

Proof We must first describe D?
�
.Rn/. It is defined as D� .R

n/, except that we only
allow pairs .t;M / such that M is cylindrical in x�1

1
.t �"; tC"/ for some " > 0. The

functor D?
�
.Rn/!D� .R

n/ is by inclusion. It is a levelwise homotopy equivalence
on simplicial nerves by Lemma 3.4.

Let us digress for a moment to a construction similar to (3-6). Let 's.a; b/ be the
function as in Figure 1, where we allow s D1 to be the obvious limit. Note that it
is smooth away from the set of points fa� s; a; b; bC sg, and a diffeomorphism on
.�1; a� s�[ Œa; b�[ ŒbC s;1/.

-

6

b

a

aa�s b bCs

's.a; b/

Figure 1

Suppose M 2 � .n; 1/ is cylindrical near a and b , then .'s.a; b/� Id/�1.M / defines
an element of  � .n; 1/ as follows. It certainly defines a smooth submanifold of
R� .�1; 1/n�1 that agrees with the underlying manifold of M inside x�1

1
.a; b/, is

cylindrical in x�1
1
.a� s; a/ and x�1

1
.b; bC s/, and agrees with translated copies of

the underlying manifold M on x�1
1
.�1; a� s� and x�1

1
ŒbC s;1/. The � –structure

is defined to be that of M on x�1
1
..�1; a� s/[ .a; b/[ .bC s;1// where there are
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diffeomorphisms to M . On x�1
1
Œa� s; a� the underlying manifold is cylindrical and so

agrees with R�x�1
1
fag. The � –structure on x�1

1
.fa� s; ag/ also agrees, so we can

use this identification to give a � –structure on x�1
1
Œa� s; a�. Similarly x�1

1
Œb; bC s�.

The functor D?
�
.Rn/! C� .Rn/ sends an object .t;M / to x�1

1
.t/ as in (3-5). On

nonidentity morphisms it is

.t0 < t1;M / 7! .t1� t0; .'1.t0; t1/� Id/�1.M /� t0 � e1/;

where e1 2Rn is the first basis vector and �t0 � e1 denotes the parallel translation.

On simplicial nerves there is a map in the reverse direction, NlC� .Rn/!NlD
?
�
.Rn/,

that is the inclusion of those .0D t0 < t1 < � � �< tl ;M / such that M is cylindrical on
x�1

1
.�1; 0/ and on x�1

1
.tl ;1/. The functor can then be viewed as the self map h1

of NlD
?
�
.Rn/ that sends .t0 < t1 < � � �< tl ;M / to

.0< t1� t0 < � � �< tl � t0; .'1.t0; tl/� Id/�1.M /� t0 � e1/:

This is isotopic to the identity via the homotopy hs that sends .t0< t1< � � �< tl ;M / to

.t0� s � t0 < t1� s � t0 < � � �< tl � s � t0;
�
's=.1�s/.t0; tl/� Id

��1
.M /� s � t0 � e1/:

Finally we determine the homotopy type of BC� .Rn/' BD� .R
n/.

Theorem 3.10 The forgetful map induces a weak equivalence

BD� .R
n/

u!  � .n; 1/:

Proof The inverse image of a point M 2 � .n; 1/ is a subspace of the infinite simplex
B.R;�/. It is the simplex whose vertices is the space of regular values of x1W M !R.
Points in the inverse image of M can be represented as formal affine combinations
(ie formal linear combinations where the coefficients are nonnegative and sum to 1)
of regular values of x1 . This inverse image is contractible (the space of vertices is
nonempty by Sard’s theorem) which suggests the map might be a weak equivalence.
To give a rigorous proof we calculate the relative homotopy groups.

Let

f W Dm!  � .n; 1/

yf W @Dm! BD� .R
n/

be continuous maps with u ı yf D f j@Dm .

For a 2 R, let Ua � Dm be the set of points x such that a is a regular value of
x1W f .x/ ! R. This is an open subset of Dm , so by compactness we can pick
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finitely many a1; : : : ; ak 2 R such that the Uai
cover Dm . Pick a partition of unity

�1; : : : ; �k W Dm! Œ0; 1� subordinate to the cover. Using �i as a formal coefficient of
ai gives a map

gW Dm! BD� .R
n/

which lifts f , ie u ıg D f . Finally we produce a homotopy between the two maps
gj@Dm and yf . Since they are both lifts of f j@Dm , we can just use the affine structure
on the fibres of u to give the straight-line homotopy.

This proves that the relative homotopy groups (of BD� .R
n/ as a subspace of the

mapping cylinder of u) vanish and hence the map u is a weak equivalence.

We can now calculate the set of path components of  � .n; 1/. We can define a product
of two elements W1 and W2 of the space  � .n; 1/ in the following way. Take the
union of the disjoint manifolds W1 and W2C e2 and scale the second coordinate by
1=2. This product

 � .n; 1/� � .n; 1/!  � .n; 1/

makes  � .n; 1/ into an H –space (in fact it is an En�1 space) and hence �0. � .n; 1//

is a monoid. We have the following corollary.

Corollary 3.11 The monoid �0 � .n; 1/ is isomorphic to the monoid of cobordism
classes of �d�1 manifolds in Rn�1 . In particular the monoid is a group.

Proof By Theorem 3.10 and Proposition 3.6 we have

�0. � .n; 1//D �0.BD� .R
n//D �0.BC� .Rn//;

which can be identified with the set objects of C� , modulo the equivalence relation
generated by the morphisms. This proves the first claim.

The monoid structure on �0.BC� .Rn// comes from an H –space structure on the
objects and morphisms of C� , defined by disjoint union in the second coordinate
direction of Rn , as for  � .n; 1/. To see that it is a group, let M 2  �d�1

.n� 1; 0/ be
an object, and let R�M 2  � .n; 1/ be the corresponding cylindrical element. There
is another object “�M ”, such that R� .�M / is obtained from R�M by changing
signs of the first two coordinates in Rn .

There is an embedding e of R�I into itself given by Figure 2. Then .e�In�2/.R�M /

gives a morphism from M t�M to the empty manifold, showing that ŒM � and Œ�M �

are inverse points in the monoid structure on �0.BC� .Rn//.
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6
R

1

Figure 2

3.3 The homotopy type of the space of all � -manifolds

In this section we finish our proof of the main theorem of [6]. There is a space X.Rn/

defined by the fibre product

X.Rn/ - X

Grd .R
n/

�d;n

?
inc- BO.d/

�

?

where we consider BO.d/ as the infinite Grassmannian Grd .R
1/ and the inclusion

map as that induced by Rn � R1 . Thus X.Rn/ is simply that part of X which lies
over those d –planes which are contained in Rn �R1 .

Theorem 3.12 There is a weak homotopy equivalence

BC� .Rn/'  � .n; 1/
'!�n�1Th

�
��d;n.


?
d;n/! X.Rn/

�
:

Letting n go to infinity, we get the main theorem of [6],

BC� '  � .1; 1/
'!�1�1MT�:

Theorem 3.12 will be proved in Theorems 3.13 and 3.22 below. First we construct the
relevant maps. Consider the map

(3-9)
R� � .n; k � 1/!  � .n; k/

.t;M / 7!M � t � ek ;

where ek 2Rn is the k –th standard basis vector and M � t � ek denotes the inverse
image of M under the diffeomorphism x 7! xC t � ek . This is a continuous map of
spaces as it is induced by the action of the subgroup R� Diff.Rn/.
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If we let ∅ 2  � .n; k/ be the basepoint, then (3-9) extends uniquely to a continuous
map S1 ^ � .n; k � 1/!  � .n; k/ with adjoint map

(3-10)  � .n; k � 1/!� � .n; k/:

Theorem 3.13 The map (3-10) is a homotopy equivalence for k � 2. Consequently
there is a homotopy equivalence

 � .n; 1/
'�!�n�1 � .n; n/:

The homotopy equivalence (3-10) will be proved in three steps, Propositions 3.19,
3.20 and 3.21. Let k � 2 be fixed. The idea of the proof is to instead prove a
homotopy equivalence B � .n; k � 1/ '  � .n; k/ for a suitable “monoid structure”
on  � .n; k � 1/. In fact it is convenient to work with something which is not quite a
monoid structure, but which contains the same homotopical information. We recall the
following well known lemma.

Lemma 3.14 Let X� be a simplicial space such that the face maps induce a homotopy
equivalence Xk ' X1 � � � � �X1 . (When k D 0 this means that X0 is contractible).
Then the natural map

X1!�kX�k
is a homotopy equivalence if and only if X� is group-like ie �0X1 is a group with
respect to the product induced by d1W X2!X1 .

Proof Here �kX�k should be taken to mean the space of paths in the fat realisation
kX�k which start and end somewhere in X0 � kX�k. This space receives a natural
map from X1 . The lemma is a well known variant of the fact that M '�BM if M

is a group-like topological monoid. See Segal [13, Proposition 1.5].

Given any pair a; b 2X0 , the space �a;bkX�k of paths starting at a and ending at b

is homotopy equivalent to �kX�k defined above.

Instead of defining an actual monoid structure on  � .n; k�1/ we can define a simplicial
space satisfying the lemma. By abuse of notation we will call it N� � .n; k � 1/ since
it plays the role of the nerve of a monoid. First we have a preliminary definition.

Definition 3.15 Let A�R be an open subset, and xk W Rn!R denote the projection
on the k –th coordinate. Let  A

�
.n; k/� � .n; k/ denote the subset defined by requiring

M \x�1
k
.R�A/D∅. In particular  � .n; k � 1/D  .�1;1/

�
.n; k/.

Let  A
�
.n; k/0 �  � .n; k/ be the subset defined by the condition M \ Œ�1; 1�n \

x�1
k
.R�A/D∅.
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Lemma 3.16

(i) The inclusion  A
�
.n; k/!  A

�
.n; k/0 is a homotopy equivalence.

(ii) If A1; : : : ;Al � R are disjoint open sets and A D [Ai then union of subsets
defines a homeomorphismY

 
Ai

�
.n; k/

Š�!  A
� .n; k/:

(iii) If AD .a0; a1/ is an open interval then  A
�
.n; k/Š  � .n; k � 1/.

(iv) If AD .�1; a/ or AD .a;1/ for some a 2R, then  A
�
.n; k/ and  A

�
.n; k/0

are contractible.

Proof For part (i), we prove that the inclusion is a deformation retract. Pick an isotopy
et W R!R, t 2 Œ0; 1� of embeddings, with e0 the identity and e1.R/D .�1; 1/. Let

jt D .et /
k�1 � .Id/n�kC1W Rn!Rn:

This gives a path Œ0; 1�! Emb.Rn;Rn/, and we define a homotopy

 � .n; k/
ht�!  � .n; k/; t 2 Œ0; 1�

by ht .M /D e�1
t .M /. This restricts to a deformation retraction because the homotopy

preserves  A
�
.n; k/ and  A

�
.n; k/0 , starts at the identity, and h1 maps  A

�
.n; k/0 into

 A
�
.n; k/.

Part (ii) is obvious and for (iii), a homeomorphism is obtained by stretching the k –th
coordinate using the affine map f W R!R with f .a0/D�1 and f .a1/D 1. For (iv)
it suffices to consider  A

�
.n; k/ with AD .�1; a/. We define a homotopy by

Œ0; 1�� A
� .n; k/!  A

� .n; k/

.t;M / 7!M � t
1�t
� ek

.1;M / 7!∅:

This contracts  A
�
.n; k/ to the point ∅.

Definition 3.17 Denote by N� � .n; k � 1/ the simplicial space defined by letting
Nl � .n; k � 1/�RlC1� � .n; k/ be the set of pairs .t;M / such that 0< t0 � � � � �
tl < 1 and such that M 2  A

�
.n; k/ with ADR�ft0; : : : tlg.

Lemma 3.18 N� � .n; k � 1/ satisfies the assumptions of Lemma 3.14.

Proof This follows immediately from Lemma 3.16.
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It remains to see that �0N1 � .n; k � 1/ is a group, but this follows from Corollary
3.11. We have proved:

Proposition 3.19 The natural map

 � .n; k � 1/!�kN� � .n; k � 1/k
is a homotopy equivalence.

Proposition 3.20 The forgetful map .t;M / 7!M defines a homotopy equivalence

kN� � .n; k � 1/k!  0
� .n; k/;

where  0
�
.n; k/� � .n; k/ is the subset where M satisfies M\Œ�1; 1�n\x�1

k
.t/D∅

for some t 2 .0; 1/.

Proof There is a simplicial space N� � .n; k � 1/0 defined as in Definition 3.17,
but with  A

�
.n; k � 1/0 instead of  A

�
.n; k � 1/. By Lemma 3.16(i), the inclusion

N� � .n; k�1/!N� � .n; k�1/0 is a levelwise homotopy equivalence, so it suffices
to prove that kN� � .n; k � 1/0k!  0

�
.n; k/ is a homotopy equivalence.

The fibre over M 2  0
�
.n; k/ is the classifying space of the poset of t 2 .0; 1/ such

that M \ Œ�1; 1�n\x�1
k
.t/D∅, ordered as usual. This is a totally ordered nonempty

set, so the realisation is a simplex. Therefore the map is a weak homotopy equivalence
as in the proof of Theorem 3.10.

Proposition 3.21 Let  ∅
�
.n; k/�  � .n; k/ denote the path component of the empty

set. Then the inclusion
 0
� .n; k/!  ∅

�
.n; k/

is a weak homotopy equivalence.

Proof For ease of notation we will switch the roles of the coordinates x1 and xk in
this proof. Thus  0

�
.n; k/ becomes the subspace consisting of manifolds M satisfying

M \x�1
1
.a/\ Œ�1; 1�n D∅ for some a. We prove that the relative homotopy groups

vanish. Let
f W .Dm; @Dm/! . ∅

�
.n; k/;  0

� .n; k//

represent an element of relative �m . We may assume f is smooth.

For each a 2 R, let Ua � Dm the set of points y 2 Dm such that x1W f .y/! R
has no critical points in fag � Ik�1 � Rn�k . This is an open condition on f .y/,
so all Ua � Dm are open. As in the proof of Lemma 3.16(i), pick an isotopy of
embeddings et W R!R, t 2 Œ0; 1� starting at e0 D Id and ending at a diffeomorphism
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e1W R! .�1; 1/. Let ht W Rn ! Rn be given by ht D Id� ek�1
t � Id and define a

homotopy ft W Dm!  ∅
�
.n; k/, t 2 Œ0; 1� by

ft .x/D h�1
t .f .x//:

This gives a relative homotopy that starts at f0 D f , and ends at a map f1 , where in
f1.x/D h�1

1
.f .x// we have “stretched” the space

fag � .�1; 1/k�1 �Rn�k

to be all of fag � Rn�1 . Therefore x1W f1.x/ ! R now has no critical points in
fag �Rn�1 for all x 2 Ua . We now replace our old f by the homotopic f1 .

By compactness of Dm , we can refine the cover by the Ua to a cover by finitely many
contractible sets V1; : : : ;Vr �Dm , with corresponding regular values ai 2R. After
possibly perturbing the ai , we can assume they are different. We may choose an " > 0

such that the intervals .ai � 2"; ai C 2"/ are disjoint. By Lemma 3.4 we can suppose,
after possibly changing f by a homotopy concentrated in .ai � 2"; ai C 2"/, that for
all y 2 Vi , the element f .y/ 2  � .n; k/ is cylindrical in x�1

1
.ai � "; ai C "/, ie that

there is an element �i.y/ 2  �d�1
.n� 1; k � 1/ such that the two elements

f .y/ and .R��i.y// 2‰� .Rn/

become equal in ‰� .x�1
1
.ai�"; aiC"//. By Proposition 3.6, �0. � .n� 1; k � 1//D

�0. � .n; k//, therefore the element �i.y/ must be in the basepoint component of
 � .n� 1; k � 1/ and since the Vi are contractible, we can pick a smooth homotopy

Œ0; 1��Vi
ƒi!  �d�1

.n� 1; k � 1/;

with ƒi.0;�/D �i and ƒi.1;�/D∅.

Pick a ı > 0 with 3ı < ", and a smooth function �W R! Œ0; 1� which is 1 on .�ı; ı/
and has support in .�2ı; 2ı/. Finally pick �i W Vi! Œ0; 1� with compact support and
with

S
i �
�1
i .1/DDm and define a homotopy by

Vi

hi
t! C1.R;  �d�1

.n� 1; k � 1//; t 2 Œ0; 1�
x 7! .b 7!ƒi.t�i.x/�.b� ai/;x//:

The homotopy starts with the map hi
0

which sends all x to the constant path at
�i.x/. At any time t the map hi

t .x/W R!  �d�1
.n� 1; k � 1/ is constant outside of

.ai � 2ı; ai C 2ı/. The homotopy ends at hi
1
.x/, which maps .ai � ı; ai C ı/ to the

empty set.
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By taking graphs (ie composing with the function � from Definition 3.2) we get a
homotopy of maps

(3-11)
Vi!  � .n; k/; t 2 Œ0; 1�
x 7! �.hi

t .x//

which at t D 0 is x 7!R��i.x/, so it agrees with f on x�1
1
.ai�3ı; aiC3ı/, and at

t D 1 maps any x 2 ��1
i .1/ to an element which is empty inside x�1

1
.ai�ı; aiCı/. At

any time t , it agrees with f when restricted to x�1
1
..ai�3ı; aiC3ı/�.ai�2ı; aiC2ı//

so by the sheaf property of ‰� we can define a homotopy of maps Vi !  � .n; k/

whose restriction to x�1
1
.R� .a� 2ı; aC 2ı// is the constant homotopy of f jVi

and
whose restriction to x�1

1
.ai � 3ı; ai C 3ı/ is the homotopy (3-11). This homotopy

is constant outside a compact subset of Vi , so it extends to a homotopy of the map
f which at time t D 1 maps ��1

i .1/ into  0
�
.n; k/. We have only changed f inside

x�1
1
.ai � 2ı; ai C 2ı/, so we can carry out this construction for other aj ’s as well. In

the end we have homotoped f into a map to  0
�
.n; k/ as desired.

It remains to show that this is a relative homotopy. Suppose we have an x 2 @Dm , so
f .x/ 2  0

�
.n; k/. Then there is a t 2 .0; 1/ that is a regular value of x1W f .x/! R

such that x�1
1
.t/ D ∅ (after we have replaced f by f1 as described in the second

paragraph). If t is not in
`

i.ai � "; ai C "/, then all the homotopies we perform are
constant near height t , so the level set at t is always empty. If t 2 .ai � "; aiC "/ then
�i D∅, so we can choose ƒi to be constantly ∅. The homotopy is then constant near
height t , so the level set at t is always empty and we remain in  0

�
.n; k/.

Proof of Theorem 3.13 We combine the three propositions to get the weak homotopy
equivalences

 � .n; k � 1/!�kN� � .n; k � 1/k!� 0
� .n; k/!� ∅

�
.n; k/D� � .n; k/:

We will now explain how to identify the homotopy type of  � .n; n/D‰� .Rn/.

Theorem 3.22 There is a homotopy equivalence

‰� .R
n/' Th.��d;n.


?
d;n/! X.Rn//;

where 
?
d;n

is the orthogonal complement to the tautological bundle over Grd .R
n/.

Proof First let ‰� .Rn/ı � ‰� .Rn/ be the subspace of those � –manifolds which
contain the origin. Write L� for the subspace of ‰� .Rn/ı consisting of linear � –
manifolds, ie those where the underlying manifold is a d –plane and the � –structure is
constant. There is a map X.Rn/!L� which sends a pair .V;x/ of a d –dimensional
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plane V in Rd and a point x 2 X over i.V / to the pair .V; l/ of an element of
Grd .R

n/ and a bundle map l W T V D V � V ! ��
 given by .v; xv/ 7! .x; i.xv//.
This gives a map of fibrations over Grd .R

n/, with map on fibres over V given by the
inclusion Fib.�/! Bun.V; ��
 /. This is a homotopy equivalence (it is essentially the
inclusion of the fibre of � into its homotopy fibre, and � has been assumed to be a
Serre fibration).

Let Ft W Rn!Rn be scalar multiplication by .1� t/ and define a homotopy

S W Œ0; 1��‰� .Rn/ı!‰� .R
n/ı

as follows: on underlying manifolds let

S.t;W /D
(

F�1
t .M / if t < 1;

T0M if t D 1:

To define the � –structure on S.t;M / we use the map Ft�IdW S.t;M /�Rn!M�Rn ,
which restricts to a fiberwise linear isomorphism

T .S.t;M //! TM

over Ft (which is not the same as DFt ) and we give S.t;M / the � –structure ob-
tained by composition. This defines a continuous homotopy such that S.0;W /DW ,
S.1;W / 2L� and S preserves L� , so it gives a deformation retraction of ‰� .Rn/ı
to L� ' X.Rn/.

There is an .n� d/–dimensional vector bundle � ! ‰� .R
n/ı which at a point W

has fibre �0W the normal space to the manifold at 0. There is a map eW �!‰� .R
n/

sending .W; v2�0W / to the translated manifold W Cv . Restricted to a neighbourhood
of the 0-section in � , this gives an embedding onto the open subspace U of ‰� .Rn/ of
those manifolds having a unique closest point to the origin. The complement C of this
embedding consists of manifolds which do not have a unique closest point to the origin;
in particular, they do not contain it. The isotopy � .1=.1� t//W Rn ! Rn , t 2 Œ0; 1/
produces a map H W Œ0; 1/ � C ! C , as it moves points on a manifold uniformly
away from the origin. We can extend it to a continuous map H W Œ0; 1��C ! C by
H.1; c/D∅, which gives a contraction of C .

The map C ! ‰� .R
n/ is a cofibration since it is a pushout of the cofibration

� \ e�1.C / ! � , so collapsing C gives a homotopy equivalent space. On the
other hand, collapsing C gives a space homeomorphic to that obtained by collapsing
� \ e�1.C / in � . This is the Thom space of � , so ‰� .Rn/' Th.�!  � .n; n/

ı/.

Combining Theorem 3.13 and Theorem 3.22 finishes the proof of Theorem 3.12.
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4 Proof of the main theorems

In this section we will prove our main results, Theorem A and Theorem B. The inclusion
of a full subcategory D of C�

�
into C� will be considered in several steps. Recall that

by Theorem 3.9 and Theorem 3.10, BC� '  � .1; 1/. We will give a similar model
for BD . We first describe some variations on the space  � .1; 1/.
Recall from the introduction that we have chosen a � –structure on Rd , thought of as a
vector bundle over a point, and there is an induced structure on any framed manifold
called the standard � –structure.

Definition 4.1 For 1 > " > 0, let  � .n; 1/" �  � .n; 1/ be the subspace where the
manifold satisfies

M �R� .�1; 1/d�1 � Œ0; 1/n�d

L" DR� .�"; "/d�1 � f0g �M;and

and that the tangential structure l is standard on L" with respect to the framing of
L" given by the vector fields @=@x1; : : : ; @=@xd . If " > "0 , there is an inclusion
 � .n; 1/

"!  � .n; 1/
"0 . Define  � .n; 1/� D colim"  � .n; 1/" , with the colimit topol-

ogy. There is a continuous injection  � .n; 1/�!  � .n; 1/.

We define  �d�1
.n� 1; 0/� similarly, where  �d�1

.n� 1; 0/" �  �d�1
.n� 1; 0/ is

the subspace of those manifolds M that satisfy M � .�1; 1/d�1 � Œ0; 1/n�d and
.�"; "/d�1 � f0g �M .

In Definition 1.1 we briefly described the objects and morphisms of a category C�
�

.
A more precise definition is as follows.

Definition 4.2 Let C�
�
.Rn/ have object space the subspace of  �d�1

.n� 1; 0/� con-
sisting of connected manifolds. The set of nonidentity morphisms from M0 to M1 is
the set of .t;W / 2R� � .n; 1/� such that t > 0, there is an " > 0 such that

W j.�1;"/�Rn�1 D .R�M0/j.�1;"/�Rn�1

W j.t�";1/�Rn�1 D .R�M1/j.t�";1/�Rn�1 ;

and such that W \ Œ0; t � � Rn�1 is connected. Composition in the category is as
in Definition 3.7. The total space of morphisms is topologised as a subspace of
.f0g q .0;1//� � .n; 1/� , where .0;1/ is given the usual topology. We shall be
mostly concerned with the colimit C�

�
D colimn!1 C�

�
.Rn/.
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Definition 4.3 Let the subspace

 nc
� .n; 1/

� �  � .n; 1/�

consist of those manifolds W having no compact path components.

Definition 4.4 For C a collection of elements of  �d�1
.1; 0/, let the subspace

 � .1; 1/C �  � .1; 1/
consist of those manifolds W for which there exists a regular value t 2 .�1; 1/ of
x1W W ! R such that Wt is in C. Write Conn for the collection of elements of
 �d�1

.1; 0/ which are connected manifolds. Thus  � .1; 1/Conn consists of those
W such that some Wt is connected, for t 2 .�1; 1/.

In this definition we have insisted on regular values in .�1; 1/ exhibiting an element
as a member of the space  � .1; 1/C . If we merely ask for such regular values in R,
we get a weakly homotopy equivalent space, but the current definition will simplify
certain constructions later.

Theorem 4.5 Let C be a collection of objects of C�
�

(so C � Conn), and D be the
full subcategory on C. Then there is a weak homotopy equivalence

BD'  nc
� .1; 1/�C:

Proof This is exactly as the proof of Theorem 3.9. Note that if W 2  nc
�
.1; 1/� and

a0 and a1 are two regular values of x1W W ! R such that Wa� 2 C, then the fact
that elements of C are connected and W is noncompact implies that the manifold
W \x�1

1
.Œa0; a1�/ is also connected. The analogous D� .R

1/�C is then the topological
poset consisting of pairs .t;W / 2R� nc

�
.1; 1/� with t regular for x1W W !R and

Wt 2 C. This allows one to mimic the proof of Theorem 3.9.

However the space  nc
�
.1; 1/�C has such regular values in .�1; 1/, not merely in R.

Thus it does not have a map from the poset D� .R
1/�C , but only from the full subposet

P � D� .R
1/�C of pairs .t;W / with t 2 .�1; 1/. We must show that the inclusion

of this subposet gives an equivalence on classifying spaces. This is so as it induces
a levelwise homotopy equivalence on simplicial nerves: a homotopy inverse to the
inclusion NkP!NkD� .R

1/�C is giving by affine scaling in the R direction until all
regular values lie in the interval .�1; 1/.

As in the proof of Theorem 3.10 the fibre of P !  nc
�
.1; 1/�C over W becomes

the simplex with vertices all possible choices of a 2 .�1; 1/ with Wa 2 C, which is
contractible.
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To finish the proof of Theorem A we need to prove that the inclusion

(4-1)  nc
� .1; 1/�Conn!  � .1; 1/

is a weak equivalence. This will be done in the rest of this section, and will be broken
up into several steps that we treat separately. The inclusion (4-1) factors as

 nc
� .1; 1/�Conn!  nc

� .1; 1/�!  � .1; 1/�!  � .1; 1/:
Starting from the right, we prove in Lemma 4.6 below that the inclusion  � .n; 1/�!
 � .n; 1/ is a homotopy equivalence by giving two explicit maps that are homotopy
inverse. Then in Lemma 4.7 we show that  nc

�
.n; 1/� !  � .n; 1/

� is a weak ho-
motopy equivalence. These steps are both fairly easy. In Section 4.2 we prove that
 nc
�
.1; 1/�Conn!  nc

�
.1; 1/� is a weak equivalence. For the proof we use 0–surgery

to make objects connected, but in order to get a homotopy equivalence we need a fairly
elaborate procedure for doing 0–surgeries in families.

Lemma 4.6 The inclusion i W  � .n; 1/�!  � .n; 1/ is a weak homotopy equivalence.

Proof For X a compact space, any map X !  � .n; 1/
� factors through some

 � .n; 1/
" by a standard property of the colimit topology. Thus it is enough to show

that  � .n; 1/"!  � .n; 1/ is a weak homotopy equivalence.

We can define a product qW  � .n; 1/� � .n; 1/! � .n; 1/ as follows. The manifold
W1qW2 is obtained by taking the union of the disjoint manifolds W1 and W2CedC1

and scaling the .dC1/–st coordinate by 1=2.

Now pick a “cylinder” W0 2  � .n; 1/" and define a map

cW  � .n; 1/!  � .n; 1/
"

M 7!W0qM:

Note that W0qM does lie in  � .n; 1/" by construction of the product. Then the
composition

 � .n; 1/
c�!  � .n; 1/

" i�!  � .n; 1/

is M 7! i.W0/qM , which is homotopic to the identity map if we pick W0 in the
component of the basepoint. The effect of the reverse composition

 � .n; 1/
" i�!  � .n; 1/

c�!  � .n; 1/
"

is shown in Figure 3. and the homotopy to the identity map is as in Figure 4.
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‘

Figure 3

Figure 4

Lemma 4.7 The inclusion  nc
�
.n; 1/�!  � .n; 1/

� is a weak homotopy equivalence.

Proof Again we will show that the relative homotopy groups vanish. Let

f W .Dm; @Dm/! . � .n; 1/
�;  nc

� .n; 1/
�/

be a smooth map. We will show it is relatively homotopic to a map into  nc
�
.n; 1/� .

Consider the height function x1W �.f /! R. After perturbing f , we may assume
that for all x 2 Dm , no path component of f .x/ is contained in x�1

1
.0/. For each

x 2X , we can choose an "x > 0 such that no path component of f .x/ is contained in
f .x/\x�1

1
Œ�"x; "x �. There is an open neighbourhood Ux 3 x for which this is still

true.

The fUxgx2X form an open cover of X : take a finite subcover fUig, and let " D
min."i/. Then there is no path component of f .x/ in x�1

1
Œ�"; "� for any x 2 X .

Choosing an isotopy of embeddings from the identity on R to a diffeomorphism
that takes R to .�"; "/ defines a relative homotopy of the map f into the subspace
 nc
�
.n; 1/� .

Our aim is to show that the inclusion

 nc
� .1; 1/�Conn!  nc

� .1; 1/�
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is a weak homotopy equivalence, for any dimension d � 2 and for all tangential
structures � such that X is connected and Sd admits a � –structure. The idea for
doing so is relatively simple, and proceeds by showing the relative homotopy groups
�k. 

nc
�
.1; 1/�Conn;  

nc
�
.1; 1/�/ are trivial.

It is instructive to first consider the case kD0. Suppose we are given a W 2 nc
�
.1; 1/� .

We wish to produce a SW 2  nc
�
.1; 1/�Conn and a path from W to SW in  nc

�
.1; 1/� .

The condition to belong to  nc
�
.1; 1/�Conn is the existence of a level set which is

connected, so let us choose a regular value a0 2 .�1; 1/ of x1W W ! R and write
Wa0
DW \x�1

1
.a0/ for the level set. In general Wa0

will not be connected, so we
intend to obtain SW by performing 0–surgery on W near a0 , so as to make the level
set at a0 connected: the result SW of this surgery will lie in  nc

�
.1; 1/�Conn .

To carry out 0–surgery on an element of  � .1; 1/ we need to explain how to give a
height function and a � –structure on the handles we attach. We do this in the following
section.

4.1 Parametrised 0–surgery

Recall that if W is an (abstract) smooth d –manifold and eW S0�Dd!W is an embed-
ding, then performing 0–surgery on W along e amounts to removing e.S0 � int.Dd //

from W and gluing in D1 �Sd�1 along S0 �Sd�1 . In our setup, W 2  � .1; 1/
has more structure, the essential parts of which are the height function x1W W ! R
and the � –structure l W T W ! ��
 . We explain how to extend these to the manifold
SW resulting from performing surgery.

4.1.1 � –structures The following depends critically on our assumptions on � W X!
BO.d/, namely that X be path connected and that Sd admit a � –structure.

Proposition 4.8 Let W be a smooth d –manifold that is equipped with a � –structure
l W T W ! ��
 and let

(4-2) eW S0 �Dd !W

be an embedding. Let Ke.W / denote the result of performing surgery on W along e .
After possibly changing e by a self-diffeomorphism of Dd , the � –structure on the
submanifold

W � e.S0 � intDd /�Ke.W /

extends to a � –structure on Ke.W /.
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Proof After cutting out e.S0 � intDd / � W and gluing in the D1 � Sd�1 , the
� –structure on W gives a bundle map

(4-3) T .D1 �Sd�1/j@D1�Sd�1 ! ��
;

and the problem becomes to extend this to a bundle map over all of D1 �Sd�1 . This
obstruction theoretic question only depends on the homotopy class of the � –structure
on W over each sphere e.f˙1g � @Dd /.

The space of � –structures on Dd is homotopy equivalent to the fibre of the fibration
� W X ! BO.d/. The assumption that X be path connected implies that �1BO.d/
acts transitively on this fibre, so up to possibly changing the sign of a coordinate
in Dd , all � –structures on it are homotopic. In particular we can arrange that after
possibly composing the embedding (4-2) with a self-diffeomorphism of S0 �Dd , the
� –structures on Dd induced by the embeddings e.˙1;�/W Dd !W are homotopic
to the � –structures on the disks

Dd
˙ D fx 2 Sd j˙x1 � 1

2
g

with respect to some � –structure l0W TSd ! ��
 on Sd , chosen once and for all.
(Our assumption on � W X ! BO.d/ is precisely that such a choice can be made.) But
then the bundle map (4-3) extends over the cylinder D1 �Sd�1 , since that cylinder
can be identified with

fx 2 Sd j jx1j � 1
2
g:

4.1.2 Height functions Pick once and for all a smooth family of functions

�wW Œ0; 1�! Œw; 1�; w 2 Œ0; 1
2
�

such that �.t/ D t on ��1.Œ3
4
; 1�/, that ��1.w/D Œ0; 1

2
�, and such that �0.t/ > 0 on

��1.w; 1/. Define a family of smooth functions 'w by

D1 �Sd�1 'w!Dd ; w 2 Œ0; 1
2
�

.t;x/ 7! �w.jt j/x:

The domain D1 �Sd�1 is the disjoint union of the open sets UC D .1
2
; 1��Sd�1

and U� D Œ�1;�1
2
/�Sd�1 , and the closed set C D Œ�1

2
; 1

2
��Sd�1 . Then the map

'w restricts to diffeomorphisms

(4-4)
UC

'w jUC�����!Dd �wDd

U�
'w jU������!Dd �wDd

Geometry & Topology, Volume 14 (2010)



1278 Søren Galatius and Oscar Randal-Williams

and the restriction to C D Œ�1
2
; 1

2
��Sd�1 can be factored as

(4-5) C
proj��! Sd�1 w�! @.wDd /;

where the second map wW Sd�1! @.wDd / denotes multiplication by w in Rn .

Let W be a smooth d –manifold with a smooth height function x1W W ! R. If
eW S0 �Dd ! W and w 2 Œ0; 1

2
� is such that x1 ı e.C1;x/ D x1 ı e.�1;x/ for

jxj � w we define a map D1 �Sd�1!R by

.t;x/ 7!
(

x1 ı e.C1; 'w.t;x// if t > �1
2
;

x1 ı e.�1; 'w.t;x// if t < 1
2
:

(4-6)

This is well defined because of the factorisation (4-5) (so 'w.t;x/ is independent of t

for t 2 Œ�1
2
; 1

2
�).

The inverses of the diffeomorphisms (4-4) give an embedding

(4-7)
S0 � .Dd �wDd /

hw��!D1 �Sd�1

.˙1;x/ 7! .'wjU˙/�1.x/

whose image is the complement of C . The restriction of hw to hW S0�.Dd � 3
4
Dd /!

D1 �Sd�1 is independent of the parameter w .

Definition 4.9 Let W 2  � .n; 1/, let w 2 Œ0; 1
2
�, and let eW S0 �Dd ! W be an

embedding satisfying

x1 ı e.C1;x/D x1 ı e.�1;x/ when jxj � w .

(i) Let Ke
w.W / be the smooth manifold obtained by gluing D1 �Sd�1 into W �

e.S0 �wDd / along the embedding (4-7). Let

x1W Ke
w.W /!R

be the function which agrees with (4-6) on D1 �Sd�1 and with the old x1 on
W � e.S0 �wDd /.

(ii) Pick functions x2;x3; : : : W Ke
w.W /! .�1; 1/ extending the coordinate func-

tions on W � e.S0 �Dd / such that the resulting map xW Ke
w.W /!R1 is an

embedding. Also pick, by Proposition 4.8, an extension of the � –structure on
W � e.S0 �wDd / to a � structure on Ke

w.W / (after possibly changing sign
of a coordinate on Dd ). We use the same notation Ke

w.W / for the resulting
element

Ke
w.W / 2  � .1; 1/:

Geometry & Topology, Volume 14 (2010)



Monoids of moduli spaces of manifolds 1279

In the second part of Definition 4.9, the notation Ke
w.W / 2  � .1; 1/ is slightly

imprecise, because the element Ke
w.W / depends on more data than just W , w and e .

The remaining data (namely the extension of the embedding and the � –structure) will
not play any role in the applications of the construction, so we omit it from the notation.
The main properties of Ke

w.W / are recorded in the following two lemmas.

Lemma 4.10 Let W , w and e be as in Definition 4.9 and let

Œa; b�D x1 ı e.C1; wDd /D x1 ı e.�1; wDd /:

Then the level sets W \x�1
1
.t/ and Ke

w.W /\x�1
1
.t/ are canonically diffeomorphic,

for all t 2R� Œa; b�.
In particular in the extreme case w D 0, level sets agree except at the level a D
x1 ı e.C1; 0/D x1 ı e.�1; 0/.

Proof The manifold Ke
w.W / is the disjoint union of the open set W � e.S0�wDd /

and the closed set C D Œ�1
2
; 1

2
�� Sd�1 . The lemma follows because x1W W ! R

takes the values in Œa; b� on e.S0 �wDd / � W and (4-7) takes values in Œa; b� on
C �Ke

w.W /. Outside these closed sets, W and Ke
w.W / are canonically diffeomorphic

by a level-preserving diffeomorphism.

The next lemma is concerned with what happens to the level sets that change, in some
cases. More precisely we will consider w > 0 and embeddings eW S0�Dd !W that
are height preserving, ie such that

(4-8) x1 ı e.˙1;y/D aCy1 for jyj � w;
where aDx1ıe.C1; 0/Dx1ıe.�1; 0/ and y1 is the first coordinate of y 2Dd �Rd .
In that case e restricts to an embedding

S0 � .wDd
0 /!Wa DW \x�1

1 .a/;

where Dd
0
DDd \x�1

1
.0/ŠDd�1 .

Lemma 4.11 Let w > 0 and eW S0 �Dd ! W be as in (4-8), and assume a is a
regular value of x1W W ! R. Then the level set Ke

w.W /\ x�1
1
.a/ is diffeomorphic

to the manifold obtained by performing 0–surgery on Wa DW \ x�1
1
.a/ along the

embedding

S0 �Dd�1 Š�! S0 � .wDd
0 /

e�!Wa:
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Proof Ke
w.W / is obtained from W by removing e.S0�int.wDd // and gluing in C D

Œ�1
2
; 1

2
��Sd�1 . On the level set at a, this removes the open set e.S0 � int.wDd

0
//Š

S0 �Dd�1 and glues in the set

C \ .x1/
�1.a/D Œ�1

2
; 1

2
��Sd�2;

where Sd�2 � Sd�1 is the equator.

Finally, two extended versions of the construction of Ke
w.W / from W; w; e . First a

version with multiple surgeries at once.

Definition 4.12 Let W 2 � .1; 1/ and w 2 Œ0; 1
2
�. Let ƒD f�1; : : : ; �r g be a finite

set and eW ƒ�S0 �Dd !W an embedding such that

(4-9) x1 ı e.�i ;C1;x/D x1 ı e.�i ;�1;x/ when jxj � w .

for all �i 2ƒ. Then define

Ke
w.W /DKe.�1;�/

w ı � � � ıKe.�r ;�/
w .W / 2  � .1; 1/:

This is well defined because the embeddings e.�i ;�/W S0�Dd!W are disjoint.

Of course, the properties of levelwise surgery from Lemma 4.10 and Lemma 4.11 imply
similar properties for multiple levelwise surgery. Secondly we need a parametrised
version of this construction.

Proposition 4.13 Let V be a contractible manifold, and f W V !  � .n; 1/ and
wW V ! Œ0; 1

2
� smooth maps. Let ƒ be a finite set and eW V �ƒ�S0�Dd!�.f jV /

be an embedding over V . Assume that the triple .f .x/; w.x/; e.x// satisfies the
assumption of Definition 4.12 for all x 2 V . Then there is a smooth map

V !  � .1; 1/
x 7!Ke.x/

w.x/
.f .x//;

which for each x is constructed as in Definition 4.12.

Proof sketch The manifold f .x/ depends smoothly on x . If we pick the remaining
coordinate functions x2;x3; : : : W Ke.x/

w.x/
.f .x//!R in a smooth fashion, the manifold

Ke.x/
w.x/

.f .x// will also depend smoothly on x . Under the assumption that V is
contractible, the obstructions to extending the � –structure are the same as in the case
where V is a point.

Finally, let us remark that the surgery on elements of  � .1; 1/ constructed in this
section preserves the subspace  nc

�
.1; 1/. It also preserves the subspace  nc

�
.1; 1/� ,

provided the surgery data is disjoint from some strip L" �W .
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4.2 Proof of Theorem A

We now prove the main result of this section and finish the proof of Theorem A.
Throughout this section we will assume that d � 2.

Theorem 4.14 The relative homotopy groups

(4-10) �k. 
nc
� .1; 1/�;  nc

� .1; 1/�Conn/

vanish for all k .

To prove this theorem we need to construct a null homotopy of an arbitrary continuous
map of pairs

.Dk ; @Dk/
f�! . nc

� .1; 1/�;  nc
� .1; 1/�Conn/:

The null homotopy will be constructed using the parametrised surgery developed in the
previous section. We first give the local construction. It is convenient to have a word
for the following property.

Definition 4.15 Let us say that an element W 2  nc
�
.n; 1/� is connected at level a

if a is a regular value of x1W W !R and if the level set Wa DW \x�1
1
.a/ is path

connected. Thus W 2  nc
�
.n; 1/�Conn if and only if it is connected at level a for some

a 2 .�1; 1/.

In the following, we will very often use the following construction. Let j W R! R
be an embedding which is isotopic through embeddings to the identity, has image
.�10; 10/, and has j .t/D t for t 2 Œ�1; 1�. Then let s be the continuous map

(4-11)
 � .n; 1/

s�!  � .n; 1/

M 7! .j � Id/�1.M /:

This “stretching” map will be used throughout this section.

Proposition 4.16 Let V be a contractible space and f W V ! nc
�
.1; 1/� be a smooth

map. Let a 2 .�1; 1/ be a regular value of x1W f .x/! R for all x 2 V . Finally, let
ƒD f�1; : : : ; �r g be a finite set, and

pW V �ƒ� Œ0; 1�! �.f jV /
be an embedding over V , such that:
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(a) The path p.x; �;�/W Œ0; 1�! f .x/ ends somewhere in f .x/\x�1
1
.a/, outside

the path component of the basepoint; each nonbasepoint component contains
exactly one of the ending points p.x; �; 1/.

(b) The path p.x; �;�/W Œ0; 1�! f .x/ starts somewhere in f .x/�x�1
1
.Œ�10; 10�/.

Then there is a homotopy F W Œ0; 1��V !  nc
�
.1; 1/� , such that:

(i) F.0;�/ agrees with the composition

V
f�!  nc

� .1; 1/�
s�!  nc

� .1; 1/�:
(ii) F.1;x/ is connected at level a for all x 2 V . In particular,

F.f1g �V /�  nc
� .1; 1/�Conn:

(iii) If f .x/ 2  nc
�
.1; 1/�Conn then F.t;x/ 2  nc

�
.1; 1/�Conn for all t .

Proof First construct eW Œ0; 1��V �ƒ�S0! �.f jV / an embedding over V , in the
following way. Recall that we have a trivialised L" D R� .�"; "/d�1 � f0g � f .x/
for all x . Then pick points x� 2 .0; "/d�1 � f0g arbitrarily, but with all x� different
(this is possible because d � 1> 0). Then set

e.t;x; �;C1/D p.x; �; t/

e.t;x; �;�1/D .x1 ıp.x; �; t/;x�/:

Note that e.t;x;�/ embeds ƒ�S0 into a single level set of x1W f .x/!R.

Thicken each embedding e.t;x;�/W ƒ�S0! f .x/ to an embedding of ƒ�S0�Dd .
We denote the resulting map by the same letter

eW Œ0; 1��V �ƒ�S0 �Dd ! �.f jV /:
We can arrange that at t D 1 we have the analogue of (4-8), namely

x1 ı e.1;x; �;˙1; v/D aC v1 for jvj � w0

for some w0 > 0.

Let �W Œ0; 1�! Œ0; 1� be a smooth function with Œ0; 1
2
� � ��1.0/ and �.1/ D 1. Set

w.t/ D �.t/w0 . Also pick a function � W Œ0; 1�! Œ0; 1� with �.0/ D 0 and Œ1
2
; 1� �

��1.1/. By Proposition 4.13 we get a smooth homotopy

(4-12)
Œ0; 1��V !  nc

� .1; 1/�
.t;x/ 7!Ke.�.t/;x/

w.t/ .f .x//:
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By Lemma 4.11 this homotopy at time 1 performs 0–surgery on the level set x�1
1
.a/.

This 0–surgery forms the connected sum of the basepoint component with all the other
components, so the result satisfies (ii). At time 0, we have performed 0–surgery on
points outside of x�1

1
.Œ�10; 10�/, so we have not changed anything inside that interval.

Therefore we can let F W Œ0; 1��V !  nc
�
.1; 1/� be the composition of (4-12) with

the stretching map s from (4-11), and then F satisfies (i) and (ii).

Finally, (iii) follows for any pair .t;x/ by cases. Either �.t/D0, so Lemma 4.10 implies
there is at most one level set of F.t;x/ in .�1; 1/ different from its corresponding one
in f .x/, but if f .x/ 2  nc

�
.1; 1/�Conn then there is a small open interval of regular

values in .�1; 1/ having connected level sets, so F.t;x/ must still have a connected
level set. Otherwise �.t/ D 1, so F.t;x/ is obtained from f .x/ by performing 0–
surgery on the level set x�1

1
.a/\f .x/ to make it connected, so F.t;x/ has a connected

level set.

Our strategy for proving vanishing of the relative homotopy groups (4-10) is to apply
Proposition 4.16 locally to construct a null homotopy. More precisely we will use the
following corollary of Proposition 4.16 (and its proof).

Corollary 4.17 Let f W X! nc
�
.1; 1/� be smooth. Assume that there exists an open

cover X D V1[ � � � [Vr by contractible open sets Vi �X and different ai 2 .�1; 1/

such that ai is a regular value of x1W f .x/!R for all x 2 Vi . Finally, assume there
are finite sets ƒi and an embedding

pi W Vi �ƒi � Œ0; 1�! �.f jVi
/

over Vi , such that:

(a) .Vi ; f jVi
; ai ; ƒi ;pi/ satisfy the assumptions of Proposition 4.16.

(b) For i ¤ j , the images of pi.x;�/ and pj .x;�/, if both defined, are disjoint.

Then given any collection fUi�Vig with xUi�Vi , there is a homotopy H W Œ0; 1��X!
 nc
�
.1; 1/� such that:

(i) H.0;�/ agrees with the composition

X
f�!  nc

� .1; 1/�
s�!  nc

� .1; 1/�:
(ii) H.1;x/ is connected at level ai for all x 2 Ui . In particular if the Ui cover X ,

then
H.f1g �X /�  nc

� .1; 1/�Conn:

(iii) If f .x/ 2  nc
�
.1; 1/�Conn , then H.t;x/ 2  nc

�
.1; 1/�Conn for all t .
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Proof For i 2f1; : : : ; rg, let Œ0; 1�fig� Œ0; 1�r be the subspace where all coordinates but
the i –th are 0. From the paths pi , the proof of Proposition 4.16 constructs homotopies
Fi W Œ0; 1�fig �Vi !  � .1; 1/ in two steps. First we used the path pi to construct a
map

ei W Œ0; 1�fig �Vi �ƒi �S0 �Dd ! �.fVi
/;

over Vi that is an embedding for each point of Œ0; 1�fig � Vi , then we let Fi be the
composition

(4-13)
Œ0; 1�fig �Vi!  � .1; 1/

.t;x/ 7!Kei .�.ti /;x/
w.ti /

.f .x//:

The homotopies Fi all start at s ıf so we can glue them together to a map

(4-14)
[

i

�
Œ0; 1�fig �Vi

� F�!  � .1; 1/;

where the union is inside Œ0; 1�r �X .

Recall that the embedding ei.t;x/W ƒi�S0�Dd!f .x/ was constructed the following
way. On f�g�fC1g�Dd it is a disk centered at pi.x; �; t/, and on f�g�f�1g�Dd

it is constructed in the standard strip L" � f .x/. By the disjointness assumption (b)
we may suppose that the image of ei.t;x/ is disjoint from the image of ej .t

0;x/ for
x 2 Vi \Vj and t; t 0 2 Œ0; 1�, and thus we get an embedding of .ƒiqƒj /�S0�Dd .
Disjointness of the ei ’s means that we can iterate the construction (4-13). Namely if
T D fi1; : : : ; ikg and we set VT D Vi1

\ � � � \Vik
, we have the homotopy

(4-15)
Œ0; 1�T �VT !  � .1; 1/

.t;x/ 7!Kei1
.�.ti1

/;x/

w.ti1
/

ı � � � ıKeik
.�.tik

/;x/

w.tik
/

.f .x//;

where the iterated surgery is defined because the corresponding surgery data are disjoint.
Composing (4-15) with the stretching map s gives a homotopy FT W Œ0; 1�T �VT !
 � .1; 1/. If we regard Œ0; 1�T as a subset of Œ0; 1�r in the obvious way, the various
FT ’s are compatible and we can glue them to a smooth map extending (4-14)

(4-16)
[
T

�
Œ0; 1�T �VT

� F�!  � .1; 1/:

The restriction of F to f0g �X is s ı f , and if F.t;x/ is defined and ti D 1, then
F.t;x/ is connected at level ai .
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Finally we pick for each i a bump function �i W X ! Œ0; 1� supported in Vi , such that
Ui � ��1

i .1/. Let �W X ! Œ0; 1�r have the �i as coordinate functions. Then the map

Œ0; 1��X ! Œ0; 1�r �X

.t;x/ 7! .t�.x/;x/

has image in the domain of (4-16), and we let H be the composition of the two maps.

We now return to the proof of Theorem 4.14. Given a map of pairs

(4-17) .Dk ; @Dk/
f�! . nc

� .1; 1/�;  nc
� .1; 1/�Conn/;

we must produce a relative homotopy, deforming f to a map into  nc
�
.1; 1/�Conn . The

homotopy will be produced by Corollary 4.17 once we construct the data .Vi ; ai ;pi/.
We first consider the case k D 0, in which the map pW D0 � ƒ � Œ0; 1� ! W is
produced by the following lemma. It is proved by first producing paths p.�;�/
which are embedded but not necessarily disjoint, and then making them disjoint in
Lemma 4.19.

Lemma 4.18 For any W 2 nc
�
.n; 1/� and any a2 .�1; 1/ which is a regular value of

x1W W !R, there is a finite set ƒDf�1; : : : ; �r g and an embedding pW ƒ�Œ0; 1�!W

such that:

(i) The path p.�;�/W Œ0; 1�! W starts somewhere in W \ x�1
1
.a/, outside the

path component of the basepoint, and each nonbasepoint component contains
exactly one of the starting points p.�; 0/.

(ii) The path p.�;�/W Œ0; 1�!W ends somewhere in f .x/�x�1
1
.Œ�10; 10�/.

Proof First pick points p.�; 0/ 2W \x�1
1
.a/, one in each nonbasepoint component.

The index set ƒ is then the set of nonbasepoint components. By assumption, no
compact component of W is contained in x�1

1
.Œ�10; 10�/, so for each � there is a

path in W from p.�; 0/ to a point in W � x�1
1
.Œ�10; 10�/. Pick an embedded such

path p.�;�/W Œ0; 1�!W . These assemble to a map

pW ƒ� Œ0; 1�!W;

but it need not be an embedding because the images of the paths p.�;�/ need not be
disjoint. However, by transversality we may suppose that the paths p.�;�/ do not
intersect at their endpoints. In Lemma 4.19 below we will prove that we can change
each p.�;�/W Œ0; 1�! W by an isotopy of embedded paths such that the isotoped
paths are disjoint.
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Lemma 4.19 Let W be a smooth manifold and p1; : : : ;pr W Œ0; 1� ! W a set of
embedded paths, such that

pi.Œ0; 1�/\pj .@Œ0; 1�/D∅ for i ¤ j :

Then there are paths qi W Œ0; 1�!W such that pi is isotopic to qi through an isotopy
of embedded paths which is relative to a neighbourhood of the endpoints, and such that

qi.Œ0; 1�/\ qj .Œ0; 1�/D∅ for i ¤ j :

Proof By induction on r we can assume that qi D pi already have disjoint images
for i < r . The derivative q0i.t/ 2 T W gives a vector field on qi.Œ0; 1�/�W . We can
extend this to a vector field X on W , with the properties that X.qi.t// D q0i.t/ for
i D 1; : : : ; r � 1. Then each qi is the restriction of an integral curve xqi of X . After
multiplying X with a function W ! Œ0; 1� which is 1 on a neighbourhood of the image
of the qi ’s and vanishes outside a slightly larger neighbourhood, we may assume that
X has compact support and that xqi does not intersect qr outside the image of qi .

Finally extend X to a compactly supported vector field on all of Rn , ie X W Rn!Rn .
Let F W R � Rn ! Rn be the flow of X . It is defined everywhere because X is
compactly supported, it preserves W , and it also fixes a neighbourhood of the end
points of pr . Then qr .s/D F.1;pr .s// will work, since all intersections between qr

and the xqi ’s have been flowed off of qi .

Combining Lemma 4.18 and Corollary 4.17 produces a null homotopy of (4-17),
proving Theorem 4.14 for k D 0. For k > 0 we need a parametrised version of
Lemma 4.18.

Proposition 4.20 For any smooth f W Dk !  nc
�
.1; 1/� , there exists a covering

Dk D V1[ � � � [Vk by contractible open sets Vi , real numbers ai , finite sets ƒi and
embeddings pi W Vi �ƒi � Œ0; 1� ! �.f jVi

/ over Vi satisfying the assumptions of
Corollary 4.17.

Proof First pick regular values ax 2 .�1; 1/ of x1W f .x/!R, one for each x 2Dk .
Apply Lemma 4.18 for W Df .x/ and aDax to find a finite set ƒx and an embedding

px W fxg �ƒx � Œ0; 1�! f .x/

satisfying (i) and (ii) of Lemma 4.18.

Then extend to a map px W Vx �ƒx � Œ0; 1�! �.f jVx
/ defined on a neighbourhood

Vx of x . After possibly shrinking the Vx , each tuple .Vx; f jVx
; ƒx; ax;px/ will
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satisfy the assumptions in Proposition 4.16. Using compactness of Dk we get a finite
subcover

Dk D V1[ � � � [Vr ;

with corresponding regular values ai 2 .�1; 1/ and maps

pi W Vi �ƒi � Œ0; 1�! �.f jVi
/

satisfying condition (a) of Corollary 4.17 but not the disjointness condition (b).

Before achieving full disjointness of all paths, let us explain how to modify the data
.Vi ; ai ;pi/ so as to satisfy

(4-18) pj .fxg �ƒj � @Œ0; 1�/ disjoint from Im.pi.x;�// for j < i .

To achieve this we proceed by induction on i , the case i D 1 being vacuous. We can
temporarily extend pi to a map ei W Vi �ƒi � Œ0; 1��Dd�1! �.f jVi

/ over Vi that
is an embedding of fxg�ƒi �ftg�Dd�1 into a level set for each .x; t/ 2 Vi � Œ0; 1�.
For each x 2 Vi there is a dx 2 Dd�1 such that Im.ei.x;�; dx// is disjoint fromS

j<i pj .fxg�ƒj �@Œ0; 1�/. Furthermore, there is a small contractible neighbourhood
x 2 V x

i � Vi where this is still true. Equip V x
i with the paths

px
i D ei.�; dx/W V x

i �ƒi � Œ0; 1�! �.f jV x
i
/:

We can choose finitely many fxj gj2J such that
S

j2J V
xj

i DVi and the dxj are distinct
points in Dd�1 . Then note that the fpxj

i gj2J have disjoint images in �.f jVi
/.

The fpxj
i gj2J all start at height ai 2 .�1; 1/. We wish for the paths to start at different

heights: by replacing the paths p
xj
i with their restrictions to a subinterval Œ�; 1�, for

some small � > 0, we can ensure that they all start at different heights a
xj
i . We now

replace .Vi ; ai ;pi/ by the collection f.V xj
i ; a

xj
i ;p

xj
i /gj2J . This proves the induction

step, and hence (4-18).

Finally we pass from the “endpoint disjointness” expressed in (4-18) to the actual
disjointness of all paths as required in (b) of Corollary 4.17. This is just an easy
parametrised version of Lemma 4.19. Indeed, if we pick an ordering of all the paths
involved (ie of the disjoint union of the finite sets ƒi ) and proceed by induction as in
the proof of that lemma. Suppose we have already made the first l paths disjoint. Then
as in the proof of Lemma 4.19 we get in the induction step for each x 2X a compactly
supported vector field X.x/W Rn!Rn preserving f .x/�Rn . It is easy to construct
this to depend smoothly on x , and then we can flow the .lC1/–st path with the flow
of X to make it disjoint from the previous paths, without changing any endpoints.
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Proof of Theorem 4.14 Starting with the map of pairs (4-17), Proposition 4.20
produces a collection f.Vi ; ai ;pi/g satisfying (a) and (b) of Corollary 4.17, which then
produces a relative null homotopy.

Proof of Theorem A Lemma 4.6, Lemma 4.7 and Theorem 4.14 imply that the map

 nc
� .1; 1/�Conn!  � .1; 1/

is a weak homotopy equivalence. Theorem 4.5 and Theorem 3.12 identify these spaces
with BC�

�
and BC� respectively.

4.3 Reversing morphisms

Let us study the implications of the assumptions on � W X! BO.2/. We can arrange
that XDEO.2/�O.2/ F , for some space F equipped with an action

(4-19) O.2/�F ! F:

The assumption that X is path connected says that �0O.2/ acts transitively on �0F .
Therefore F is either path connected, or has two (homeomorphic) path components
which are permuted by the action of some reflection in O.2/. To interpret the assump-
tion that S2 admits a � –structure, we consider the induced action of unbased homotopy
classes

(4-20) ŒS1;O.2/�� ŒS1;F �! ŒS1;F �:

We regard �0F � ŒS1;F � as the homotopy classes of constant maps.

Proposition 4.21 If S2 admits a � –structure, then the subset �0.F / � ŒS1;F � is
preserved by elements of ŒS1;O.2/� represented by maps of even degree.

That a map S1!O.2/ has even degree means that the corresponding vector bundle
over S2 built by clutching has vanishing second Stiefel–Whitney class.

Proof The free homotopy classes of maps of even degree form a subgroup generated
by two elements: the element r , represented by a constant map S1!O.2/ to some
reflection, and the element 2W S1! SO.2/�O.2/ represented by a map of degree 2.
It suffices to see that these preserve �0.F /� ŒS1;F �. This is obvious for r (as it is
represented by a constant map), so we consider 2. Pick a basepoint of F and consider
the long exact sequence in homotopy

�2.F /! �2X! �2BO.2/! �1F ! �1X! � � � :
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The assumption says that a classifying map for TS2 gives an element of �2BO.2/D
�1O.2/ which lifts to �2X. Equivalently it must vanish in �1F . But TS2 comes
from a map S1! SO.2/�O.2/ which has degree 2, hence this assumption says that
2 2 ŒS1;O.2/� acts trivially on ŒS1;F �.

We next study � –structures on D2 . More precisely, if we are given a structure over
@D2 , how do we know whether it extends to all of D2 ? Such a structure is called a
bounding structure, and we prove that the set of bounding structures is preserved by a
certain construction that we now define. Let

V 2 �.TD2j@D2/

be a nonzero vector field, and let

�V W TD2j@D2 ! TD2j@D2

be the bundle map which maps V 7! �V , and acts as the identity on V ? .

Corollary 4.22 Let
l W TD2j@D2 ! ��


be a bounding � –structure (ie one that extends to D2 ). Then l ı�V is also bounding.

Proof Give D2 the framing coming from R2. With respect to this framing, l W @D2!F

has homotopy class
l 2 ŒS1;F �

which is in �0F � ŒS1;F � because l bounds. With respect to the framing, the bundle
map �V corresponds to the map S1 ! O.2/ which takes x 2 S1 to the reflection
taking V .x/ 7! �V .x/ and preserves V .x/? . This map depends not on the vector
V .x/, but only on the line RV .x/, so it factors through the projection S1!RP1 . It
follows that �V corresponds to an element

�V 2 ŒS1;O.2/�

which is of even degree. Consequently l ı�V 2 ŒS1;F � also bounds, by the previous
proposition.

We now study the extent to which morphisms in C� can be “turned around”. The
following proposition depends crucially on the assumption that S2 admit a � –structure.
It is false for example for framed manifolds.
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Proposition 4.23 Let c0 D .M0; l0/ 2 C� and c1 D .M1; l1/ be objects and let
.W; l/W c0 ! c1 be a morphisms in C� whose underlying manifold is connected.
Then there exists a morphism . SW ; xl/W c1 ! c0 whose underlying manifold SW is
diffeomorphic to W .

In particular, if c0 and c1 are linked by a zig-zag of morphisms, then there are in fact
morphisms between them in both directions.

Proof Recall that W � Œ0; t � �Rn for some large n, and that W is “cylindrical”
near its boundary. Let 'W Œ0; t �! Œ0; t � be the affine map s 7! t � s , and let F D
' � IdW Œ0; t ��Rn � Œ0; t ��Rn .

To construct the morphism c1 ! c0 we first construct the underlying manifold as
SW D F�1.W /. If there were no tangential structures to worry about, this would be a
morphism from c1 to c0 , but we need to extend the structure given near @ SW D c1qc0

to all of SW .

The vector V D @=@x1 2 RnC1 gives a section of T W , defined near @W (pointing
inwards on the incoming boundary and outwards on the outgoing). Since W is
connected, we can pick a relative CW structure with only one 2–dimensional cell. Let
W 1 � W be the 1–skeleton in this CW structure. We can extend V to a nonzero
section

V 2 �.T W jW 1/:

Now let �V W T W jW 1!T W jW 1 be the automorphism constructed as before: it takes
V 7! �V and is the identity on V ? . The “reflected” tangential structure

xl D l ı�V W T W jW 1 ! ��
;

extends first to a neighbourhood of W 1 �W , and then over the 2–cell D2!W by
the corollary above.

Thus we have a tangential structure xl W T W ! ��
 . If we use the diffeomorphism
F W W ! SW to transport it to a structure on SW , we have produced the required
morphisms c1! c0 .

4.4 Proof of Theorem B

By Theorem 4.5, we have reduced the first part of Theorem B to the following theorem.

Theorem 4.24 For tangential structures � W X! BO.2/ such that X is path connected
and S2 admits a � –structure, the inclusion

 nc
� .1; 1/�C!  nc

� .1; 1/�Conn

is a weak homotopy equivalence of each component onto a component of  nc
�
.1;1/�Conn.
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The second part of Theorem B will be proved in Proposition 4.27. Let us first prove
Theorem 4.24 in the case where C is a disjoint union of path components of ob.C �

�
/.

We will explain how to remove this assumption in Proposition 4.26.

Suppose we are given a map of pairs

f W .Dk ; @Dk/! . nc
� .1; 1/�Conn;  

nc
� .1; 1/�C/:

For each point x 2Dk , we can choose a regular value ax 2 .�1; 1/ of x1W f .x/!R.
There is an open neighbourhood Ux of x on which ax is still regular. We may
choose a finite subcover fUigi2I of fUxgx2X , and suppose that the ai are distinct:
otherwise we may perturb them so that they are. Choose an "> 0 such that the intervals
.ai �2"; aiC2"/ are disjoint. By Lemma 3.4, we may further suppose that for x 2Ui

the manifold f .x/ is cylindrical in x�1
1
.ai � "; ai C "/.

As we are working in the space of manifolds with basepoint, and the family Dk is
compact, there is a ı > 0 such that the strip L3ı D R� .�3ı; 3ı/� f0g lies inside
every manifold f .x/, and furthermore that f .x/\R�.�3ı; 3ı/1DL3ı . Recall that
inside L3ı the surface has the standard � –structure. We can change the manifold inside
R� .ı; 2ı/� .�3ı; 3ı/1�1 without leaving the space of manifolds with basepoint, as
the new manifold will still contain Lı .

The set �0ob.C�
�
/ is in natural bijection with �1Fib.�/, as an object C has a natural

framing of "1˚T C , extending the given framing on .�"; "/� f0g, and this framing
is unique up to homotopy. Write � for the object having the standard � –structure
with respect to this framing. For each Ui , choosing a ui 2 Ui and setting Mi D
f .ui/\faig�R1 produces a homotopy class ŒMi � 2 �1Fib.�/ which is independent
of the choice of ui .

Lemma 4.25 Let C� ob.C�
�
/ be a disjoint union of path components: this determines

a subset �0C� �1Fib.�/. If an object M 2 C�
�

lies in a component of BC�
�

that also
contains an object in C, there is another object N such that ŒM ��ŒN �2�0C��1Fib.�/,
where � denotes the group product in �1Fib.�/. Furthermore, there are morphisms

�!N !�
in C�

�
. If M is already in C, we can choose N to be �.

Proof Choose morphisms E1W M ! C 2 C, and E2W C ! M which exist by
Proposition 4.23, and an object M�1 such that ŒM�1�D ŒM ��1 2 �1Fib.�/. Scale
the morphisms E1 and E2 to have length 1. Consider the morphism IM�1 D
.1;R�M�1/W M�1!M�1 . We may cut this along R�f0g to obtain a surface with
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� –structure and height function, zIM�1 , having two identical boundary components,
which we will call eM�1 and which are intervals with a �1 –structure that is standard
near their ends.

Let " > 0 be small enough such that both of the morphisms E1 and E2 satisfy
Ei \R� .�3"; 3"/1 DL3" . In particular, the morphisms come from C3"

�
. There is

a height-preserving embedding eW zIM�1 !R� Œ"; 2"�� Œ0; 3"/1 sending @zIM�1 to
R� f"; 2"g � f0g with image that agrees with L3" as a � –manifold near .R�R�
."; 2"//�R1 .

Let
zEi D .Ei �R� ."; 2"/� f0g/[ e.zIM�1/ 2  nc

� .1; 1/�Conn:

Then .1; zE1/ and .1; zE2/ are morphisms in C�
�

between .M �."; 2"/�f0g/[e.eM�1/

and .C � ."; 2"/� f0g/[ e.eM�1/. The first of these objects is in the path component
of �, and the second is defined to be N .

We will now construct a � –manifold D with height function, which we will glue into
the manifolds f .x/ inside L3ı , similarly to the proof of Lemma 4.25. Let Ci be the
composition �!Ni!� obtained from the above Lemma applied to Mi , and scaled
so that each morphism has length ". Let zCi denote the � –manifold with height function
obtained by cutting Ci along R� f0g, and adding ai � " to the height function. The
boundary of zCi can be naturally identified with the boundary of R� Œ0; 1�, where the
height function is given by the first coordinate. There is a height-preserving embedding
ei W zCi!R� Œı; 2ı�� Œ0; 3ı/1 sending @ zCi to R�fı; 2ıg with image that agrees with
L3ı as a � –manifold near the boundary of Œai � "; ai C "�� Œı; 2ı��R1 .

Let D be the � –manifold obtained from L3ı by cutting out Œai�"; aiC"��Œı; 2ı��f0g
and gluing in ei. zCi/\ Œai � "; ai C "�� Œı; 2ı��R1 . Figure 5 shows the part of D

near R� .ı; 2ı/�R1 .

For each x 2Dk we can form xf .x/D .f .x/�L3ı/[D , which defines a continuous
map xf W Dk !  � .1; 1/�Conn . If x 2 Ui , then Œ xf .x/\faig �R1� D ŒMi � � ŒNi � 2
�1Fib.�/ which is in �0C by construction. Thus xf is a map into  � .1; 1/�C , and
we must show it is relatively homotopic to f . We will do so by changing the height
function on D . For ease of notation we will write h instead of x1 for the height
function.

We first deform the height function on D so that D �L3ı has total height 0. Let
c1W R!R be a smooth function such that .ti � "; ti C "/� c�1

1
.ti/, and c0

1
� 0. Let

cs D s � c1C .1� s/ � Id. Choose a smooth function ' on D that is identically 1 on
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ai aiC�ai�� aiC1 aiC1C�aiC1��

e1

e2

2ı

ı

Figure 5

D �L3ı , and identically 0 near R�R� .ı; 2ı/�R1 . We can modify the height
function on D by

hs.d/D '.d/ � .cs ı h.d/� h.d//C h.d/:

Then h0 D h and if c 2 ei. zCi/�L3ı �D then h1.c/D ti . The level sets of h1 in D

at any points except ft1; : : : ; tng are then intervals with the standard � –structure.

We now define another path of height functions on D ,

h0s.d/D '.d/ � 20 � sC h1.d/:

Then h0
0
D h1 . If c 2 ei. zCi/�L3ı �D then h0

1
.d/D ti C 20 2 .19; 21/. With this

height function, D has the standard tangential structure between heights �10 and 10.

Applying these paths of height functions to the copy of D inside each xf .x/ gives a path
from xf .x/ to a manifold that agrees with f .x/ inside x�1

1
.�10; 10/, so composing

with the stretching map (4-11) gives a path to f .x/.

We must explain why these are relative homotopies. Suppose f .x/ 2  nc
�
.1; 1/�C , so

there is a t 2 .�1; 1/ and an �> 0 with f .x/\ft 0g�R1 2C for all t 0 2 .t��; tC�/.
If t is not in

S
i.ai � "; ai C "/, then xf .x/ agrees with f .x/ near t , so the level set

at t of xf .x/ is in C. The path hs only changes the level sets in
S

i.ai � "; ai C "/,
so also always has a level set in C. Finally, the path h0s only has finitely many level
sets different from those of f .x/ at any time. Thus the final manifold always has a
t 0 2 .t � �; t C �/ with level set in C.

On the other hand, suppose t 2 .ai � "; ai C "/. Then Mi 2 C already, and we have
thus chosen Ni to be trivial. Thus the level sets of f .x/ and xf .x/ at t are the same,
and in C. The path hs does not change this. Finally, the path h0s only has finitely many
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level sets in .�10; 10/ different from f .x/ at a time. Thus the final manifold always
has a t 0 with level set in C.

This concludes the proof of Theorem 4.24, in the case that C consists of whole path
components of  �d�1

.1; 0/. The general case follows by:

Proposition 4.26 Let C be a collection of elements of  �d�1
.1; 0/, and C0 be the

collection of all elements of  �d�1
.1; 0/ in the same path component as an element

in C. Then the inclusion

 nc
� .1; 1/�C!  nc

� .1; 1/�C0
is a weak homotopy equivalence.

Proof We will show that the relative homotopy groups of the inclusion vanish. The
argument is almost identical to that of Proposition 3.21, so we will explain to what
extent it differs.

Take a map f W .Dm; @Dm/! . nc
�
.1; 1/�C0 ;  nc

�
.1; 1/�C/. As usual, there is a finite

cover of Dm by contractible open sets Ui and values ai 2 .�1; 1/ such that ai is a
regular value of the height function on f .x/ for x 2 Ui , and the level sets at ai are
in C0 . We may suppose the ai are distinct, and choose an " > 0 so that the intervals
.ai �2"; aiC2"/ are disjoint. By Lemma 3.4, we may further suppose that f .x 2Ui/

is cylindrical in x�1
1
.ai�"; aiC"/. It is important to note that the homotopy of Lemma

3.4 does not change which level sets occur in f .x/, only the heights at which they
occur: thus it gives a relative homotopy.

Thus there is a map �i W Ui!  �d�1
.1; 0/� so that f .x/ and R��i.x/ are equal in

‰� .x
�1
1
.ai �"; aiC"//. The map �i takes values in C0 . As Ui is contractible we can

pick a smooth homotopy ƒi W Œ0; 1��Ui! C0 with ƒi.0;�/D �i and ƒi.1;�/ 2 C.
We use these functions exactly as in the proof of Proposition 3.21.

It remains to see why this gives a relative homotopy. Over Ui , elements f .x/ are
cylindrical in x�1

1
.ai � "; ai C "/. The homotopy constructed in Proposition 3.21 is

constant outside of x�1
1
.ai�2ı; aiC2ı/, for some 0<3ı <". In particular, throughout

the homotopy there are only new types of level sets added: if f .x/ has a level set in C,
then either it occurs at a height outside of .ai�2ı; aiC2ı/ and so is unchanged by the
homotopy, or it occurs at a height inside .ai�2ı; aiC2ı/, in which case it also occurs
at a height inside .ai C 2ı; ai C "/, which must be unchanged by the homotopy.

Theorem 4.24 implies the first part of Theorem B. It remains to see homotopy commu-
tativity of the endomorphism monoids in C�

�
; to that end we give yet another model for

these spaces.
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The monoid of endomorphisms of an object C 2 C�
�

is homotopy equivalent to`
W BDiff� .W;L[ @W /, where W ranges over connected compact � –surfaces with

two boundary circles, both identified with C . We can cut such surfaces along L to
obtain surfaces with one boundary component. More precisely, given a pointed map
l W S1! Fib.�/, define

zl W R2 �2!R! S1 l! Fib.�/

where R!S1 collapses the complement of .0; 1/ to the basepoint. Define an element
Bl D .R2 � f0g; zl/ 2 ‰� .R1/. Let M.l/ � ‰� .R1/�R be the subspace of pairs
.W; t/ where W is connected and agrees with Bl on an open neighbourhood of the
complement of .0; t/� .0; 1/�R1 . This is a monoid via

.W1; t1/ ı .W2; t2/D .W1[ .W2C t1 � e1/; t1C t2/:

An object C 2 C�
�

determines a loop lC W S1!Fib.�/, after choosing a parametrisation
of the underlying circle (of which there are a contractible choice, as it is determined near
the basepoint). There is an object C 0 in the same path component of ob.C�

�
/ as C and

a map of monoids M.lC /! EndC�
�
.C 0/ given by replacing Bl by a cylinder R�C 0

that agrees with Bl near R� Œ0; 1��f0g. It is a weak homotopy equivalence as they are
classifying spaces for equivalent families. Furthermore, the monoids EndC�

�
.C 0/ and

EndC�
�
.C / are equivalent in the following sense: choosing a path C  C 0 in ob.C�

�
/

gives a weak homotopy equivalence EndC�
�
.C 0/! EndC�

�
.C / that is not quite a map

of monoids, but is a map of H –spaces (and in fact a map of A1 spaces).

Proposition 4.27 Let � W X! BO.2/ be any tangential structure. Then the monoid of
endomorphisms of an object C 2 C�

�
is homotopy commutative.

Proof By the above discussion, it is enough to prove the homotopy commutativity
of M.l/. Consider first the case where l is the constant map to � 2 Fib.�/, the
basepoint which determines the standard tangential structure. Then zl D � also and
so Bl DR2 � f0g with the standard � –structure induced by the framing given by the
coordinate directions. Thus M.�/ has an obvious action of the little 2–cubes operad.
Its usual monoid multiplication is homotopic to that induced by the operad, so its usual
multiplication is homotopy commutative (in fact, E2 ).

There is a map l�WM.l1/!M.l � l1/ given on .W; t/ by scaling W �Bl1
by 1

2
in

the e2 direction, and then taking the union with Bl �l1
. This is a map of monoids, and

composing with l�1� gives a map M.l1/!M.l�1 � l � l1/. This is easily seen to have
a homotopy inverse, by picking a null homotopy of l�1 � l (though the inverse is not a
map of monoids). Thus the maps l� are homotopy equivalences. In particular M.l/!
M.l�1 � l/'M.�/ is a monoid map and an equivalence, so M.l/ is equivalent as a
monoid to a homotopy commutative monoid, so is homotopy commutative itself.
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5 Applications

As mentioned in the introduction, taking the tangential structure � W BSO.2/! BO.2/
gives a category C�SO.2/ having a unique path component, and hence cobordism class,
of objects. The endomorphism monoid of any object is homotopy equivalent to MD`

g�0 BDiffC.Fg; @Fg D S1/ with the pair of pants product. By [3], components of
the group DiffC.Fg; @FgDS1/ are contractible, so we can replace it by the associated
mapping class group �g;1 D �0DiffC.Fg; @Fg D S1/. The discussion in Section 1.1
proves:

Corollary C (Madsen–Weiss [10]) There is a homology equivalence

Z�B�1;1!�1MTSO.2/;

where �1;1 is the limit of the mapping class groups �g;1 as g!1.

A similar result holds for nonorientable or spin surfaces, though the components of the
relevant monoid are slightly more complicated.

Corollary D (Wahl [15, Theorem B]) Let Ng be the mapping class group of a
nonorientable surface of genus g . Then there is a homology equivalence

Z�BN1!�1MTO.2/:

Proof We apply Theorem B with no tangential structure. The category C�
O.2/

has a
unique cobordism class of objects. The relevant homotopy commutative monoid is

MD
a
F

BDiff.F; @F D S1/

where the disjoint union is over all diffeomorphism types of unoriented surfaces with one
boundary component, and Theorem B identifies its classifying space as �1�1MTO.2/.

The monoid �0M is in bijection with the set of pairs .g1;g2/2N2 where one entry is
always 0. The element .g; 0/ corresponds to Fg;1D #gT �D2 and .0;g/ corresponds
to Ng;1D #gRP2�D2 . Then addition in this monoid is given by usual addition if both
elements are in the same factor, and by the formula .g; 0/C .0; h> 0/D .0; hC 2g/

otherwise. This may be group completed by inverting the element .0; 1/. So the
homology of the group completion of M is the same as that of the telescope M1 of

M
� .0;1/����!M

� .0;1/����!M
� .0;1/����! � � � :

There is a submonoid M0 of M consisting only of the nonorientable surfaces (and the
disc), and translation by .0; 1/ sends M into M0 , so M0 is cofinal. Thus M1'M01
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and this is equivalent to Z�BN1 , the classifying space of the stable nonorientable
mapping class group.

Corollary E (Harer [8], Bauer [1]) Let s be a spin structure on Fg;1 which agrees
with the trivial spin structure on the boundary circle, and let �s

g;1
be the spin mapping

class group, ie the subgroup of �g;1 which preserves s.

There is a homology equivalence

Z�Z=2�B��1!�1MTSpin.2/

where ��1;1 is the stable spin mapping class group.

Proof We apply Theorem B with the tangential structure � W BSpin.2/!BO.2/. Write

 s for the universal vector bundle over BSpin.2/. Note that BSpin.2/ ' BSO.2/
is connected and S2 admits a spin structure, so the hypotheses of the theorem are
fulfilled. The category C�Spin.2/ has two cobordism classes of objects, corresponding to
a trivial and a nontrivial spin structure on the circle. The monoid of endomorphisms of
the trivial circle is

MD
a
F

BDiffSpin.F; @F /D
a
F

Bun@.TF; 
 s/==Diff.F; @F /;

where the disjoint union is over all diffeomorphism types of surfaces with one boundary
component. If F is not orientable, Bun@.TF; 
 s/D∅ and it plays no role. If F is an
oriented surface, the space Bun@.TF; 
 s/ is homotopy equivalent to the space of pairs
.�; l/ of a map � W TF ! 
C classifying the oriented tangent bundle and a relative
lift l of the underlying map x� W F ! BSO.2/,

K.Z=2Z; 1/

S1 �- BSpin.2/
?

F
? x� -

l

......
......

......
....-

BSO.2/:

�

?

The space of classifying maps � is contractible, and for a fixed � the space of lifts l

is a torsor for the topological abelian group Map..F; @F /; .K.Z=2Z; 1/;�//, which
has contractible path components. It follows that Bun@.TF; 
 s/ has contractible path
components, and we write Spin.F; @F /D �0.Bun@.TF; 
 s//. Thus

BDiffSpin.F; @F /' Spin.F; @F /==DiffC.F; @F /:
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The group DiffC.F; @F / acts on Spin.F; @F / with two orbits (distinguished by their
Arf invariant). Pick representatives s0 and s1 for these orbits. If Diffsi .F; @F / is the
stabiliser of si 2 Spin.F; @F /, then there is an equivalence

BDiffSpin.F; @F /' BDiffs0.F; @F /qBDiffs1.F; @F /:

Since the group DiffC.F; @F / has contractible components [3] the same is true for
Diffsi .F; @F /, and so BDiffsi .†g;1; @†g;1/' B�

si

g;1
. Thus the monoid is

MD
a
g�0

a
iD0;1

B�
si

g;1
:

The components of this monoid are N � Z=2Z, so it can be group-completed by
inverting just .1; 0/: this corresponds to gluing on a torus with a spin structure of Arf
invariant 0. The telescope M1 is then Z�Z=2Z�B��1;1 .

If � W X! BO.2/ is a tangential structure with X connected and such that S2 admits a
� –structure, and Y is a path connected space, then � �Y D � ı�XW X�Y ! BO.2/
again has these properties. This allows us to add maps to a background space Y to any
such tangential structure.

Let us develop this in the case of ordinary orientations, where the tangential structure
is � W BSO.2/! BO.2/. The space Sg;1.Y I �/ of Cohen–Madsen [2] is precisely the
space BDiff ��Y .Fg;1; @Fg;1/, where the map to Y is fixed to be the constant map to
the basepoint on the boundary. Cobordism classes of objects in C�

��Y
are in natural

bijection with H1.Y;Z/, via the map that sends a circle in Y to the homology class it
represents. Let C be a representative of the trivial homology class.

The monoid of endomorphisms of C in C�
��Y

is MD`g�0 Sg;1.Y I �/. For a general
space Y this monoid has tremendously many components, and so it is not clear that one
can form the stabilisation M1 , as one may not be able to group complete �0.M/ by
inverting finitely many elements. However, in several interesting one can form M1 .

Note that there is a homotopy fiber sequence

(5-1) �2Y !map..Fg;1; @Fg;1/; .Y;�//! .�Y /2g

onto those components of .�Y /2g represented by tuples .a1; b1; : : : ;ag; bg/2�1.Y /
2g

such that
Qg

iD1
Œai ; bi �D 1.

5.1 Y simply connected

In this case �0.Sg;1.Y I �//Š �2.Y /ŠH2.Y IZ/, and �0.M/DN �H2.Y IZ/ as
a monoid. This can be group completed by inverting just .1; 0/ 2N �H2.Y IZ/, and
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so we can form M1 as the mapping telescope of

M
� .1;0/����!M

� .1;0/����!M
� .1;0/����! � � � :

The discussion in Section 1.1 and Theorem B gives:

Corollary F (Cohen–Madsen [2]) Let Y be a simply connected space. Then there is
a homology equivalence

Z� hocolim
g!1 Sg;1.Y I �/!�1MTSO.2/^YC

where the colimit is formed by the map � .1; 0/ above.

5.2 Y D BG , G a cyclic group

In this case

�0.Sg;1.BGI �//D �0.Bun@.TFg;1; �
�
 //�Diff.Fg;1/ �0.map@.Fg;1;BG//

and the homotopy fiber sequence (5-1) gives that

map@.Fg;1;BG/'G2g 'H 1.Fg;1; @Fg;1IG/
therefore

(5-2) �0.M/D
a
g�0

G2g=DiffC.Fg;1/

where composition is by concatenating (representatives of equivalence classes of) tuples
of elements of G . Note that this monoid is generated by the g D 1 elements. This
much holds for any abelian group G .

Lemma 5.1 Suppose that G is a cyclic group generated by an element 1. Then in
G2=DiffC.F1;1/ there are relations

Œa˙ b; b�D Œa; b�D Œa; b˙ a�:

In G4=DiffC.F2;1/ there are relations

Œ0; 1� � Œa; b�D Œ0; 1� � Œa� 1; b�

Œ0; 1� � Œ0; b�D Œ0; 1� � Œ0; 1�and

in the monoid �0.M/.

Geometry & Topology, Volume 14 (2010)



1300 Søren Galatius and Oscar Randal-Williams

Proof DiffC.F1;1/ acts on G2 through the group Sp.2;Z/, to which it surjects. The
obvious group elements give the relations claimed. DiffC.F2;1/ acts on G4 through
the group Sp.4;Z/, to which it surjects. Define an element

t D

0BB@
1 1 0 �1

0 1 0 0

0 �1 1 1

0 0 0 1

1CCA
in this group. Then

t.0; 1; a; b/D .1� b; 1; a� 1C b; b/� .0; 1; a� 1; b/:

We also have

t.0; 1; 0; b/D .1� b; 1; b� 1; b/� .0; 1; b� 1; 1/� .0; 1; 0; 1/:

Thus inverting Œ0; 1� gives Œa; b�D Œ0; b� in the group-completion, and implies Œ0; b� is
invertible. Thus it is enough to just invert Œ0; 1� to group-complete the monoid, so we
may form

M1 D hocolim.M
� Œ0;1����!M

� Œ0;1����!M
� Œ0;1����! � � � /

whereby Theorem B gives:

Corollary G Let G be a cyclic group. Then there is a homology equivalence

Z� hocolim
g!1 Sg;1.BGI �/!�1MTSO.2/^BGC

where the colimit is formed by the map � Œ0; 1� above.

Let us spell this result out in certain cases. Recall that DiffC.Fg;1/'�0.DiffC.Fg;1//

which is the mapping class group �g;1 of Fg;1 . When G D Z, we have �g;1 acting
on Z2g , and let us write � 0

g;1
for the subgroup of �0.DiffC.Fg;1// which fixes the

primitive element .0; 1; 0; 1; : : : ; 0; 1/ 2 Z2g . The statement of the corollary is then
that

Z� hocolim.� � � ! B� 0g;1
� Œ0;1����! B� 0gC1;1! � � � /!�1MTSO.2/^S1C

is a homology equivalence. This identifies the stable homology of the subgroup
� 0

g;1
< �g;1 which fixes a primitive element of H 1.Fg;1; @Fg;1IZ/.

When GDZ=nZ, we have �g;1 acting on .Z=nZ/2g , and let us write � 0
g;1
.n/ for the

subgroup of �0.DiffC.Fg;1// that fixes the primitive element .0; 1; 0; 1; : : : ; 0; 1/ 2
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.Z=nZ/2g . The statement of the corollary is then that

Z�hocolim.� � �!B� 0g;1.n/
� Œ0;1����!B� 0gC1;1.n/!� � � /!�1MTSO.2/^BZ=nZC

is a homology equivalence. On the other hand, B� 0
g;1
.n/ can be identified with the

moduli space of Riemann surfaces of genus g with a single framed point, equipped
with an n–fold cyclic unbranched cover. This identifies the stable homology of these
moduli spaces.

A similar analysis holds for any space Y with cyclic fundamental group. The question
of whether �0.M/ may be group completed by inverting finitely many elements for
general groups G D �1.Y / seems to be difficult.
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